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 Question: Your question "Where am I ?" was 
categorized as being related to  
structure, and as such has been answered based on 
the treeview. 


 Answer: Current Position: 2 of 2. Temporal Polarity 
equals positive. 71 values. Press t to open table.

navigating the chart

 Question: Your question "How do I get to the x 
axis?" was categorized as being related to 

 structure, and as such has been answered 
based on the treeview.



 Answer: Press the up arrow key. Press the left 
arrow key.

navigating 
the chart Question: Your question "What is the overall trend 

of this chart?" was categorized as being , 
and as such, has been answered based on the data in 
the chart.



 Answer: The overall trend in Temperature Anomaly 
(°C) from 1850 to 2021, according to the bar chart 
data, shows a mean temperature anomaly of 
0.042°C, with a wide range of anomalies from 
-0.43°C to 1.03°C.

data-driven

 Question: Your question "Are there more blue bars 
or red bars?" was categorized as being , 
and as such, has been answered based on the data in 
the chart.



 Answer: There are more years represented by 
negative Temperature Anomaly (Blue Bars) than 
positive Temperature Anomaly (Red Bars).

data-driven

 Question: Your question "What does it mean by 
temperature anomaly?" was categorized as being 

, and as such, has been answered 
based on information found on the web.
 

 Answer: In the context of this dataset, 
"Temperature Anomaly" represents the deviation of 
the yearly temperature from the long-term average 
temperature. [...]

context-seeking

Figure 1: VizAbility’s overall user interface presents the keyboard navigation of chart content or data tables augmented with

the ability to ask natural language questions. Example queries are shown on the right side, including visual & data queries,

navigation, and context-seeking questions.

ABSTRACT

Traditional accessibility methods like alternative text and data ta-
bles typically underrepresent data visualization’s full potential.
Keyboard-based chart navigation has emerged as a potential solu-
tion, yet efficient data exploration remains challenging. We present
VizAbility, a novel system that enriches chart content navigation
with conversational interaction, enabling users to use natural lan-
guage for querying visual data trends. VizAbility adapts to the
user’s navigation context for improved response accuracy and fa-
cilitates verbal command-based chart navigation. Furthermore, it
can address queries for contextual information, designed to ad-
dress the needs of visually impaired users. We designed a large
language model (LLM)-based pipeline to address these user queries,
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leveraging chart data & encoding, user context, and external web
knowledge. We conducted both qualitative and quantitative studies
to evaluate VizAbility’s multimodal approach. We discuss further
opportunities based on the results, including improved benchmark
testing, incorporation of vision models, and integration with visu-
alization workflows.
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1 INTRODUCTION

Data visualization has become an indispensable tool in our broader
society, aiding in the comprehension of important information and
facilitating informed decision-making [51]. Its strength stems from
leveraging the vast information bandwidth of our visual perception,
which surpasses other sensory modalities [27]. However, an over-
reliance on visual representation can inadvertently marginalize
those with blindness or low vision (BLV), restricting their ability
to engage with and understand data visualizations [54]. Individ-
uals with BLV often come across data visualizations while using
screen readers such as JAWS, NVDA, and VoiceOver to navigate the
web [48, 64]. Unfortunately, a significant portion of data visualiza-
tions on the web remains largely inaccessible to this group [39, 64],
resulting in a pronounced information gap.

Numerous assistive technologies have been developed to allow
BLV users to access visualizations using sensory modalities other
than vision [48]. Tactile visualizations can provide a tangible rep-
resentation of data while necessitating specialized hardware such
as haptic displays [57] and embossing machines [24]. On the other
hand, sonification can enable users to discern trends and anomalies
through sound [70], but it is typically limited to single-series data.
Traditional methods for adapting web visualizations for screen
readers, such as data tables and alternative text [48], often compro-
mise the unique benefits of visualizations. Keyboard-based chart
navigation [23, 67, 73, 75] have emerged as an alternative solution.
However, orienting oneself and navigating within complex chart en-
coding structures pose challenges for efficient data exploration [47].

This work introduces VizAbility, a novel approach to augment
keyboard navigation of chart content with conversational interac-
tion (Figure 1). First, we use Olli’s tree view (referenced in [15]) to
create a keyboard-navigable text representation of a chart. Next,
we enhance this tree view with an LLM-based question-and-answer
module for addressing on-demand queries. These natural language
queries allow users to understand the chart without needing to nav-
igate and mentally synthesize different parts of the chart to derive
insights. VizAbility uses the user’s position within the tree view to
efficiently respond to both visual and analytical queries, facili-
tating the exploration of data trends and visual patterns. Moreover,
VizAbility can handle contextual queries, providing background
information about the chart, tailored specifically for the needs of
BLV individuals [46]. We based these query types on actual ques-
tions asked by BLV people in previous studies [45, 46]. Additionally,
it can manage navigation queries, allowing users to control their
position in the tree view through verbal commands.

Our LLM-based pipeline first uses few-shot prompting to classify
user queries into visual, analytical, contextual, and naviga-
tion queries. Once classified, VizAbility employs a query-specific
prompting strategy. For analytical and visual queries, we aggre-
gate both the chart’s transformed data and color encoding into
one CSV file, which is subsequently fed along with the keyboard-
navigable text representation with the user’s location [15] to the
LLM via a CSV Agent [3]. Contextual queries utilize a Web
Browser Agent [4], whereas navigation queries employ the LLM
to discern the starting/ending nodes from a user query and employ
a breadth-search algorithm to calculate the shortest path between
the nodes. We designed the prompts to minimize hallucinations

and address unanswerable queries via structured output formatting.
We collaborated with a blind participant in the development of
VizAbility, holding a series of feedback sessions.

We carried out quantitative assessments to evaluate the ques-
tion & answering pipeline. We evaluated response quality using
a combined dataset of 979 real BLV user questions derived from
previous research [46] and 48 synthetically generated navigation
queries. Splitting the dataset, 80% was used for testing and 20% for
validation. Our query classification achieved an accuracy of 87.39%.
The final response evaluation involved a manual assessment by
two researchers, followed by a more scalable LLM-based evaluation
using GPT4. Both the human and GPT4 assessments followed a 5-
point Likert Scale that assigned a value ranging from “Very Poor” to
“Very Good” depending on the response’s coherence to the ground
truth. For the human evaluation, 77.36% and 5.14% of the responses
were rated as “Very Good’ and “Good” respectively, contributing to
an overall rate of 82.50%. We computed Kendall’s 𝜏 score to assess
the consistency between the human and GPT4 assessment methods,
observing significant alignment (= 0.5526, 𝑝 < 0.001). As a baseline
comparison, we used the GPT4-based evaluation to assess responses
generated by GPT-4 with vision (GPT-4V) on the same test data.
We observed the performance of GPT-4V was poorer, with only
27.96% and 10.10% of responses being designated as “Very Good”
and “Good” respectively.

We conducted a preliminary usability study with six BLV partici-
pants recruited through the National Institute for the Blind. Initially,
participants explored VizAbility without guidance and were sub-
sequently introduced to various query types. They also completed
the System Usability Scale survey. The results suggest that while
participants could learn to use the system, discerning query types
without guidance proved challenging. Nonetheless, they acknowl-
edged the merits of the integrated approach and offered suggestions
for further improvements and potential applications. For instance,
we introduced data tables as an alternative to the tree view and
added cold-start query recommendations to assist users in getting
started. Combining insights from both quantitative and qualitative
evaluations, we identify potential avenues for future work. These
include enhancing user-driven customization, developing a more
robust benchmarking system, incorporating vision models, and
integrating our solution into existing visualization tools.

Our main contributions lie in the following:

• Design and development of VizAbility, which incorporates
an LLM-based question-and-answer module to enhance key-
board navigation of chart content for screen reader users.

• Development of a benchmark dataset comprising ground
truths and chart specifications that augment existing ques-
tions posed by blind individuals [46], facilitating further
research in this area.

• Preliminary evaluation that demonstrates the effectiveness
of VizAbility in comparison to baseline question-and-answer
systems, as well as its usability as assessed by blind partici-
pants.

