
Reinforcement Learning-Based Framework for the Intelligent
Adaptation of User Interfaces

Daniel Gaspar-Figueiredo
Universitat Politècnica de València &

ITI
Valencia, Spain

dagasfi@epsa.upv.es

Marta Fernández-Diego
Universitat Politècnica de València

Valencia, Spain
marferdi@omp.upv.es

Ruben Nuredini
Heilbronn University of Applied

Sciences
Heilbronn, Germany

ruben.nuredini@hs-heilbronn.de

Silvia Abrahão
Universitat Politècnica de València

Valencia, Spain
sabrahao@dsic.upv.es

Emilio Insfrán
Universitat Politècnica de València

Valencia, Spain
einsfran@dsic.upv.es

ABSTRACT
Adapting the user interface (UI) of software systems to meet the
needs and preferences of users is a complex task. The main chal-
lenge is to provide the appropriate adaptations at the appropri-
ate time to offer value to end-users. Recent advances in Machine
Learning (ML) techniques may provide effective means to support
the adaptation process. In this paper, we instantiate a reference
framework for Intelligent User Interface Adaptation by using Re-
inforcement Learning (RL) as the ML component to adapt user
interfaces and ultimately improving the overall User Experience
(UX). By using RL, the system is able to learn from past adaptations
to improve the decision-making capabilities. Moreover, assessing
the success of such adaptations remains a challenge. To overcome
this issue, we propose to use predictive Human-Computer Inter-
action (HCI) models to evaluate the outcome of each action (i.e.,
adaptations) performed by the RL agent. In addition, we present
an implementation of the instantiated framework, which is an ex-
tension of OpenAI Gym, that serves as a toolkit for developing
and comparing RL algorithms. This Gym environment is highly
configurable and extensible to other UI adaptation contexts. The
evaluation results show that our RL-based framework can success-
fully train RL agents able to learn how to adapt UIs in a specific
context to maximize the user engagement by using an HCI model
as rewards predictor.

CCS CONCEPTS
• Software and its engineering→ Software design engineer-
ing; • Human-centered computing→ User interface design.

KEYWORDS
Adaptive User Interfaces, Reinforcement Learning, Human-Computer
Interaction

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
EICS Companion ’24, June 24–28, 2024, Cagliari, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ACM Reference Format:
Daniel Gaspar-Figueiredo, Marta Fernández-Diego, Ruben Nuredini, Silvia
Abrahão, and Emilio Insfrán. 2024. Reinforcement Learning-Based Frame-
work for the Intelligent Adaptation of User Interfaces. In Companion of
the16th ACM SIGCHI Symposium on Engineering Interactive Computing Sys-
tems (EICS Companion ’24), June 24–28, 2024, Cagliari, Italy. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Adapting user interfaces (UIs) to the dynamic needs and prefer-
ences of users taking into account the various contexts of use by
suggesting changes at the right time and place is a major challenge
in software systems. The main goal is to provide timely and con-
textually relevant adaptations that significantly improve the User
Experience (UX). Recent advances in Machine Learning (ML) have
introduced promising ways to enhance the adaptation process [1].
Thus, in this paper, we explore the use of RL as the ML compo-
nent of the conceptual framework for Intelligent User Interface
Adaptation proposed in a previous work [1]. In this context, Rein-
forcement Learning (RL) techniques can be used as an instrument
for step-wise adaptations of the UI based on user’s interactions. This
adaptation process will continuously align the interface with user’s
preferences improving the overall UX. Additionally, the inherent
"trial-and-error" nature of RL methods as well as the mechanism
for penalizing mistakes and rewarding successes, provides better
understanding of users’ preferences.

Since RL is based on learning by success and failure, quantifying
success in the context of UI adaptation is not a trivial task [25].
Successful adaptation can be interpreted in different ways, for ex-
ample, one that improves user efficiency, one that improves user
engagement, or a combination of both. But how to assess these
metrics and even how to combine them is far from straightforward.
Therefore, in this paper we propose the integration of predictive
Human-Computer Interaction (HCI) models to assist in this regard.
These models can provide an indicator of the success of adaptations
by measuring certain aspects of user interaction and evaluating the
impact of adaptation actions on the overall UX. As an initial ap-
proximation, our HCI model focus on predicting user engagement.

Finally, we present an implementation of the extended frame-
work, based on OpenAI Gym. This implementation serves as a
configurable toolkit that allows developers to create, on the one

ar
X

iv
:2

40
5.

09
25

5v
1 

 [
cs

.H
C

] 
 1

5 
M

ay
 2

02
4

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


EICS Companion ’24, June 24–28, 2024, Cagliari, Italy Daniel Gaspar-Figueiredo, et al.

hand, the definition of the adaptive capabilities of their UI and the
contextual information they can monitor and, on the other hand,
to create and compare RL algorithms for the adaptation of the UI
for the context they have defined. The configurable and extensi-
ble nature of the implementation ensures scalability for various
scenarios.

Moreover, we evaluated this implementation by instantiating a
specific case and running the evaluation in simulated environments.
This experiment, though simulated, serves as a proof of concept,
demonstrating the feasibility and adaptability of the proposed ap-
proach. Simulated data utilized in the experiment can be readily
replaced with real-world or synthesized data, showcasing the flexi-
bility and generalizability of the framework. The capability to adapt
to different datasets while maintaining the same methodology high-
lights the versatility and potential real-world applicability of the
extended framework.

This paper is organized as follows: In Section 2, we review re-
lated works to contextualize our contribution. Section 3 introduces
the extended Intelligent User Interface Adaptation Framework, pro-
viding the conceptual basis. The implementation details of our RL
agent for UI adaptation are presented in Section 4. Section 5 offers
an evaluation of the framework’s performance. Finally, Section 6
concludes the paper, summarizing key findings and suggesting
potential avenues for future research.

2 RELATEDWORK
Adaptive systems and adaptive user interfaces (AUIs) have become
crucial in modern software applications to tackle usability prob-
lems [2]. These systems can modify aspects of their structure, func-
tionality, or interface to meet the varying and evolving require-
ments of individual users or user groups over time [27]. However,
providing appropriate adaptations, deciding when to present and
display them, and ensuring they add value to end-users remains
challenging for adaptive systems and AUIs. Different computa-
tional approaches to the problem of AUIs have been studied such
as rule-based systems, heuristics, bandits, Bayesian optimisation,
and supervised learning [26].

