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Depression, a prevalent and complex mental health issue affecting millions worldwide, presents significant
challenges for detection and monitoring. While facial expressions have shown promise in laboratory settings
for identifying depression, their potential in real-world applications remains largely unexplored due to the
difficulties in developing efficient mobile systems. In this study, we aim to introduce FacePsy, an open-source
mobile sensing system designed to capture affective inferences by analyzing sophisticated features and
generating real-time data on facial behavior landmarks, eye movements, and head gestures – all within the
naturalistic context of smartphone usage with 25 participants. Through rigorous development, testing, and
optimization, we identified eye-open states, head gestures, smile expressions, and specific Action Units (2, 6, 7,
12, 15, and 17) as significant indicators of depressive episodes (AUROC=81%). Our regression model predicting
PHQ-9 scores achieved moderate accuracy, with a Mean Absolute Error of 3.08. Our findings offer valuable
insights and implications for enhancing deployable and usable mobile affective sensing systems, ultimately
improving mental health monitoring, prediction, and just-in-time adaptive interventions for researchers and
developers in healthcare.
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1 INTRODUCTION
Mental health pertains to emotional, psychological, and social well-being, influencing daily thoughts,
feelings, and actions. Mental illness is a leading cause of disability, with an estimated 450 million
people affected worldwide [71]. It is also a significant predictor of suicide [67]. Mental disorders
usually emerge in an individual’s early 20s [53], and their untreated presence can negatively
impact academic success, productivity, and social relationships [54, 97]. In the context of COVID-19,
the need for social distancing has led to the widespread adoption of telehealth services such as
telepsychiatry [22, 72]. Unfortunately, many individuals are experiencing mental health issues
during the pandemic, with the highest levels of pandemic-era anxiety and depression observed
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
MobileHCI ’24, Sept 30 – Oct 03, 2024, Melbourne, Australia
© 2024 Association for Computing Machinery.

1

ar
X

iv
:2

40
6.

17
18

1v
1 

 [
cs

.H
C

] 
 2

4 
Ju

n 
20

24

HTTPS://ORCID.ORG/0000-0003-3601-0078
HTTPS://ORCID.ORG/0000-0002-2047-1358


MobileHCI ’24, Sept 30 – Oct 03, 2024, Melbourne, Australia Islam and Bae

in 2020 across all age groups, which began to decline in early 2021 [96]. While many COVID-19
restrictions have been lifted, approximately 5% of the U.S. adult population, or about 12 million
Americans, are living with co-occurring chronic pain and clinically significant symptoms of anxiety
and depression [50]. This ongoing situation underscores the importance of reconsidering how
to deliver mental health care effectively at the right time. Personalized psychiatric care, which
promotes preventive measures and offers tailored interventions, could help meet these needs,
though its availability remains limited [1].
A growing body of psychological studies [27, 39, 40, 90] have suggested that depression is

characterized by nonverbal signals such as facial muscle movement, and head gesture, which can
be detected automatically without the need for clinical intervention. We refer to these as "facial
behavior primitives". Research has shown that mental illness, such as depression, leaves recognizable
markers in the facial patterns of an individual [81]. Often, these changes manifest in a person’s
face involuntarily. Creating an automatic system [17, 86, 93] based on these cues can provide an
objective and repeatable evaluation and address problems related to cost and time requirements.
Despite the valuable insights gained from these studies, it should be noted that they were conducted
in controlled lab environments and recorded videos of individuals’ faces. Currently, the real-life
implementation of such systems is limited due to privacy concerns [10, 17, 56, 87, 94], unrealistic
costs [74], and required computational power [15, 32, 69].
While facial actions have shown promise in lab settings for understanding depression, their

application in real-world scenarios remains largely unexplored due to challenges in designing
efficient, deployable mobile systems. To bridge this gap, we introduce FacePsy, an open-source
mobile sensing system capturing facial features, generating real-time data on facial behavior
landmarks, eye open, smile, and head gestures, all through smartphones in natural settings, while
preserving user privacy. We hypothesize that digital biomarkers extracted from facial cues offer
valuable insights into an individual’s internal emotional and affective state, thereby enabling
algorithms to infer depression. In this field study, we gathered data in real-world contexts to assess
how and whether the data collected through our framework could demonstrate the potential for
predicting depressive episodes in naturalistic environments.
While there are studies that use mobile sensing to track patterns in social and behavioral data

by tracking communications, app usage, and GPS data [15, 69, 99], these mobile sensing-based
solutions primarily focus on capturing social and behavioral data but disregarding affective signals,
which have been shown to be important indicators of depression. These studies have particular
challenges and barriers: (1) Mobile sensing limits modeling usage because it requires extensive
computation and post-processing. The burden of collecting sensors 24/7 and battery consumption
may lead to low compliance. It might not be usable for stakeholders. (2) Wang et al. [98] tried to
capture entire face images in the real-world settings to understand depression but reported that
they failed to validate the effectiveness of data due to insufficient frames to build a model (one
frame when unlocking the smartphone ); (3) Tseng et al. collected and analyzed eye patches in
detecting alertness [91] not depression, but partially captured a part of the face only (eye). Most
recently, MoodCapture [66] was introduced that captures facial images in natural environments
for depression detection. This involves analyzing image attributes such as angle, dominant colors,
location, objects, and lighting. The utility of MoodCapture for developers seeking to implement
similar studies in different settings may be somewhat limited, as the authors have not made their
mobile system, dataset, or machine learning pipeline publicly available. Our study complements
MoodCapture’s work by exploring the incremental utility of mobile sensing for depression detection
and advocating for new avenues to develop mental health assessment tools based on in-the-wild
images. Our research advances from MoodCapture in terms of data collection mechanisms, on-
device processing, privacy awareness, and the facial attributes collected. While MoodCapture
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collects facial data when a user responds to survey questions, our study implements a trigger-based
data collection motivated by prior literature [92]. This mechanism activates based on user actions,
such as turning the screen on/off, opening/closing apps, etc., to start or stop data collection. For
on-device processing, we only send the final detected facial behavior primitives (Action Units (AU),
smile, eye open state, head Euler angles, and landmarks) to the research server for further analysis.
This helps us ensure user privacy and prevent the leakage of facial images by discarding images
from user device after processing. Our work also advocates for privacy-aware data collection.
This approach is informed by prior literature on nudging [5], informing users about active data
collection [20, 30], and notifying users when the app restarts itself after a reboot or crash [20].
While MoodCapture has first introduced the use of facial images for depression detection in natural
environments, our approach proposes a novel facet to this field in several key aspects. We are
among the first to develop an open-sourced, privacy-aware, trigger-based affective mobile system
that captures facial data from users’ smartphones and immediately discards the raw images after
extracting essential features in near real-time (within 10 seconds). This method not only builds a
predictive model of depressive episodes but also ensures that sensitive facial data is not permanently
stored on devices, addressing significant privacy concerns and awareness.
To advance affective computing systems, making it applicable in real-world settings, we syn-

thesize a set of affective signals from face which have been well-validated such as facial muscular
activities (AUs) as well as proposed new features beyond simple facial expression algorithms that
have been unexplored and invalidated in a user’s everyday settings. Research questions as follows:
(RQ1) What are the important signals of affective biomarkers on depressive episode detection by dif-
ferentiating depressive and non-depressive episodes, and how can those key features contribute to
the model’s performance? and (RQ2) Whether and how can an affective mobile system be efficiently
designed, tested, and developed to understand a user’s mental health, specifically in predicting
depressive episodes, in real-world settings? As a result, we identified specific affective indicators as
crucial factors for distinguishing between individuals experiencing depressive and non-depressive
episodes. These indicators encompass the eye-open state, head pose, smile expression, and specific
Action Units (2, 6, 7, 12, 15, and 17). When these features are combined, they exhibit predictive
potential for detecting depression episodes, achieving an AUROC of 67% for universal model, while
the hybrid model has an AUROC of 81%. It is worth noting that further enhancements in predictive
accuracy can be attained through the accumulation of additional data spanning subsequent weeks.
These findings represent a significant stride in bridging the existing disparity between controlled
laboratory studies and the practical implementation of depression detection through affective
mobile sensing systems in real-world scenarios.

As such, we have developed a deployable and usable open-sourced, lightweight, affective mobile
system for the HCI community 1. Our system integrates state-of-the-art facial biomarkers, which
have been validated to understand complex mental states and workloads in controlled lab settings.
We have further expanded these features for the context of depression detection. The system
automatically extracts these features from a user’s smartphone in natural environments. This
system has the potential to create new avenues for developing mental health assessment tools and
behavior modeling based on in-the-wild images. Moreover, our FacePsy system can be deployed
in everyday settings, and it is optimized with a sampling rate of 2.5 FPS without any delays on
the user’s own phones. Further, we provide insights with the experiments with different subset
of facial behavior primitives features in detecting depression in naturalistic environments. As we
highlight the impact of each subset of features validated in naturalistic environments, researchers

1Our system source code is available at: https://github.com/stevenshci/FacePsy
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and developers can utilize our mobile system to conduct their studies, configure apps for triggering
time and frequency, and build their own computational models.

2 BACKGROUND
In this section, we introduce the literature on facial behavior primitives in developing depression
inferences and machine learning models (Section 2.1) and provide prior work on depression detec-
tion using mobile sensing technologies in the fields of mobile and affective computing communities
(Section 2.2).

