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Abstract

Recent diffusion-based unrestricted attacks gener-
ate imperceptible adversarial examples with high
transferability compared to previous unrestricted
attacks and restricted attacks. However, existing
works on diffusion-based unrestricted attacks are
mostly focused on images yet are seldom explored
in videos. In this paper, we propose the Recur-
sive Token Merging for Video Diffusion-based
Unrestricted Adversarial Attack (ReToMe-VA),
which is the first framework to generate imper-
ceptible adversarial video clips with higher trans-
ferability. Specifically, to achieve spatial imper-
ceptibility, ReToMe-VA adopts a Timestep-wise
Adversarial Latent Optimization (TALO) strategy
that optimizes perturbations in diffusion models’
latent space at each denoising step. TALO offers
iterative and accurate updates to generate more
powerful adversarial frames. TALO can further
reduce memory consumption in gradient compu-
tation. Moreover, to achieve temporal impercep-
tibility, ReToMe-VA introduces a Recursive To-
ken Merging (ReToMe) mechanism by matching
and merging tokens across video frames in the
self-attention module, resulting in temporally con-
sistent adversarial videos. ReToMe concurrently
facilitates inter-frame interactions into the attack
process, inducing more diverse and robust gradi-
ents, thus leading to better adversarial transfer-
ability. Extensive experiments demonstrate the ef-
ficacy of ReToMe-VA, particularly in surpassing
state-of-the-art attacks in adversarial transferabil-
ity by more than 14.16% on average.
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Figure 1. Difference between restricted attacks, unrestricted at-
tacks, and diffusion-based unrestricted attacks.

1. Introduction
Recent years have witnessed remarkable performance exhib-
ited by Deep Neural Networks (DNNs) across various com-
puter vision and multimedia tasks (He et al., 2016; Cheng
et al., 2023). However, the emergence of adversarial exam-
ples has posed a challenge to the robustness of DNNs (Good-
fellow et al., 2014; Chen et al., 2022). These adversarial
examples, created by making imperceptible modifications
to benign samples, can easily deceive state-of-the-art DNNs.
Importantly, adversarial examples generated against one
model can also mislead other models even with different
architectures (Chen et al., 2023b; Wei et al., 2023a). The
transferability of adversarial examples makes it feasible to
carry out black-box attacks, which highlight security flaws
in safety-critical scenarios, such as face verification (Sharif
et al., 2016) and surveillance video analysis (Chen et al.,
2023b), etc. To avoid potential risks, it is crucial to expose
as many ”blind spots” of DNNs by deeply exploring the
transferability of adversarial examples.

Nowadays, the majority of transfer-based adversarial at-
tacks (Lv et al., 2023; Wei et al., 2024; 2023b) try to guar-
antee ”subtle perturbation” by limiting the Lp-norm of the
perturbation (a.k.a. restricted attacks). However, adversarial
examples generated under Lp-norm constraint have human-
perceptible perturbations, thereby rendering them more eas-
ily detectable (Zhao et al., 2020b; Aigrain & Detyniecki,
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2019). Therefore, unrestricted adversarial attacks (Yuan
et al., 2022; Zhao et al., 2020a), which optimize unrestricted
but natural changes (such as texture, style, color modifi-
cations, etc.) for given benign samples, are beginning to
emerge. These unrestricted attacks yield more imperceptible
perturbations but fall short in transferability compared to
restricted attacks. With diffusion models drawing significant
attention, recent works (Chen et al., 2023c;a) have employed
diffusion models for unrestricted attacks to generate imper-
ceptible adversarial examples with high transferability. The
difference between previous unrestricted attacks, restricted
attacks, and diffusion-based unrestricted attacks is displayed
in Figure 1. Nevertheless, existing works on diffusion-based
unrestricted attacks are mostly focused on images yet are
seldom explored in videos.

This paper investigates transferable diffusion-based unre-
stricted attacks across different video recognition models.
Specifically, we map each frame into the latent space and op-
timize the latents along the adversarial direction. The chal-
lenge of video diffusion-based unrestricted attacks comes
from three aspects. Firstly, given the fact that diffusion
models tend to add coarse semantic information in the early
denoising steps (Meng et al., 2021), premature manipula-
tion of the latents from previous work (Chen et al., 2023c)
yields significant alternations to the crafted frames com-
pared to the corresponding benign frames. Concurrently,
these spatial perceptible changes further result in temporal
inconsistency in crafted adversarial videos when directly
applying such generation to each frame. Consequently, fur-
ther effort is needed to generate adversarial videos with
temporal imperceptibility. Secondly, separately perturbing
each benign frame induces monotonous gradients because
the interactions among the video frames have not been fully
exploited. Therefore, inter-frame interaction is necessary
for boosting adversarial transferability. Lastly, the previ-
ous generation involves the gradient calculation throughout
the entire denoising process, leading to a heavy memory
overhead, especially when updating all the frames simulta-
neously.