The VizAbility source code and dataset are available at https://-
dwr.bc.edu/vizability/.

https://dwr.bc.edu/vizability/
https://dwr.bc.edu/vizability/
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2 RELATEDWORK

2.1 Accessibility Systems for Data Visualization

The recent survey offers an overview of previous efforts explor-
ing the use of non-visual modalities, such as speech, sound, and
touch [48]. For example, sonification employs non-speech audi-
tory channels, such as pitch and volume, to represent data [59, 70].
While this can offer users a swift overview of a graph, it struggles
to communicate exact values and might not be effective beyond
single-series charts [28]. An empirical study indicates that blind
individuals favor speech over sonification, as the cognitive load for
a sonified graph feels subjectively more intense [59].

Tactile systems employ methods like embossed prints, haptic
feedback through vibrations, and braille for text representation.
These systems enable both simultaneous and on-demand explo-
ration of data trends, offering an advantage over linear audio [26].
However, they also necessitate enhanced perceptual motor skills.
Similar to sonification, accurately discerning complex structures
can be challenging, often demanding a more refined spatial reso-
lution [24]. Producing tactile graphs typically involves specialized
hardware, such as embossers, which might not be economically
feasible for the average user [48]; thus, they are typically used and
created in the field of education by teachers [25].

Screen readers, utilizing text/speech modalities, stand as the
predominant assistive technology, particularly for navigating web
content. The go-to accessibility techniques for screen readers en-
compass alternative text and data tables. Yet, these strategies often
reduce data visualizations to brief descriptions or mere numbers,
undermining their inherent advantages. An alternative approach
involves crafting keyboard-navigable text descriptions derived from
the chart’s structure. A select group of data visualization tools and
toolkits, such as HighCharts [36] and amCharts [1], offer some de-
gree of this navigation and customization [47]. In recent times, sev-
eral research efforts have advanced navigation capabilities, repre-
senting charts as traversable graph structures [11, 23, 32, 67, 73, 75].

Voice-based virtual assistants are emerging as valuable acces-
sibility tools in human-computer interaction [68]. However, only
a handful of studies have delved into using natural language in-
teractions for accessing data visualization content. For instance,
Murillo-Morales & Miesenberger [56] showcased a prototype sys-
temwhere users can ask predefined questions related to datametrics
such as mean, extremes, and range. In a similar vein, VoxLens [63]
facilitates voice-activated interactions capable of addressing basic
queries with terms like “maximum” and “median”. Additionally,
Kim et al. [46] used a Wizard-of-Oz approach to study the types of
questions blind individuals pose about charts.

To address the limitations of relying on a single sensory modality,
multi-sensory perception is frequently utilized. A prevalent strat-
egy involves merging verbal (speech) cues with non-verbal ones,
such as sonification, tactile graphics, and haptic feedback. Exam-
ples include offering on-demand audio descriptions of touched ele-
ments [31, 33, 50] or pairing sonificationwith screen readers [66, 67]
and braille [62]. However, these solutions often necessitate spe-
cialized software and hardware, especially for interactive tactile
support, making them expensive to implement.

In this study, we adopt an integrated approach that merges struc-
tured chart and table navigation using the keyboard with con-
versational interaction via verbal commands. Our work builds on
the prior work [47] that suggests the respective advantages of
data tables—familiarity, structured chart navigation—deeper en-
gagement, and conversational interaction via natural language
commands—faster data exploration. Our primary technical advance-
ment centers on employing LLMs to enhance the current chart
question-and-answer mechanism for the visually impaired.

2.2 Question & Answering Systems for Data

Visualization

Within the realm of image understanding research, visual question
answering has been rigorously explored in both natural language
processing and computer vision, specifically regarding answering
text-based queries about images [13, 41, 74]. Yet, the majority of
these endeavors have centered on natural scene images rather than
human-generated visuals such as data visualizations.

Recent studies have begun to focus on data visualization im-

ages [37]. For example, FigureQA [43] offers a corpus tailored for
yes/no questions, such as “Is Light Gold less than Periwinkle?”. Con-
versely, DVQA [42] expands its purview to encompass questions
about chart structure (“are the bars horizontal?”), data retrieval
(“what percent of people prefer A?”), and reasoning (“Is A preferred
more than B?”). While both FigureQA and DVQA rely on synthet-
ically generated charts, PlotQA introduces a large-scale dataset
of real-world scientific plots. Unlike the templated questions of
the aforementioned datasets, ChartQA delivers human-composed
questions, enhanced using LLMs [55]. These models predominantly
process pixel images as input. For instance, they extract data tables
and other image features [44, 55], feeding them into vision and
language task models [20]. Consequently, their accuracy largely
hinges on their image processing capabilities, often leading to sub-
optimal results (e.g., failing to recover data values due to the absence
of data labels). In a different approach, Kim et al.[45] proposed a
system that not only answers questions but also provides explana-
tions, operating on Vega-lite[61] instead of images. All the current
question-answering systems are limited to basic visualization types
like bar, line, and pie charts.

While chart QA systems hint at the potential for enhancing vi-
sualization accessibility, they often overlook the specific needs
of BLV users. Recent studies have shown that BLV users frame
questions differently compared to those with sight [22, 35]. A lim-
ited number of systems directly address the challenge of crafting
question-and-answer systems tailored for the blind [56, 63]. How-
ever, these systems do not always offer specialized features for the
blind and are constrained in their question-answering capabilities.
For instance, VoxLens [63] is limited to charts with single series
data, while the system by Murillo-Morales & Miesenberger [56]
is restricted to bar charts. Kim et al. [46] have recently curated a
set of questions posed by blind individuals through a wizard-of-
oz study, laying the groundwork for more refined and targeted
question-and-answer systems.

In this paper, we present an enhanced chart question-and-answer
system tailored for blind users, leveraging the power of LLMs. Our
approach focuses on reasoning, predicated on the availability of
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chart encoding and underlying data. We utilize Vega-lite as in-
put, thereby accommodating a variety of chart types. The system
handles a wide array of queries, including data and visual queries
found in existing question-answer systems, as well as contextual
and navigation queries specific to chart accessibility.

3 VIZABILITY DESIGN DECISIONS

In this section, we outline the key design decisions made during
the development and evaluation of VizAbility. These decisions were
guided by a combination of prior empirical research findings and
practical considerations based on user feedback throughout the
design and development process. D : Decisions relevant to our
primary contributions D : User interface and usability decisions.

D1 : Enable understanding the chart encoding structure. Bridging
the perceptual gap between BLV and sighted individuals requires a
deep understanding of what the chart looks like. Previous research
indicates that navigating charts based on their visual encoding
helps BLV users gain a clearer visual understanding [47]. In this
work, we use Olli [15] to generate keyboard-navigable text repre-
sentations of charts. This approach provides the visual structure
of a chart in symbolic text form, helping answer visually oriented
questions. Other keyboard-navigable text representations (e.g., a
similar text structure extracted from HighCharts) would provide a
similar benefit.

D2 : Support efficient data exploration via natural language inter-

action. Furthermore, extracting aggregate measures and discerning
perceptual patterns beyond basic value retrievals becomes chal-
lenging when navigating data points individually via keyboard
input [47]. This issue exacerbates as the hierarchical text represen-
tation becomes deeper and wider with complex chart encodings,
resulting in hard mental operations [34]. In this work, we adopt
a conversational interaction approach that transcends traditional
methods such as sonification and tactile perception, which are lim-
ited in scalability for modern data visualizations. Leveraging LLMs
and user context within keyboard navigation, we address visual
and analytic queries that facilitate rapid exploration of nuanced
trends and patterns in charts.

D3 : Provide contextual knowledge on demand for better chart

comprehension. Current chart question and answering systems of-
ten neglect the distinct types of questions posed by blind versus
sighted individuals. Recent research involving blind participants
indicates that they frequently ask contextual questions alongside
data-related and visual inquiries [46]. These questions often seek ex-
ternal information not present in the chart, such as meanings about
axes or specific data labels. Providing answers to these inquiries
can enhance the self-efficacy and autonomy of blind individuals.
In our approach, we use an LLM with web search capabilities to
address these contextual queries.

D4 : Alleviate the difficulty of keyboard-based chart navigation.

Navigating complex chart structures can become less intuitive and
more cumbersome [47, 75], when restricted to keyboard inputs
alone. In our work, we aim to mitigate this challenge by facilitat-
ing nonlinear investigation across the chart structure via speech

commands. In our work, we address this challenge by enabling non-
linear exploration of chart structures through speech commands.
This multimodal approach enhances flexibility and efficiency. Fur-
thermore, we aim to assist users in orienting themselves within
the chart structure. Understanding one’s position within a digi-
tal chart holds equal importance to spatial awareness in physical
mobility [21].

