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Abstract
Large Vision-Language Models (LVLMs) have demonstrated their
powerful multimodal capabilities. However, they also face seri-
ous safety problems, as adversaries can induce robustness issues
in LVLMs through the use of well-designed adversarial examples.
Therefore, LVLMs are in urgent need of detection tools for adver-
sarial examples to prevent incorrect responses. In this work, we
first discover that LVLMs exhibit regular attention patterns for
clean images when presented with probe questions. We propose
an unconventional method named PIP, which utilizes the attention
patterns of one randomly selected irrelevant probe question (e.g.,
“Is there a clock?”) to distinguish adversarial examples from clean
examples. Regardless of the image to be tested and its correspond-
ing question, PIP only needs to perform one additional inference of
the image to be tested and the probe question, and then achieves
successful detection of adversarial examples. Even under black-box
attacks and open dataset scenarios, our PIP, coupled with a simple
SVM, still achieves more than 98% recall and a precision of over
90%. Our PIP is the first attempt to detect adversarial attacks on
LVLMs via simple irrelevant probe questions, shedding light on
deeper understanding and introspection within LVLMs. The code
is available at https://github.com/btzyd/pip.
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1 Introduction
Large vision-language models (LVLMs) have demonstrated their
powerful multimodal capabilities across a range of tasks [1, 16,
28]. However, LVLMs continue to confront significant security
challenges. Adversaries can perturb the images with elaborate and
almost imperceptible noise, leading LVLMs to produce incorrect
outputs or even outputs that align with the adversaries’ intentions
[2, 4, 8, 24, 31, 34]. Significant security issues have impeded the
adoption of LVLMs in critical areas [11, 17, 18, 26, 29, 32, 33].

Adversarial attacks on image modalities are facilitated by their
high-dimensional and continuous nature. In recent years, there has
been a surge in studies on adversarial attacks on LVLMs. Attack-
Bard [8] manipulates images to make ChatGPT-4 errors on image
caption, while Carlini [4] leads LVLMs to produce unethical words
in response to adversarial images. In contrast to adversarial attacks,
there has been limited research on the detection of adversarial
examples. Therefore, there is an urgent need for detection methods
for adversarial examples to enhance the safety of LVLMs.

Previous work [21, 22, 30] has primarily focused on the detection
of adversarial examples in isolated vision models, i.e., image classi-
fiers based on convolutional neural networks (CNNs), which are
not applicable to LVLMs. The detection of adversarial examples on
LVLMs faces several challenges: First, LVLMs have more layers and
contain interactions between image and text messages, making it
difficult to determine where adversarial attacks take effect. Second,
traditional CNNs have a more centralized data distribution (e.g.,
imagenet classifiers detect imagenet adversarial samples), while
LVLMs accept data inputs from open scenarios. In addition, LVLMs
have a high inference cost and it is inappropriate to introduce too
many inference times during the detection process. Few studies
have focused on the detection of adversarial examples on LVLMs.

In this paper, we introduce an extremely simple method for the
detection of adversarial examples, named PIP, that leverages the
attention pattern of irrelevant probe questions. We initially
discovered that for yes/no type questions, LVLM exhibits a regular
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w/o PIP

What are these animals?

Cows.

What are these animals?

Zebras.

What are these animals?

Refuse to answer.

Clean image

Adversarial  image

Adversarial  image

w/o PIP

w/ PIP

Figure 1: Implications for our adversarial example detec-
tion method PIP. (Top): LVLMs can give correct answers for
clean images. (Middle): LVLMs may give incorrect answers
for adversarial images. (Down): When detecting adversarial
examples through our simple PIP, LVLMs reject answers for
adversarial examples to prevent security risks.

attention pattern for image tokens when generating text output.
Subsequently, we observed markedly distinct, linearly separable at-
tention patterns between clean and adversarial images in response
to the same simple yes/no probe questions. Building on this obser-
vation, we trained linear classifiers to distinguish between clean
and adversarial examples, utilizing their attention patterns on one
simple irrelevant probe question. Our PIP does not require the de-
termination of whether an image should respond with “yes” or
“no” to irrelevant probe questions, as our focus is exclusively on
analyzing the attention patterns of the image in response to these
questions, rather than the answers.

The workflow of PIP is illustrated in Fig. 2. We proposed our
very simple and straightforward PIP detector could detect the so-
phisticated well-designed diverse adversarial examples of LVLMs.
Our approach does not need to consider the distribution of the
images, the type of the questions, the adversarial attack method,
etc., but only needs to ask LVLMs one probe question on examples,
and trains an SVM [3] in the offline phase by using the attention
patterns of clean and adversarial examples on the probe question.
Surprisingly, it achieves the detection of adversarial examples for
a wide range of questions, even if the probe question is randomly
chosen and irrelevant. For the images entered by users in the online
phase, the attention maps of images and the probe question are
obtained by one additional inference, and the clean and adversarial
examples can be distinguished via the lightweight SVM classifier.

Our main contributions can be summarized as follows:
• We have defined a new task: adversarial example detection for
image adversarial attacks on LVLMs, which is essential in practice.
We have also shown how to adapt the basic multimedia task
evaluation metrics to this task.