To this end, we propose ReToMe-VA, which is the first video
diffusion-based unrestricted adversarial attack framework,
aiming at producing imperceptible adversarial video clips
with higher transferability, as shown in Figure 2. Specif-
ically, to achieve spatial imperceptibility, we introduce a
Timestep-wise Adversarial Latent Optimization (TALO)
that gradually updates perturbations in the latent space at
each denoising timestep. Instead of calculating gradients
of the entire denoising process, TALO only involves one
timestep gradient calculation thereby reducing memory con-
sumption in gradient computation. Furthermore, to reduce
the spatial structure differences between benign and ad-
versarial frames, TALO establishes constraints on the self-
attention maps, which have been demonstrated to regulate

structure effectively (Chen et al., 2023a). To effectively
trade-off between spatial imperceptibility and adversarial
transferability, TALO introduces the incremental iteration
strategy, which prioritizes fewer iterations during the early
timesteps to preserve the structure and increases the number
of iterations during later timesteps to add more adversar-
ial content. Therefore, TALO offers iterative and accurate
updates to generate more powerful adversarial frames. To
achieve temporal imperceptibility of adversarial video, we
propose a novel Recursive Token Merging (ReToMe) mech-
anism, which recursively aligns tokens across frames ac-
cording to the correlation and compresses the temporally re-
dundant tokens to facilitate joint self-attention. With shared
tokens in the self-attention module, ReToMe fixes the mis-
alignment of details in per-frame optimization, resulting
in temporally consistent adversarial videos. Additionally,
inter-frame interaction can make the gradient of the current
frame fuse information from associated frames, which has
the potential to generate robust and diverse update directions
to fool various target video models (Wang et al., 2023). The
ReToMe facilitates inter-frame interactions into the attack
process, thus boosting the adversarial transferability.

Our contributions can be summarized as follows:

• We introduce the first framework for video diffusion-
based unrestricted adversarial attacks, leveraging the
Stable Diffusion model to generate imperceptible ad-
versarial video clips with higher transferability.

• We propose a Timestep-wise Adversarial Latent Op-
timization strategy to achieve spatial imperceptibility.
Besides, our novel Recursive Token Merging mecha-
nism maximally merges self-attention tokens across
frames, thereby boosting adversarial transferability
while achieving temporal imperceptibility.

• We conduct extensive experiments on video recogni-
tion models trained on both CNNs and Vits, as well as
various defense methods. Our results demonstrate that
ReToMe-VA surpasses the best baseline by an average
of 14.16% and 17.32%, respectively.

2. Related Work
As there are no previous works focusing on transferable
video unrestricted attacks, this section reviews recent works
on transferable unrestricted attacks against image models
and transferable restricted attacks against video models.

2.1. Transferable Image Unrestricted Attacks

In the transferable image unrestricted attacks, color
manipulation-based approaches play a significant role. Se-
mantic Adversarial Examples (SAE) (Hosseini & Pooven-
dran, 2018) converts the image from the RGB color space

2



ReToMe-VA: Recursive Token Merging for Video Diffusion-based Unrestricted Adversarial Attack

Diffusion Model𝑥!

…
𝑥"#!

𝑥"!

𝑥"

𝑥"!"#

Structure Loss 𝑝𝑟𝑒𝑑	𝑥"$

Attack Loss

Surrogate
Model

optimize

𝑥"" = 𝑥"

DDIM Inversion Timestep-wise Adversarial Latent Optimization

Benign Video	𝑥!

Adv Video 𝑥#!

Residual 
Block

Self 
Attention

Cross 
Attention

Recursive Token Merging

Recursive Token Unmerging

DDIM Sampling
Forward Process Backward Process

busking

𝑥"!

…

𝑥""#!𝑥""

Figure 2. Framework overview of the proposed ReToMe-VA. For a video clip, DDIM inversion is applied to map the benign frames
into the latent space. Timestep-wise Adversarial Latent Optimization is employed during the DDIM sampling process to optimize the
latents. Throughout the whole pipeline, Recursive Token Merging and Recursive Token Unmerging Modules are integrated into the
diffusion model to enhance its effectiveness. Additionally, structure loss is utilized to maintain the structural consistency of video frames.
Ultimately, the resulting adversarial video clip is capable of deceiving the target model.

to the HSV color space, followed by random perturbation
of both the H (Hue) and S (Saturation) channels. ReCol-
orAdv (Laidlaw & Feizi, 2019) optimizes color transforma-
tion within the CIELUV color space, employing a flexibly
parameterized function ’f’ to recolor every pixel color ’c’ to
a new one. Colorization Attack (cAdv) (Bhattad et al., 2020)
utilizes a pre-trained colorization network for color trans-
formation, simultaneously adjusting input hints and masks
to generate more natural adversarial examples. Unlike the
previous one, Adversarial Color Enhancement (ACE) (Zhao
et al., 2020a) generates adversarial images by using and
optimizing a simple piece-wise linear differentiable color
filter, with fewer parameters and better performance. To
prevent human detection of unrestricted disturbances, Color-
Fool (Shamsabadi et al., 2020) manually selects four human-
sensitive semantic classes and modifies colors within these
sensitive regions constrainedly in the Lab color space. To
make adversarial images more natural, Natural Color Fool
(NCF) (Yuan et al., 2022) constructs a “distribution of color
distributions” for different semantic classes based on an ex-
isting dataset, using fused color distribution and optimizable
transfer matrix to generate adversarial images.

Except for color manipulation-based methods, Texture At-
tack (tAdv) (Bhattad et al., 2020) fuses the texture of im-
ages from another class to generate adversarial examples,
with an additional constraint on the victim image to prevent
producing artistic images. Different from Texture Attack,
Adversarial Content Attack (ACA) (Chen et al., 2023c) in-
troduces a diffusion model to perform unrestricted attacks
on image models. By leveraging the diffusion model as a
low-dimensional manifold, ACA maps the victim image into
the latent space, where adversarial attacks and optimizations
are conducted. When compared to both color manipulation-
based methods and texture attacks, ACA demonstrates su-

perior capability in generating natural adversarial image
examples by harnessing the powerful generative capacity
of diffusion models. Therefore, this paper investigates the
potential of leveraging the diffusion model to perform trans-
ferable video unrestricted attacks.