2.1 Facial Behavior Primitives in Depression
Research on nonverbal facial behavior often shows that individuals with depression usually exhibit
fewer happy facial expressions, reduced expressiveness, and less head movement. The less frequent
display of happy facial expressions by depressed patients is a commonly observed finding [14, 37,
79, 85]. Various studies also link depression with decreased general facial expression [35, 79] and
head movement [3, 33, 51]. One study found that participants with major depressive disorder (MDD)
had a significantly reduced transient pupillary response [61], lending support to the potential of
detecting depression through these means. Typical symptoms of depression, such as sorrowful
expressions and a lack of affective experience, have been characterized by researchers using facial
expressions [27]. However, the prevalence of negative facial expressions in depressed individuals
is disputed, with contradictory findings presented in various studies. Some argue that depression
is characterized by an increase in negative facial expressions [78, 84], while others suggest that
depressed people may actually exhibit more positive facial expressions [35, 79].
To diagnose depression, nonverbal signals have been introduced by researchers in affective

computing. For instance, Cohn et al. [17] proposed visual signals as non-verbal behavioral features
– manually annotated facial action units (AUs) and active appearance model (AAM) features,
which are mathematically derived representations of facial images that capture shape and texture
variations. They found that participants with high depression severity displayed fewer associative
facial expressions (AU12 – lip corner puller, and AU15 – lip corner depressor) and more non-
associative facial expressions (AU14 – dimpler), indicating that these traits helped spot depression.
Most recently, Valstar et al. [87, 93] have used facial and auditory features to detect depression in pre-
recorded videos. Their finding suggests that AU4 (brow lowerer), AU12 (lip corner puller), AU15 (lip
corner depressor), and AU17 (chin raiser) are useful for estimating depression severity, supporting
existing evidence. These findings highlight the potential utility of automated facial behavior analysis
towards predicting of depression. These initial studies were based on recorded video data from
consenting participants in controlled environments. In contrast, deploying such technologies in
uncontrolled, everyday settings raises valid privacy concerns. However, our approach mitigates
these concerns by processing data directly on the device. By leveraging on-device computation for
feature extraction, we significantly reduce the privacy risks associated with transmitting sensitive
facial data. This method ensures that personal data does not leave the user’s device, aligning with
privacy-preserving strategies essential for real-world applications.
Researchers in HCI have explored using mobile camera sensors to capture and analyze user

data for mental health assessment. For instance, Rui et al. [98] developed a smartphone app that
takes photos of users’ faces throughout the day, extracting facial expressions and landmarks.
However, this approach had limited success. The correlation between facial expressions, landmarks,
and mental health was difficult to establish due to the poor performance of facial expression
algorithms, landmark detectors, and image quality. In a separate HCI study, Vincent et al. [92]
used pupil information to gauge user alertness as an indicator of mental states. A recent study,
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Table 1. Studies on Predicting Depression Using Facial Behavior Primitives

Study Part. Study Length Data & Feature Types Validation
Method

Performance Metrics Research En-
vironment

Cohn et al. [17] 57 7-week intervals Audio/video, 17 AUs, AAM Leave-one-out Accuracy: 79% Lab
Valstar et al. [94] 292 One video each AVEC13, LPQ 5-fold MAE: 10.88,

RMSE: 13.61
Lab

Song et al. [87] 84 One video each AVEC14, 17 AUs, Pose, Gaze 50/50 split MAE: 5.95,
RMSE: 7.15

Lab

Kong et al. [56] 102 N/A 10 photos, Deep learned 7:2:1 split Accuracy: 98.23% Lab
Casado et al. [10] 376 One video each AVEC13/14, rPPG N/A AVEC13: MAE: 6.43,

AVEC14: MAE: 6.57
Lab

Wang et al. [98] 37 10 weeks Photos, Eigenfaces, landmarks N/A N/A In the wild
Nepal et al. [66] 177 90 days AU, Gaze, Head Pose, Rigidity Pa-

rameters, and Eye, 2D & 3D Land-
marks

5-fold leave-
subject-out

Balanced Acc: 61% In the wild

Our approach 25 4 weeks 12 AUs, Smile, Eye open, Head Pose,
EAR, IVA, 133 landmarks

Leave-One-
Person-out

Accuracy: 51%,
AUC: 67%
MAE: 3.26

In the wild

Leave-One-Day-
out

Accuracy: 69%,
AUC: 81%
MAE: 3.08

MoodCapture [66], evaluated depression using images taken automatically by smartphone front-
facing cameras during everyday activities. This tool analyzes features in the images such as angles,
dominant colors, locations, objects present, and lighting conditions. The study showed that a
random forest algorithm trained on facial landmarks can effectively distinguish between depressed
and non-depressed individuals, and predict raw PHQ-8 scores. The effectiveness of MoodCapture
for developers looking to conduct similar studies in various environments might be constrained
because the authors haven’t released their mobile system, dataset, or machine learning pipeline. Our
study advances from MoodCapture in terms of data collection mechanisms, on-device processing,
privacy awareness, and the facial attributes collected. While MoodCapture captures images when
participants respond to EMA questions, our protocol relies on opportunistic data collection. We
gather data when participants interact with their smartphones at specific triggers (See Section 3.2).
This allows us to collect information that more comprehensively represents participants’ daily
lives and emotional states. By using a broader data collection framework, we can conduct a richer
analysis of behavioral patterns and emotional nuances that occur during regular phone usage, not
just during specific survey responses. Both MoodCapture and our study are primarily designed for
depression detection. However, using smartphone cameras to capture images could also extend
to assessing other cognitive states, such as alertness, through pupil imaging. These approaches
[66, 92, 98], however, raises privacy concerns due to the transmission and processing of facial
images on external servers. Our study complements the findings of these studies by implementing
all data processing locally on the user’s device; we plan to open source our system to the research
community, which can be used for further studies in behavior modeling through affective signals.

2.2 Detecting Depression Using Mobile Sensing
Significant progress has been made in detecting depression with mobile sensing. For instance,
Chikersal et al. [15] utilized the AWARE [32], an open-source context instrumentation framework.
It tracked behavioral data such as Bluetooth, calls, GPS, microphone, and screen status from
smartphones and wearable fitness devices to detect depression in college students. Their method
achieved 85.4% accuracy in identifying changes in individuals’ depression and 85.7% accuracy in
detecting post-semester depression over a semester-long (16 weeks) study. In a different study,
Asare et al. [69] also used the AWARE framework to monitor behavioral data. They focused on sleep,
physical activity, phone usage, GPS location, and daily mood ratings using the circumplex model
of affect (CMA) to detect depression. This approach resulted in 81.43% accuracy. Though sensing
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systems have proven effective in various applications, their ability to provide real-time insights and
interventions is relatively unexplored. This is mainly due to the resource-intensive requirements of
pre-processing, feature engineering, and model development, which demand further scrutiny to
fully utilize their capabilities. It is worth noting that the systems examined in previous research did
not support near-real-time facial feature extraction. This distinctive feature separates our affective
mobile system from others. We summarize the findings of these studies in Table 2.

Table 2. Studies on Predicting Depression Using Mobile Sensing

Study Sensors Used Results Findings

Chikersal et al. [15] Bluetooth, GPS, Screen, Calls, Sleep Accuracy: 82.3%
F1: 78%

Identifies depressive symptoms using data from smartphones and
fitness trackers of college students. The study introduce advanced
feature extraction technique.

Opoku et al. [69] Sleep, Activity, GPS, Phone Usage Accuracy: 81.43%
AUC: 82.31%

Classifies individuals as depressed/non-depressed using mood
scores and sensor data. Significant differences found in mood,
sleep, activity, phone usage, GPS mobility.

Pedrelli et al. [74] EDA, Heart Rate, Accelerometer,
Sleep, Movements, Temperature

MAE: 3.88 - 4.74 Feasibility of monitoring depression severity with smartphones
and wearables, showing moderate to high correlations with
clinician-assessed scores.

Farhan et al. [29] GPS, Physical Activity F1: 55% Behavioral data from smartphones predict clinical depression.
Combining with PHQ-9 scores enhances accuracy.

Nepal et al. [66] AU, Gaze, Head Pose, Rigidity Pa-
rameters, Eye, 2D & 3D Landmarks

Balanced Acc: 61% Uses smartphone images to detect depression by analyzing facial
expressions and features, demonstrating machine learning poten-
tial in mental health assessment.

Islam and Bae [48] Pupil-Iris Ratio Accuracy: 76%
F1: 64%
AUC: 71%

Pupillary response in natural settings varies between morning
and evening and can differentiate between depressive and non-
depressive states.

Our approach 12 AUs, Smile, Eye open, Head Pose,
EAR, IVA, 133 landmarks

Accuracy: 69%
F1: 67%
AUC: 81%
MAE: 3.08

FacePsy detects depressive episodes by collecting facial behaviors
and head gestures in real-world settings, achieving high predictive
accuracy with key features like eye-open states, smile expressions,
and specific Action Units.

Pedrelli et al. [74] have collected data streams from a wearable tracker, Empatica, and smart-
phone to detect changes in depression severity. The authors leveraged physiological data such
as electrodermal activity (EDA), peripheral skin temperature, heart rate, motion from the 3-axis
accelerometer, sleep characteristics, social interactions, activity patterns, and the number of apps
used, etc. They evaluated their predictive models using two evaluation methods: user-split and
time-split. They achieved an mean absolute error (MAE) ranging between 3.88 and 4.74. However,
their work’s limitation is that participants must wear two E4 Empatica, one in each hand. Such
obtrusive approaches lead to decreased compliance of participants and extra cost ($1,690 per device)
for researchers and users. In another study [29], they have used GPS and physical activity as sensor
features for depression. In another study [48], researchers used pupillometry data as a proxy for
psychological state to detect depression. They found pupillary response in natural settings varies
between morning and evening and can differentiate between depressive and non-depressive states.
All of the earlier studies have mostly focused on behavioral and social changes in a person during
the depression because open-sourced and deployable mobile frameworks are limited in the HCI com-
munity. As we know, depression is a multifaceted disorder that affects the behavioral, physiological,
and social aspects of people’s lives. The current mobile sensing-based approaches [15, 29, 69] may
not be able to capture the physiological signals with rich emotional signals, which have been shown
to be important indicators of depression. Whereas wearable sensing-based physiological sensing
solutions are proposed, the cost is very high for such deployment. As motivated by the works
[10, 17, 56, 87, 94] in affective computing have shown great potential in capturing physiological
signals with rich emotional data in persons with depression in lab settings. However, these studies
have been unexplored in real-world deployment where continuous symptommonitoring is essential
part of delivering an appropriate real-time intervention. In this paper, we would address this specific
issue by developing an affective mobile system that can unobtrusively and opportunistically track
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individual facial behavior primitives to give insights into their complex mental state in near-real
time by extracting various emotional data motivated by theories in affective computing. As hu-
man face serves as a crucial and natural medium for conveying emotional and mental states [26].
While some studies use facial behavior primitives to detect depression [87, 93], attempts to detect
depression using passively sensed facial behavior primitives in a naturalistic environment have
been unsuccessful [98]. The effectiveness of the existing depression detection models based on
facial behavior primitives in natural environments is also unexplored.
Therefore, we aim to design, refine, and develop configurable triggering for data collection,

including when unlocking phones and app use, to capture users’ facial behavior data in their
everyday settings. Our method opportunistically captures users’ facial behavior primitives unob-
trusively by triggering data collection when users interact with their own smartphones. In addition
to detecting depression, we explore the minimum number of days user data required to produce
reliable performance. The following sections describe our approach in detail, starting with the
design of our passively running mobile affective system.