• To the best of our knowledge, we are the first to introduce the
simple and unconventional PIP, which detects adversarial exam-
ples based on the attention pattern of irrelevant probe questions.

Extensive experiments in different settings have validated the
effectiveness, universality, and transferability of our PIP.

• PIP can also inspire subsequent work, such as defense and purifi-
cation against samples. It can also help us understand LVLM in
terms of deeper mechanisms.

2 Related Works
2.1 Large Vision-Language Models
Alignment-based vision-language models generally comprise three
modules: a visual encoder, a large language model, and a vision-
language alignment module. Generally, LVLMs utilize pre-trained
visual encoders and large languagemodels, with the vision-language
alignment module fine-tuned to enable multimodal capabilities. Re-
cently, a lightweight vision-language alignment module, the Query-
ing Transformer (Q-former), has gained popularity. Recent popular
LVLMs employing this alignment technique include BLIP-2 [13],
InstructBLIP [6], and MiniGPT-4 [35].

2.2 Adversarial Attacks and Adversarial
Examples

Adversarial attacks generate adversarial examples by introducing
almost imperceptible perturbations to images, leading neural net-
works to respond incorrectly. Previous studies have focused on
perturbations of visual modalities, including FGSM [10], PGD [20],
JSMA [23], and C&W attack [5], among others. Research has also
been conducted on attacks targeting textual modalities, such as
Bert-Attack [14] and TextFooler [12]. Large vision-language models
are also vulnerable to adversarial examples. For instance, Attack-
Bard [8] induces incorrect captions in Google’s Bard and OpenAI’s
ChatGPT-4 through black-box attacks on the image, while Carlini
et al. [4] prompt LVLMs to generate inappropriate speech (e.g., pro-
fanity, biased statements, etc.) via white-box attacks on the image.

2.3 Detecting Adversarial Examples
Since the proposal of adversarial attacks, significant research has
been devoted to the detection of adversarial examples, aiming to
alert the model to the presence of such examples. This is particu-
larly critical in LVLMs because deliberately designed adversarial
examples can cause LLMs to generate outputs aligned with the
adversary’s intentions, potentially leading to robustness and hallu-
cination issues. More gravely, the model may produce statements
that are socially and morally reprehensible.

Previous research has concentrated on detecting adversarial ex-
amples for visual modality CNNs, as evidenced by [7, 9, 15, 19].
However, research on detecting adversarial examples in vision-
language multimodal models is lacking. This represents a consid-
erable risk when employing LVLMs in sensitive domains. LVLMs
require the capability to detect adversarial examples and, in re-
sponse, should either refuse to answer or neutralize the adversarial
input to provide a clean response.
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Figure 2: The pipeline of our proposed PIP. The top half is operated offline, while the bottom half is operated online. (Top):
We perform adversarial attacks on 𝑁 images in D𝑐𝑙𝑒𝑎𝑛

𝑟𝑒 𝑓
and obtain 𝑁 adversarial images, which constitute D𝑎𝑑𝑣

𝑟𝑒 𝑓
. We extract

their attention maps (attention of the first word generated by LLM to all image tokens) of the LVLM with the irrelevant probe
question “Is there a clock”, and train a lightweight linear classifier (e.g., SVM) with these 2𝑁 attention maps. (Down): For images
to be tested from D𝑡𝑒𝑠𝑡 , we first get their attention maps with the same probe question, and use the classifier to determine
whether they are adversarial examples or not. Surprisingly, this simple method PIP functions well in this challenging task.

3 A New Task: Detecting Adversarial Examples
in Large Vision-Language Models

3.1 Definition of Our Adversarial Examples
Detection Task

In this section, we introduce a novel task aimed at detecting adver-
sarial examples in LVLMs.

Let 𝑓 represent a large vision-language model, which takes an
image 𝐼 and a question 𝑄 as input, and produces an answer 𝐴 =

𝑓 (𝐼 ,𝑄). The task will provide two datasets, D𝑟𝑒 𝑓 and D𝑡𝑒𝑠𝑡 , where
D𝑟𝑒 𝑓 comprises 𝑁 samples from a large clean dataset D, serving
as a reference for clean examples. Additionally, we randomly select
𝑀 images and questions from D to create the dataset D𝑐𝑙𝑒𝑎𝑛 , and
then execute adversarial attacks on these 𝑀 images to generate
the dataset D𝑎𝑑𝑣 . By randomly combining clean and adversarial
examples in a ratio of𝑀𝑐𝑙𝑒𝑎𝑛 : 𝑀𝑎𝑑𝑣 , we generate the test dataset
D𝑡𝑒𝑠𝑡 . The task’s objective is to train a classifier ℎ(𝐼 ) that discerns
whether each 𝐼 ∈ D𝑡𝑒𝑠𝑡 originates from the clean datasetD𝑐𝑙𝑒𝑎𝑛 or
the adversarial dataset D𝑎𝑑𝑣 . Note that for this task, only D𝑟𝑒 𝑓 , 𝑓 ,
and the test dataset D𝑡𝑒𝑠𝑡 are provided. If 𝐼 originates from D𝑐𝑙𝑒𝑎𝑛 ,
the ground truth 𝑔(𝐼 ) should be 1, otherwise 0, as delineated in

Eq. (1).