Research on AUI design has focused on the development of adap-
tation rules. These rules have traditionally been created with the
help of UX experts’ or system designers’ knowledge [15] Mezhoudi
and Vanderdonckt [19]. Moreover, most adaptive systems have
relied on users directly stating their preferences. However, some
facets of user preferences manifest through their behavioral pat-
terns rather than through self-inspection. Recent approaches are in-
creasingly considering implicit aspects of the user, such as their cog-
nitive processing capabilities and the user’s physiological state [9].
In the context of adaptive menus, systems still follow a heuristic ap-
proach where adaptations are selected based on manually-encoded
rules that exploit data such as click frequency, visit duration or
recency [24].

More recently, ML has enabled the automatic deduction of such
adaptation rules from the users interaction data with the system.
This automatic deduction process is performed using various ML
techniques and algorithms [16]. Learning is recognized as a key
capability for adaptive systems. For well-defined environments

where the user state is highly predictive of adequate adaptation,
the problem can be approached as a supervised learning problem.

In the more general situation where nor the user state is triv-
ially known nor it is highly predictive of adequate adaptation, a RL
approach is preferred. The multi-armed bandit problem is a classic
RL problem that exemplifies the exploration–exploitation trade-off
dilemma. Additionally, Bayesian optimization is used for problems
with continuous parameters and an infinite number of potential
options. In the context of AUI, such approaches offer a new para-
digm for designing UIs in collaboration with Artificial Intelligence
and user data [18] [10]. However, they have been proven successful
in simple adaptation problems, such as recommendations and the
calibration of interface parameters.

The special case of the RL problem in which the next state is
not dependent on the action taken (i.e., bandit problem) is not ap-
propriate as regards learning policies for sequences of adaptations
in which rewards are not immediately achievable. Problems that
do require this kind of long-term planning should be solved with
other RL algorithms. For example, Monte Carlo Tree Search (MCTS)
has been proposed as a promising technique for the development
of adaptive menu search interfaces [26]. In this context of menu
searching in UI, Todi et al. [26] used predictive HCI models to
predict rewards for each state during simulations. Since online
simulations can be computationally expensive, a pretrained value
network was used to directly obtain value estimates for unexplored
states. Training data for this neural network was generated using
the predictive HCI models. The authors showed that while the com-
putation time increases drastically with simulations as search depth
increases, it remains constant with the neural network approach
without interfering much in the overall success rate (92.7% with
model-based simulation vs. 89.6%).

Traditionally, AUIs have focused adaptations narrowly on spe-
cific UI elements rather than holistic changes across the entire
system. According to the user’s needs, preferences, and context, UI
elements such as menus, buttons, bars, icons can be modified by ad-
justing font size, layout, color, contrast, theme. While this approach
can efficiently resolve isolated usability problems, it disregards as-
pects of end-user’s interaction that fall within the realm of UX. This
inherent complexity of AUIs is imposing considerable challenges.
Thus, UI adaptation should be considered as a multi-factorial prob-
lem in order to avoid improvements along some dimensions (e.g.
user performance) at the expense of degradations along others (e.g.
cognitive destabilisation) [1]. A related challenge is the resolution
of conflicting UI adaptation alternatives. Once again, ML techniques
could guide the multi-criteria decision-making process to identify
the UI adaptation closest to the end-user’s goals and RL emerges as
promising.

In fact, our purpose in this paper is not focused on a specific UI
element and on a specific task, for example on menus to speed up
searches as in [26], but on any adaptable UI element taking into
account the needs and preferences of users. In our framework, these
adaptable UI elements can be easily added and removed as well as
their different configurations so, we provide a holistic view of the
adaptation process of the UI. Unlike [26] where the implementation
of the RL environment is customized for the case of menu searches,
our vision is to provide an environment that can be reusable for
other purposes. Implementing it with OpenAI Gym enables this.



Reinforcement Learning-Based Framework for the Intelligent
Adaptation of User Interfaces EICS Companion ’24, June 24–28, 2024, Cagliari, Italy

External Sources

Data

Software System

Business Logic

User Model

Platform Model

Environment Model

Context Model

User Interface

User

Platform

Context of Use

Monitor

Adaptation Agent with 
Reinforcement Learning

Intelligent UI Adaptor

Adaptation Manager

Adaptation Engine

Adaptive capabilities

UI Model

Actions

Observations

Reward Predictions

Action

State

Reward

Figure 1: User Interface Adaptation framework using Rein-
forcement Learning. This is an extension from the original
conceptual framework [1].

Even our proposal will facilitate the integration of any RL algorithm
to provide full modularity.

3 INTELLIGENT USER INTERFACE
ADAPTATION FRAMEWORK

In this paper we extend the conceptual framework proposed by
Abrahão et al. [1] by specifying what kind of ML techniques are
going to be used and by implementing a first proof of concept. Since
the conceptual framework is very complex and covers many aspects,
we decided to implement only the mandatory elements in order to
make a proof of concept. The Figure 1 shows the four parts of the
generic framework (software system, context of use, intelligent UI
adapter, and external sources) and how they are connected to each
other.

The Software System includes a semantic core component that
contains the Business Logic functions specific to the application
domain. The Software System also includes a User Interface, which
is responsible for presenting the functionality and data provided by
the semantic core to the end-users. This UI has some certain Adap-
tive Capabilities, for example, redistributing elements or modifying
the content displayed [12]. Moreover, this UI should be designed
and defined as a UI Model, for example, it could be defined using
the Cameleon Reference Framework [6].

This software is intended to be run on a platform, in an envi-
ronment and by a user. In order to represent this, the Context of
Use represents the dynamic environment where end-users engage
with the software system. It covers user-specific, platform-related
and environment-related factors. This contextual information is
then sensed by a Monitor that senses and abstracts relevant data
into the Context Model. It can take into account many factors to

get a better understanding on who, where and on what conditions
the software is running. As an example, the User Model could take
into account factors such as emotional states, personality traits
and other characteristics [14]. The Platform Model could include
certain information about the device(s) where the Software is run-
ning on, and the Environment Model could include information
regarding the surroundings where user and platform are located at.
This contextual understanding enables adaptive changes in the UI,
responding to variations in the individual characteristics, platform
specifications, or user’s environment.