2.2. Transferable Video Restricted Attacks

In the transferable video restricted attacks, Temporal Trans-
lation (TT) (Wei et al., 2022) is a representative method,
which prevents overfitting the surrogate model by optimiz-
ing adversarial perturbations over a set of temporal trans-
lated video clips, to enhance the transferability of video
adversarial examples across different video models. Most
recently, based on the observation that the intermediate fea-
tures between image models and video models are somewhat
similar (Wei et al., 2024), some transferable cross-modal
attacks from images to videos have emerged. For instance,
Image To Video (I2V) (Wei et al., 2024) generates adver-
sarial video clips on the ImageNet pre-trained model by
minimizing the cosine similarity between intermediate fea-
tures of each benign frame and its adversarial frame. How-
ever, I2V treats a video clip as an orderless image set and
ignores the inherent temporal information in video clips. In
contrast, Global-Local Characteristic Excited Cross-Modal
Attack (Wang et al., 2023) fully considers video characteris-
tics from both global and local perspectives, which performs
global inter-frame interactions in the attack process to in-
duce more diverse and stronger gradients and proposes local
correlation disturbance to prevent the target video model
from capturing valid temporal clues. Furthermore, Gener-
ative Cross-Modal Attack (GCMA) (Chen et al., 2023b)
trains perturbation generators against the ImageNet domain
but can fool target models from video domains, which pro-
poses a random motion module and a temporal consistency

3



ReToMe-VA: Recursive Token Merging for Video Diffusion-based Unrestricted Adversarial Attack

loss based on intermediate features to narrow the gap be-
tween the image and video domains. Different from all of
the prevision works that focus on restricted attacks, this
work studies unrestricted attacks on video models.

3. Methodology
3.1. Diffusion-based Unrestricted Attack Framework

Given a benign video clip x ∈ X ⊂ RN×H×W×C with
N frames {x1, x2, ..., xN} and its corresponding ground-
truth label y ∈ Y = {1, 2, ...K}, where N,H,W,C denote
the number of frames, height, width and the number of
channels respectively, K denotes the number of classes.
Let Fθ denote the video recognition model trained on the
video dataset X . We use Fθ(x) : X → Y to denote the
prediction of the video recognition model Fθ(x) for x. Our
goal is to craft unrestricted adversarial video clip x̂ against a
surrogate video recognition model Gϕ leveraging the Stable
Diffusion (Rombach et al., 2022) to deceive the target video
recognition model Fθ.

Prior works on image diffusion-based unrestricted at-
tacks (Chen et al., 2023c;a) use the DDIM inver-
sion (Mokady et al., 2023) technology to map the benign
image back into the diffusion latent space by reversing the
deterministic sampling process, then optimize the latent of
the image along the adversarial direction. Finally, the ad-
versarial image is generated from the optimized adversarial
latent through the entire denoising process. For simplic-
ity, the encoding and decoding of the VAE is ignored, as
it is differentiable. However, such generation has obvious
limitations for video attacks when applied directly to each
frame. Firstly, given the fact that diffusion models tend to
add coarse semantic information during the early denoising
steps (Meng et al., 2021), premature manipulation tends to
change the layouts or semantic structure of frames, which
leads to semantic inconsistency and changes. This spatial
inconsistency further leads to temporal inconsistency in
adversarial videos. Furthermore, because this framework
applied in video attacks involves updating all the frames si-
multaneously, the gradient calculation throughout the entire
denoising process leads to a heavy memory overhead and
large time consumption.

Therefore, we propose our ReToMe-VA to address these
challenges, as shown in Figure 2. Specifically, we utilize the
Timestep-wise Adversarial Latent Optimization (Sec.3.2)
in the denoising process and introduce a Recursive Token
Merging (Sec.3.3) technique to maintain the temporal con-
sistency and boost adversarial transferability. The algorithm
of ReToMe-VA is presented in Algorithm 1.

3.2. Timestep-wise Adversarial Latent Optimization

Existing latent optimization approaches which update la-
tent at a fixed timestep are usually insufficiently flexible
and stable in controlling the generation of adversarial video
clips, therefore we propose Timestep-wise Adversarial La-
tent Optimization (TALO) to gradually update perturba-
tions in the latent space at each denoising timestep. Af-
ter the inversion of the DDIM, we obtain the reversed la-
tents {x0, x1, ..., xT } from timestep 0 to T , where x0 is x.
For the trade-off between imperceptibility and adversarial
transferability, we start adversarial optimization from the
latent xts at ts timestep rather than from Gaussian noise
at T timestep. We denote x̂t as the adversarial latents at
t timestep, we initialize x̂ts = xts . At each timestep t of
denoising, we predict the final output x̂t

0 for each frame
to substitute the adversarial output x̂0 for the prediction
of the surrogate model Gϕ. The calculation of x̂t

0 and our
adversarial objective function is expressed as follows:

x̂t
0 =

x̂t −
√
1− αtϵθ(x̂t, t)√

αt
(1)

argmin
x̂t

Lattack = −J(x̂t
0, y,Gϕ) (2)

where αt represents the parameters of the scheduler, ϵθ
denotes the noise predicted by the UNet, and J(·) is the
cross-entropy loss. After optimizing latents x̂t, we generate
a sample x̂t−1 from x̂t for the preparation of next timestep-
wise optimization via:

x̂t−1 =
√
αt−1

(
x̂t −

√
1− αtϵθ(x̂t, t)√

αt

)
+

√
1− αt−1 − σ2

t ϵθ(x̂t, t)

(3)

Finally, x̂0 is used as the final adversarial video clip x̂ to
fool the target video recognition model Fθ.