D5 : Provide a fallback strategy using familiar data presentation

format. The hierarchical text representation of charts, while effec-
tive, can sometimes be seen as overly complex for certain users.
This observation was noted in previous research [47], as well as in
our user study (see Section 6). In response, we offer conventional
data tables as an alternative to navigating the chart structure. This
option is advantageous due to its compatibility with screen readers
and widespread user familiarity [47, 75]. Additionally, we incorpo-
rate the user’s context within the data table to enhance our system’s
ability to accurately respond to data-oriented queries.

D6 : Implement error prevention strategies for enhanced LLM

interaction. User queries can often be ambiguous or not directly
related to the available data. Likewise, LLMs can face technical
limitations, such as time-outs or processing errors, which can dis-
rupt the interaction flow. Strategies to anticipate and mitigate these
issues can help manage user expectations and offer a fluid user
experience. We address these challenges by implementing proactive
query refinement for ambiguous queries and reactive suggestions
of alternative queries in case of failures.

D7 : Follow standard accessibility principles. The W3C Web Ac-
cessibility Initiative specifies four essential principles for web acces-
sibility: Perceivable, Operable, Understandable, and Robust [10],
while Chartability adds threemore for visualization:Compromising,
Assist-ive, and Flexible [17]. Ensuring these principles in new as-
sistive technology can be often overlooked. We strive to adhere to
them in designing VizAbility. Examples include reaffirming user
queries (P); suggesting cold-start queries (O); indicating delays
in responses (U); allowing both speech and text inputs to formu-
late queries (R); accessing information via multiple modalities (C);
converting data-centric language to user-friendly labels (A); and
enabling switching between Olli and data table (F).

4 VIZABILITY SYSTEM INTERFACE &

ARCHITECTURE

Below, we outline the input chart format for VizAbility, explain
how VizAbility facilitates keyboard navigation and conversational
interaction with the chart, and delve into further accessibility con-
siderations integral to the design decisions outlined earlier.

4.1 Input Chart Format

VizAbility operates on the premise that both the visual encoding
information and the underlying dataset are accessible. In our work,
we employ Vega-Lite specifications [61] as the primary input for
our system. Other chart specifications like Observable Plot [6]
and HighCharts [36] can be adapted, provided they expose the
underlying data and visual encoding variables. New adapters will
need to be written to work with Olli, which currently supports
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Vega & Vega-Lite, and Observable Plot [6]. Alternatively, charts
can be translated to the Vega-Lite specifications to be directly used
in VizAbility. The symbolic representations underlying the chart
are parsed to create a keyboard-navigable tree view and to provide
useful information about the chart’s appearance for the question-
and-answer pipeline, which is detailed below.

4.2 Exploring Chart Encoding using Keyboard

We leverage Olli [15] to make the chart encoding explorable— D1 ,
as it provides an off-the-shelf, open-source solution based on Vega-
lite. Olli renders a visual chart for sighted users and a keyboard-
navigable tree view featuring chart descriptions at various levels of
detail (see Figure 2). A more detailed explanation of Olli, including
its design considerations, supported chart types, and empirical
evaluation, is available in prior work [15, 75].

Olli’s tree view displays the chart content in a hierarchical struc-
ture, starting with the chart type description at the root, followed by
visual encoding channels such as axes and legends. Within each en-
coding channel node, Olli lists data categories or numerical ranges
depending on the data type being encoded; e.g., for a color legend,
it lists all categories in the legend. Individual data points reside
in these group nodes. All four chart types we used in this work,
including line chart, bar chart, scatter plot, and choropleth map,
had four levels of information granularity.

Based on its hierarchical structure, users can navigate the differ-
ent levels of the tree view using up and down arrow keys (barchart
→ legend → negative polarity) while using left and right arrow
keys to navigate sibling nodes within each level (negative polarity
→ positive polarity). In order to access individual data points, Olli
requires users to press t to open up a screen-reader-compatible data
table. This table shows a subset of the whole data, only displaying
data points within the selected category or numerical range.

The current version of Olli does not support navigating a

choropleth map by geographic regions. We extended it to sup-
port the level of detail channel in Vega-lite1. As a result, we can
encode country names or state names into the detail channel, which
is in turn converted into an additional encoding channel node (see
Figure 2).

4.3 Exploring Underlying Data Table via

Keyboard

VizAbility offers users the flexibility to switch between the tree
view and a conventional raw data table view (see options displayed
in the buttons in Figure 1)— D5 . While the tree view facilitates
structured exploration based on visual encoding, the data table
provides additional advantages like sorting features, enabling users
to quickly access specific data values and patterns. We disable navi-
gation queries in the data table module as screen readers provide
a slew of keyboard navigation shortcuts such as moving between
headers and cells. The data table module supports the alphabeti-
cal/numeric sorting by each column.

4.4 Rapid Chart Probing via Conversational

Interaction

Keyboard navigation helps blind users grasp the chart’s visual struc-
ture and data, but can be cumbersome for higher-level comprehen-
sion, such as computing aggregates or understanding overall visuals.
We integrate LLMs for intuitive chart question-answering and en-
hance interaction by combining keyboard navigation with speech
inputs. Figure 3 shows the overview of the question-answering
pipeline.

4.4.1 Data Set. We utilized a prior study’s data set [46], compris-
ing 979 BLV user questions spanning four visual stimuli (bar, line,
scatter, and map) for the development and quantitative evaluation
of VizAbility (Table 1). We then partition the pool of questions
once more into an 80/20 split between the testing and validation
sets via stratified random sampling so that there is a proportionate
representation of each query type amongst both sets.

The questionswere gathered through awizard-of-oz study, where
a human facilitator acted as a question-answering system. We re-
constructed the visualization images into Vega-Lite specifications
and partitioned the questions into analytical, visual, and con-
textual queries, which we derived from the question taxonomy
in prior work [45, 46]. In addition, we employed GPT4 to generate
12 example navigation queries for each of the four visual stimuli,
appending them to the prior data set of 979 BLV user questions. We
define each query type in Section 4.4.2.

How did we derive the question taxonomy? The original taxonomy
by Kim et al.[46] offers more fine-grained categories, such as granu-
lar analytical tasks like retrieving values and finding extremum[12].
They also categorized queries as visual vs. non-visual and look-
up vs. compositional, similar to previous chart QA systems [45],
while separating non-data queries. In our work, we reclassify these
queries, as the detailed categorization is not needed for users and
may not enhance the system’s performance, considering the ad-
vanced language comprehension capabilities of LLMs. First, we
consolidated data-driven and visual tasks into analytical (or non-
visual) and visual queries, respectively. We do not separately con-
sider look-up vs. compositional, as we expect LLMs to handle them
without differentiation. Finally, we consolidated non-data queries
into contextual queries.

What additional metrics did we introduce? We also elaborate on
the previous taxonomy by introducing two new binary metrics:
open-endedness and answerability. Open-ended queries allow
for multiple valid interpretations and responses, and often invoke
questions like “Why?”. Open-ended questions may also involve
computations, especially when the operation parameters are am-
biguous: “And what was that temperature?”. Answerable queries
are relevant to the data set. By contrast, unanswerable queries are
irrelevant and cannot be feasibly addressed using the corresponding
chart.

How did we generate navigation queries? We used GPT-4 with
few-shot prompting to generate navigation queries with an equal
distribution of orientation and wayfinding queries. To simulate real

1https://vega.github.io/vega-lite/docs/encoding.html#detail

https://vega.github.io/vega-lite/docs/encoding.html#detail
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Tree View Keyboard Navigation

Press 

Press 

Press ️

Press “t”️

Figure 2: An example of a user’s keyboard traversal of the Olli Tree. Users canwiden/narrow the scope of the text via the up/down

arrow keys (respectively), and otherwise navigate between sibling nodes using left/right arrow keys. To access individual data,

users can press the ’t’ key to view a snapshot data table

Query Type Line Chart Bar Chart Scatterplot Choropleth Map Total

Analytical Query 147 168 242 193 750
Visual Query 42 28 54 41 165
Contextual Query 16 14 28 12 70
Navigation Query 12 12 12 12 48

Total 217 222 336 258 1033
Table 1: Distribution of data for four types of queries across different chart formats, including line chart, bar chart, scatterplot,

and choropleth map, indicating the prevalence of analytical queries in the dataset.