𝑔(𝐼 ) =
{
1 if 𝐼 ∈ D𝑎𝑑𝑣,

0 if 𝐼 ∈ D𝑐𝑙𝑒𝑎𝑛 .
(1)

The adversarial attacks on LVLMs are more diverse in terms of
attack methods and targets, and more challenging to detect.

3.2 Evaluation of Our Detection Task
To evaluate the performance of the classifier ℎ, which determines
the likelihood of 𝐼 being an adversarial example, we employ the
metrics outlined in Eq. (2).

𝑇𝑃 =
∑︁

𝐼 ∈D𝑡𝑒𝑠𝑡

𝑔(𝐼 ) · ℎ(𝐼 ), 𝐹𝑁 = 𝑀𝑎𝑑𝑣 −𝑇𝑃

𝐹𝑃 =
∑︁

𝐼 ∈D𝑡𝑒𝑠𝑡

(1 − 𝑔(𝐼 )) · ℎ(𝐼 ), 𝑇𝑁 = 𝑀𝑐𝑙𝑒𝑎𝑛 − 𝐹𝑃
(2)

Upon defining True Positives (TP), True Negatives (TN), False
Positives (FP), and False Negatives (FN), we compute the preci-
sion, recall, accuracy, and F1-score to comprehensively assess the
performance of classifier ℎ.
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(a) The attention map of “yes/no” questions.
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(b) The attention map of “number” questions.
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(c) The attention map of “other” questions.

Figure 3: The attention maps of different types of questions
on 1,000 randomly-selected images and questions. Due to
space limitations, we select only one layer (the 16th layer of
the LLM) and display the maximum value in the multi-head
attention. The attention map of (a) “yes/no” is more regular
than (b) “number” and (c) “other”, indicating that the simple
“yes/no” is a more suitable probe question.

4 Explore the Use of Our PIP to Detecting
Adversarial Examples

4.1 LVLMs Have Regularized Attention Patterns
of Clean Examples to Yes/No Questions

We begin by selecting a popular LVLM InstructBLIP Vicuna-7B
(decoder-only) to explore attention patterns, then observe other
LVLMs if there is a similar phenomenon. It is based on the Q-former
architecture, and the LLM receives 32 image tokens and 𝑃 question
tokens as inputs. Initially, the LLM computes self-attention on the

32 + 𝑃 tokens, followed by the insertion of the start token 𝑒𝑜𝑠𝑠𝑡𝑎𝑟𝑡
into the LLM to generate the output sequence sequentially. We
examine the attention map from the first token following the start
token to the 32 image tokens. The attention map has a dimension
of [32, 32, 32], with the first 32 representing the number of layers,
the second 32 indicating the number of multi-heads, and the last 32
denoting the index of image tokens. To display the attention map
of multiple images within a single figure, we select a certain layer
and focus on the largest head within the multi-head attention.

We randomly selected 1000 questions of each type (yes/no, num-
ber, and other) from VQA v2. For each of these question types, we
generated the attention maps for layer 16 of the LLM in Instruct-
BLIP Vicuna-7B, as illustrated in Fig. 3, where each row is an image
and each column is the 32 image tokens fed into the LLM, with
the color indicating attention values. The attention map for yes/no
questions exhibits a more regular pattern compared to those for
number and other question types. This insight offers a novel per-
spective on distinguishing between clean and adversarial examples
through the analysis of regular attention patterns.

4.2 The Attention Patterns of “yes/no” Probe
Questions between Clean and Adversarial
Examples are Clearly Distinguishable

As previously identified in Sec. 4.1, yes/no type questions exhibit
regular attention patterns. This section explores the differences
in attention patterns between clean and adversarial examples for
yes/no questions.

We randomly selected 1000 images and questions from dataset
D to create dataset D1k

clean. Using PGD on the white-box model, we
attack D1k

clean to generate the adversarial example datasets D1𝑘
CLIP

and D1k
LLM. For the PGD attack, the number of steps was set to

20, with a perturbation size per step of 𝛼 = 2/255, and a total
perturbation limit of 𝜖∞ = 8/255. We consider two methods of
attack. ForD1k

LLM, an untargeted attack was conducted on the LLM’s
logit cross-entropy. Obtaining the LLM component of an LVLM can
be challenging, whereas accessing its visual encoder (typically CLIP
[25] or EVA-CLIP [27]) is comparatively easier for an adversary.
Therefore, for D1k

CLIP, the mean square error (MSE) loss function
was employed to conduct an untargeted attack on the output feature
of the CLIP or EVA-CLIP visual encoder.