The conceptual framework proposed byAbrahão et al. [1] defines
multiple components in the Intelligent UI Adaptor, but only few of
them are mandatory to conduct the main adaptation process. In
this paper, we focus only on the Adaptation Manager, Adaptation
Engine and we extend the Adaptation Machine Learning component
to be an Adaptation Agent with Reinforcement Learning:

Adaptation Manager: The Adaptation Manager is responsible
for coordinating and managing the whole adaptation process. It
also provides a UI that allows the end-user to interactively access
and update adaptation parameters, review adaptation operations,
and make decisions regarding the adaptation process. The Adapta-
tion Manager also executes the adaptation logic contained in the
Adaptation Engine and coordinates the transition between the sta-
tus before and after adaptation. Additionally, it can integrate ML
techniques to monitor and recommend adaptation operations based
on other factors such as contextual changes and user interaction
history.

Adaptation Engine: The Adaptation Engine contains the adap-
tation logic, which refers to the algorithm(s) used to perform the UI
adaptation. This can include probabilistic-based models, rule-based
approaches, case-based reasoning, logic-based methods, ontology-
based techniques, evidence-based approaches, fuzzy logic, andmore.
The Adaptation Engine is responsible for processing the adapta-
tion logic based on the current context and user requirements to
generate adaptation proposals or decisions.

Adaptation Agent with Reinforcement Learning: The Adap-
tation Agent with Reinforcement Learning operates within the
framework of a Markov Decision Process (MDP) to continually
monitor the adaptation process, assimilating feedback from suc-
cessful adaptations and evolving user preferences over time. The
adaptation agent extracts essential decision-making information
from the software system, namely state (observation) information
from the Context Model and the UI Model and the actions from the
UI Adaptive capabilities. This agent operates on a reward-based
mechanism, where external sources contribute as reward predictors
by taking advantage of other ML algorithms to process the data
obtained by other sources. The historical data information is stored
in the Data component so the RL agent can make more informed
decisions. This user-centred reward mechanism guides the learn-
ing process, guiding the Adaptation Agent towards actions that
positively impact UX.

In the initial framework proposal, several properties were out-
lined, including the definition of the responsibility for adaptation
and the underlying reasons for adaptation decisions. However, in
our contribution we have chosen to centralise the responsibility
for adaptation exclusively on the RL agent. This decision was made
to simplify the proof of concept and to highlight the autonomous



EICS Companion ’24, June 24–28, 2024, Cagliari, Italy Daniel Gaspar-Figueiredo, et al.

learning capabilities of the RL approach. It is worth mentioning
that collaborative adaptation strategies will be further investigated,
exploring synergies between users and the RL agent as future work.
This collaborative approach is likely to involve shared decision-
making, allowing users to contribute to the adaptation process,
providing valuable insights and fostering a more interactive and
user-centred adaptive system.

4 REINFORCEMENT LEARNING AGENT TO
ADAPT USER INTERFACES

In this section we define the conceptualisation and implementa-
tion of our RL agent for adapting UIs. The conceptualisation is
designed to cover a broad spectrum of states and actions to ensure
flexibility and extensibility to multiple contexts. Subsequently, we
present a practical example to demonstrate the instantiation of this
conceptual framework, providing information on configuration
and implementation. Finally, in the next section we will use this
instantiation to evaluate the framework.

4.1 Markov Decision Process Definition
A Markov Decision Process (MDP) provides a mathematical frame-
work to model decision-making processes in stochastic and dy-
namic environments, where outcomes are only partially influenced
by the decisions that the agent takes. At its core, an MDP comprises
states, actions, transition probabilities and rewards that guide the
decision-making of an agent. These components collectively enable
the agent to learn optimal strategies over time, making MDP a
suitable approach for modeling and solving decision problems such
as deciding which UI adaptations to perform and when.

4.1.1 States. The concept of states within the MDP framework
encapsulate everything that may influence the decision-making
process of an intelligent agent. In the case at hand, this entails the
contextual information about the User, Platform and Environment
and also the various UI design parameters.

In our framework, we represent the states using a MultiDiscrete
space to deal with different dimensions of information indepen-
dently. The agent receives this state representation in the form of
a vector that includes multiple dimensions, with each dimension
assigned discrete values. By adopting this approach, the agent nav-
igates and adapts within a well-organised state space, capturing
the various factors that influence UI adaptations. This structured
representation improves the comprehensibility and facilitates the
configuration of the process.

One illustrative example of changes in the state is when a user
switches from a mobile to a desktop device (Platform change) while
using an application. In this case, the state would show information
changes such as screen size, device capabilities, operating system,
and many others. Another example is when a user transitions from
a quiet office environment to a noisy coffee shop (Environment
change). Here the state would reflect factors like ambient noise and
ambient light levels to allow adaptations of the UI for better visi-
bility or interaction. Moreover, if the user states some preferences
about the UI configuration at a specific moment or reflects certain
emotions while interacting with a software, which can both change
over time (User change), these changes should also be updated in
the state.

4.1.2 Actions. Actions cover a wide range of possibilities, from al-
terations in UI elements to more complex modifications in the over-
all UI design. These may include, but are not limited to, changes in
colour schemes, repositioning of UI elements, resizing fonts, chang-
ing the content or even the navigation flow on the software [12].
These actions allows our system to respond intelligently to changes
in user preferences, contextual variations and evolving environ-
mental conditions.

4.1.3 Transition probabilities. It provides the probability of transi-
tioning from one state to another state after performing adaptation.
However, RL does not require explicit specification of the transition
probabilities to solve MDP.

4.1.4 Reward. Defining a reward is usually a complex task, but
even more for AUIs, due to both the nature of user interactions and
the dynamic nature of interface adaptations. We recognise two key
facets when defining the reward function: generality, which reflects
general trends or preferences observed among users, and individual
preferences, which take into account the unique choices of each
user. To address these aspects in our reward, we have formulated
the following reward function:

𝑅 = (1 − 𝜎) ·𝐺 + 𝜎 · 𝐼 (1)

Where, 𝐺 represents the general trends from different types of
users and 𝐼 represents the individual preferences of each user. On
the one hand, 𝐺 could represent the general tendency of users to
prefer dark-themed interfaces [11], based on extensive data analysis
of user interactions. On the other hand, 𝐼 would encompass each
user’s unique preferences, such as preferring a larger font sizes
or a specific colour scheme. Both 𝐺 and 𝐼 are normalized to a
range between 0 and 1. Then, the parameter 𝜎 , ranging from 0
to 1 too, allows us to adjust the balance of reward; for example,
if 𝜎 is closer to 0, generality is emphasised, while if 𝜎 is close
to 1, individual preferences are given more weight. Since every
component is ranged from 0 to 1, the resulting reward is also ranged
from 0 to 1. Thus, a reward closer to 1 means that the action (or
adaptation) has been successful.