Preservation of Structural Similarity. Adversarial op-
timization at each denoising step leads to a deviation of
the latent from the original frame distribution. Despite
the inevitable alterations to the benign frames for adding
adversarial content, the challenge lies in preserving the
structural similarity of the adversarial frames from the be-
nign frames. Leveraging the fact that the spatial features of
the self-attention layers are influential in determining both
the structure and the appearance of the generated images,
TALO minimizes the average difference of the self-attention
maps between the benign and the adversarial latent at each
timestep t:

argmin
x̂t

Lstructure =
∑
j∈ns

||ŝjt − sjt ||22 (4)

where sjt , ŝjt are respectively the j-th self-attention map of
benign latents xt and adversarial latents x̂t, ns denotes the
total number of self-attention maps in the diffusion model.
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In general, the final objective function of ReToMe-VA is as
follows, where γ and β represent the weight factors of each
loss:

argmin
x̂t

Ltotal = γLattack + βLstructure (5)

Incremental Iteration Strategy. TALO iteratively opti-
mizes x̂t to seek optimal adversarial latents at timestep t
and the iteration number represents a trade-off between spa-
tial imperceptibility and adversarial transferability. Recent
work (Meng et al., 2021) has indicated that the diffusion
models tend to add coarse semantic information (e.g., lay-
out) during the early timesteps while more fine details dur-
ing the later timesteps. A smaller number of iterations fail
to find better perturbations, reducing the low adversarial
transferability. Conversely, a larger number of iterations
render adversarial frames deviating more from the benign
frames, adversely affecting the spatial imperceptibility of
the adversarial video clip. Therefore, we adopt an Incremen-
tal Iteration (II) strategy, starting with fewer attack iterations
during the early timesteps to preserve structure and grad-
ually increasing the number of iterations during the later
timesteps to add adversarial details. As mentioned in Algo-
rithm 1, we increment the iteration steps for each denoise
step at intervals of 2 steps.

Our TALO strategy has two advantages. First, timestep-wise
optimization with II strategy provides a more controllable
and stable process during adversarial generation making
more powerful adversarial video clips with spatial impercep-
tibility. Second, TALO only involves one timestep gradient
computation thereby reducing memory consumption in gra-
dient computation.

3.3. Recursive Token Merging

TALO strategy perturbs each benign frame of video sepa-
rately. This per-frame optimization makes the frames likely
optimized along different adversarial directions resulting
in motion discontinuity and temporal inconsistency. Fur-
thermore, separately perturbing each benign frame reduces
the monotonous gradients because the interactions among
the frames are not exploited. To this end, we introduce a
recursive token merging (ReToMe) strategy that recursively
matches and merges similar tokens across frames together
enabling the self-attention module to extract consistent fea-
tures. In the following, we first provide the basic operation
of token merging and token unmerging and then our recur-
sive token merging algorithm.

Token Merging (ToMe) is first applied to speed up dif-
fusion models through several diffusion-specific improve-
ments (Bolya & Hoffman, 2023). Generally, tokens T are
partitioned into a source (src) and destination (dst) set.
Then, tokens in src are matched to their most similar token

Algorithm 1 Framework of ReToMe-VA
Input: a benign video clip x with label y, a surrogate
classifier Gϕ, DDIM steps T , start attack DDIM timestep
ts, initial attack iteration Na, recursive token merging
ratio p, weight factors γ, β.
Output: Unrestricted adversarial video clip x̂.
Add Recursive Token Merging and Recursive Token Un-
merging Module to Stable Diffusion
Calculate latents {x1, ..., xts} using DDIM inversion
x̂ts ← xts

for t← ts to 1 do
for j ← 1 to Na + 2(ts − t) do
x̂t
0 = x̂t−

√
1−αtϵθ(x̂t,t)√

αt

Calculate the attack loss Lattack as Eq. 2
Calculate the structure loss Lstructure as Eq. 4
Update x̂t over total loss Ltotal Eq. 5 with AdamW
optimizer
x̂t−1 ← Eq. 3

end for
end for
x̂← x̂0

return x̂
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Figure 3. Recursive token merging process.

in dst, and r most similar edges are selected subsequently.
Next, we merge the connected r most similar tokens in src
to dst by replacing them as the linked dst tokens. To keep
the token number unchanged, we divide merged tokens after
self-attention by assigning their values to merged tokens in
src. Token matching, merging, and unmerging operations
are expressed as:

e = match(src, dst, r),

Tm = M(T, e), Tum = UM(Tm, e).
(6)

where match(·) outputs the matching map e with r edges
from src to dst, M(·) and UM(·) merge and unmerge
tokens according to matching e. After token merging opera-
tion, Tm = {(T src)um, T dst} consists the unmerged tokens
(T src)um in src and tokens T dst in dst, while merged to-
kens (T src)m in src is replaced by tokens in dst.

A self-attention module takes a sequence of input and output
tokens across all frames. The input and output tokens are
denoted as Tin, Tout ⊂ RN×L×E , where L is the number
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of tokens per frame, and E is the embedding dimension. To
partition tokens across frames into src and dst, we define
stride as B, we randomly choose one out of the first B
frames (e.g. the gth frame), and select the subsequent frames
every B interval into the dst set (named as T dst

in ). Tokens of
other frames are in src set (T src

in ). Then merging operation
mentioned above in Eq. 6 is used to merge source frames:

e1 = match(T src
in , T dst

in , r1),

Trm = M(Tin, e1).
(7)

where Trm = {T dst
in , (T src

in )um}. We set r1 = p(N −
Nd1

)L where p is the merging ratio, (N −Nd1
)L is the src

token number in the first merging process and Nd1
is the

T dst
in frame number.