We randomly select a yes/no question as the probe question,
for example, “Is there a clock?”. Images from D1k

clean, D
1𝑘
CLIP and

D1k
LLM, along with the probe question, were fed into InstructBLIP

Vicuna-7B, with their attention maps displayed in Fig. 4. Clearly,
Figure 4a exhibits significant differences when compared to Fig. 4b
and Fig. 4c. Specifically, the 27th token in Fig. 4a is predominantly
black, whereas Figure 4c shows a reduced percentage of black, and
Fig. 4b contains very little black. Furthermore, the attention for the
28th token in Fig. 4b and Fig. 4c is more pronounced than in Fig. 4a.

Although Fig. 4 illustrates results from just one layer of the LLM,
a significant difference between the clean and adversarial examples
is already evident. A similar phenomenon is widely observed across
other layers of the LLM. It indicates that the attention patterns of
clean and adversarial examples are straightforward and likely to



PIP: Detecting Adversarial Examples in LVLMs via Attention Patterns of Irrelevant ProbeQuestions MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

0

200

400

600

800

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

(a) The attention map of D1k
clean.
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(b) The attention map of D1𝑘
CLIP.
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(c) The attention map of D1k
LLM.

Figure 4: The attentionmaps ofD1k
clean,D

1𝑘
CLIP andD1k

LLM. Due
to space limitations, we select only one layer (the 16th layer
of the LLM) and take the maximum value in the multi-head
attention. The probe questions are all “Is there a clock?”. The
attention maps of adversarial examples differed significantly
from those of the clean examples on certain sensitive tokens
(e.g., the 27th and 28 tokens), which are good indicators.

be linearly separable, thus motivating the usage of simple linear
classifiers for discrimination as our detector.

4.3 Distinguishing Attention Maps via
Lightweight Support Vector Machine

As discussed in Sec. 4.2, the use of an irrelevant probe question has
been identified as a viable method for distinguishing between clean

Algorithm 1: The steps of PIP using SVM.

Input: Clean reference dataset D𝑐𝑙𝑒𝑎𝑛
𝑟𝑒 𝑓

, D𝑡𝑒𝑠𝑡 to be tested
Model: The large vision-language model 𝑓 , where

𝑓𝑎𝑡𝑡 (𝐼 ,𝑄) outputs the LVLM’s attention map
Data: The irrelevant probe question 𝑄𝑝

Output: The predict results of D𝑡𝑒𝑠𝑡 , where 0 denotes clean
example and 1 denotes adversarial examples

1 D𝑎𝑑𝑣
𝑟𝑒 𝑓

= {};
2 for image 𝐼 𝑗 and question 𝑄 𝑗 ∈ D𝑐𝑙𝑒𝑎𝑛

𝑟𝑒 𝑓
do

/* AA denotes a adversarial attack which

returns the adversarial image */

3 𝐼 ′
𝑗
= AA(𝐼 𝑗 , 𝑄 𝑗 );

4 D𝑎𝑑𝑣
𝑟𝑒 𝑓

= D𝑎𝑑𝑣
𝑟𝑒 𝑓

+ {𝐼 ′
𝑗
};

5 end
/* The train data (𝑋) and label (𝑦) of SVM */

6 𝑋 = {};
7 𝑦 = {};
8 for image 𝐼 𝑗 ∈ {D𝑐𝑙𝑒𝑎𝑛

𝑟𝑒 𝑓
+ D𝑎𝑑𝑣

𝑟𝑒 𝑓
} do

9 𝑋 = 𝑋 + {𝑓𝑎𝑡𝑡 (𝐼 𝑗 , 𝑄𝑝 )};
/* Adversarial examples are labeled 1,

otherwise 0 */

10 𝑦 = 𝑦 + {I(𝐼 𝑗 ∈ D𝑎𝑑𝑣
𝑟𝑒 𝑓

)};
11 end

/* Train the classifier ℎ with SVM */

12 ℎ = SVM(𝑋,𝑦);
/* Using the classifier ℎ to predict */

13 𝑌𝑝𝑟𝑒𝑑 = {};
14 for 𝐼 𝑗 ∈ D𝑡𝑒𝑠𝑡 do
15 𝑌𝑝𝑟𝑒𝑑 = 𝑌𝑝𝑟𝑒𝑑 + {ℎ(𝑓𝑎𝑡𝑡 (𝐼 𝑗 , 𝑄𝑝 ))};
16 end
17 return 𝑌𝑝𝑟𝑒𝑑 ;

and adversarial examples. A simple linear classifier, precisely a sup-
port vector machine (SVM) [3], has been employed to differentiate
between clean and adversarial examples.

The steps of our PIP method using SVM are outlined in Algo-
rithm 1 and Fig. 2. We conducted an attack using PGD on the
cross-entropy loss function of the LLM’s logit output on D𝑐𝑙𝑒𝑎𝑛

𝑟𝑒 𝑓
,

resulting in the dataset D𝑎𝑑𝑣
𝑟𝑒 𝑓

. These clean and adversarial images,
along with an irrelevant probe question, were fed into the LVLM
to extract their attention maps. Utilizing these attention maps, we
trained a support vector machine (SVM) ℎ to discern whether the
tested examples are adversarial or not.