3 DESIGN OPEN-SOURCED AFFECTIVE MOBILE SYSTEM FOR RESEARCHERS IN HCI
COMMUNITY

Our framework design is built upon the HCI theory and affective computing research. This section
introduces an overview of designing our affective mobile system, FacePsy (Section 3.1, 3.2, 3.3,
3.4)., and evaluates the feasibility of the system in a pilot study to refine the FacePsy (Section 3.5).
FacePsy is open-sourced with several key objectives. Our primary goal is to encourage widespread
adoption of the system, enabling users to derive value from the generated data and facilitating
engagement with topics related to mental health sensing, particularly in the context of depression.
Additionally, we aim to cultivate a community of contributors who can enhance the system by
designing FacePsy with modularity as a central principle. The complete source code for FacePsy
can be accessed on GitHub: https://github.com/stevenshci/FacePsy.

3.1 Technical Aspects of FacePsy
FacePsy is designed to capture real-time facial behavior primitives as users interact with their
mobile devices. Operating with a response time of 2.5 Hz, which was robustly tested across two
different devices, the app leverages the front camera to gather facial data during specified triggers
opportunistically. This approach enhances data relevance and optimizes energy consumption and
privacy. FacePsy integrates advanced modules such as facial landmark detection [41], head pose
estimation [41], and facial action unit recognition [28], running these sophisticated processes
directly on the device. This on-device processing ensures privacy and increases energy efficiency
by eliminating the need for continuous data transmission. In response to the challenges prevalent
in the HCI and Ubicomp domains concerning the deployment of everyday facial behavior sensing
systems, FacePsy emphasizes: (1) Achieving high performance in facial image capture and feature
extraction without compromising the user experience. The tested response time ensures that the
app functions effectively in real-time. (2) Prioritizing on-device image processing to safeguard
user privacy and improve battery efficiency. (3) Implementing trigger-based data collection to
refine model performance, reducing the need for continuous data monitoring and processing. (4)
Enhancing system controllability and configurability, which allows researchers to customize data
collection parameters according to specific research needs.
The rest of the section describes the facial behavior primitives detection implemented in the

FacePsy system to achieve the required research goal in detail.
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3.2 Unobtrusive Background Sensing on A User’s Phone
FacePsy has introduced functionalities, including configurable app triggers for data sampling.
Researchers can now set data collection trigger conditions and sampling rates, with a default set to
10 seconds, informed by studies indicating peak emotional responses within this timeframe [24, 64].
The app supports real-time feature extraction using the smartphone’s camera. We quantized a
CNN model [28] to integrate into our system; it efficiently extracts facial behavior features, with
processing time varying based on the device’s capabilities and feature complexity. Processed images
are automatically discarded from the user device after 20 seconds to ensure user privacy and manage
storage. None of the processed images leave the user’s device or are processed outside of user’s
device. Additionally, our system offers researchers flexibility in defining sampling triggers and
rates, enhancing its applicability for diverse research needs.

Upon installation, the mobile app registers as a background service, monitoring user events like
phone lock/unlock and application usage (e.g., WhatsApp, Twitter). These events trigger a 10-second
data collection session using a photo burst, a duration optimized for battery and computational
efficiency based on our feasibility study. FacePsy captures facial markers, such as Action Units [25],
and securely syncs this data to a research server during this session. To balance image processing
demands and resource consumption, the app records at a rate of 2.5Hz, ensuring seamless phone
usage. This decision was informed by a feasibility study involving two users. An alternative for
a higher frame rate could involve recording as a media stream and processing it frame-by-frame
using a codec.

3.3 Design Rationale Behind Facial Behavior Primitives Selection
Our framework design is based on principles of HCI theory and is informed by extensive research in
affective computing. Theoretical Backgrounds on hand-crafted features (e.g., HOG, LBP, etc.) [21, 88]
or deep-learned [49, 101] features have adopted to represent each frame or short video segment
in lab settings. However, traditional hand-crafted features are not optimal for facial behavior
applications as they are not specifically designed for this purpose. Based on previous studies, which
suggest that non-verbal visual cues characterize depression, our proposed approach uses facial
behavior attributes such as Action Units (AUs), face landmarks, and head pose as frame-wise
descriptors. The machine learning kit (ML Kit) [41] is used to automatically detect face landmarks,
smile and eye-open probability, and head pose, facilitating data collection. A convolutional neural
network (CNN) [28] is adapted to detect the intensities of 12 different AUs, resulting in 151-channel
facial behavior time-series data (12 AU, 1 smile probability, 2 eye open probability, 3 head pose, and
133 face landmarks) for each session.

AUs from the facial action coding system (FACS) [25], which taxonomizes human facial move-
ments, specifically AU4, AU12, AU15, and AU17, have been linked to depression severity [36, 87]
and mood disorders [43, 55]. Additionally, 133 facial landmarks that localize key facial regions are
detected using ML Kit [76]. Features extracted from these landmarks, such as Eye-aspect ratio (EAR)
[31] and intervector angles (IVA) [46], have associations with hypervigilance [8], drowsiness [63],
and facial expression analysis [46]. Moreover, they’ve been instrumental in assessing mental fatigue
[13]. We also computed probabilities for smile and eye-open states, which have been linked to
depression [37] and fatigue [57, 100]. Lastly, our app captured head Euler angles representing head
movements. Head pose features, such as slower head movements and specific head orientations,
have been identified as indicators of depression [3, 87] and suicidal ideation [23, 60].
The rationale behind selecting these features is rooted in their established associations with

mental health indicators, especially depression. By integrating a wide range of facial attributes,
our approach aims to provide a holistic and unbiased representation of facial behaviors. Compared
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to previously employed hand-crafted and deep-learned features, the facial behavior descriptors
provided in this work have several advantages. They are impartial since their values are unrelated
to the subjects’ identities, which prevents bias based on gender, age, ethnicity, etc., from influencing
the results, as suggested by Song et al. [86]. Second, They have a clear, comprehensible meaning,
which makes them more interpretable.

3.4 Configurability, Privacy and User Awareness
To provide high configurability for tailoring the application as needed, the FacePsy helps researchers
adjust the duration of data collection, which by default is set to 10 seconds upon any trigger for data
collection. Furthermore, it allows for distinct data collection durations based on different trigger
types, such as app usage, and phone unlocking. Lastly, the system supports the configuration of
various app usage triggers to initiate data collection, ensuring a comprehensive and adaptable
research tool.

Fig. 1. Examples of Test Images that Fails to Capture Features

When designing our system, paramount importance was given to user privacy and awareness.
Drawing inspiration from HCI research, we investigate user nudging [5, 30] in privacy systems
[20]. This involves giving information about background data collection, especially in private
contexts where no images are stored. Firstly, a clear notification is displayed in the notification bar,
indicating "Data collection is active" to ensure users are always aware when data is being collected.
Additionally, a green light indicator is positioned next to the camera, signaling when the camera is
actively capturing data. In the event FacePsy app automatically restarts itself in the background,
either due to a phone restart or an app crash, a toast notification is presented to the user, stating
"FacePsy is running on background" Lastly, to further safeguard user data, once facial behavior
primitives are extracted, the processed images are automatically deleted from the user’s device.