Nevertheless, during the merging process expressed above,
tokens in dst are not merged and compressed. To maximally
fuse the inter-frame information, we recursively apply the
above merging process to tokens in dst until they contain
only one frame. For instance, in the next merging process
of T dst

in , after partition of src and dst of T dst
in (named as

(T dst
in )src and (T dst

in )dst), we merge tokens in src to dst by:

e2 = match((T dst
in )src, (T dst

in )dst + (T src
in )um, r2),

(T dst
in )rm = M(T dst

in , e2).
(8)

We set r2 = p(Nd1
−Nd2

)L where (Nd1
−Nd2

)L is the src
token number and Nd2

is dst frame number in this process.
The difference is that we add the previous unmerged tokens
(T src

in )um into dst for token matching. Then we replace
T dst
in with (T dst

in )rm in Trm. The token merging process of
ReToMe is shown in Figure 3. Next, we input the tokens
Trm into the self-attention module to calculate (Tout)rm.

The output tokens (Tout)rm need to be restored to their
original shape Tout to perform the following operations.
Therefore, in the unmerge process, the unmerging operation
in Eq. 6 is applied in the reverse order of the merging process
to get Tout.

Our ReToMe has three advantages. Firstly, ReToMe ensures
that the most similar tokens share identical outputs, maxi-
mizing the compression of tokens. This approach fosters
internal uniformity of features across frames and preserves
temporal consistency, thereby effectively achieving tempo-
ral imperceptibility. Secondly, given the fact that there is a
negative correlation between the adversarial transferability
and the interaction inside adversarial perturbations (Wang
et al., 2020), the merged tokens decrease interaction inside
adversarial perturbations, effectively preventing overfitting
on the surrogate model. Furthermore, the tokens in dst
linked to merged tokens facilitate inter-frame interaction
in gradient calculation, which may induce more robust and
diverse gradients (Wang et al., 2023). Therefore, ReToMe
can effectively boost adversarial transferability.

4. Experiment
4.1. Experiment Settings

Dataset. We evaluate the adversarial transferability of our
proposed method on Kinetics-400 (Carreira & Zisserman,
2017) dataset. The dataset contains approximately 240,000
videos from 400 human action classes, we carefully selected
one video clip from each class that was correctly classified
by all video recognition models, yielding a total of 400
videos as the validation dataset.

Models. We select CNNs and ViTs as attacked models.
For CNNs, we choose normally trained I3D SLOW (Fe-
ichtenhofer et al., 2019), TPN (Yang et al., 2020) with
two different backbones: ResNet-50 and ResNet-101,
and R(2+1)D (Tran et al., 2018) with backbone ResNet-
50 (R(2+1)D-50). For ViTs, we select VTN (Neimark
et al., 2021), Motionformer (Bertasius et al., 2021), TimeS-
former (Patrick et al., 2021), Video Swin (Liu et al., 2022).

Implementation Details. Our experiments are run on an
NVIDIA A800 with Pytorch. We set DDIM steps T = 20,
start attack DDIM step ts = 5, initial attack Iteration Na =
4, recursive token merging ratio p = 0.5. Meanwhile, the
weight factors γ, β in Eq. 5 are set to 10, 100 respectively.
We adopt AdamW (Loshchilov & Hutter, 2017) with the
learning rate set to 1e−2. The version of Stable Diffusion
we used is v2.0.

Evaluation Metrics. We use the Attack Success Rate
(ASR), i.e., the percentage of adversarial video clips that are
successfully misclassified by the video recognition model,
to evaluate the adversarial transferability. Thus a higher
ASR means better adversarial transferability. If not specif-
ically stated, Avg.ASR is the average ASR over all target
video models. Besides, we quantitatively assess the frame
quality using two reference perceptual image quality mea-
sures including Frechet Inception Distance (FID) (Heusel
et al., 2017) and LPIPS (Zhang et al., 2018), and three
non-reference perceptual image quality measures NIMA-
AVA (Talebi & Milanfar, 2018), HyperIQA (Su et al., 2020),
and TReS (Golestaneh et al., 2022). For temporal consis-
tency, we adopt four evaluation metrics in VBench (Huang
et al., 2023), including Subject Consistency, Background
Consistency, Motion Smoothness, and Temporal Flicker-
ing. Each metric is tailored to specific aspects of video
analysis. Subject Consistency measures whether an object’s
appearance remains consistent throughout the video. Back-
ground Consistency evaluates the temporal uniformity of
background scenes through CLIP (Radford et al., 2021)
feature similarity across frames. Motion Smoothness as-
sesses the smoothness and realism of motion, adhering to
real-world physics. Temporal Flickering computes the mean
absolute difference across frames to detect abrupt changes.
Moreover, we also select Pixel-MSE to evaluate the natural-
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Table 1. Performance comparison of adversarial transferability on normally trained CNNs and ViTs. We report attack success rates (%) of
each method (”*” is white-box attack results). The best results are highlighted in bold.