Acknowledging that adversarial examples are likely less preva-
lent than clean examples in practical scenarios (due to fewer ma-
licious users), the mixing ratios 𝑀𝑐𝑙𝑒𝑎𝑛 : 𝑀𝑎𝑑𝑣 were established
at 1000 : 100 and 1000 : 1000. The clean reference dataset D𝑟𝑒 𝑓

comprises 5000 samples (𝑁 = 5000). The PGD attack encompasses
a 20-step iteration, with a step learning rate of 2/255 and an overall
perturbation limit of 𝜖∞ = 8/255.
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Table 1: Results of using PIP with SVM to detect adversarial
examples. In this table, D𝑟𝑒 𝑓 and D𝑡𝑒𝑠𝑡 are from the same
COCO dataset.

Attack 𝑀𝑐𝑙𝑒𝑎𝑛/𝑀𝑎𝑑𝑣 Precision Recall Accuracy F1-score

D𝐶𝐿𝐼𝑃
𝑎𝑑𝑣

1000/1000 90.91 100.00 95.00 95.24
1000/100 50.00 100.00 90.91 66.67

D𝐿𝐿𝑀
𝑎𝑑𝑣

1000/1000 98.97 96.50 97.75 97.72
1000/100 90.48 95.00 98.64 92.68

The results of detecting adversarial examples using PIPwith SVM
are presented in Tab. 1. For D𝐿𝐿𝑀

𝑎𝑑𝑣
, given that the SVM was trained

while also attacking the output of LLM, it demonstrates excellent
capability in recognizing adversarial examples, achieving very high
performance. For D𝐶𝐿𝐼𝑃

𝑎𝑑𝑣
, despite training the SVM with a different

adversarial attack, it remains capable of recognizing adversarial
examples. However, D𝐶𝐿𝐼𝑃

𝑎𝑑𝑣
exhibits a high false alarm rate (10%)

due to the disparity in attack methods used during training SVM
and testing examples. With a clean-to-adversarial example ratio of
10 : 1, examples with false alarms constitute half of the total alarms,
resulting in reduced precision. It is astonishing that our simple PIP
achieves impressive results in adversarial example detection.

4.4 Exploring the PIP’s Decision-making
Process with Decision Trees

In previous sections, PIP with SVM was used to detect adversarial
samples. However, visualizing the SVM’s decision-making process
is challenging due to the high-dimensional space of the attention
maps. In this section, the decision tree (DT) is used as an intuitive
alternative to SVM.

Decision tree operates by recursively partitioning a dataset into
increasingly smaller subsets and facilitates the generation of easily
understandable rules. To visualize the decision-making process,
a DT with a depth of 2 is trained. The input for the DT consists
of attention maps with 1024 dimensions (32 layers × 32 tokens,
with the maximum value in the multi-head attention dimension).
The DT(depth=2) makes a linear decision based on two dimen-
sions, as illustrated in Fig. 5. Despite its limited depth of 2, the DT
successfully detects adversarial examples, as evidenced in Tab. 2.
Increasing the DT’s depth could enhance its performance. However,
this work only focuses on visualizing the decision-making process
using DT(depth=2) to demonstrate PIP’s effectiveness.

5 In-depth Analyses on PIP
Having initially validated PIP’s effectiveness, we then explored its
generalizability across various settings and endeavored to under-
stand and analyze our detection method and the intrinsic mecha-
nisms underlying the differences in attention patterns.

We obtained 5,000 D𝑎𝑑𝑣
𝑟𝑒 𝑓

images from adversarial attacks on

D𝑐𝑙𝑒𝑎𝑛
𝑟𝑒 𝑓

. Afterward, an SVM was trained using the attention pattern
of 10,000 images on the probe question. In Sec. 5.1, Sec. 5.2 and
Sec. 5.3, we try the results of this SVM on different test data distri-
butions (training SVM on COCO while test adversarial examples on
ImageNet), attack methods (PGD to C&W), and attack parameters

gini = 0.359
samples = 508

value = [119, 389]
class = adversarial

gini = 0.189
samples = 4622

value = [4133, 489]
class = clean

gini = 0.143
samples = 3973

value = [309, 3664]
class = adversarial

gini = 0.5
samples = 897

value = [439, 458]
class = adversarial

attention (layer 10, token 18) <= 0.186
gini = 0.284

samples = 5130
value = [4252, 878]

class = clean

attention (layer 9, token 2) <= 0.003
gini = 0.26

samples = 4870
value = [748, 4122]
class = adversarial

attention (layer 4, token 5) <= 0.058
gini = 0.5

samples = 10000
value = [5000, 5000]

class = clean

Figure 5: PIP with the decision-making process of decision
trees. the DT(depth=2) linearly distinguishes between clean
and adversarial examples only by the two feature dimensions
of the attention maps.

(𝜖∞). Section 5.4 explores the results of PIP on other LVLMs (differ-
ent models require different SVMs to be trained because of different
attention patterns), and Section 5.5 explores the use of multiple
SVM fusion decisions for the same model. Finally, we explore a
real-world black-box attack scenario in Sec. 5.6. It is important to
emphasize that for all experiments (except Sec. 5.5), we trained
the SVMs using the same data (PGD 𝜖∞ = 8/255 on 5,000 images
from COCO D𝑟𝑒 𝑓 targets the output of LLM) and the same probe
question “Is there a clock?” to extract attention maps (Section 5.5
used more probe questions than one). Note that using the same
unified PIP detector for different settings is extremely challenging.