3.5 Feasibility Study
Prior to investigating if facial behavior primitives collected from FacePsy can assess a user’s
depression status, we decided to carry out a feasibility study to see whether the system could
precisely detect the user’s facial behaviors using the front-facing camera of a smartphone. To do this,
we enlisted the help of 1 volunteer (T2: tester 2) and the first author (T1: tester 1), who used a Google
Pixel 4 and 5a smartphone to gather data for two days. Participants carried FacePsy installed in their
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Fig. 2. Examples of Test Images That Succeeds to Capture Features

Table 3. FacePsy App Resource Usage on Google 4 & 5a

Resource Day 1 (T1, T2) Day 2 Avg (T1 & T2)

Battery 37%, 57% 58%, 43% 48.75%
Memory (MB) 133, 144 85, 57 104.75
Data usage (MB) 9.25, 22.23 16.13, 6.3 13.48
Storage (MB) 175, 155 177, 177 171

phones into their daily lives. FacePsy collected data whenever participants unlocked their phones.
We evaluate our system for perceived slowness in their device, causing any delay, interruption, or
disruption to phone usage. Our facial behavior sensing modules generated pictures annotated action
units, smile probability, eye open probability, head pose, and face landmarks. After gathering these
pictures, the first author confirmed if the facial behavior primitives were correctly detected. To do
this, the first author manually verified that the annotated photographs matched the unannotated
photos. Annotated images of facial behavior markers that were identified are shown in Figures 2,
while images were accurate, the processing modules made errors on several occasions (See Figure
1). On average, the app consumed 48.75% battery while running in the background and 104.75mb
memory. See Table 3 for more details. In total, we collected 834 images. Our features extraction
module processed only 817 images where a face was detected with an average failure rate of 2.04%
(See Table 4). This was calculated based on daily end-of-day reports from volunteers regarding
resource consumption by our app. To optimize resource consumption, we implement opportunistic
data collection, which allows the app to collect data less frequently, thus reducing the load on
device resources. Further refining data collection triggers can be done to ensure that the app only
collects data when optimal behavioral signals are present, reducing unnecessary resource usage.
The results of our app feasibility evaluation were encouraging. Our system detected the facial

behavior makers without hindering the user device experience at a 10-second photo burst in the
background.
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Table 4. FacePsy Data Processing Performance

Metric T1 T2

Total Images 411 423
Successful Extractions 401 416
Number of Failures 10 7
Overall Failure Rate (%) 2.43% 1.65%
Failure Rate for AU (%) 10.97% 24.28%
Failure Rate for Landmarks (%) 0.00% 0.00%
Failure Rate for Classification(Eye, Smile) 0.00% 1.68%
Failure Rate for Head Pose (%) 0.00% 0.00%

4 FIELD STUDY DATA COLLECTION
In this section, we describe our study protocol and data collection process in naturalistic environ-
ments.

4.1 Participants
Of N=25 participants (mean age 27.88 ± 8.87, range 18 - 48)2, 8 were females, 11 were males, and
6 did not specify gender on the demographic survey. 15 participants were Asian, 4 participants
were Caucasian, and 6 participants did not specify their ethnicity on the demographic survey. 1
participant indicated that their highest education was high school, 8 participants had bachelor’s
degrees, 10 participants had master’s degrees, and 6 participants did not indicate their highest
education on the demographic survey. 4 participants indicated that they had been diagnosed with a
mental disorder in the past, 15 indicated they had not, and 6 did not answer the question on the
demographic survey. Detailed demographic distribution is provided in Table 5.

4.2 Participants and Study Procedure
This study was reviewed and approved by the Institutional Review Board (IRB) at the University.
Participants in this studywere on-boarded remotely acrossmultiple time zones via ZoomConference
Meetings. Participants were eligible to participate in the study if they were above 18 and owned
a data plan-enabled Android smartphone. The research team advertised the study through flyers
and posts on Facebook and Whatsapp groups. Participants were asked to respond to a screening
questionnaire and select a preferred time for the onboarding Zoom meeting. In the onboarding
meeting, the interviewer gave participants informed consent and asked them to respond to the
baseline questionnaire. After the baseline, the interviewer took a semi-structured interview to
understand the participant’s mental health, followed by installing a mobile application on the
participant’s device to track sensor data from their smartphones. The study questionnaires were
delivered through email and administered with Qualtrics, an online survey platform.
Out of 38 participants who were initially recruited, only 25 participants completed the study.

One participant reported having a high battery drain because of our app and dropped out of the
study after two days. We later found the participant had high social media usage, which resulted in
frequent data collection triggers. Among others, 3 participants dropped out for personal reasons, 5
didn’t complete surveys, and 4 had incompatible Android versions, leading to the failure of the data
collection trigger module. The participants were compensated up to $135 for full compliance with
the study. The participants were compensated $20 for baseline and installing the data collection
app and were compensated $25 weekly for 4 weeks.
29 participants did not provide an age in the demographic survey.
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Table 5. Demographic Distribution

Attribute Unspecified Male Female Total

Gender 6 11 8 25
Age (Average) - 24.11 32.71 27.88
Ethnicity
- Unspecified 6 0 0 6
- Asian 0 9 6 15
- Caucasian 0 2 2 4
Education
- Unspecified 6 0 0 6
- High School 0 0 1 1
- Bachelor’s Degree 0 5 3 8
- Master’s Degree 0 6 4 10
Mental Health Rate (Average on a scale of 1-10) - 6.73 6.88 6.79
Depression State
- Unspecified 6 0 0 6
- Not at all often 0 2 1 3
- Not so often 0 4 4 8
- Somewhat often 0 5 1 6
- Very often 0 0 2 2
Mental Disorder Diagnosis
- Unspecified 6 0 0 6
- No 0 9 6 15
- Yes 0 2 2 4
Smoking Marijuana
- Unspecified 6 0 0 6
- No 0 9 8 17
- Yes 0 2 0 2

4.3 Ground-Truth: Mental health measures
Participants’ depression symptoms were assessed using a self-reported 9-item Patient Health
Questionnaire-9 (PHQ-9) [58] at three distinct times: upon joining the study (baseline), two weeks
into the study (mid-point), and at the conclusion of the study (end-point). Each item on the PHQ-9
is scored from 0 (not at all) to 3 (nearly every day), with the total scores ranging from 0 to 27.
This scoring captures the frequency of symptoms such as mood, sleep issues, fatigue, and changes
in appetite over the past two weeks. Monitoring a single person’s multiple PHQ-9 scores over
time can yield valuable insights into their mental health progression. The PHQ-9 categorizes
depression severity into five levels: scores of 0–4 signify no depression symptoms, 5–9 indicate mild
depressive symptoms, 10–14 represent moderate depressive symptoms, 15–19 signify moderately
severe depressive symptoms, and 20–27 denote severe depressive symptoms. This method allows
researchers and clinicians to track the severity and changes in depressive symptoms effectively.
We can define a depressive episode as a period characterized by persistent feelings of sadness,

hopelessness, and a lack of interest or pleasure in most activities observed with a PHQ-9 score
during a two-week observation period. we label two weeks of data from the participant as depressed
or non-depressed (i.e., a depressive episode) based on the PHQ-9 score of the participant at the
beginning and end of the two-week observation period, which falls within the range of mild
depressive symptoms or worse according to the PHQ-9 severity scale [38]. We label an individual

12



FacePsy: An Open-Source Affective Mobile Sensing System – Analyzing Facial Behavior and Head Gesture for Depression
Detection in Naturalistic Settings MobileHCI ’24, Sept 30 – Oct 03, 2024, Melbourne, Australia

as having a depressive episode only if the PHQ-9 score of the person is equal to or greater than 5 at
both the beginning and end of the observation period; otherwise, it is considered a non-depressive
period. This approach ensures consistency in labeling periods as depressive or non-depressive based
on established thresholds of depressive symptom severity. We complement our binary classification
models by incorporating regression models designed to predict the PHQ-9 scores. It’s important
to note that the PHQ is a versatile instrument, used both for screening for depression and for
monitoring changes in clinical symptoms [59]. In total, we label 14 cases of depressive episodes
and 30 non-depressive episodes (where depressive episode length is two weeks). We excluded the
last two weeks of data from 6 participants due to non-compliance, resulting in the exclusion of 6
depressive episodes.

4.4 Facial behavior data collection
The FacePsy app activates to capture facial data in three circumstances: when the user unlocks their
phone when the user accesses one of a preset number of trigger apps. The phone unlock trigger
activates the FacePsy app for 10 seconds after a user unlocks their phone. FacePsy also activates for
10 seconds when the user opens one of thirty-five different apps in total, divided into the categories
of communication, social, productivity, entertainment, and health. For example, Instagram, Google
Chrome, and Android Messages are all considered trigger apps. The images processed were mostly
clear and had high resolution. However, some images had some noise or blurriness on which the
model could not detect faces, which is a precursor for routines such as AU detection, landmark
detection, etc. These frames were dropped.

5 DATA PROCESSING AND ANALYSIS
5.1 Feature Engineering
Since most of the features are extracted by our behavior-sensing system on the user phone itself,
we extract very few features as part of post-processing. Our system pre-extracts features such as
Action Units (AU1, 2, 4, 6-7, 10, 12, 14, 17, 23-24), Smiling and Eye open probability, face landmarks,
and Head pose features (yaw, pitch and roll) on user device itself. We additionally extract features
such as the Eye-aspect ratio and Inter-vector angles. More details on these features are described
below.

Inter-vector angle. Inter-Vector Angles (or IVA) are scale-invariant geometric features computed on
facial landmarks for the purpose of facial shape representation [46]. We consider the nose center
as the centroid of the face for the purposes of computing IVA features. We then segment the face
into 8 regions (nose center, jawline, left eyebrow, left eye, right eyebrow, right eyebrow, mouth,
and cheeks) and compute in total 1439 triangles by taking permutations of all possible triangles
from the centroid to the remaining facial landmarks. We then use Principle Component Analysis to
reduce the number of IVA features down to 10. We then compute angular velocity and acceleration.

Eye-aspect ratio. Eye Aspect Ratio is a measure of the aspect ratio of the eye region, which is used
as an estimate of the eye-opening state. We defined EAR as the sum of two vertical lengths of the
eye divided by two times the horizontal length of the eye.
We collected 12 Action Units (AU), 1 Smile Probability, 2 Eye Open Probabilities, 3 Head Euler

Angles, 2 Eye Aspect Ratios, and 20 Inter-Vector Angles. We segmented each participant’s day into
four epochs: midnight (12am-6am), morning (6am-12pm), afternoon (12pm-6pm), and evening (6pm-
12am), each lasting six hours. For each epoch, we computed statistical features such as min, max,
mean, median, sum, std, q1 and q3 to summarize the features of that epoch. After this procedure,
we have 320 features for each epoch in our final dataset. We then classified each instance into its
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Fig. 3. Overview of Our Affective Mobile System

respective depression class. We noticed variations in participation duration, with an average of 3.36
days missing due to participants’ early exit from the study. This resulted in a total dataset of 616
participant days. In total, we gathered 544 days of facial data from 25 participants over a four-week
period. Notably, there were 55 days without any recorded data, as explained by participants, such
as planned holidays or breaks. A further 17 days lacked data due to issues like image quality and
eye-open probability in the feature extraction process. As a result, the total number of effective
data points for analysis is 544.