4.2 Implementation
In our framework, the RL agent continuously monitors user in-
teractions, learning from successful adaptations and recommends
personalised adjustments. To implement the RL component, we
opted for OpenAI Gym [5], a widely used toolkit designed to eas-
ily develop environments through a standardised interface and
compare RL algorithms from the ones supported.

Specifically, we created a customised OpenAI Gym environment
for the AUI problem. This environment contains the representation
of the states and actions and the design of the reward of AUIs, all
required for our RL agent. To ensure compatibility with a variety
of AUIs, our framework provides a configurable environment. This
adaptability is facilitated through a configuration file, which allows
developers to define the contextual information, (i.e., User, Platform
and Environment data) and the specific UI design information, in
order to adjust the framework to their AUI. Moreover, developers
can define the set of actions that the UI can take in response to dy-
namic contextual changes. Furthermore, the configurability covers



Reinforcement Learning-Based Framework for the Intelligent
Adaptation of User Interfaces EICS Companion ’24, June 24–28, 2024, Cagliari, Italy

also the design of a reward model, enabling developers to shape
the system’s learning process by specifying the rewards associated
with the adaptation outcomes.

On the other hand, our framework provides connectivity with
AUIs through API calls. When a software system incorporates adap-
tive functionalities, these should be easily accessible through well-
defined API calls allowing the intelligent adapter, which can operate
remotely, to activate or use the adaptive functions of the AUI. De-
velopers can specify API calls directly within the configuration file
to articulate the exact functionalities and actions that the intelligent
agent can call on the AUI. This approach ensures that the adaptive
process is not limited only to a specific environment, but can dy-
namically interact with and influence external AUIs based on the
specified API calls. The complete implementation is available at
https://github.com/RESQUELAB/RL-UIAdaptation

4.3 Setup
Since our MDP definition is general to the AUI problem, it can
be instantiated with different specific states, actions and reward
sources. We define in this section an example of MDP specification
that will be used to evaluate our framework.

4.3.1 States. The state includes both, the UI design information
and the contextual (User, Platform and, Environment) information.
In our first prototype, simple but able to demonstrate the function-
ality of the framework, only the UI design features and the User
preferences will be considered. Future iterations of the framework
will include the variability over the Platform and Environment.

With regard to the UI design information that we considered for
this evaluation, we focused on four variables: Layout, Theme, Font
size and Information display. These variables represent the structure,
appearance and contents of the interface. The layout variable can
take the values list and a range of grid layouts, from 2-column grid
to 5-column grid changing how the elements distribute over the
interface, the theme can take the values light and dark, the font size
can be small, default or big and, information display can be show,
partial, and hide, which will show, show partially or hide some
information to the users. On the user side, we took into account
changes in preferences. The user’s preferences can take the values
of the design of the UIs. Given the four UI design variables (lay-
out, theme, font size, and information display), each with multiple
possible values, the total number of possible combinations can be
determined by multiplying the number of options for each variable,
resulting in 5 · 2 · 3 · 3 = 90 combinations. Moreover, we must
consider the user preferences with the same possible values as for
the UI design. Consequently, this leads to (5 · 2 · 3 · 3)2 = 8100
possible states in this context.

Future evaluations may include additional variables in both UI
design and contextual representations to comprehensively assess
the adaptability of the framework across various setups.

4.3.2 Actions. The actions considered in this MDP instantiation
correspond to changes in the UI design variables. Specifically, we
consider actions to distribute elements in a 0) list, or 1) grid layout
with 2-columns, 2) grid layout with 3-columns, 3) grid layout with 4-
columns and 4) grid layout with 5-columns; to activate the 5) light or
6) dark themes, to change how the characters are displayed on the UI

with a 7) small, 8) default or 9) big font sizes, and change the amount
of information displayed on the screen by 10) showing 11) showing
partially and 12) hiding the information. Additionally, we introduce
a 13) No operate action, allowing the agent not to make any change.
This action acknowledges that, in some situations, maintaining
the current UI configuration might be the optimal decision for the
agent. To simplify the representation and for compatibility with
OpenAI Gym interface, we map these actions to numerical values
ranging from 0 to 13, resulting in a total of 14 actions that the agent
can take.

4.3.3 Reward. The reward proposed in the Section 4.1.4 is defined
by Equation 1. This Equation has two main components, the Gen-
erality (𝐺) and Individuality (𝐼 ). However, this equation does not
specify the source or the way in which these components are de-
rived. In this MDP instantiation, we rely on a predictive HCI model
to obtain the 𝐺 component. Then, for the 𝐼 component, we calcu-
late the alignment between the user preferences and the actual UI
design configuration. This measures how similar the preferences
are compared to the UI design.

On the one hand, with regard to the predictive HCI model, an
experiment was conducted involving 25 master students to record
their interactions with various UI configurations. This experiment
consisted in recording every interaction the participants did while
using an e-commerce catalogue. We asked the participants to pro-
ceed with the purchase of some products using different configu-
rations of UIs. Specifically, we registered interactions with the UI
combinations of layout and theme (i.e., layout in grid or list and
theme in dark or light). This experiment provided a data set of
how many clicks, scrolls and events that the participants did for
each of the configurations. This dataset was then used to calcu-
late the engagement levels [3, 7, 17] associated to the various UI
configurations that the participants were using.