5.1 Generalization of Our Adversarial Examples
Detection Method across Datasets

In Sec. 4.3, a portion of the adversarial examples was successfully
detected in the dataset D𝑡𝑒𝑠𝑡 . However, there exists a potential
issue as both D𝑟𝑒 𝑓 and D𝑡𝑒𝑠𝑡 derive from D (i.e., COCO dataset).
In practical applications, access to the dataset of user input images
may be unavailable, making it crucial to assess the generalization
performance when D𝑟𝑒 𝑓 and D𝑡𝑒𝑠𝑡 do not align.

In this section, D𝑡𝑒𝑠𝑡 is replaced with the ImageNet dataset,
while maintaining D𝑟𝑒 𝑓 as is. Specifically, an image from each of
ImageNet’s 1000 classes was randomly selected, and its label was
used to generate a corresponding question using the template “Is
there a/an {label}?”. This process forms the datasetD𝑐𝑙𝑒𝑎𝑛 , and then,
following the previous method, these 1000 images and questions
were attacked to create the dataset D𝑎𝑑𝑣 . D𝑐𝑙𝑒𝑎𝑛 and D𝑎𝑑𝑣 were
mixed according to𝑀𝑐𝑙𝑒𝑎𝑛 : 𝑀𝑎𝑑𝑣 , with the detection of adversarial
examples performed using the method described in Sec. 4.3. The
results are presented in Tab. 3. Despite the inconsistency between
D𝑟𝑒 𝑓 (from COCO) and D𝑡𝑒𝑠𝑡 (from Imagenet-1K), PIP maintains
high accuracy (over 90%). This indicates that PIP’s effectiveness is
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Table 2: Results of using PIPwithDT(depth=2) to detect adver-
sarial examples. The purpose of this table is not performance,
but to show that PIP does indeed find linearly separable fea-
tures between clean and adversarial examples, even through
DT(depth=2). Its decision-making process is shown in Fig. 5.

Attack 𝑀𝑐𝑙𝑒𝑎𝑛/𝑀𝑎𝑑𝑣 Precision Recall Accuracy F1-score

D𝐿𝐿𝑀
𝑎𝑑𝑣

1000/1000 85.74 90.20 87.60 87.91
1000/100 37.76 91.00 85.55 53.37

Table 3: Results of using PIP with SVM to detect adversarial
examples. In this table, D𝑟𝑒 𝑓 and D𝑡𝑒𝑠𝑡 are from COCO and
ImageNet-1K, respectively.

Attack 𝑀𝑐𝑙𝑒𝑎𝑛/𝑀𝑎𝑑𝑣 Precision Recall Accuracy F1-score

D𝐶𝐿𝐼𝑃
𝑎𝑑𝑣

1000/1000 90.91 100.00 95.00 95.24
1000/100 50.00 100.00 90.91 66.67

D𝐿𝐿𝑀
𝑎𝑑𝑣

1000/1000 90.37 93.80 91.90 92.05
1000/100 48.72 95.00 90.45 64.41

Table 4: Generalizability of PIP over different attack method
C&W. In this table, we only consider attacks the LLM’s out-
puts (i.e., D𝐿𝐿𝑀

𝑎𝑑𝑣
).

D𝑡𝑒𝑠𝑡 𝑀𝑐𝑙𝑒𝑎𝑛/𝑀𝑎𝑑𝑣 Precision Recall Accuracy F1-score

COCO 1000/1000 98.99 97.80 98.40 98.39
1000/100 90.83 99.00 99.00 94.74

ImageNet-1K 1000/1000 90.55 95.80 92.90 93.10
1000/100 49.24 97.00 90.64 65.32

not contingent on a specific dataset distribution and can be gener-
alized across different datasets. In a practical scenario, D𝑟𝑒 𝑓 can
be generated from a given dataset, with PIP employed to detect
adversarial examples in D𝑡𝑒𝑠𝑡 , irrespective of D𝑡𝑒𝑠𝑡 ’s distribution
during the generation of D𝑟𝑒 𝑓 .

5.2 Generalizability of PIP over Different
Attack Methods

In prior experiments, the generalizability of PIP across various
attack targets, such as D𝐶𝐿𝐼𝑃

𝑎𝑑𝑣
and D𝐿𝐿𝑀

𝑎𝑑𝑣
) was established. How-

ever, these experiments were exclusively based on the PGD attack
method. The ability of SVMs trained on PGD-generated adversarial
examples to generalize to unknown attack methods in real-world
scenarios remains a critical aspect of PIP’s utility.

This section examines the effectiveness of PIP against another
popular attack method C&W beyond PGD. For the C&W attack, the
process iterated over 50 steps with a perturbation of 0.01 per step,
equivalent to 2.55/255. Table 4 displays the experimental results.
Even against unknown attacks (C&W) and on datasets distinct from
D𝑟𝑒 𝑓 (ImageNet-1K), PIP demonstrates superior performance.