5.2 Statistical Analysis
The primary target variable of interest in our statistical analysis was the presence or absence of
a depressive episode. We calculated Pearson’s correlation coefficient (r-value) for each feature
within our dataset to assess its relationship with the target variable. Additionally, we determined
the mean and standard deviation for each feature, separating the data by group. Features were
then ordered according to the absolute value of their r-values to pinpoint those with at least a
weak correlation (r-value >= |0.20|). This approach allowed us to focus on the most significant
relationships, improving the interpretability and efficiency of our models, minimizing unnecessary
complexity, and reducing the likelihood of overfitting.

5.3 Feature Selection
Our analysis used feature selection (FS) with a Decision Tree classifier, specifically the CART
(Classification and Regression Trees) algorithm implemented in scikit-learn’s DecisionTreeClassifier.
To compute the importance scores for all features in the dataset, we used the Gini importance, a
measure derived directly from the Decision Tree itself. We then established a threshold for feature
selection based on the mean value of these importance scores, which calculated to 0.00078125.
Features with importance values above this threshold were considered significant and retained for
further analysis, while those below were discarded. This approach ensures a data-driven, objective
criterion for feature selection, enhancing model interpretiveness and efficiency by focusing on
features that contribute to the prediction of depressive episodes.
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5.4 Predictive Modeling with Machine Learning
In our predictive analysis using machine learning (See Figure 3), we developed a classification
model to detect instances of depression and non-depression, as well as a regression model to predict
the PHQ-9 score (See Section 4.3). We assigned labels of depression and non-depression to each
day of data based on their corresponding PHQ-9 scores, which served as the ground-truth values.
Our predictive modeling framework utilizes LightGBM (LGBM), a machine-learning library

that implements a gradient-boosting algorithm. This method has demonstrated robust predictive
capabilities in previous research [69, 70] focused on depression prediction. Our goal is to develop
both a universal model that identifies general patterns and a hybrid model that captures intricate
interactions and temporal sequences within the data. To address the issue of class imbalance, where
depressive instances are less frequent, we applied SMOTE [11] on the training dataset to enhance
the representation of the minority class, used mean imputation for handling missing data, and
performed standard scaling on the features. Hyperparameter tuning was conducted tomaximize the
AUROC value for classification and MAE for regression. We constructed nine supervised models,
each tailored to different learning schemes and utilizing subsets of facial behavior features sourced
from various facial regions to assess their predictive power for depression. The evaluation of these
models primarily relies on the AUROC score [44]. This metric is particularly effective for depression
prediction as it evaluates a model’s ability to distinguish between depressive and non-depressive
states by considering both the true positive rate (TPR) and false positive rate (FPR). The insensitivity
of AUROC to class imbalance makes it especially valuable, and a higher AUROC score signifies
superior model performance.

5.4.1 Universal model. This learning scheme utilizes a standardized procedure where a single model
is created for all users to identify depressive episodes. It uses a leave-one-participant-out (LOPO),
a.k.a leave-one-out/leave-one-group-out cross-validation technique. This approach, commonly used
in numerous mobile inference systems, provides a clear understanding of model generalizability.
Once this universal model is in place, it remains unchanged.

5.4.2 Hybrid model. The ideal model would blend the high precision of individualized models
with the ease of use of universal models that don’t require user training. Our study was unable
to use individualized models due to a lack of data - only two labels per participant, which is
not enough for such intricate modeling. We experimented with a hybrid model, incorporating
a small quantity of user-specific data with a broader general user dataset. we implement nested
cross-validation to minimize the likelihood of model overfitting by implementing a robust ML
model training strategy recommended by Asare et al. [69] for the predictive analysis of depression.
We employed stratified three-fold cross-validation with a time-series aware leave-one-participant-
day-out (LOPDO) cross-validation for the outer and inner cross-validation. In other words, one
participant’s day is chosen as the test set, and the remaining participant’s dataset is chosen as the
training set for each iteration of the nested cross-validation. All training set samples captured after
the test set are subtracted for time-series awareness. This approach could avoid the unworkable
situation in which future datasets are used to forecast the past. Consequently, the LOPDO model
effectively combines unique aspects of how an individual’s facial behavior data is linked to their
state of depression while also identifying general patterns consistently seen across different people.
The classifiers’ hyperparameter optimization, feature scaling, oversampling, and missing data
imputation were all addressed by inner cross-validation. Using grid search across a predetermined
set of parameters, we optimized the classifiers’ hyperparameters by maximizing the model AUROC
score.
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6 FIELD STUDY: UNDERSTANDING AND DETECTING DEPRESSIVE EPISODES
To obtain the feasibility of our proposed FacePsy framework in the field study, we address the
following question: (RQ1) can the facial behavior features collected by our mobile sensing system
be effectively utilized to detect depressive episodes in a naturalistic environment? (Section 6.2). To
understand sets of depression-related biomarkers that could be used in the wild we address (RQ2)
What’s the significance of different biomarkers on depression detection differentiating depressive
vs. non-depressive episodes in real-world settings? We introduce the top 27 facial behavior features.

Table 6. Summary of Feature Correlations with Depressive Episodes

Feature p-value
(<0.05)

r-value Depressive Episode
Mean (SD)

Non-Depressive Episode
Mean (SD)

ear_right_sum_morning 0.00 0.35 23.34 (28.87) 8.26 (11.1)
ear_left_sum_morning 0.00 0.34 21.36 (25.82) 7.99 (10.83)
headEulerAngle_Y_sum_morning 0.00 -0.33 -404.03 (719.02) -33.33 (332.65)
leftEyeOpenProbability_sum_morning 0.00 0.33 55.41 (69.64) 21.04 (28.1)
rightEyeOpenProbability_sum_morning 0.00 0.31 48.74 (62.6) 19.99 (25.73)
AU15_min_afternoon 0.00 0.27 0.09 (0.14) 0.04 (0.04)
rightEyeOpenProbability_std_evening 0.00 0.26 0.24 (0.07) 0.2 (0.07)
smilingProbability_sum_morning 0.00 0.26 5.52 (9.62) 1.98 (3.52)
rightEyeOpenProbability_std_afternoon 0.00 0.23 0.24 (0.07) 0.2 (0.07)
AU17_sum_midnight 0.00 -0.23 6.36 (13.6) 21.02 (34.59)
AU12_median_morning 0.00 -0.22 0.29 (0.21) 0.4 (0.27)
AU07_std_evening 0.00 0.22 0.26 (0.08) 0.22 (0.07)
AU02_std_evening 0.00 0.21 0.21 (0.07) 0.17 (0.08)
smilingProbability_max_evening 0.00 0.21 0.35 (0.2) 0.25 (0.21)
AU07_median_morning 0.00 -0.21 0.59 (0.24) 0.68 (0.2)
smilingProbability_max_morning 0.00 0.21 0.33 (0.2) 0.24 (0.2)
smilingProbability_mean_midnight 0.00 0.21 0.14 (0.12) 0.09 (0.09)
AU12_q3_morning 0.00 -0.21 0.39 (0.23) 0.5 (0.27)
AU12_mean_morning 0.00 -0.21 0.31 (0.19) 0.41 (0.24)
leftEyeOpenProbability_std_evening 0.00 0.20 0.23 (0.07) 0.2 (0.07)
headEulerAngle_X_std_evening 0.00 0.20 3.86 (1.4) 3.25 (1.33)
AU06_max_morning 0.01 -0.20 0.56 (0.27) 0.66 (0.23)
smilingProbability_std_evening 0.00 0.20 0.09 (0.05) 0.06 (0.06)
smilingProbability_std_afternoon 0.00 0.20 0.08 (0.06) 0.06 (0.06)
smilingProbability_mean_afternoon 0.00 0.20 0.11 (0.09) 0.07 (0.09)
AU06_mean_morning 0.01 -0.20 0.29 (0.19) 0.38 (0.21)
smilingProbability_mean_evening 0.00 0.20 0.1 (0.08) 0.07 (0.07)

6.1 Statistical difference between depressive and non-depressive episodes
The analysis evaluated the correlation of various features with depressive episodes (See Table 6).
The features were ranked based on the strength of their correlation (r-value) with the target variable,
which indicates the presence of a depressive episode. Out of 1280 only 158 features had a p-value
less than 0.05. Selecting features with at least a weak correlation (r-value >= abs(0.20)), streamlining
analysis by prioritizing meaningful relationships, and enhancing model interpretability and effi-
ciency while reducing noise and the risk of overfitting. Temporal dynamics of depressive episodes
suggest features measured in the morning often show significant correlations, pointing to the
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potential impact of depression on morning routines or states, such as reduced facial expressiveness
or specific eye movement patterns. The feature headEulerAngle_Y_sum_morning has the strongest
negative correlation with depressive episodes, with an r-value of -0.33. This suggests that as the
value of this feature decreases, the likelihood of a depressive episode increases. The Y rotation of
the head translates to the yaw of the Euler angle. Other features with notable negative correlations
include AU17_sum_midnight, AU12_median_morning, AU12_q3_morning AU07_median_morning,
AU06_max_morning and AU06_mean_morning. The absence of AU06, associated with expressing
emotions related to happiness or joy, correlates with depression. Furthermore, AU07, AU12 and
AU17 have been linked to depression severity, supporting existing evidence [36, 87].