However, training a high-quality HCI model requires a substan-
tial number of examples to ensure good performance on unseen,
future data. The processes involved, such as recruiting participants,
data collection, and labeling, are typically time-consuming and
expensive. In response to these challenges, we applied data aug-
mentation techniques to enhance the dataset obtained from the
experiment. This approach allowed us to artificially increase the
amount of interaction data, addressing the limitations posed by a
small dataset. Specifically, we employed SMOTE [8], a data augmen-
tation technique, to generate additional instances, resulting in a
more comprehensive dataset for training the predictive HCI model.
In the end, we obtained 310 samples of interaction data. Then we
trained a Random Forest Regressor model capable of predicting a
user’s engagement level based on the UI configuration. We evalu-
ated the accuracy of the model and we obtained a mean squared
error of 0.055.

On the other hand, to calculate the alignment of the 𝐼 compo-
nent, we created a simulated user which has a set of predefined
preferences. The alignment measure consists of comparing the pref-
erences of the user with the actual configuration of the UI design.
This distance assesses the degree of overlapping or agreement be-
tween the user’s predefined preferences and the actual state of the
UI. A higher alignment score implies a closer alignment, indicating

https://github.com/RESQUELAB/RL-UIAdaptation


EICS Companion ’24, June 24–28, 2024, Cagliari, Italy Daniel Gaspar-Figueiredo, et al.

that the UI design is more consistent with the preferences of the
user.

4.3.4 Algorithm. In our prototype, we selected Q-Learning from
OpenAI Gym’s suite of RL algorithms due to its simplicity, effec-
tiveness with discrete actions, and widespread use as a baseline
algorithm. Q-Learning is an off-policy algorithm which aims to
determine the optimal next action based on the current state to
maximize the accumulated rewards. TheQ-value, denoted as𝑄 (𝑠, 𝑎),
represents the estimate of the cumulative future rewards antici-
pated by the agent in state 𝑠 and taking action 𝑎. The Q-Learning
update equation (Equation 2) refines this estimate over time:

𝑄 (𝑠, 𝑎) = (1 − 𝛼) ·𝑄 (𝑆𝑡 , 𝐴𝑡 ) + 𝛼 · (𝑅𝑡+1 + 𝛾 ·max
𝑎

𝑄 (𝑠𝑡+1, 𝑎)) (2)

Here, 𝑄 (𝑆𝑡 , 𝐴𝑡 ) represents the current estimate of the Q-value,
where 𝛼 is the Learning Rate. The update term, 𝛼 · (𝑅𝑡+1 + 𝛾 ·
max𝑎 𝑄 (𝑠𝑡+1, 𝑎)), incorporates the Learning Rate, immediate re-
ward (𝑅𝑡+1), Discount Factor (𝛾 ) for future rewards, and the maxi-
mum Q-value for the next state 𝑠𝑡+1. This equation guides how the
agent refines its understanding of Q-values in order to make more
informed decisions over time.

In this context, episodes represent complete iterations during
training, with each step corresponding to an individual action or
decision made by the agent (i.e., adaptations). Equation 2 guides the
agent in refining its understanding of Q-values over steps within
an episode.

Additionally, the Q-Learning algorithm starts with no knowledge
and balances exploration and exploitation with the Exploration
Factor (𝜖). As episodes progress, 𝜖 is gradually reduced, shifting
the agent from exploration to exploitation based on accumulated
knowledge.

5 EVALUATION
According to the Goal-Question-Metric (GQM) template for goal
definition [4], the goal of this study is to analyze the Reinforcement
Learning agent with the purpose to evaluate its effectiveness with
respect to the ability to learn to adapt the UI from the point-of-view
of researchers when training RL agents in the context of simulated
environments, with UI design and User preferences variability and
reward obtained through an HCI model trained with historical
interaction data obtained from a previous experiment.

This evaluation is conducted through simulations to assess the
framework’s performance in a controlled environment. The sim-
ulations are executed on a computer with the following specifica-
tions: Intel Core i9-13900KF, 64 GB DDR5, NVIDIA GeForce RTX
4090. The simulations are set up with the specifications defined
in Section 4.3. These simulations aim to provide insights into the
framework’s capabilities and limitations, for further development
and improvement. It’s important to note that while simulations
serve as a valuable starting point, future work should extend this
evaluation process to include human interactions.

5.1 Configuration Parameters of the RL
Algorithm

The Equation 2 presents multiple parameters that influence on how
the agent will perform its learning. Our goal is to ensure optimal bal-
ance between exploration and exploitation in the learning process.
The choice of parameter values is based on published experiences
applying Q-Learning to tasks with comparable complexity. Further-
more, expert recommendations played a pivotal role in refining and
finalizing these values:

• Number of episodes (60000): The total number of iterations
or episodes the Q-Learning algorithm will go through during
training.

• Learning Rate (𝛼 = 0.90): A relatively high Learning Rate
allows the agent to adapt quickly to new information. A
higher Learning Rate ensures that the agent incorporates
recent experiences effectively.

• Discount Factor (𝛾 = 0.90): The Discount Factor determines
the weight given to future rewards. A value of 0.90 priori-
tizes future rewards while still considering short-term con-
sequences.

• Exploration Factor, 𝜖: Has an initial value of 1 with linear
decay in the first half of the training process (30000 episodes)
until its value reaches 0.1. This decay heuristics promotes
more exploration in the early stages and exploitation in the
later stages of training. The minimum value of 0.1 allows the
agent to still explore sometimes while exploiting.

Finally, we aim to explore the trade-off between the 𝐺 and 𝐼 in
Equation 1, where we set 𝜎 to various values [0, 0.25, 0.50, 0.75, 1],
offering insights into the system’s response to different levels of
personalisation.

5.2 Evaluation Metrics
In order to evaluate the ability to learn and the efficiency of the
agent used for this framework implementation, we have selected the
followingmetrics, which are commonly used to assess RL agents [20,
21]:

• Number of steps: It reflects the total count of adaptations
taken by the RL agent to achieve a fully adapted UI. The
purpose of tracking the number of steps is to assess the effi-
ciency and effectiveness of the learning process. Ideally, a
well-performing agent should learn to adapt the UI minimiz-
ing the number of steps required for a complete adaptation.
A higher number of steps may indicate suboptimal learning.

• Episode Score: The episode score represents the cumulative
reward obtained throughout a single episode. The episode
score reflects the effectiveness of the agent’s actions during
that episode. Higher episode scores indicate better perfor-
mance, as they suggest that the agent has made decisions
leading to more favorable outcomes.