Q&A Pipeline

 Query Classification 

 Alternative Query Suggestion

 Query Refinement

 User Query

 Query Response

Shortest Path Finding

In-context learning

In-context 
learning

 Analytical Query Visual Query  Navigation Query Contextual Query

End-Point Detection

 User Contex
 Chart Tex
 Data
 Color

 User Contex
 Chart Text

 User Contex
 Chart Text

CSV Agent Web Browser Agent

Figure 3: VizAbility pipeline takes a user query and refines

it to improve clarity. The query is classified into one of four

query types, each of which is fed to a different agent. If Viz-

Ability fails to respond, it attempts to suggest alternative

queries.

user chart interaction, we include the corresponding active element
in the tree view for each query.

How did we generate ground-truths? The ground truths for the
testing and validation sets were manually generated by two re-
searchers independently and then merged by resolving conflicts.
The process involved reading charts, calculating numbers, and
searching for information online. Throughout the generation pro-
cess, we emphasized verboseness. For instance, the ground truth
response to the question “What is the vaccination rate of South
Africa” is “The vaccination rate for South Africa is 36%”, as op-
posed to the more concise “36%”. The ground truth responses for
navigation queries consist solely of starting and ending nodes to
prioritize the model’s ability to translate ambiguous user wording
into precise nodes within the tree view.

4.4.2 Supported Query Types. Analytical queries— D2 pri-
marily focus on understanding the underlying data, such as “Is
Africa the country that needs the vaccine the most?” or “What is
the highest positive anomaly?” Visual queries— D2 relate to
visual encoding information or demand visual interpretation, exem-
plified by questions like “What color is North America?” or “Is the
line fluctuating?” Analytical and visual queries are not entirely
distinct; visual queries often necessitate data interpretation, as
in “Which country exhibits the darkest shades for both the lowest
and highest values?”. Despite this overlap, we retain a conceptual
separation in order to communicate to LLMs that a query involves
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information encoded visually and gain a more fine-grained under-
standing of VizAbility’s performance with chart-specific queries.

Contextual questions— D3 seek information not directly
present on the chart but require ancillary knowledge related to
it. For instance, some questions aim to understand the chart’s en-
coding, like “What is a scatterplot?” or “What does ‘positive tem-
perature anomaly’ mean?” Others ask about context related to the
data, such as “Where is Palestine?” or “Why does the data start
in 1880? What occurred then?” Additionally, there are inquiries
about the data’s origin, exemplified by “What is the source of this
information?” or “From where was this data obtained?”

Navigation queries— D4 are a category we introduced to
enhance user experience. These queries are tailored to the synergy
between keyboard navigation and conversational interaction. For
instance, to reduce cumbersome keyboard navigation and assist
users in orientation, questions such as “How can I get to the X-axis”
(wayfinding) or “Where am I?” (orientation) can be beneficial. Our
motivation for this stems from a previous empirical study [47],
where blind individuals highlighted such challenges with Olli’s tree
view.

4.4.3 Query Classification. First, we aim to classify user queries
based on this categorization rather than diving straight into re-
sponses. Once classified, we proceed to address each type of query
in the subsequent phase (see the next section). This task division
provides the LLM with a well-defined task and has been proven to
increase its performance [72], while also enabling more efficient al-
location of computational resources for each type of query. Figure 4
shows our few-shot prompting approach. In the prompt, we provide
a clear definition for each query type. To bolster the definition, we
accompany each with four exemplar questions.

These examples are sourced from our validation set, chosen
based on their close alignment with the user query at query time.
Specifically, for each query type and the given user query, we sift
through the validation set to pinpoint the four most analogous
queries. These are then incorporated as representative examples
for each query definition within the prompt. For this endeavor, we
used sentence transformers [58] to generate text embeddings and
then applied cosine similarity to these embeddings to identify the
most closely aligned examples. This method offers greater precision
compared to arbitrarily selecting samples for each query type.

We constrain the range of LLM responses by explicitly instruct-
ing it to output either: “Analytical Query”, “Visual Query”, “Con-
textual Query”, or “Navigation Query”. To thwart any potential
hallucinations from the LLM, we provide an accessible escape route
by instructing the model to return “I am sorry. I am unable to an-
swer this question” when confronted with a question that does not
immediately conform to any of the specified query types. Without
such a safeguard, GPT frequently generates technical jargon and
error messages that can deter users.

4.4.4 Query-Specific Prompting. The answering pipeline diverges
into three unique paths, depending on the query type (Figure 1).

Analytical & Visual Queries. D2 —Figure 6 illustrates our ap-
proach to handling analytical and visual queries. To circumvent
the predefined token limit of the LLM, we consolidate the trans-
formed data extracted from the Vega View [7] into an external CSV

file. This file is then processed by LangChain’s CSVAgent [3], which
operates in the background. Under the hood, this agent leverages
the Pandas DataFrame agent, subsequently executing Python code
generated by the LLM. We purposefully avoid including the entire
raw dataset, recognizing that it might differ from the final view
data. Often, the agent can get stuck in an infinite loop of thinking.
To prevent this issue, we have implemented a time constraint. If
the time limit is exceeded, VizAbility will display the message, “An-
swer: I’m sorry, but the process has been terminated because it took
too long to arrive at an answer,” and will also suggest alternative
questions to the user (see Section 4.5).

While the CSV agent can handle most data-related queries, it is
not aware of any visual encoding information of the chart. To ad-
dress visual queries, we extract color information directly from the
Vega View [7] and incorporate it as an additional column within
the CSV file. This modification ensures that each data point is
paired with its corresponding color. Initially, the extracted color
data is in hex codes. To enhance user-friendliness, we employ a
color-matching algorithm to convert the hex codes into more com-
mon English names. This algorithm works by cross-referencing
the source hex code with a predefined list of color hex codes and
English names [2], ultimately determining the closest matching
name based on their relatives distances within the CIELAB color
space.

The color augmentation process enables answering visual ques-
tions like “What color is Algeria? What other countries are the
color of Algeria?”, as VizAbility responds: “Algeria is orange-red
and other countries with the same color are Syria, Iraq, Congo, [...].”
Furthermore, LLM is lenient with user queries and accepts a certain
margin of error for color input. e.g., if the user asks about what blue
represents, the system can infer blue refers to steelblue in the map.

To provide further visual context for the chart, we have inte-
grated a textual representation of the chart generated by Olli di-
rectly into the LLM prompt (see Figure 6). This addition has the po-
tential to significantly enhance the performance of visual question-
answering. For example, when presented with the question “What
does the graph show?”, the system, without the text representa-
tion, provided a response like “The graph shows the data from the
dataframe, which includes the year, value, temporal polarity, ...”.
However, when furnished with the text representation, the LLM
responded with a more comprehensive and human-friendly answer:
“The graph shows the temporal polarity of the temperature anomaly
(in degrees Celsius) from 1850 to 2021 and the y-axis representing
the temporal anomaly in degree Celsius. [...]”

Moreover, we supplement it with the user’s current position
within the tree view, tracked via the user’s keyboard movements.
This feature can help address potentially ambiguous questions. For
instance, a user might ask, “What’s an average?” with the intention
of inquiring about the average within a category where their cursor
is located. We also ensure that the responses are properly formatted
with commas and special characters so that they are optimized for
screen reader interpretation. For example, we present the number
468297 as 468,297 to improve clarity, especially since NVDA, the
most popular screen reader [71], would otherwise read it as ’four
six eight two nine seven’ in its default settings, which could be less
intuitive for users.
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 User Query

What's the average number of homes for 
sale between 2017 and 2020?

Analytical Queries involve any possible lookup operations, computations, or analysis involving data.

Analytical Query //  for sale from 2015 to 2021?

Analytical Query // What were the percentage of increase or decrease in  on 

?        

Analytical Query // How many houses were sold in 2017?

Analytical Query // What is the  amount of houses sold?

What is the average number of homes
average number of houses sale 

between 2015 and 2017

average

Visual Queries involve references to visual cues such as color or graph shape/characteristics.

Visual Query // Is column two showing houses for sale?

Visual Query // Is the picture(chart) in  50 to 80?

Visual Query // What countries are in brighter ?

Visual Query // Does each circle give the specific number of population like the table or just the size 
of the circle?

between
range

Navigation Queries involve questions relating to location within the Olli navigation table. They usually 
take up the form: 'How do I get from () to ().'