Surrogate Model Attack
Models

Avg. ASR (%)CNNs Transformers

Slow-50 Slow-101 TPN-50 TPN-101 R(2+1)D-50 VTN Motionformer TimeSformer Video Swin

Slow-50

TT 99.00* 74.00 96.50 72.00 66.25 5.50 3.50 6.75 10.75 41.91
SAE 37.75* 9.00 12.75 8.50 60.50 14.00 22.25 37.75 21.25 20.41

ReColorAdv 100.00* 64.50 96.25 56.25 68.00 7.25 4.75 13.25 11.75 40.25
cAdv 98.75* 29.00 43.25 30.00 28.25 25.00 21.50 44.25 24.25 30.69
tAdv 99.50* 7.00 13.25 7.50 36.00 4.50 2.75 9.25 6.25 10.81
ACE 89.25* 3.75 6.50 4.25 24.00 3.25 4.00 9.75 4.75 7.53

ColorFool 31.75* 5.25 9.50 7.50 50.25 11.50 19.25 30.75 17.50 16.62
NCF 37.25* 12.25 21.25 10.50 54.00 12.00 15.50 25.00 13.25 18.38
ACA 67.75* 38.50 47.75 36.00 68.75 25.00 22.50 32.75 28.25 37.44

Ours 96.50* 78.50 89.50 77.00 61.25 30.25 25.25 39.50 35.50 54.59

TPN-50

TT 92.00 52.50 100.00* 53.25 63.50 4.75 2.25 8.25 8.25 35.59
SAE 9.00 7.00 36.25* 6.50 59.00 14.50 21.50 40.25 21.50 19.56

ReColorAdv 67.00 27.25 100.00* 27.75 56.75 3.50 2.25 8.25 5.50 24.78
cAdv 31.50 18.75 98.25* 21.50 28.75 22.00 17.75 39.50 19.25 24.88
tAdv 12.25 7.00 98.00* 6.50 33.50 6.25 3.00 9.00 6.25 10.47
ACE 4.00 3.50 86.75* 2.75 22.00 4.25 3.75 10.50 4.75 6.94

ColorFool 8.75 6.00 35.00* 5.75 45.50 8.75 17.50 28.50 14.50 15.59
NCF 20.25 10.25 32.00* 9.75 53.75 10.75 14.75 26.50 12.25 17.06
ACA 43.75 33.25 63.75* 33.50 67.00 24.00 22.75 32.75 27.50 35.56

Ours 80.50 58.75 97.50* 61.75 52.75 20.75 19.75 33.00 27.25 44.31

VTN

TT 11.25 10.00 10.50 5.50 56.00 100.00* 64.50 83.50 14.25 31.94
SAE 8.75 6.25 9.00 7.25 55.00 48.75* 19.00 39.75 22.50 20.16

ReColorAdv 4.50 4.50 5.75 4.25 42.50 100.00* 43.75 62.00 10.50 22.22
cAdv 16.25 14.50 16.50 17.25 28.00 99.75* 38.50 67.25 27.00 16.28
tAdv 7.25 6.00 7.75 5.25 32.25 94.00* 14.75 28.50 9.75 13.94
ACE 3.00 2.00 3.00 2.00 22.75 71.25* 5.50 18.50 3.50 7.53

ColorFool 5.75 5.25 9.00 5.50 40.00 41.50* 18.50 30.75 15.50 19.08
NCF 16.50 10.75 15.75 9.75 53.75 72.25* 24.75 39.25 14.00 21.66
ACA 28.75 28.00 28.75 25.50 66.75 59.50* 32.00 42.00 28.75 35.06

Ours 27.25 25.25 28.25 23.00 49.00 99.25* 75.50 88.25 43.25 44.97

Motionformer

TT 12.75 12.50 11.00 8.00 57.75 91.75 100.00* 86.50 29.50 38.72
SAE 7.75 4.50 6.75 4.25 49.50 11.50 72.00* 31.75 14.00 16.25

ReColorAdv 2.50 1.50 3.25 2.00 36.00 15.50 100.00* 25.50 2.00 11.03
cAdv 9.00 7.25 9.00 9.00 21.00 25.00 89.25* 48.50 12.25 17.62
tAdv 12.75 12.00 13.00 12.00 38.00 12.25 51.50* 20.75 11.50 16.53
ACE 1.75 1.75 2.25 0.25 6.00 0.75 50.00* 6.50 2.25 2.69

ColorFool 3.50 2.75 5.50 4.50 33.00 5.00 71.50* 26.00 8.00 11.03
NCF 12.50 9.25 15.00 7.50 53.25 12.75 *39.75 30.25 12.50 17.44
ACA 27.00 27.50 25.75 24.50 65.75 31.50 67.75* 37.75 24.50 33.03

Ours 42.50 44.25 44.25 42.75 57.50 91.25 100.00* 91.00 63.75 59.66

TimeSformer

TT 10.75 10.00 10.25 6.25 57.00 85.25 57.25 100.00* 16.00 31.59
SAE 5.00 3.75 4.75 3.50 43.75 8.00 14.75 72.50* 14.75 12.28

ReColorAdv 7.50 6.75 7.00 5.25 49.25 59.00 38.50 100.00* 10.00 22.91
cAdv 10.50 11.25 12.00 10.00 23.25 43.25 31.00 100.00* 24.25 20.69
tAdv 5.50 5.00 5.50 4.50 30.50 17.00 10.25 95.00* 7.00 10.66
ACE 3.00 2.75 3.75 1.00 18.00 4.50 3.25 89.75* 3.50 4.97

ColorFool 5.25 3.00 5.00 2.75 33.25 5.00 8.50 65.75* 8.50 8.91
NCF 16.50 10.00 17.00 9.75 53.00 21.50 27.75 92.75* 17.75 29.56
ACA 30.75 28.25 29.50 27.00 67.00 46.00 36.00 72.25* 30.25 36.84

Ours 28.00 29.50 32.00 28.50 49.75 85.00 76.50 100.00* 47.00 47.03

ness and continuity of frame-to-frame transitions. Specif-
ically, each frame in the adversarial video clip is warped
to the next frame by the optical flow between consecutive
frames. Then, we compute the average mean-squared pixel
error between each warped frame and its corresponding next
frame.