To address the inherent noise and fluctuations in the learning
process visualization for both the Number of steps and Episode Score,
we incorporated an anti-jittering [22] parameter. This parameter
involves recording average values at regular intervals. In our case,
we calculate the moving average over a window of size 150 episodes,



Reinforcement Learning-Based Framework for the Intelligent
Adaptation of User Interfaces EICS Companion ’24, June 24–28, 2024, Cagliari, Italy

providing a stable and representative trend for assessing the per-
formance of the RL agent’s learning. This approach ensures that
both metrics are presented in a smoothed manner, making it easier
to interpret the overall learning progress.

In addition to the commonly used metrics in evaluating RL
agents, we propose an additional metric:

• Alignment Score: The alignment score measures how well
the RL agent’s adaptive decisions align with user prefer-
ences, providing insights into personalized UI adaptation
effectiveness. It’s normalized from 0 to 1, calculated as:

𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 =
𝑀𝑎𝑥𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 −𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

𝑀𝑎𝑥𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡

Where 𝑀𝑎𝑥𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 is the total number of attributes in
the user preferences, and
𝑀𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑑𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 is the count of attributes where the
user preferences differ from the UI design.

5.3 Results
In this section, we distinguish between evaluation during learning
which is computed over the course of training and evaluation after
learning, which is evaluated on a fixed policy after the agent has
been trained. During the learning process (i.e., training), evalua-
tion provides insights into how the RL agent evolves over time,
demonstrating its ability to adapt and optimize UI configurations.
Subsequently, once the agent is trained, the evaluation process (af-
ter learning) assesses the agent’s performance on simulated users
with specific preferences.

5.3.1 Learning Process. In the learning process, we ran 60000 episodes
for each of the different values for 𝜎 to train the RL agent. We in-
cluded an extra reward of 1 if the agent finished the whole adapta-
tion process in 4 or less steps. Since there are four types of actions,
we presumed that optimal adaptation can be achieved in four steps.

Each episode started with the creation of a new random initial
state. Consequently, a new simulated context was generated in each
episode, with a random user with specific preferences and new UI
design features selected from the available options. The agent’s
goal was to adapt the UI to maximize the reward, which depended
on the 𝜎 value.

As illustrated in Figure 2 a) and b), the agent demonstrates con-
vergence across various values of 𝜎 , transitioning from an explo-
ration phase (depicted in yellow) to an exploitation phase (depicted
in green) after the initial 30,000 episodes. However, it’s worth noting
that for 𝜎 = 0.5 and 𝜎 = 0.75, complete convergence may not have
been achieved, suggesting ongoing exploration and refinement of
adaptive strategies even in later episodes.

The analysis of the number of steps, as shown in Figure 2 a),
reveals that the agent efficiently completes episodes in 3 to 4 steps
across most scenarios, indicating an adaptation strategy focused
on essential changes. However, for 𝜎 = 0.5 and 𝜎 = 0.75, the
agent required an additional step, taking 4 to 5 steps to conclude
the episodes. This deviation suggests that when there is a balance
between generality and individuality leaning towards individuality
may lead to increased complexity in the adaptation process.

0 10000 20000 30000 40000 50000 60000

0.5

1.0

1.5

2.0

Episode

S
c

o
re

Exploration vs. Explotation

score(s=0,5)score(s=0) score(s=1)score(s=0,75)score(s=0,25)

0 10000 20000 30000 40000 50000 60000
0

2

4

6

8

10

12

14

16

18

20

22

Episode

N
u

m
b

e
r 

o
f 

s
te

p
s

steps(s=0,5)

Exploration vs. Explotation

steps(s=0) steps(s=1)steps(s=0,75)steps(s=0,25)

0 250 500 750 1000

0.0

0.5

1.0

1.5

2.0

2.5

Episode

S
c
o

re
 &

 A
li
g

n
m

e
n

t

score(s=1)

align(s=1)

score(s=0,75)

align(s=0,75)

score(s=0,5)

align(s=0,5)

score(s=0,25)

align(s=0,25)

score(s=0)

align(s=0)

a) b) c)

Figure 2: RL agent learning process. a) The number of steps
needed to finish an episode decreases over time; b) The score
increases over time and the agent converges to an optimal
solution; c) RL agent evaluation process.

Meanwhile, examination of the score obtained over time, as
depicted in Figure 2 b), offers insights into the agent’s learning
progress and performance. Across most scenarios, a steady growth
trajectory is observed, indicating that the agent improves its per-
formance over time. However, notable differences in the score are
evident depending on the 𝜎 value. For 𝜎 = 0 and 𝜎 = 0.25, where
the reward is predominantly influenced by generality, higher and
more stable rewards are achieved. This observation suggests that
prioritizing generality in the reward function leads to more consis-
tent performance and effective adaptation strategies. Conversely,
for intermediate values of 𝜎 , such as 𝜎 = 0.5 or 𝜎 = 0.75, where
individuality is prioritized, the reward tends to be lower and less
stable. However, in the case of 𝜎 = 1, the agent also obtains a high
and stable reward. This phenomenon highlights the challenge of
balancing generality and individuality in the adaptation process,
as reflected in the fluctuating nature of the score. Moreover, the
influence of 𝜎 on the reward function underscores the importance
of carefully selecting and tuning this parameter to optimize the
agent’s performance in adapting user interfaces.

5.3.2 Evaluation Process. We used the previously trained agent in
a series of 1000 episodes to evaluate its performance. Similar to the
learning process, each episode in this phase involved creating sim-
ulated users with random preferences and starting the adaptation
process from a randomly generated initial UI configuration.

Figure 2 c) illustrates the agent’s performance in terms of score
and alignment across the 1000 episodes for each value of 𝜎 . We
observe that alignment increases as 𝜎 emphasizes individuality,
with the highest alignment values observed for 𝜎 values of 1 and
0.75. Conversely, the lowest alignment values are associated with 𝜎
values of 0 and 0.25, while 𝜎 = 0.5 exhibits intermediate alignment,
as anticipated. Regarding the score, notably, 𝜎 = 0.5 and 𝜎 = 0.75
exhibit more fluctuations compared to other values, suggesting po-
tential for further refinement and convergence through parameter
adjustments in future simulations. We find that 𝜎 values of 0 and
0.25 yield the highest scores. This indicates that emphasizing gen-
erality in the reward function leads to higher cumulative rewards.
However, it is noteworthy that all 𝜎 values achieve good scores,
with values consistently exceeding 1.5 across all scenarios. Despite
some variations, these results demonstrate the effectiveness of the
agent in adapting user interfaces across different 𝜎 values.