Navigation Query // Does this one that i'm on have a comma in it?

Contextual Queries involve broad questions that do not necessarily need the graph's specific data to be 
answered.

Contextual Query // Does the system know the causes for sharp decrease in  other than Covid?

Contextual Query // when was this data collected?

Contextual Query // Do you have information on the percent of people who received two doses of a 
vaccine?

Contextual Query // What is meant by upper range?

home sales

 Example Queries

Extract four most aligned queries via 
cosine similarity per type

Add manually crafted example queries

Analytical Query

Visual Query

Contextual Query

Navigation Query

Validation Dataset

Your objective is to classify 
the following question into 
one of these four categories  


{  }



Refer back to the examples 
above to help classify the 
question: 



{  }

 Example Queries 

 User Query 

Classification Prompt

Figure 4: User questions are initially categorized based on query type via an LLM trained with few-shot prompting. We populate

the prompt with sample questions and their corresponding ground truth classifications, which we extract from the validation

set. Only those validation questions that share the highest cosine similarity score with the user query are selected within each

query type.

Visual

Context

User Query

LLM Output

LLM Prompt

What do orange data points mean?

Orange data points represent countries 
in Asia.

Data, Visual, Context

Before you output the answer check for the following:

Make sure to format all numerical responses 
appropriately, using things such as commas, dollar 
signs, appropriate rounding, and other identifiers when 
necessary. 


Use this information along with everything else you are 
given to answer the following question:   

{User Query} 

{ Context }  


Chart text + User cursor location 

1.3.2 // 2 of 6. Continent equals Europe. 25 values

{Address of Node // String Representation}

Data

CSV Agent

Figure 5: Query-specific evaluation for Analytical and Visual queries. We parse the chart’s transformed data set and aggregate

color encoding within a CSV file, which we then supply to an LLM via a CSV agent. For further context, we also populate the

prompt with the user’s active position within the Olli Tree, in addition to a text representation of the Tree itself.

Contextual Queries. D3 —To address contextual queries that
require background or external information on what is available in
the chart or its data, we have incorporated a Web Browser agent [4]
to retrieve more general information relevant to chart compre-
hension. For example, when presented with the contextual query,
“What do you mean by temperature anomalies,” the LLM responds
with, “Temperature anomalies are any measure of temperatures
that are unusual for a particular region, season, or time period.
[...]” Categorizing questions beforehand enabled us to streamline
the process and eliminate unnecessary, resource-intensive prompts
needed for analytical and visual queries.

Often, contextual queries require information about the chart
or data to disambiguate user queries. For example, queries such as
“Does the system know the causes for the sharp decrease in home
sales other than Covid?” or “When was this data collected?” need
to understand what the chart is about, without requiring detailed
underlying data. Therefore, we accommodate these instances by

incorporating the readily available high-level text representation
of the chart into the Web Browser Agent.

Navigation Queries. D4 —We seek to integrate users’ keyboard
navigation with the conversational module via navigation queries.
VizAbility currently supports two types of navigation queries: (a)
wayfinding questions, in which, upon being provided a starting
and ending point within the tree view, the model returns a series of
directions dictating the shortest traversal and (b) orientation ques-
tions, in which the VizAbility returns the user’s current location
within the tree view.

To handle navigation queries, we attribute a unique address to
each node of the tree view and convey this address, along with the
user’s current position, to the LLM. Through the utilization of few-
shot prompting, we instruct the LLM to discern the starting point
and ending point from the user query. It is important that the model
has significant leniency in user queries, as it is highly unlikely that
the user will specify the exact starting/ending points verbatim.
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User Query

 How do I get to the X-Axis?

Chart text + User cursor location 

1.3.2 // 2 of 6. Continent equals Europe. 25 values

{Address of Node // String Representation}

LLM Prompt

Breadth-Search Algorithm

Starting Point: Not Explicitly Stated => Consult 
Active Node => {1.3.2 // Continent equals 
Europe.}  

Ending Node: Explicitly Stated => “X-Axis” => 
{1.1 // X-axis titled GDP per capita}

Return Shortest Path Between Starting and 
Ending Point

{Press the up arrow key. Press the left arrow 
key. Press the left arrow key}

Press 

Press 

Press 

Figure 6: Query-specific evaluation for Navigation queries. We pass a text representation of the Olli Tree and the addresses of

corresponding nodes within the Tree to an LLM alongside the user question. With the aid of few-shot prompting, the LLM then

identifies the starting and ending nodes within the Olli Tree. Should the starting node not be explicitly mentioned within the

question, the model instead utilizes the user’s current location within the Tree. We then execute a breadth-search algorithm

and relay the shortest path between starting and ending nodes back to the user.

Thus, the few-shot prompting primes the LLM to properly interpret
the user query. For example, in response to the query “Take me to
Haiti” (related to the choropleth map), the LLM comprehends the
user query’s context and correctly deduces that the absence of an
explicit starting node means the user intends to initiate navigation
from their current location. On the other hand, VizAbility can easily
infer the ending point, which is the node titled: “3 of 180. Country
equals Haiti. 1 value. Press t to open table.” If the model cannot
discern any starting or ending point, it yields: “The question was
interpreted as involving navigation, but either no starting/ending
point was provided, or the tree view was not activated. Please try
again.”

Once the starting and ending points have been identified, we em-
ploy a breadth-search algorithm that returns string instructions of
the shortest path, which users can thenmanually follow at their own
discretion. To avoid repetition we coalesce instructions whenever
possible. For instance, for instructions pertaining to the navigation
between two sibling nodes, we convert “Press the right arrow key.
Press the right arrow key. Press the right arrow key.” to “Press the
right arrow key 3 times.” We initially opted for this approach as
opposed to automatically moving the user to their desired ending
point with the rationale that autonomy and transparency are crucial
for our intended audience.

4.5 Mitigating LLM Failures through

Responsive Feedback

Several factors can create a disconnect between the user’s query
and the output from the LLM. These factors might be technical,
such as when the CSVAgent executor is prematurely terminated for
exceeding its time limit, or they might arise from the ambiguity of
the user’s query and the system’s consequent struggle to categorize
and address it. To tackle these challenges, we implement strategies

that are both proactive (occurring before classification and answer-
ing) and reactive (occurring after these processes), aiming to create
a more user-friendly environment.

4.5.1 Proactive Error Mitigation Strategies. D6 —The versatility
of VizAbility poses novel challenges in user query interpretation
and answering. As reflected in the validation data set, some user
queries may be too broad, ambiguous, or can even refer to variables
that are not explicitly present in the data. For instance, the real
user query “What kind of vaccine they used?” is irrelevant to the
choropleth map displaying the share of the population that received
at least one dose of the Covid-19 vaccine. User queries can also be
poorly worded, such as “What parts of North America are not in
the 80 to 100 percent range”, deeming it more difficult for an LLM to
accurately interpret and compute the answer. These irrelevant and
ambiguous queries can significantly decrease the overall accuracy
of the system if not accounted for.

To mitigate the effects that ambiguous queries may have on
the system’s overall accuracy, we introduce an additional query
refining process that occurs before user query classification. We
furnish a GPT-3.5-Turbo prompt template with the user query and—
serving as the primary source of context—a text representation of
the actively engaged chart. The LLM is instructed to add to—but not
alter—the question so that it is as specific and relevant to the data
as possible, whilst still retaining its original meaning. Referring
back to the earlier example of an ambiguous query, the LLM refines
it to: “Which countries in North America have a percentage of
fully vaccinated individuals below 80%”. The pipeline continues
as detailed in prior sections, but now utilizes the refined query
instead of the raw user query. Whereas before VizAbility could not
accurately answer the above question and instead outputted a list
of all of the countries represented in the data, the system is now
able to consistently identify all countries that occupy the desired
range.
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4.5.2 Reactive Error Mitigation Strategies. D6 —LangChain’s CSV
Agent leverages chain of thought reasoning administered over a
series of sequential prompts (in conjunction with pandas dataframe)
to answer questions pertaining to a CSV file. Each individual prompt
must therefore follow a specified format of Observation, Action,
and Action Input for a subsequent prompt to properly parse the
result [3]. We have observed that sometimes an individual prompt
in this sequential chain may be outputted in an incorrect format,
thus triggering a cascading effect that ultimately results in an Out-
putParserException. To mitigate this error, we utilize prompt en-
gineering and direct the CSV Agent Executor “You must follow
the structure of Observation, Thought, Action, Action Input, etc.”
to ensure that the output format is consistent between sequential
queries. If the CSV Agent Executor is active for an extended period
of time, we manually terminate it to preserve time-efficiency.