The feature ear_right_sum_morning and ear_left_sum_morning shows a strong positive correla-
tion with depressive episodes, with an r-value of 0.35 and 0.34, respectively. This indicates that as
the value of this feature increases, the likelihood of a depressive episode also increases. It’s very im-
portant to consider the temporal dynamics of these features. Other features with significant positive
correlations include leftEyeOpenProbability_sum_morning, rightEyeOpenProbability_sum_morning,
rightEyeOpenProbability_std_evening and leftEyeOpenProbability_std_evening. The presence of
strong EAR, eye open probability related to high alertness [2] in morning and evening could be
explained as the “eveningness–morningness” dimension in depression [12]. The preference for
morning or evening can largely be attributed to the reduction of depressive symptoms such as low
energy, avoidance of social interaction, and loss of interest in previously pleasurable activities [77].
The presence of a positive correlation (r-values of 0.26, 0.21 for morning sum and maximum,

respectively; and similarly positive correlations for evening and midnight measures) between
smilingProbability and depressive episodes suggests that higher smiling probabilities are associated
with an increased likelihood of depressive episodes. This interpretation may seem counterintuitive
since it’s expected that depressive episodes would be associated with less smiling. However, this
unexpected positive correlation doesn’t necessarily imply that smiling more leads to depression or
vice versa. It might reflect complex underlying behaviors or compensatory mechanisms, such as
"smiling depression," where individuals might smile or maintain a facade of happiness in social
situations despite experiencing depressive symptoms internally [95]. However, as a limitation of
our study we are not able to confirm if participants are going such cases. Previous research suggests
that depression is not only associated with sad facial expressions but also with “a total lack of
facial expression corresponding to the lack of affective experience” [27]. Since we collect short
segments (10 sec) of data, it can be interpreted in various ways, e.g., a smile may be a result of
feeling happy or feeling helpless, as suggested by prior research [87]. While a positive correlation
between smilingProbability and depressive episodes seems paradoxical, it highlights the complexity
of depressive behaviors and the importance of considering broader psychological and situational
contexts when interpreting these findings.

6.2 Model development from data in the field study
6.2.1 Universal model. Table 7 summarizes the predictive performance of universal models. To
understand how different subsets of facial behavior features contribute to detecting depression, we
evaluated nine different models, each with a different face feature set, using LightGBM. The model
using the most significant features from the correlation analysis performed the best, followed by
the model that included feature selection. This approach enhances the model’s interpretability
and comprehension. The TSF model achieved 51% accuracy, with a precision of 40%, indicating
that it correctly predicted depression 40% of the time. A recall of 96% suggests that out of all the
depressive episode cases in the dataset, the model successfully identifies 96% of them as positive.
This is particularly important in depression detection, where missing out on positive cases leads to
missing out on opportunities to intervene. The model’s reliability is also reflected in an AUROC
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score of 0.67 (Fig. 4). In terms of regression metrics, the MAE for each model also provides insights
into the quantitative accuracy of depression severity estimation, showing the lowest error (3.26) for
the Action Units model, which suggests its superior ability to estimate the severity of depression
correctly compared to other models, where TSF model got an MAE of 5.13. While this indicates
limited ability to distinguish between depression and no-depression classes, it represents better
agreement between the model’s predictions and actual observations than a random classifier.

Fig. 4. The ROC plots show the universal model performance of each feature type model.

Table 7. Universal Model Performance: We trained eight LGBMmodels for predicting depression, including a
different feature subset. The model trained using all features showed the best results in predicting depression

Model MAE Accuracy Precision Recall F1 AUROC No. of Fea-
tures

Eye Open Probability (EOP) 5.20 0.33 0.31 0.83 0.45 0.33 64
Smiling Probability (SP) 5.32 0.37 0.33 0.87 0.48 0.52 32
Head Euler Angle (HEA) 4.71 0.29 0.28 0.71 0.40 0.27 96
Action Units (AU) 3.26 0.38 0.30 0.66 0.42 0.45 384
Eye-aspect ratio (EAR) 5.31 0.32 0.30 0.80 0.44 0.35 64
Inter-vector angle (IVA) 4.59 0.40 0.31 0.66 0.42 0.43 640
Top Significant Features (TSF) 5.13 0.51 0.40 0.96 0.56 0.67 27
Feature Selection (FS) 4.04 0.50 0.38 0.77 0.51 0.57 46
All features 3.77 0.40 0.28 0.51 0.36 0.40 1280

6.2.2 Hybrid model. Table 8 summarizes the predictive performance of hybrid models. The model
with the best performance is the one using feature selection with LightGBM. In the context of
detecting depressive episodes, the model demonstrated a commendable performance with an
accuracy of 69%. Notably, when predicting a depressive episode, it was correct 57% of the time,
as indicated by a precision for the depressive class. Furthermore, it successfully identified 62%
of all actual depressive episodes, reflected by a recall. The F1-score, a measure of the model’s
balance between precision and recall, was 0.67 for depressive episodes, suggesting a harmonized
performance despite the inherent class imbalance. The model’s reliability was also underscored by
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an AUROC of 0.81, indicating a strong ability to distinguish between the two classes and a good
agreement between the model’s predictions and actual observations. The regression results further
enhance our understanding, with the model achieving an MAE of 3.08 on the PHQ-9 scale, which
ranges from 0 to 27. This indicates that the model’s depression severity predictions are typically
within approximately three points of the actual clinical assessments, showing relatively moderate
accuracy in quantifying the severity of depressive symptoms.

Fig. 5. The ROC plots show the hybrid model performance of each feature type model.

Table 8. Hybrid Model Performance : We trained eight LGBM models for predicting depression, including a
different feature subset. The model trained using all features showed the best results in predicting depression

Model MAE Accuracy Precision Recall F1 AUROC No. of Fea-
tures

Eye Open Probability (EOP) 3.16 0.67 0.50 0.48 0.49 0.66 64
Smiling Probability (SP) 3.26 0.64 0.46 0.43 0.44 0.63 32
Head Euler Angle (HEA) 3.08 0.72 0.60 0.51 0.55 0.75 96
Action Units (AU) 3.02 0.67 0.50 0.35 0.41 0.67 384
Eye-aspect ratio (EAR) 3.37 0.64 0.45 0.41 0.43 0.63 64
Inter-vector angle (IVA) 3.57 0.59 0.35 0.28 0.31 0.55 640
Top Significant Features (TSF) 3.18 0.70 0.55 0.55 0.55 0.77 27
Feature Selection (FS) 3.08 0.69 0.57 0.62 0.67 0.81 46
All features 2.81 0.71 0.59 0.39 0.47 0.75 1280

Overall, the performance of the models varied, but the one using selected features showed the
best results in predicting depression. From the AUROC plot (Fig. 5), we can observe even though
model with HEA achieved better results in terms of accuracy of 72%, the model itself is stable when
combined with other features its yields much better results with more predictive performance
stabilization.

6.2.3 Minimum number of days needed to produce reliable detection. The AUROC is a metric used to
evaluate the performance of a diagnostic test, with values ranging from 0.5 to 1. A value greater than
0.5 is necessary for the test to be meaningful, and an AUROC of 0.7 or above is generally considered

19



MobileHCI ’24, Sept 30 – Oct 03, 2024, Melbourne, Australia Islam and Bae

acceptable. In the context of a depression detection model, the performance was better than random
guessing on day 1, with an AUROC of greated than 0.5. On day 1, the model’s performance improved
to a fair level with an AUROC of 62.4%. Remarkably, starting from day 7, the model achieved an
acceptable performance with an AUROC of 71.4%. This progression illustrates (Fig 6) a significant
enhancement in the model’s ability to accurately detect depression over the weeks.

Fig. 6. Minimum number of days needed to produce reliable detection

7 LESSONS LEARNED: DISCUSSING THE DETECTION OF DEPRESSIVE EPISODES ON
A SCALE

In this section, we highlight our work that contributes to new insights into the detection of
depressive episodes in everyday settings by designing and developing an open-source affective
mobile system. We found eye open state, head pose, smile, and action units (2, 6, 7, 12, 15, and 17)
as key affective indicators in differentiating depressive and non-depressive episodes that have been
validated in our field study. The combined features can be used to predict depression episodes. The
universal model has an AUROC of 67%, while the hybrid model has an AUROC of 81%. Further
improvement can achieved by collecting more data for subsequent weeks. These results serve as
a bridge between controlled laboratory studies and real-world applications, demonstrating the
feasibility of depression detection using an affective mobile sensing system.

7.1 Comparison to Prior Work
In the landscape of depression detection using mobile sensing, our approach significantly advances
by leveraging in-the-wild data collection through everyday smartphone interactions. This method
contrasts with many previous studies that primarily utilize lab-controlled [10, 17, 56, 87, 94]
environments for data collection using camera modality, thus limiting the generalizability of their
findings. For instance, our work complements the findings of Nepal et al. [66], which also employs
an in-the-wild approach but focuses on different feature sets, such as gaze and head pose, along
with 2D and 3D facial landmarks. While their study achieves a balanced accuracy of 61%, our
method enhances the model’s sensitivity to subtler indicators of depression through a detailed
analysis of facial action units (AUs), eye-open states, and smile expressions. Our method achieves
an AUROC of 81% and Accuracy of 69%, and maintains a consistent MAE across different validation
strategies, highlighting the robustness of our findings and their potential for real-world application.
This demonstrates the incremental utility of our approach, particularly in the seamless integration
of mental health monitoring into daily technology use, thus contributing valuable insights into
mobile health (mHealth) technologies for depression detection.
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In comparison to mobile sensing, studies focused on depression detection, our approach capi-
talizes on direct behavioral markers accessible via a smartphone camera, distinguishing it from
studies that rely on peripheral sensor data such as GPS or physical activity metrics. For example,
Chikersal et al. [15] and Opoku et al. [69] employ a variety of sensors to infer depressive states
indirectly through changes in mobility patterns and phone usage. While these studies achieve high
accuracy and AUC scores, they may not capture the nuanced emotional states that facial behavior
can indicate. Our method’s utilization of detailed facial action units, eye-open states, and head
gestures offers a more direct and potentially insightful measure of depressive episodes, evidenced
by our comparable AUC of 81%. Our model outperformed compared to a model that solely utilized
sensor data from the AWARE platform [32], which included Bluetooth (Accuracy=69.3, F1=0.64),
Calls (Accuracy=68.5, F1=0.59), GPS (Accuracy=69.5, F1=0.62), and Steps Counter (Accuracy=63.6,
F1=0.53), as detailed in research by Chikersal et al. [15]. Our approach achieved an accuracy of 69%
and an F1 score of 0.67, surpassing individual sensor results. However, Chikersal et al. reported a
higher F1 score of 0.78 when combining all sensors, indicating superior performance compared to
our model in that specific setup. This specificity in detecting emotional expressions offers a critical
enhancement over traditional mobile sensing methods, making our approach a valuable addition to
the spectrum of technologies for monitoring mental health in everyday settings.