5.4 Threats to Validity
In this section, we discuss the threats to validity of our research,
following the guidelines from [28]:



EICS Companion ’24, June 24–28, 2024, Cagliari, Italy Daniel Gaspar-Figueiredo, et al.

Internal Validity: One potential threat is that states or transi-
tions remain unexplored during the agent’s learning process. We
deliberately constrained the size of the state space. This deliberate
choice to limit the complexity of the state space facilitated more
efficient experimentation and ensured thorough exploration of all
possible transitions within the Q-table. Another internal threat
concerns reward definition, which may not perfectly quantify adap-
tation success. However, we designed a generic reward adaptable to
each context. The use of a predictive HCI model for the generalistic
(𝐺) part of the reward introduces an internal challenge. The accu-
racy of the HCI model depends on the dataset quality; our model,
trained with data augmented using the SMOTE method from 25
participants, resulting in a dataset of 310 samples, achieved a mean
squared error of 0, 055. Despite the limited participant number and
data quantity may impact HCI model generalization.

External Validity: An external threat comes from the simplicity
of our contextual representation, focusing only on user changes and
neglecting platform and environmental variations. Generalizing our
results to more complex contexts may be limited. To enhance exter-
nal validity, future experiments should include broader contextual
factors, ensuring a more comprehensive evaluation of our RL-based
UI adaptation framework. Additionally, relying on the HCI model to
predict user engagement introduces another external threat. While
our current experiments use a simplified context representation,
extending the model to predict additional aspects like user satis-
faction or cognitive load could enrich contextual information. This
improvement would offer a more complete representation of sys-
tem state variability, contributing to a more realistic assessment.
Furthermore, our choice of the Q-Learning algorithm introduces
a potential external threat. While Q-Learning is well-established,
exploring alternative RL algorithms, such as Proximal Policy Opti-
mization (PPO) [23] or Monte Carlo Tree Search (MCTS), in future
research may provide a broader understanding of the framework’s
performance across different algorithmic approaches.

6 CONCLUSIONS AND FUTUREWORK
This paper presents an instantiation of a reference framework for
Intelligent User Interface Adaptation utilizing Reinforcement Learn-
ing as the machine learning component. The framework aims to
adapt user interfaces, ultimately enhancing the overall User Ex-
perience. By formulating the problem using MDP, we provide a
comprehensive representation of the adaptation process. Our frame-
work offers high configurability and expandability, facilitating cus-
tomization for specific use cases and evolving requirements. We
introduce a holistic reward function capturing both general trends
and individual user preferences, alongside a flexible 𝜎 parameter
for fine-tuning adaptation. Simulated evaluations offer valuable
insights into framework performance, but real-world validation
is indeed needed. Future work includes exploring alternative re-
ward mechanisms, such as human feedback [13] and algorithms,
such as PPO and MCTS, enhancing state coverage, and improving
predictive HCI models for better context representation.

ACKNOWLEDGMENTS
This work is supported by the AKILA project (CIAICO/2021/303)
funded by the GVA and UCI-Adapt project (PID2022-140106NB-
I00) funded by the AEI. D. Gaspar-Figueiredo is funded by the GVA
(ACIF/2021/172), which is cofunded by the European Union through
the ESF.

REFERENCES
[1] Silvia Abrahão, Emilio Insfran, Arthur Sluÿters, and Jean Vanderdonckt. 2021.

Model-based intelligent user interface adaptation: challenges and future di-
rections. Software and Systems Modeling 20, 5 (2021), 1335–1349. https:
//doi.org/10.1007/s10270-021-00909-7

[2] Pierre A. Akiki, Arosha K. Bandara, and Yijun Yu. 2014. Adaptive Model-Driven
User Interface Development Systems. Comput. Surveys 47, 1, Article 9 (may 2014),
33 pages. https://doi.org/10.1145/2597999

[3] Eduardo Barbaro, Eoin Martino Grua, Ivano Malavolta, Mirjana Stercevic, Esther
Weusthof, and Jeroen van den Hoven. 2020. Modelling and predicting User
Engagement in mobile applications. Data Science 3, 2 (2020), 61–77.

[4] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. 1994. The Goal
Question Metric Approach.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

[6] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg, Laurent
Bouillon, and Jean Vanderdonckt. 2003. A Unifying Reference Framework for
multi-target user interfaces. Interacting with Computers 15, 3 (06 2003), 289–308.
https://doi.org/10.1016/S0953-5438(03)00010-9

[7] Jonathan Carlton, Andy Brown, Caroline Jay, and John Keane. 2021. Using
interaction data to predict engagement with interactive media. In Proceedings of
the 29th ACM International Conference on Multimedia. 1258–1266.

[8] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial
intelligence research 16 (2002), 321–357.

[9] Francesco Chiossi, Johannes Zagermann, Jakob Karolus, Nils Rodrigues, Priscilla
Balestrucci, Daniel Weiskopf, Benedikt Ehinger, Tiare Feuchtner, Harald Reit-
erer, Lewis L. Chuang, Marc Ernst, Andreas Bulling, Sven Mayer, and Albrecht
Schmidt. 2022. Adapting visualizations and interfaces to the user. it - Information
Technology 64, 4-5 (2022), 133–143. https://doi.org/10.1515/itit-2022-0035

[10] John J. Dudley, Jason T. Jacques, and Per Ola Kristensson. 2019. Crowdsourcing
Interface Feature Design with Bayesian Optimization. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1—-12.
https://doi.org/10.1145/3290605.3300482

[11] Henriette Eisfeld and Felix Kristallovich. 2020. The rise of dark mode: A qualita-
tive study of an emerging user interface design trend.