We handle these two potential errors by being explicit in our
language; e.g., “I am sorry but I cannot answer the question”. To
foster an iterative and exploratory environment, we also employ
a pipeline that recommends two questions that retain the essence
of the original user query but eliminate error-inducing language.
We achieve this recommendation by monitoring the response of
the answering pipeline. If the output exhibits any sign of error
(refer back to the above cases) or is otherwise incomplete, i.e. “No
answer can be found”, we populate a prompt template with the
original user query, the error output (which identifies the error),
and a text representation of the chart for additional context. This
prompt is then passed through the LLM, which generates two new
questions that are subsequently relayed back to the user in the
form of clickable buttons. For instance, the error-inducing question:
“Where are these houses sold?” yields the following LLM output,
“The data does not contain any information about the location of
the houses.” and is accompanied by two rephrased queries: “What
information regarding the sale of these homes is provided in the
dataset beyond the date and inventory quantities?” and “Could you
elaborate on any additional details related to the properties or their
characteristics available within the dataset?”, each displayed as a
button.

4.6 Fostering a More Accessible User Experience

Providing different query methods and audible cues. D7 —Users
can submit conversational queries via voice recordings that are pro-
cessed via theWhisper speech recognition [8]. However, oftentimes,
enabling microphones can be problematic. Thus, we provide an
alternative text box so that they can type the queries using the key-
board. Upon inputting their question (regardless of the modality),
users are provided with an audible cue of “Loading. Please Wait”.
Every subsequent 3 seconds, the user is exposed to yet another
audible cue, this time “Still Loading”. This loading cue significantly
improves transparency and mitigates any possible confusion that
can arise from an unresponsive webpage.

Enhancing user trust and transparency in responses. D7 —VizAbility
does not solely display the answer, and instead provides the user
query and brief justification behind its response in conjunction
with the actual answer. For instance, the following is articulated by
VizAbility when a user asks, “What is a choropleth map?”: “Your
question ’What is a choropleth map?’ was categorized as being

context-seeking, and as such, has been answered based on infor-
mation found on the web.” By letting users know the scope of the
answer (i.e., whether it was sourced from the internet, data, or the
tree view), we allow users to verify and evaluate the effectiveness
of the LLM response independently, thus bolstering user trust and
system transparency.

Offering cold-start query suggestions for onboarding. D7 —To
help users figure out what queries are possible, VizAbility generates
four initial queries, each of which belongs to one of the four query
types. We achieve this suggestion by querying the LLM with a
prompt that uses in-context impersonation [60] (“Pretend you are
a blind/low vision user who is presented with a chart.”), coupled
with a text representation of the current chart. For instance, the
LLM generates the following questions for the bar chart: “What is
the temperature anomaly for the year 2020?”; “Can you provide a
description of the color scheme used in the bar chart to represent the
temperature anomalies?”; “Are there any patterns or relationships
between the year and the temporal polarity of the temperature
anomaly?”; “How do I get from my current position in the text
representation to the x-axis?” These questions appear as interactive
buttons, allowing users to either choose a suggested question or
input their own.

4.7 Notes on Interactive Charts

VizAbility extends its capabilities to interactive charts, allowing for
dynamic updates in both the tree view and question-answer com-
ponents when users modify the chart. An example of this update
is seen in the scatter plot (referenced in Figure 6), which includes
a slider for filtering data by year. As a user selects a specific year,
VizAbility generates a new view of the data for the LLM and simul-
taneously updates the tree view to reflect the chosen year.

5 EVALUATION: Q&A PERFORMANCE

BENCHMARK

For our quantitative evaluation, we concentrated on validating
the question-answering pipeline using the testing dataset. This
evaluation comprised two components: assessing the accuracy of
query classification and evaluating the correctness of question
responses.

5.1 Classification Evaluation

Our evaluation yielded an overall classification accuracy of 87.39%.
Table 2 presents detailed results, including precision, recall, and
F1-scores for each class. Table 3 provides examples of misclassified
instances.

The model was effective in identifying analytical queries, with a
93.10% ( 513550 ) recall and 90.96% ( 513564 ) precision. Analytical queries of-
ten contain distinct computationally-heavy language, such as “cor-
relation” and “average decrease,” as seen in examples like “What’s
the correlation between GDP per capita and population?” and “For
the time from September 2019 to September 2020, what was the
average decrease in homes for sale?” This specific language may
aid in differentiating these queries from broader contextual ones,
potentially leading to a higher overall accuracy.
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Query Type Precision Recall F1 Count

Analytical 90.96% 93.10% 92.02% 551
Contextual 64.65% 67.37% 65.98% 95
Navigation 100% 97.50% 98.73% 40
Visual 89.09% 74.81% 81.33% 131

Table 2: Quantitative results contextualize VizAbility’s clas-

sification accuracy of 87.39% through the lenses of Precision,

Recall, and F1 scores. The system is most proficient at classi-

fying analytical and navigation queries, as indicated by the

significantly higher F1 Scores attributed to these query types.

Of the 95 queries designated as contextual in the ground truth,
67.37% (64) were classified as such by VizAbility. In addition to
the 64 true positives, the model incorrectly classified 30 analytical
queries and 5 visual queries as contextual in nature - contributing
to a precision of 64.65% ( 6499 ). Poorly classified contextual queries
like “What is the source of this data?” and “Can I get a map of
the US?” may indicate that the model often emphasized individual
words over the overall meaning of queries. For instance, the word
“data” likely led the model to classify the first query as analytical.
Similarly, the word “map” likely prompted the model to mistakenly
identify the second query as visual.

A recall of 74.81% or 98
131 for visual queries indicates that Viz-

Ability correctly classified around 3
4 of the queries designated as

visual by the ground truth. On the contrary, visual queries such as
“Which part of Asia has a darker shade of green, which has the most
vaccinated amount of people?” and “What is the trend for Brown?”
were falsely identified as being analytical, despite the presence
of visual language {“Brown”, “darker shade”, “green”}. This lower
performance may be due to the significant overlap between visual
and analytical queries. For example, we consider any question that
references visual components of the data (“Brown”) as visual, even
if it also involves computations (“trend”). On the other hand, the
model rarely misclassified analytical or contextual queries as visual,
as demonstrated by an 89.91% ( 98109 ) precision score.

VizAbility’s proficiency in distinguishing navigation queries may
be attributed to the distinct and uniform structure to which most
GPT4-generated example queries conform; i.e., queries either as-
sume the role of wayfinding or orientation questions. The results,
showing a 100% ( 3939 ) precision and 97.50% ( 3940 ) recall, suggest that
VizAbility is effective in distinguishing these tasks from the typi-
cal data retrieval or lookup associated with analytical and visual
queries. Nonetheless, the misclassified query “While exploring in-
ventory values between 800000 and 1000000, am I closer to the start
or the end of the Y-axis?” hints that the model might sometimes
give undue weight to individual words. For example, the reference
to ‘the Y-axis’, a visual element of the chart, could have led the
model to categorize the navigation query as visual.

5.2 Question Response Evaluation

Our evaluation of the response quality is twofold. First, two re-
searchers manually inspected the quality of the responses. Based on
this ground-truth evaluation, we established an LLM-based evalua-
tion using GPT-4, which is intended to facilitate scalable, automatic
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Figure 7: Quantitative results display the distributions of

quality ratings (via a 5-point likert scale) for VizAbility re-

sponses. Formore granularity, the results are also partitioned

by query type, chart type, and question characteristics. Viz-

Ability’s performance is considerably higher than the GPT-

4V baseline.

evaluation for efficient benchmarking tests, following recent liter-
ature in natural language evaluation [29, 52, 53, 69]. We describe
each of these procedures below.

5.2.1 Human Evaluation. We evaluated each pair of system re-
sponse and corresponding ground truth individually based on a
five-point Likert scale: [Very Poor, Poor, Fair, Good, Very Good].
Our focus was on a response’s ‘correctness’ in terms of its coherence
and consistency with the ground truth. Our assessment scheme
favored explanatory responses over overly brief ones, in line with
our recognition of trustworthiness and transparency as essential
factors. Table 4 shows how we defined each increment on the Likert
Scale, which is further elaborated in the GPT4-based assessment in
Section 5.2.2.