4.2. Attacks against Normally Trained Models

We first assess the adversarial transferability of normally
trained CNNs and ViTs. For video restricted attacks, we
compare the proposed method with state-of-the-art TT (Wei
et al., 2022). For video unrestricted attacks, due to the lack
of comparable work, we extend the image unrestricted at-
tacks to generate adversarial video clips frame-by-frame,
including SAE (Hosseini & Poovendran, 2018), ReCol-
orAdv (Laidlaw & Feizi, 2019), cAdv (Bhattad et al., 2020),
tAdv (Bhattad et al., 2020), ACE (Zhao et al., 2020a), Col-

orFool (Shamsabadi et al., 2020), NCF (Yuan et al., 2022),
and ACA (Chen et al., 2023c). Adversarial video clips are
crafted against Slow-50, TPN-50, VTN, Motionformer and
TimeSformer respectively. The transferability of different
methods is displayed in Table 1.

It can be observed that adversarial video clips generated
by ReToMe-VA generally exhibit superior transferability
compared to those generated by state-of-the-art competitors.
Our proposed ReToMe-VA achieved a white-box attack suc-
cess rate of 100% on the Motionformer and TimeSformer
models. The results from Table 1 indicate that our method
surpasses the restricted attack method TT in the black-box
setting. When Slow-50, Motionformer, and TimeSformer
are used as surrogate models, we significantly outperform
state-of-the-art ACA by 17.10%, 26.62%, and 10.19%, re-
spectively, indicating that our ReToMe-VA has higher trans-
ferability under the more challenging cross-architecture set-
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TTBenign SAE ReColorAdv cAdv tAdv ACE ColorFool NCF ACA Ours

(a) Visualization of state-of-the-art attacks

(b) Adversarial frames of ReToMe-VA

Figure 4. Qualitative results of frame quality. (a) Visual quality comparisons among different attack methods. (b) More adversarial frames
generated from ReToMe-VA. The Left is the benign frame and the right is the adversarial frame.

ting. Specifically, when the surrogate model is Slow-50, we
surpass ACA by significant margins of 40%, 41.75%,41%,
and 6.75% in Slow-101, TPN-50, TPN-101, and TimeS-
former, respectively.

Table 2. Robustness on adversarial defense methods. We report
Avg.ASR(%) of each method. The best results are in bold.

Attack Method HGD R&P JPEG Bit-Red DiffPure

TT 37.69 29.47 31.69 38.56 12.59
SAE 24.03 25.00 26.34 27.81 37.31
ReColorAdv 35.81 29.13 29.84 35.53 15.69
cAdv 31.31 30.19 32.00 34.03 38.09
tAdv 10.00 10.63 11.28 15.34 15.72
ACE 8.09 9.31 10.40 12.84 20.71
ColorFool 18.88 20.50 21.25 22.94 33.56
NCF 20.69 22.25 21.69 24.75 32.16
ACA 35.90 28.22 29.84 35.53 36.56

Ours 53.41 50.97 52.72 54.56 40.97

4.3. Attacks against Adversarial Defense Mechanisms

We also assess its performance against five representative
defense mechanisms, including the top-2 defense methods
in the NIPS 2017 competition (high-level representation
guided denoiser (HGD) (Liao et al., 2018) and random re-
sizing and padding (R&P) (Xie et al., 2017)), three popu-
lar input pre-process defenses, namely jpeg compression
(JPEG) (Guo et al., 2018), bit depth reduction (Bit-Red) (Xu
et al., 2017), and DiffPure (Nie et al., 2022). We take Slow-
50 as a surrogate model and all of the adversarial video clips
are crafted on it.

From the results demonstrated in Table 2, we can see our
method displays superiority over other advanced attacks by

a significant margin. For example, against HGD and Diff-
Pure defenses, our method outperforms the next best attack
ACA by over 17.5% and 4.41% respectively, indicating its
robustness and efficiency in penetrating these defenses. This
evidences the advanced capability of our method in main-
taining high attack success rates under diverse adversarial
defense methods.

4.4. Visualization

In this section, we will demonstrate the superiority of our
approach through qualitative and quantitative comparisons
of frame quality and temporal consistency in videos.

Frame Quality. In Figure 4(a), we visualize the adversar-
ial frames crafted by different attack approaches. We can
see that our attack is much more natural than the restricted
attack TT and more imperceptible compared with other un-
restricted attacks. In detail, the color and texture changes
of adversarial frames generated by SAE, ACE, ColorFool,
NCF, and ACA are easily perceptible. Next, we give more
adversarial frames generated by ReToMe-VA in Figure 4(b).
It is observed that our method adaptively modifies inconspic-
uous details to generate adversarial frames. For example,
minor alteration is made to the texture of the knitted yarn in
the frame in the fourth column of Figure 4(b). Moreover, we
quantitatively assess the frame quality using the reference
and non-reference perceptual image quality measures. As il-
lustrated in Table 4, our method achieves top-2 performance
across all metrics. And ReToMe-VA achieves the best result
in HyperIQA and TReS.

Temporal Consistency. To provide a qualitative compari-
son, Figure 5 shows an adversarial video clip crafted by our
ReToMe-VA. From the visualization of the video, we can
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Table 3. Quantitative comparison of temporal consistency. The best results are in bold and the second-best results are underlined.