Table 5: Generalizability of PIP over different methods than
PGD attacks. In this table, we only consider attacks the LLM’s
outputs (i.e., D𝐿𝐿𝑀

𝑎𝑑𝑣
) on COCO.

𝜖∞ 𝑀𝑐𝑙𝑒𝑎𝑛/𝑀𝑎𝑑𝑣 Precision Recall Accuracy F1-score

2/255 1000/1000 97.45 38.20 68.60 54.89
1000/100 80.00 40.00 93.64 53.33

4/255 1000/1000 98.81 82.80 90.90 90.10
1000/100 89.25 83.00 97.55 86.01

16/255 1000/1000 98.99 98.50 98.75 98.75
1000/100 90.83 99.00 99.00 94.74

5.3 Generalization Performance of PIP on
Different Attack Parameters

In the training process of SVMand prior experiments involving PGD
attacks, a consistent perturbation strength of 𝜖∞ = 8 was employed.
The aim is to ascertain PIP’s generalizability across weaker and
stronger PGD attacks. Table 5 examines PIP’s efficacy on D𝑡𝑒𝑠𝑡

examples under three perturbation levels 𝜖∞ = {2, 4, 16}, revealing
that PIP maintains a 40% recall even with a minimal perturbation of
𝜖∞ = 2. With an 𝜖∞ = 4 attack, PIP achieves over 80% recall. Under
a significantly strong attack of 𝜖∞ = 16, PIP is able to detect nearly
all adversarial examples. Table 5 demonstrates PIP’s generalizability
to both weaker and stronger attacks.

5.4 Results of PIP on other LVLMs
In Tab. 1 and Tab. 3, InstructBLIP Vicuna-7B is utilized as the LVLM.
Assessing whether other LVLMs can employ PIP to detect adver-
sarial examples is crucial for evaluating PIP’s generalizability. This
section examines other versions of BLIP-2 and InstructBLIP to
evaluate PIP’s performance on various LVLMs. For each model,
PIP initially extracts the attention maps from D𝑟𝑒 𝑓 , followed by
SVM training. PIP’s transferability across LVLMs is impossible due
to varying attention map configurations and dimensions among
LVLMs, such as [32, 32] for Vicuna-7B, [40, 40] for Vicuna-13B, [24,
32] for FlanT5XL, [24, 64] for FlanT5XL, with the first number rep-
resenting the LLM’s layers and the second the multi-head attention
count. Therefore, a separate PIP detector must be trained on each
LVLMs. For BLIP-2 and InstructBLIP, the analysis includes both
decoder-only LLMs (e.g., OPT, Vicuna) and encoder-decoder LLMs
(e.g., FlanT5). In decoder-only LLMs, we focus on the attention
maps of 32 image tokens during the generation of the first word. In
encoder-decoder LLMs, we focus on the cross-attention maps of 32
image tokens at the first word’s generation. Within the multi-head
attention dimension, only the head with the highest attention is se-
lected to reduce the attention map dimensions. Table 6 presents the
results of applying PIP with SVM across a broader range of LVLMs
and demonstrates the effectiveness of PIP on different LVLMs.

5.5 Alleviating the High False Alarm Rate Issue
The primary advantage of PIP is its high recall rate, which is critical
for LVLMs. Adversaries can manipulate the model using adversarial
examples, potentially leading to significant public opinion risks if
the model generates content that violates morality or law. However,
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Table 6: Results of PIP on other LVLMs besides InstructBLIP
Vicuna-7B. In this table, we only consider attacks the LLM’s
outputs (i.e., D𝐿𝐿𝑀

𝑎𝑑𝑣
) on COCO.

LVLM 𝑀𝑐𝑙𝑒𝑎𝑛/𝑀𝑎𝑑𝑣 Precision Recall Accuracy F1-score

InstructBLIP 1000/1000 96.19 96.00 96.10 96.10
(FlanT5XL) 1000/100 71.85 97.00 96.27 82.55

InstructBLIP 1000/1000 97.48 96.90 97.20 97.19
(FlanT5XXL) 1000/100 79.67 98.00 97.55 87.89

InstructBLIP 1000/1000 98.79 98.20 98.50 98.50
(Vicuna-13B) 1000/100 89.19 99.00 98.82 93.84

BLIP-2 1000/1000 96.36 95.20 95.80 95.77
(OPT-2.7B) 1000/100 72.93 97.00 96.45 83.26

BLIP-2 1000/1000 95.78 95.40 95.60 95.59
(OPT-6.7B) 1000/100 69.12 94.00 95.64 79.66

BLIP-2 1000/1000 94.73 91.70 93.30 93.19
(FlanT5XL) 1000/100 64.58 93.00 94.73 76.23

Table 7: Results of PIP with multipie SVMs. AR (Alarm
Rules) 𝑖/ 𝑗 means that among 𝑗 SVMs of 𝑗 probe questions, the
alarmed SVMs ≥ 𝑖 are determined as adversarial examples.