[12] Murielle Florins and Jean Vanderdonckt. 2004. Graceful degradation of user
interfaces as a design method for multiplatform systems. In Proceedings of the 9th
International Conference on Intelligent User Interfaces (Funchal, Madeira, Portugal)
(IUI ’04). Association for Computing Machinery, New York, NY, USA, 140–147.
https://doi.org/10.1145/964442.964469

[13] Daniel Gaspar-Figueiredo, Silvia Abrahão, Marta Fernández-Diego, and Emilio
Insfran. 2023. A Comparative Study on Reward Models for UI Adaptation with
Reinforcement Learning. arXiv:2308.13937 [cs.SE]

[14] Dominik Heckmann, Tim Schwartz, Boris Brandherm, Michael Schmitz, and
Margeritta von Wilamowitz-Moellendorff. 2005. Gumo–the general user model
ontology. In User Modeling 2005: 10th International Conference, UM 2005, Edin-
burgh, Scotland, UK, July 24-29, 2005. Proceedings 10. Springer, 428–432.

[15] Jamil Hussain, Anees Ul Hassan, Hafiz Syed Muhammad Bilal, Rahman Ali,
Muhammad Afzal, Shujaat Hussain, Jaehun Bang, Oresti Banos, and Sungyoung
Lee. 2018. Model-based adaptive user interface based on context and user experi-
ence evaluation. Journal on multimodal user interfaces 12, 1 (1 March 2018), 1–16.
https://doi.org/10.1007/s12193-018-0258-2

[16] Pat Langley. 1997. Machine learning for adaptive user interfaces. In KI-97: Ad-
vances in Artificial Intelligence, Gerhard Brewka, Christopher Habel, and Bernhard
Nebel (Eds.). Springer, Berlin, Heidelberg, 53–62.

[17] Janette Lehmann, Mounia Lalmas, Elad Yom-Tov, and Georges Dupret. 2012.
Models of User Engagement. In User Modeling, Adaptation, and Personalization,
Judith Masthoff, Bamshad Mobasher, Michel C. Desmarais, and Roger Nkambou
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 164–175.

[18] J. Derek Lomas, Jodi Forlizzi, Nikhil Poonwala, Nirmal Patel, Sharan Shodhan,
Kishan Patel, Kenneth R. Koedinger, and Emma Brunskill. 2016. Interface Design
Optimization as a Multi-Armed Bandit Problem. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, Jofish Kaye, Allison Druin,
Cliff Lampe, Dan Morris, and Juan Pablo Hourcade (Eds.). ACM, San Jose, CA,

https://doi.org/10.1007/s10270-021-00909-7
https://doi.org/10.1007/s10270-021-00909-7
https://doi.org/10.1145/2597999
https://doi.org/10.1016/S0953-5438(03)00010-9
https://doi.org/10.1515/itit-2022-0035
https://doi.org/10.1145/3290605.3300482
https://doi.org/10.1145/964442.964469
https://arxiv.org/abs/2308.13937
https://doi.org/10.1007/s12193-018-0258-2


Reinforcement Learning-Based Framework for the Intelligent
Adaptation of User Interfaces EICS Companion ’24, June 24–28, 2024, Cagliari, Italy

USA, 4142–4153. https://doi.org/10.1145/2858036.2858425
[19] NesrineMezhoudi and Jean Vanderdonckt. 2021. Toward a Task-driven Intelligent

GUI Adaptation by Mixed-initiative. International Journal of Human–Computer
Interaction 37, 5 (2021), 445–458. https://doi.org/10.1080/10447318.2020.1824742

[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing Atari with
Deep Reinforcement Learning. arXiv:1312.5602 [cs.LG]

[21] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540 (01
Feb 2015), 529–533. https://doi.org/10.1038/nature14236

[22] Vitchyr H Pong, Ashvin V Nair, Laura M Smith, Catherine Huang, and Sergey
Levine. 2022. Offline Meta-Reinforcement Learning with Online Self-Supervision.
In Proceedings of the 39th International Conference on Machine Learning (Pro-
ceedings of Machine Learning Research, Vol. 162), Kamalika Chaudhuri, Stefanie
Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (Eds.). PMLR,
17811–17829. https://proceedings.mlr.press/v162/pong22a.html

[23] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG]

[24] S. Shrestha, P. Poudel, S. Adhikari, and I. Adhikari. 2022. Adaptive menu: A
review of adaptive user interface. Trends in Computer Science and Information
Technology 7, 3 (2022), 103–106. https://doi.org/10.17352/tcsit.000059

[25] Richard S Sutton, Andrew G Barto, et al. 1998. Introduction to reinforcement
learning. Vol. 135. MIT press Cambridge.

[26] Kashyap Todi, Gilles Bailly, Luis Leiva, and Antti Oulasvirta. 2021. Adapting
User Interfaces with Model-Based Reinforcement Learning. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan)
(CHI ’21). Association for Computing Machinery, New York, NY, USA, Article
573, 13 pages. https://doi.org/10.1145/3411764.3445497

[27] Gianni Viano, Andrea Parodi, James Alty, Chris Khalil, Inaki Angulo, Daniele
Biglino, Michel Crampes, Christophe Vaudry, Veronique Daurensan, and Philippe
Lachaud. 2000. Adaptive User Interface for Process Control Based on Multi-Agent
Approach. In Proceedings of the Working Conference on Advanced Visual Interfaces
(Palermo, Italy) (AVI ’00). Association for Computing Machinery, New York, NY,
USA, 201–204. https://doi.org/10.1145/345513.345316

[28] Claes Wohlin, Per Runeson, Martin Höst, Magnus C Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Empirical Strategies. Springer Berlin Heidelberg, Berlin,
Heidelberg, 9–36. https://doi.org/10.1007/978-3-642-29044-2_2

Received 24 February 2024

https://doi.org/10.1145/2858036.2858425
https://doi.org/10.1080/10447318.2020.1824742
https://arxiv.org/abs/1312.5602
https://doi.org/10.1038/nature14236
https://proceedings.mlr.press/v162/pong22a.html
https://arxiv.org/abs/1707.06347
https://doi.org/10.17352/tcsit.000059
https://doi.org/10.1145/3411764.3445497
https://doi.org/10.1145/345513.345316
https://doi.org/10.1007/978-3-642-29044-2_2

	Abstract
	1 Introduction
	2 Related Work
	3 Intelligent User Interface adaptation Framework
	4 Reinforcement Learning Agent to adapt User Interfaces
	4.1 Markov Decision Process Definition
	4.2 Implementation
	4.3 Setup

	5 Evaluation
	5.1 Configuration Parameters of the RL Algorithm
	5.2 Evaluation Metrics
	5.3 Results
	5.4 Threats to Validity

	6 Conclusions and Future Work
	Acknowledgments
	References