Of the 817 user queries, 632 or 77.36% were deemed “Very Good”
in the human assessment. Responses rated as “Very Good” often re-
stated the user’s question, formatted quantitative data correctly, and
included contextual information. For example, in response to the
query “What continent has the highest vaccination rate?” related
to a choropleth map, VizAbility answered, “The continent with
the highest vaccination rate based on the percentage of fully vacci-
nated people in each country is South America, with an average
percentage of 69.7%.” This response, more detailed than the ground
truth “The continent with the highest vaccination rate is: South
America”, demonstrates VizAbility’s ability to provide comprehen-
sive answers. The distribution for Good, Fair, and Poor responses
was 5.14% or 42

817 , 4.65% or 38
817 , and 7.71% or 63

817 respectively. The
human assessment yielded 42 or 5.14% of questions as being ”Very
Poor” in coherence to the ground truth. We elaborate on these find-
ings and investigate relationships between the types of user queries
and VizAbility’ responses below (Figure 7).

Partitioning based on query classification. VizAbility exhibited
the greatest accuracy in answering navigation questions. 87.5% ( 3540 )
of navigation queries received a “Very Good” assessment, which
equates to the correct translation of the user query into concrete
starting and end nodes within the tree view. For instance, VizAbility
correctly parsed the question “What’s the quickest path to get
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True Class Predicted Class Example Text
Analytical Contextual Does the data include booster shot?
Analytical Visual Is Asia in the medium upper range in 60 to 80 area?
Contextual Analytical What is the percentage at which vaccinated population reach herd immunity?
Contextual Analytical What is the source of this data?
Contextual Visual Describe a scatterplot.
Contextual Visual Can I get a map of the US?
Visual Analytical How many years in total are represented on the X axis?
Visual Analytical Which part of Asia has a darker shade of green...
Visual Analytical What is the trend for Brown?
Visual Contextual Is there anything specific you want me to look for in this chart?
Navigation Visual ...am I closer to the start or the end of the Y-axis?

Table 3: Additional Examples of Misclassification Cases

Very Good Response B is not only similar but also faithful to Response A.

Good Response B is mostly similar to Response A
but may lack some of the more specific key details such as labels.

Fair It is unclear whether there are any similarities between Response A and
Response B due to the ambiguity of one or two of the Responses.

Poor The content of Response B is somewhat irrelevant to that of Response A;
the core information in Response B does not match that of Response A.

Very Poor The content of Response B is irrelevant to that of Response A and bears no similarities.
Table 4: A delineation of the gradations used in the Likert scale to assess the degree of coherence between Response A and

Response B, ranging from ’Very Good’ to ’Very Poor’.

from the top of the tree to inventory values above 1400000?” and
identified “Starting Point: ‘A line chart. With axes Date and Number
of Homes for Sale’; Starting Address: 1; Ending Point: ‘Inventory
is between 1400000 and 1600000’; Ending Address: 1.2.6”, which
corresponds with the ground truth. User references to the tree view
may not always be explicit (“top of the tree” → “a line chart...”).
82.11% ( 7895 ) of responses to contextual queries were identified as
being “Very Good”. This metric was slightly lower for both visual
and analytical queries, from which 77.86% ( 102131 ) and 75.68% ( 417551 )
of responses had warranted a “Very Good” assessment respectively.
Nevertheless, the distribution of assessment scores is relatively
consistent across query types, with a tendency to skew towards
“Very Good” (Figure 7).

Partitioning based on chart types. The distribution of assessment
scores is similar across chart stimuli, suggesting that chart type
may not have as significant an influence on overall system per-
formance compared to other factors. Questions pertaining to the
choropleth map had the highest frequency of yielding “Very Good”
responses (79.61% or 164

206 ). This is followed by responses for the
scatter plot (77.65% or 205

264 ), bar graph (77.27% or 136
176 ), and line

chart (74.27% or 127
171 ). The low variability amongst chart stimuli

highlights VizAbility’s versatility in addressing a wide range of
data visualizations.

Partitioning on the answerability of queries. We found that of
all the questions for which VizAbility’s response was prescribed a
“Very Poor” rating, almost half (45.24% or 19

42 ) had also been iden-
tified as being unanswerable (Figure 7). More notably, 76% ( 4863 ) of

“Poor” responses also happened to be unanswerable. For instance,
referring to the choropleth map which depicts the percentage of
the global population receiving at least one dose of the vaccine, the
query “Which country has the fewest vaccinations?” is unanswer-
able because of the absence of precise counts of vaccines from the
data set. Nonetheless, VizAbility fails to acknowledge that relative
percentages do not equate to precise counts and generates the “Very
Poor” output “Among the listed countries, Burundi has the fewest
vaccinations.”. Instances like these skew the overall accuracy of
the system towards “Very Poor”. By isolating just the answerable
queries and recomputing accuracies, we find that 87.03% ( 584671 ) of
responses are now “Very Good” and consistent with the ground
truth, increasing the mean assessment score from 4.42 to 4.70.

Partitioning based on the open-endedness of queries. 70.10%
( 143204 ) of system responses to open-ended queries were prescribed a
score of “Very Good”. For the assessment of open-ended contextual
queries, we emphasized VizAbility’s ability to not only draw on
external information, but also support claims with relevant data
derived from the chart. The contextual query, “Is there any other
places that I can get some new information like a graph which
shows by each region of the US?” with ground truth: “Yes, charts
depicting inventory of houses for sale by region can be found on
the internet.”, received the following “Very Good” response:

“Yes, you can find a similar graph that displays home
sales data by different regions of the US. The existing
dataset provides a line chart showing the number
of homes for sale over time, and this type of data
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is often collected and analyzed at both the national
and regional levels. Organizations such as the National
Association of Realtors, Zillow, and Redfin regularly
publish reports [...]”

In this response, VizAbility not only explicitly identifies credible
sources that the user can consult, but also clarifies those sources’ rel-
evance to the line chart. Nonetheless, VizAbility proved to be more
proficient in answering questions that were not open-ended. Of the
613 user questions that are narrower in scope (not open-ended),
79.77% yielded “Very Good” system responses - a value almost 10%
higher than the reported accuracy for open-ended queries (Fig-
ure 7). This performance increase may be due to the narrow scope
of non-open-ended questions, which could reduce the chances of
computational or logical errors; e.g., scatter plot questions such as
“What color is North America?” are straightforward. Consequently,
VizAbility’s response, “The color that represents North America in
the dataset is red.” is almost verbatim to the ground truth, “The color
of North America on the scatter plot is: Red”. Similarly, responses
to non-open-ended queries were also less frequently assessed as
“Very Poor”; 3.92% vs. the rate of 8.82% for open-ended queries.

5.2.2 Automatic Evaluation using GPT4. We leverage LLMs for
holistic evaluations that align better with human judgments com-
pared to traditional metrics like BLEU, ROUGE, and BERTScore,
which focus on simple text-level differences [52].

Our evaluation prompt, inspired by Liu et al. [53], presented two
responses to GPT4 (gpt-4-0125-preview): Response A and Response
B, with Response A acting as the ground truth. GPT4 was directed
to assess the coherence of Response B in relation to Response
A. We refrained from revealing which response was the ground
truth or our own creation, as we hypothesized this indication to
be extraneous information for the LLM, given its task to solely
assess the coherence of two responses. The lower Kendall 𝜏 score
(= 0.2900) with human ground-truths for a similar prompt during
our iterative testing, which explicitly defined Response A as the
ground truth, supported this decision.

Given that the coherence metric serves as an umbrella term for
response evaluation, encompassing related aspects such as correct-
ness, phrasing, and verbosity, we further prime the LLM through
few-shot prompting with references. We populate the prompt with
a manually selected sample of questions, VizAbility responses, and
their corresponding ground truth that we derive from the validation
set, alongwith example scorings. To further contextualize the LLM’s
evaluation responses, we direct it to append a one-sentence ratio-
nale to its Likert score. During prompting, if the score deviated from
the 1-5 range, GPT4 reassessed its evaluation of Response B. The re-
sults were formatted as Score: {coherence score} Rationale:
{rationale behind coherence score}.