D𝑡𝑒𝑠𝑡 AR Attack 𝑀𝑐𝑙𝑒𝑎𝑛/𝑀𝑎𝑑𝑣 Precision Recall Accuracy F1-score

COCO 2/3
D𝐶𝐿𝐼𝑃

𝑎𝑑𝑣

1000/1000 98.81 100.00 99.40 99.40
1000/100 89.29 100.00 98.91 94.34

D𝐿𝐿𝑀
𝑎𝑑𝑣

1000/1000 98.78 96.80 97.80 97.78
1000/100 88.99 97.00 98.64 92.82

IN-1K 3/3
D𝐶𝐿𝐼𝑃

𝑎𝑑𝑣

1000/1000 94.61 100.00 97.15 97.23
1000/100 63.69 100.00 94.82 77.82

D𝐿𝐿𝑀
𝑎𝑑𝑣

1000/1000 94.06 90.30 92.30 92.14
1000/100 61.74 92.00 94.09 73.90

as indicated in Tab. 1, PIP experiences a high false alarm rate (about
10%) when the attack method used to train the SVM differs from
that used on the test examples. This false alarm rate is particularly
high when the ratio of clean to adversarial examples is 1000 : 100,
resulting in half of the alarms being false. Such a high false alarm
rate could jeopardize PIP’s practical application, as normal user
images may be incorrectly flagged, degrading the user experience.

Our fundamental approach involves conducting a focused review
of samples triggering alerts. A straightforward method is to apply
three instead of one probe question to these targeted samples. In
scenarios with low false alarm rates, like in Tab. 1, an image is
classified as an adversarial example if it triggers at least two alarms
out of three probe questions. In cases with high false alarm rates,
such as in Tab. 3, an image is deemed an adversarial example only
if alarms are triggered on all three probe questions. Besides the
existing probe question “Is there a clock?”, two additional questions,
“Is this in the United States?” and “Is this photo an action shot?” were
randomly selected, and two more SVMs were trained accordingly.

The outcomes are detailed in Tab. 7, which, compared to Tab. 1
and Tab. 3, exhibits a notable reduction in the false alarm rate, as
indicated by a substantial increase in precision. Moreover, Table 7
maintains an exceptionally high recall rate, thus reducing the false
alarm rate while preserving the detection of adversarial examples.

Table 8: Results of PIP on detecting adversarial examples
generated by black-box Attack-Bard on NIPS2017 dataset.
The𝑀𝑐𝑙𝑒𝑎𝑛/𝑀𝑎𝑑𝑣 is 200 : 200.

LVLM Precision Recall Accuracy F1-score

InstructBLIP FlanT5XL 90.09 100.00 94.50 94.79

InstructBLIP FlanT5XXL 90.32 98.00 93.75 94.00

InstructBLIP Vicuna-7B 94.79 100.00 97.25 97.32

InstructBLIP Vicuna-13B 96.10 98.50 97.25 97.28

Employing additional SVMs will increase computational de-
mands. For a user-input image, one SVM judgment necessitates
only one extra inference beyond the user-input question to derive
the attention map, while three SVM judgments necessitate three
extra inferences. Fortunately, not all images require multiple infer-
ences. It suffices to infer all images once and selectively focus on
certain suspicious images.

5.6 Generalization Performance of PIP on
Actual Black-box Attacks

In earlier experiments, adversarial exampleswere generated through
the white-box attacks. However, in real-world scenarios, obtaining
the model’s weights and executing white-box attacks is challeng-
ing for users. Consequently, numerous studies have investigated
black-box attacks. Exploring PIP’s effectiveness against black-box
attack-generated adversarial examples is worthwhile.

Attack-Bard [8] used black-box attacks on the NIPS2017 dataset
to generate adversarial examples, successfully compromising major
commercial models like ChatGPT-4V, Google’s Bard, Bing Chat, and
ERNIE Bot (with approximately 45% attack success on ChatGPT-
4V). This section involves selecting 200 original images from the
NIPS2017 dataset along with corresponding adversarial images
generated by Attack-Bard to create the dataset D𝑡𝑒𝑠𝑡 , using PIP to
detect adversarial examples on InstructBLIP.

This constitutes a comprehensive evaluation of PIP, as in this
experimental setup, the constant factor is the model used in both
training and detection phases (necessary due to varying attention
patterns acrossmodels). Beyond this, PIP remains uninformed about
other aspects like the distribution of user input data, attack meth-
ods, parameters, targets, and the models used for the attack. Table 8
affirms PIP’s generalizability in authentic black-box attack scenar-
ios. In the context of black-box attacks, PIP maintains a recall rate
exceeding 95% and a precision greater than 80%.

6 Conclusion
In this paper, we introduce PIP, a new and simple method for de-
tecting adversarial examples in LVLMs. Although PIP is simple
and whimsical, it achieves impressive results on recent, popular
LVLMs like BLIP-2 and InstructBLIP, achieving high recall rates of
adversarial examples with low false alarms among clean examples.
For detected adversarial examples, post-processing measures such
as focusing on alert examples, denying answers, and implementing
adversarial defenses can enhance the security and robustness of
LVLMs, thereby mitigating public and legal risks.
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