7.2 Insights, Challenges and Opportunities in Predicting Depressive Episodes in the
Naturalistic Environments

Previous lab-controlled studies have delved into the extraction of facial behavior primitives from
face images using affect sensing systems like OpenFace [6]. These studies [10, 17, 56, 87, 94] have
achieved impressive performance in detecting depression, due to their high data collection rate
(e.g., processing video) and the controlled environment in which the data was collected. In contrast,
deploying these systems in real-world scenarios using smartphones results in several challenges.
On-device resource limitations often lead to a reduced frame rate (2.5Hz), and the unconstrained
data collection settings – affected by factors such as varied lighting conditions, phone orientation,
ongoing activities, and whether the environment is indoors or outdoors – can lead to poor quality
of data collection. This, in turn, can impact the lack of samples that limits the development of
predictive machine learning. Most recently, MoodCapture [66] was introduced that captures facial
images in natural environments for depression detection. Their research demonstrated that using
a random forest algorithm trained on facial landmarks, it’s possible to identify depression and
predict PHQ-8 scores among individuals. However, the utility of MoodCapture for developers
intending to replicate such studies in different settings may be limited due to the lack of access
to the mobile system, dataset, or machine learning framework used by the authors. Our research
builds upon MoodCapture’s work; we advance data collection by using a literature-based trigger
mechanism that responds to user interactions like screen activity and app usage, enhancing user
privacy by processing data on-device and discarding raw images post-analysis. Our study is novel
in developing an open-source, privacy-aware mobile system that captures and processes facial data
in near real-time, introducing significant improvements in privacy-awareness, data collection, and
on-device processing.

The similarities and differences observed between lab-controlled and real-world predictivemodels
can be attributed to the inherent nature of the environments in which they operate. Grounded
in HCI/affective computing theories [75], controlled environments allow for minimizing external
variables [9], ensuring that the subject’s emotional state primarily influences the data collected.
In such settings, the system can focus solely on the facial behavior primitives without interfering
with external factors. However, in real-world scenarios, the myriad of uncontrollable variables,
from lighting to personal activities, introduces noise into the data, which can mask or distort the
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true emotional indicators. From an affective computing perspective, human-computer interaction
is dynamic and multifaceted in real-world settings. The system has to interpret the emotional state
and account for the context in which the interaction is taking place. This context can significantly
influence the emotional indicators, making them more complex to decipher. These insights are
crucial for the design of an affective mobile framework for mental health. Recognizing the challenges
of real-world data collection, future frameworks should incorporate adaptive algorithms that can
adjust to varying conditions, ensuring consistent and accurate predictions. Additionally, leveraging
context-aware computing can help the system contextualize the data, distinguishing between
genuine emotional indicators and those influenced by external factors. This approach would lead
to a more robust and reliable affective mobile sensing system, enhancing its potential in mental
health applications.
Our method demonstrates good performance in depression detection compared to previous

work by Opoku et al. [69], which used a similar learning scheme for a hybrid model. However,
it’s important to note that this comparison may not be entirely direct. Additionally, our universal
model shows fair performance compared to prior work by Chikersal et al. [15] in passive sensing
using a similar learning scheme. The referenced study incorporates a comprehensive set of features,
including sleep patterns, physical activity, phone usage, GPS location, and daily mood ratings,
to model behavioral and social signals. However, as extensive research suggests, depression is a
multifaceted disorder that affects various aspects of an individual’s behavior, social interactions, and
physiology. The existing mobile sensing-based approaches [15, 29, 69] have limitations in capturing
affective signals [1] manifested through involuntary facial muscle and head gestures, which have
been established as crucial indicators of depression. Although wearable sensing-based physiological
solutions have been proposed, their high deployment costs including extra cost for purchasing
and wearing devices present a significant challenge and lack of affect/emotional signals. Previous
research in affective computing conducted within controlled laboratory settings [10, 17, 56, 87, 94]
has demonstrated significant promise in capturing emotional signals in individuals with depression.
However, these studies are constrained in their applicability to real-world deployments due to
computational cost, cost of devices, and user efforts to wear extra devices, particularly when
continuous monitoring is essential for delivering timely interventions based on signals captured
from users. The resolution of these issues remains unexplored. Therefore, our study aims to bridge
these gaps by proposing, collecting, and evaluating the feasibility of deploying data using our novel
affective mobile computing system in a real-world, naturalistic setting.

7.3 Privacy and Ethical Considerations to Enhance Feasibility in Real-World Settings
Because a camera temporarily captures a user’s face on their smartphone for up to 10 seconds
before deletion, users may have concerns due to the human perception of ’using a camera,’ even
though the system does not record any videos. To balance privacy considerations and data quality
for modeling, researchers in the HCI community should consider designing user nudging [5, 30].
These nudging, as suggested by researchers in privacy-preserving systems [20], could allow users
to push/pull status about system behavior when running in the background using content that
includes appropriate information about data collection status in private contexts where they may
feel uncomfortable, even when no images are collected/stored.
While our system automatically removes images after near-real-time feature extraction, the

concept of passive sensing [20] that underpins our affective mobile sensing framework does not
necessarily require a user interface to reduce users’ burden; instead, it runs in the background.
This is in contrast to active sensing, typically used for manual tasks. Nevertheless, it is essential
to empower users with the ability to enable or disable specific functionalities whenever they
perceive potential risks, rather than requiring them to exit the study. While there is a trade-off
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between privacy and the quantity of data collected, it is crucial for HCI researchers to collaborate
in designing mental health tracking systems that enhance user engagement [68], encourage self-
reflection [62], motivation [19], and trust [52], as has been well-established in the field of personal
informatics. For example, our individual facial behavior and head pose features can provide users
with daily happiness percentage scores using facial expression algorithms. This can serve as one
of the motivational strategies that could encourage them to reflect on their mental condition and
enable them to maintain good mental health practice, potentially contributing valuable data for
long-term healthcare research in the field of mental health.
To balance privacy considerations and data quality during system design, researchers should

consider how data could be collected, used, and stored, as well as what implications this could
have for the privacy of the users. While there may be discussion over how data processing can
dictate/drive the level of invasiveness of the application when the users are given an option of
choosing which type of processing or filters (presenting blurry face images for facial feature
extraction) [20] they would allow the developers to carry out. At the same time, this necessary
allowing the user to do so may impact the number of signals coming from the user’s facial data for
accurate behavior modeling.
We highlight the high monetary costs associated with wearable-based physiological markers

and the lack of rich emotional data. While we agree with the observation regarding the financial
aspect, we would want to adequately address the potential privacy costs of camera-based sensing,
which collects user data opportunistically throughout the day. The privacy cost in this context
refers to the potential risk of unauthorized access or misuse of personal and sensitive visual data
captured by the cameras. A method to reduce this impact could involve discarding the user images
immediately after computing the sensing values, thereby minimizing the storage of potentially
sensitive information or performing the data processing in memory. Further, we would reduce the
time for automatic feature extraction (currently 10 seconds per image). While we also provided
notification to users that FacePsy is collecting data in the background, more comprehensive and
clear justification that considers monetary and privacy costs and strategies to mitigate potential
concerns. Facial data of a person contains various characteristics of the face such as shape (face
landmarks, smile probability), eye shape (eye-aspect ratio), muscle movements (Action Units), and
face orientation (head Euler angles). While these characteristics describe the state of the face at any
given moment but don’t reveal a person’s identity. It is important to ensure that any facial data
gathered is encrypted and securely stored, as well as ensure that a user’s identity is not revealed in
any way. A utilitarian approach from the normative ethics point of view [80] to privacy-maintaining
interactions with such data is to balance the benefits that can be gained from facial recognition
technology with the potential privacy risks. This approach involves considering the trade-offs
between the benefits of using facial recognition technology and the potential risks to privacy. This
approach requires making decisions that prioritize the greater good, such as deciding to collect
only the minimum amount of data necessary, processing the data in a way that does not reveal user
identity, and encrypting and securely storing the data. Additionally, this approach may include
taking steps to ensure that facial recognition technology is used responsibly and ethically, such as
providing users with information on how their data is being collected and used and allowing them
to opt out of the system if they choose to.

7.3.1 User Feedback. We collected feedback (questionnaire available in Appendix A.2) from partic-
ipants at the end of the study, providing valuable insights into their experiences and perceptions
regarding the FacePsy app. Here, we explore the initial reactions, adjustments to the data collection
processes, and the evolving acceptance of privacy measures throughout the study. This feedback
is instrumental in understanding the real-world implications of deploying such technology and
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informs potential enhancements to improve user experience and trust. Below are detailed reflections
across five key areas, supported by direct quotes from the participants, illustrating the nuanced
reactions and suggestions for future development.

• Initial Perceptions and Consent: Participants initially had mixed feelings about facial data
collection. For instance, P10 stated, "I was a little skeptical my apps might hung due to this
new functionality." Despite initial hesitations, the consent process was generally found to
be reassuring. P8 shared, "Yes, everything was properly addressed and I was well informed,"
reflecting a sentiment that the privacy and data usage concerns were adequately managed.
Some participants (P23, P30) showed an initial discomfort with the app collecting their
sensitive facial data regarding privacy. This discomfort may arise due to the introduction of
new technology which they haven’t used previously. While discomfort was mentioned by
participants, they showed a shift in their comfort level using FacePsy over a period of use.