Attack Method Subject Consistency↑ Background Consistency↑ Motion Smoothness↑ Temporal Flickering↑ Pixel-MSE↓
SAE 79.23% 87.08% 82.61% 80.61% 94.17
ReColorAdv 87.69% 91.72% 95.07% 93.00% 69.99
cAdv 86.43% 90.62% 94.28% 92.31% 67.56
tAdv 88.81% 93.29% 95.50% 93.44% 57.50
ACE 85.03% 91.83% 92.27% 90.19% 85.01
ColorFool 78.94% 88.29% 79.44% 76.88% 83.81
NCF 79.82% 89.37% 87.65% 85.02% 95.58
ACA 75.67% 85.89% 94.10% 91.96% 68.98

Ours 88.03% 92.21% 95.62% 93.76% 58.66

Adversarial Frames

Benign Frames

Figure 5. A Sample of generated video from our method.

observe that our proposed method produces high-quality
frames. The crafted frames by ReToMe-Va highly align
with the benign frames in both appearance and structure and
also maintain a high level of motion consistency with the
benign frames. Quantitative evaluation results are shown in
Table 3, we evaluate the temporal quality of the videos using
five metrics, all of which achieve top-2 results. Specifically,
Motion Smoothness and Temporal Flickering yield the best
results. Therefore, our method demonstrates superior per-
formance in terms of video temporal consistency.

Table 4. Quantitative evaluation of image quality. NA denotes Not
Applicable.

Attack Method FID↓ LPIPS↓ NIMA-AVA↑ HyperIQA↑ TReS↑
Benign NA NA 5.38 50.97 59.80

TT 43.15 0.13 5.46 50.81 58.08
SAE 57.66 0.39 5.64 49.61 57.22
ReColorAdv 50.40 0.13 5.46 50.81 58.08
cAdv 47.02 0.20 5.61 52.58 61.41
tAdv 36.75 0.08 5.37 49.46 57.30
ACE 21.63 0.13 5.31 51.28 59.92
ColorFool 48.79 0.38 5.18 50.13 58.98
NCF 37.02 0.32 5.18 48.95 54.95
ACA 41.69 0.24 5.60 48.74 55.86

Ours 25.63 0.10 5.62 55.53 66.31

5. Conclusion
In this paper, we propose the Recursive Token Merging
for Video Diffusion-based Unrestricted Adversarial At-
tack (ReToMe-VA). As far as we know, this is the first
diffusion-based framework to generate imperceptible ad-
versarial video clips with higher transferability. ReToMe-
VA adopts a Timestep-wise Adversarial Latent Optimiza-
tion strategy to achieve spatial imperceptibility. Moreover,
ReToMe-VA introduces a Recursive Token Merging (Re-
ToMe) mechanism. By aligning and compressing redundant
tokens across frames, ReToMe produces temporally consis-
tent adversarial videos. ReToMe provides more diverse and
robust attack direction by incorporating inter-frame interac-
tions into the adversarial optimization process, consequently
boosting adversarial transferability. Extensive experiments
and visualization demonstrate the efficacy of ReToMe-VA,
particularly in surpassing the best baseline by an average of
14.16% in normally trained models. We hope our work will
pave the way for future research in enhancing the robustness
of video recognition models against adversarial threats, as
well as contributing to the development of more effective
video adversarial attack methods.
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A. Ablation Study
We ablate our design in Table 5. In the first line, we replace TALO with the latent optimization strategy in previous
work (Chen et al., 2023a), which updates perturbation based on gradients of the entire denoising steps. We set the adversarial
iteration number as 40, the same as our TALO total iteration number. From the first two lines, we can see that TALO
strategy can boost adversarial transferability and temporal imperceptibility. From the last two lines, we can observe that
the avg.ASR and Subject Consistency increase by 6.08% and 0.04 by using ReToMe, indicating that the Recursive Token
Merging Technique exhibits strong adversarial transferability and enhanced temporal consistency.

Table 5. Ablation study of our TALO and ReToMe.

TALO ReToMe Avg.ASR (%) FID
Subject

Consistency (%)

× × 49.03 25.89 83.34
✓ × 53.17 25.97 84.10
✓ ✓ 59.25 25.65 88.03

We conduct ablation experiments on the Lstructure loss to demonstrate its effectiveness in improving frame quality, using
FID and LPIPS for quantitative comparisons. As shown in Table 6, Lstructure could improve frame quality of adversarial
video clips. Additionally, the ablation study of II strategy is shown in Table 7. In detail, the first two lines denote that we
fix the iteration number at each timestep, while the last line displays our II strategy. The results verify that our II strategy
performs a good trade-off between transferability and spatial imperceptibility.

Loss FID LPIPS

w/o Lstructure 26.46 0.100
w/ Lstructure 25.63 0.101

Table 6. Abation study of diverse losses.

Iter Strategy Avg. ASR (%) FID

Fix Iter 4 44.69 18.86
Fix Iter 12 70.11 33.42
Iter 4→12 59.25 25.63

Table 7. Ablation study of II strategy.
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Figure 6. Comparison of different merging ratios.

Moreover, we investigate the impact of different merging ratios on adversarial transferability and video quality, using
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Slow-50 as an example surrogate model. From the results illustrated in Figure 6, a high ratio results in low frame quality due
to significant information loss, while a low ratio leads to low ASR because of insufficient inter-frame interaction. Therefore,
a merging ratio of p = 0.5 achieves the best adversarial transferability with high frame quality.

B. Discussions
Limitation: A considerable number of sampling steps are required in the diffusion process, resulting in a relatively longer
runtime for our method. Additionally, per-frame diffusion-based adversarial optimization demands significant computation
and memory usage.

Potential reasons for Low ASR: Low ASR is related to the model architecture. For instance, as shown in Table 1,
our method consistently underperforms compared to ACA on the R(2+1)D-50 model. This is because R(2+1)D-50 is a
non-3D model architecture with a weaker temporal focus, whereas our method enhances transferability through inter-frame
interaction.
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