• Experience with Data Collection Triggers: The experience of the app activating on phone
unlocking or opening trigger apps varied. While some participants adjusted over time, others
remained concerned. P35 commented, "It definitely became more acceptable over time. Even
though I wasn’t particularly concerned about data collection, I got more used to it after the first
few days. " showing a quick adaptation, while P24 noted, "It was a bit of an adjustment but
became normal with time", showing slow adoption of apps trigger data collection in their
daily smartphone use. Whereas P8 noted, "It was a slight concern at the start but I got used to
it eventually."

• Impact on Daily Use and Privacy: Changes in usage habits due to the app’s data collection
were minimal. The feature that automatically discarded images after 20 seconds was positively
received. For instance, P24 appreciated this feature, saying, "Increased comfort level", P23
mentioned "A bit of comfort, but I am also aware that social media companies convert the
images into metadata. where the original image is no longer needed". This shows participants
were educated about such data collection methods. While P35 mentioned, "It may have
subconsciously led me to use my phone less frequently at beginning. But I got used to over time
and got back to my normal phone usage habits. It didn’t make me avoid using any specific apps."

• Understanding and Trust on-device Feature Extraction: Understanding of how facial
features were extracted varied, with some participants expressing a desire for more infor-
mation. Trust was generally high for those who felt adequately informed. For example, P30
affirmed, "I trust it since it was made clear by the researchers that this was the case. I think
as far as trust at the data collection, this is a great approach. As long as the image data is not
leaving my phone, I do not have any issues with it.". P35 showed increased comfort level with
using their phone over time, noting "This was the main reason why I became more and more
comfortable using my phone after the initial period. I think this was the key feature that made
me stick with the study until the end.". P23 advocated for a mechanism to create a private
repository, noting "Create a private repository and also alert when the data is accessed with
providing the reason and by whom it was accessed" – regarding the ownership and control of
their personal data.

• Long-term Acceptance: Perceptions of the app improved over time for many participants.
Regarding suggested improvements, P8 recommended, "I would make the activation not so
random but in timed intervals" calling for enhanced user control over the data collection
processes. A similar sentiment was echoed by P35, "Giving users personalization options for
which apps to exclude for data collection would be beneficial. Some users may prefer excluding
certain apps from beingmonitored, and I think having this option would increase user acceptance."
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7.4 Potential to Integrate Affective and Cognitive Inferences From Facial Behavior
Markers with Conversational Artificial Intelligence (CAI)

As previous research has confirm that understanding facial behavior primitives can enhance
long-term solutions for managing depression and provide insights into emotional communication
[42], aggression and negative affect recognition [34], psychological distress [89], and automatic
thoughts perception during cognitive behavioral therapy (CBT) [82, 83], inferences drawn from
facial behavior primitives in our study could enable more effective affective interactions [18, 47]
with a virtual CBT agent [82, 83], depending on an individual’s emotional and cognitive state.
Such an approach aims to create more affect-sensitive multimodal human–computer interactions
[73], enhancing the human-like qualities, effectiveness, and efficiency of virtual agents. Real-time
interpretation of complex mental states from facial expressions and head gestures, indicating
concentration, fatigue, disagreement, interest, contemplation, uncertainty, and more [26], could
provide contextual affect data to virtual agents, facilitating more fluid interactions. This aspect is
often lacking in text-based and avatar-based therapy agents.

In addition to its potential in depression detection, facial behavior primitives could find application
in real-time intoxication detection, as demonstrated in previous work on drunk face detection
using an offline dataset [65]. By incorporating such capabilities, the FacePsy system could broaden
its utility and use cases for real-world applications. Moreover, the system’s applicability could
extend to the detection of other forms of intoxication, such as marijuana intoxication [4, 16],
where observable facial muscle and head movements are indicative of psychomotor retardation
and agitation. Recent developments, like the creation of an augmented reality feedback system
for facial paralysis in a mobile setting [7], hint at the potential utility of the FacePsy system in
similar deployments. Beyond health-related applications, the FacePsy system’s usefulness could be
explored in monitoring student engagement in smartphone-based education or virtual classes [45]
where instructors can adjust lecture materials based on students’ behavioral feedback. Indicators
such as concentration, interest, or uncertainty are crucial for enhancing classroom engagement and
delivering high-quality education. The FacePsy system represents a significant step in the realm of
mobile affect sensing in human-computer interaction, with far-reaching implications for mental
health with virtual therapy sessions, substance abuse detection, and educational engagement.

8 LIMITATION AND FUTUREWORK
Even though we were able to get valuable insights about modeling depression and the proposed
subset of facial and physiological signals, there are still improvements to be made for this system
to be applicable in clinical settings. Although we successfully built a population model to detect
depression, however, there might be individual patterns that our population model cannot capture,
and thus may limit the generalizability of our model. In our future work, we will collect a larger
dataset per participant and investigate the use of more personalized individual models. While we
only register 11 categories of app use there could be more categories of app use that could work as
the best avenue for data collection, further research should examine if such categories exist. The
current limitation of our app, FacePsy, lies in its inadvertent triggering of data collection during
intra-app navigation, such as moving between pages within the same app, leading to multiple data
captures in a single session. In future work, we plan to refine the app’s architecture to discern and
limit data collection to significant user interactions, thereby enhancing the efficiency and relevance
of the data collection process. Furthermore, in our future work, we want to integrate the pupillary
response measurement module [48] in our processing pipeline for in-app measurement of pupillary
response by using Android Native libraries. In addition, we aim to enrich FacePsy by integrating
it with systems like AWARE and Fitbit, combining rich emotional signals extracted from visual
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data with other data such as GPS, heart rate, and EDA. We also plan to add contextual layers, like
categorizing apps that trigger data collection in model development which we collect as part of the
FacePsy triggering mechanism, to deepen the understanding of facial behavior in context.

Our depression labeling strategy may raise concerns regarding the data’s clarity and character-
istics: Each session represents a unique data point with specific features. It’s important to note
that a single day could encompass multiple sessions. However, each session linked to a particular
user will predict the different depressive episode labels span over two weeks observation period.
This methodology presents two potential challenges. Firstly, the variability between sessions might
make it challenging to identify a consistent pattern, which could affect the accuracy of predicting
depressive episodes. Secondly, if sessions appear too homogenous, it could suggest that the model
might be detecting implicit user characteristics rather than their actual risk of depression.

9 CONCLUSION
Depression is a major mental health disorder. As such, detecting depression can have significant
impacts across several domains. Towards this goal, we propose an affective mobile system that
allows us to collect facial behavior primitives from faces by opportunistically capturing user
faces by observing the user interaction with their phone in a naturalistic setting. To this end, we
build a depressive episode prediction model that achieves 81% of AUROC. Our regression model
that estimates PHQ-9 scores reached a moderate level of accuracy, exhibiting an MAE of 3.08.
Based on the results from our cross-validation, we found our model produces reliable performance
from several weeks of data to detect depressive episodes. We highlight key behavior primitives
differentiating depressive and non-depressive episodes and use case scenarios regarding how the
system could be applicable in detecting mental and neurological disorders for researchers and
stakeholders. Lastly, we discuss privacy and ethical considerations in deploying such a system.
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A SURVEY
A.1 PHQ-9
Participants were asked: "Over the last two weeks, how often have you been bothered by the
following problems?" This questionnaire is part of the standard assessment to gauge the severity of
depressive symptoms. Below is the PHQ-9 questionnaire (Table 9) used in the study:

Table 9. PHQ-9Questionnaire Items

No. Question

1 Little interest or pleasure in doing things
2 Feeling down, depressed, or hopeless
3 Trouble falling or staying asleep, or sleeping too much
4 Feeling tired or having little energy
5 Poor appetite or overeating
6 Feeling bad about yourself - or that you are a failure or have let yourself or your family down
7 Trouble concentrating on things, such as reading the newspaper or watching television
8 Moving or speaking so slowly that other people could have noticed. Or the opposite - being so

fidgety or restless that you have been moving around a lot more than usual
9 Thoughts that you would be better off dead, or of hurting yourself

A.2 Study Feedback
Table 10 lists the user feedback questions administered at the end of the study to gauge participants’
perceptions of the FacePsy app, focusing on aspects of consent, data collection triggers, impact
on privacy, understanding of feature extraction, and long-term acceptance. The questions were
designed to understand the participants’ experiences throughout their interaction with the app and
to gather suggestions for future improvements.
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Table 10. User FeedbackQuestions

No. Question

1 When you first started using the FacePsy app, what were your initial thoughts about the facial
data collection, especially when unlocking your phone or using specific apps?

2 How were you informed about the data collection process, and did you feel that the consent
process adequately addressed your concerns about privacy and data usage?

3 Can you describe how you felt the first few times the app activated upon unlocking your phone
or opening trigger apps? Did it become more acceptable over time, or did it remain a concern?

4 Were there any particular trigger apps that made you more uncomfortable when the FacePsy
app activated? How did this affect your usage of those apps?

5 Did you notice any changes in your phone usage habits due to the app’s data collection
methods? For example, did you use your phone less frequently or avoid certain apps?

6 What are your thoughts on the app automatically discarding images after 20 seconds? Did this
feature influence your comfort level with the ongoing data collection?

7 How well do you understand the process of facial feature extraction by the app? Was there
enough information provided about what data is extracted and how it is used?

8 Do you trust that the facial data collected remains on your device and is not uploaded
elsewhere? What could increase your trust in the system’s handling of your data?

9 How has your perception of the FacePsy app and its data collection practices changed during
the course of the study?

10 What improvements or changes would you suggest for the app, especially regarding user
control over data collection and privacy?
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