Our automatic evaluation prompt yielded a Kendall’s 𝜏 score of
0.5526 (𝑝 < 0.001), signifying a strong correlation (|𝜏 | ∈ [0.3, 1.0])
between the automatic assessments and human evaluation [19].
The exact distribution of score ratings for GPT4 assessments is as
follows: “Very Poor”: 16.52% or 132

817 , “Poor”: 5.02% or 41
817 , “Fair”:

3.18% or 26
817 , “Good”: 12.85% or 105

817 , “Very Good”: 62.42% or 510
817 .

GPT4 demonstrated more variability in its assessments, with fewer
outputs clustered around the “Very Good” rating. More precisely,
we observed a reduction of 122 “Very Good” assessments and an

increase of 63 “Good” assessments between the human and LLM
evaluations, which might signify that GPT4 had adopted stricter
and more rigourous criteria. For the choropleth map query, “What
is the highest vaccination rate in Africa?”, which yielded the system
response, “The country with the highest vaccination rate in Africa
based on the geographic map dataset is Rwanda.”, the human eval-
uation designated this response as “Very Good” in overall quality
due to its clarity, explanatory language, and close correspondence
with the ground truth: “The highest vaccination rate in Africa is
78.00% and belongs to Rwanda.”. Nonetheless, GPT4 attributed a
score of “Good”, citing “Both Response A and Response B identify
Rwanda as the country with the highest vaccination rate in Africa,
although Response B does not provide the specific percentage rate.”

5.3 Baseline Comparisons

5.3.1 Comparison to a question-answering system with symbolic
inputs. We compared our system to a similar system that focuses
on chart reasoning [45]. Directly running the system proved chal-
lenging due to compatibility issues with outdated dependencies.
A similar evaluation, using our dataset from blind participants,
was conducted in prior work, revealing an overall factual accuracy
rate of 16% [46]. This evaluation, however, was limited to just 245
queries from the total dataset. It excluded contextual queries and
others deemed unanswerable due to ambiguous wording. Further-
more, the evaluation focused solely on questions related to bar and
line charts, aligning with the system’s supported question types.

Overall, the system demonstrated some level of proficiency in
answering straightforward value retrieval and extrema questions.
The relatively low performance was mainly attributed to query
comprehension and handling of diverse task types (e.g., yes/no and
range questions). Seeking to maintain consistency with the prior
system, we extracted data solely from the bar and line charts for a
more fitting comparison. When narrowing the scope to these two
types of visual stimuli, VizAbility reports ≈ 76.01% accuracy for the
line chart and ≈ 81.82% for the bar chart, only considering ‘Very
Good’ and ‘Good’ responses, signifying a significant improvement
in user query handling.

5.3.2 Comparison to GPT-4V(ision) with image inputs. We con-
ducted a comparative analysis between VizAbility and GPT-4 with
Vision. Supplying GPT-4V with input images of the line chart, bar
graph, scatter plot, and choropleth map, we generated responses to
all 777 analytical, contextual, and visual queries in the test set. We
assessed the quality of GPT-4V responses using our GPT4-based
automatic evaluation pipeline, which has been verified to correlate
strongly with human evaluations. We omitted navigation queries
because it is infeasible to provide just one reference image for the
keyboard-navigable tree view. On the other hand, supplying the
tree view text is essentially equivalent to using VizAbility.

The GPT4 automatic evaluation yielded the following distribu-
tion of scores: 29.86% or 232

777 of responses received a “Very Good” as-
sessment. 10.55% or 82

777 of responses were “Good”, whereas 12.23%
or 95

777 were “Fair”. “Poor” and “Very Poor” responses occurred
at equal frequencies: 23.68% or 184

777 . This discrepancy in perfor-
mance between GPT-4V and VizAbility, which outputs “Very Good”
responses at a frequency of 77.36%, can be attributed to GPT-4V
lacking access to the raw data required for queries that require
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0% 20% 40% 60% 80% 100%

0% 20% 40% 60% 80% 100%

I think that I would like to use this system 
frequently

I found the various functions in this system 
were well integrated

I found the system very cumbersome to use

0% 20% 40% 60% 80% 100%

0% 20% 40% 60% 80% 100%

Strongly Disagree Disagree Neutral Agree Strongly Agree

I thought there was too much inconsistency in 
the system

I would imagine that most people would learn 
to use this system very quickly

0% 20% 40% 60% 80% 100%

0% 20% 40% 60% 80% 100%

0% 20% 40% 60% 80% 100%

I felt very confident using the system

I needed to learn a lot of things before I could 
get going with the system

0% 20% 40% 60% 80% 100%

I thought the system was easy to use

I think that I would need the support of a 
technical person to be able to use this system

0% 20% 40% 60% 80% 100%

0% 20% 40% 60% 80% 100%

I found the system unnecessarily complex

Figure 8: System Usability Scale Survey Results, showing par-

ticipant responses on a Likert scale from ‘Strongly Disagree’

to ‘Strongly Agree’ for various statements about the system’s

frequency of use, ease of use, learning curve, integration of

functions, consistency, need for technical support, and com-

plexity, as part of the qualitative study.

symbolic computations, resulting in inconclusive responses for cer-
tain prompts, such as “What is the average vaccination rate for
countries in the world?”:

“The image you’ve provided is a world map that shows
the share of the population receiving at least one dose
of a COVID-19 vaccine... To determine the average
vaccination rate for countries around the world, one
would need to access the raw data from a reliable
source such as the World Health Organization, a gov-
ernment health department, or a global health track-
ing website...”.

Furthermore, the responses outputted by GPT-4V tend to be
excessively verbose. For instance, in the above response, GPT-4V
initially strays away from the user question by providing an un-
necessary and potentially redundant description of the choropleth
map. On average, GPT-4V responses were longer by 97.69 words,
which can detract from user readability and concision. Yet, GPT-4V
often performed reasonably well on certain visual questions such
as asking overall shapes of trends (e.g., “How is the graph moving?”
“Would it be [...] going up like hills and valleys type of trend?”).

6 EVALUATION: USER STUDYWITH BLIND

PEOPLE

During the development process, we engaged with a blind partic-
ipant who had prior experience using a screen reader on a daily
basis. This participant provided feedback at two intermediate stages
of development in what was an iterative design process. In addi-
tion to this intermediate prototype evaluation, we conducted a
preliminary usability study with six additional blind/low-vision
individuals, during which we prioritized self-guided investigation
over pre-formed questions to simulate real-world encounters with
charts. IRB approval was obtained before the commencement of the

study. The stimuli used in the study was an early version of VizAbil-
ity. While the major features remain unchanged, the improvements
made after the study are described in Section 6.6.

6.1 Participants

We recruited six blind/low-vision individuals from the National
Institute of the Blind [5]. Their demographics are shown in Table 5.
We tried to recruit diverse participants based on their gender and
screen reader expertise. Our participants comprise three females
and three males. Their ages were distributed as follows: two partic-
ipants aged 25-34, two aged 45-54, one aged 55-64, and one aged
65 or older. Two participants have been blind since birth, while the
other four experienced blindness onset later in life. Regarding their
proficiency, all participants possessed at least intermediate experi-
ence, with three classified as advanced and two as experts. In terms
of assistive technology, four participants primarily used JAWS as
their screen reader, while the remaining two utilized VoiceOver
and NVDA, respectively.

6.2 Procedure

The hour-long experiment was conducted over Zoom, and mod-
erated by the first author. Upon entering the session, participants
opened up our system in a web browser and chose a chart of their
choice among the four options: line chart, bar chart, scatterplot, or
choropleth map (see Table 5 for participants’ choice of charts). To
mimic a real-world encounter with VizAbility, we refrained from
giving any contextual information about each chart, in order not
to introduce any bias into the participant’s selection.

The study was divided into three parts. The first two - spanning
roughly 20 minutes each - focused on the individual components
of our multimodal approach—the keyboard-navigable tree view
and the conversational module. The data table was not included in
the study. In the assessment of each component, participants had
5-10 minutes to explore it freely, noting strengths and weaknesses.
Subsequently, the component’s function was explained, followed
by a 10-minute guided exploration led by the moderator.

To conclude, each participant was asked a series of component-
specific questions. For the keyboard-navigable tree view, these
included: “Describe the chart to the best of your capabilities”, “How
easy was it to navigate this interface?”, “How useful is this tool?”
For the conversational module, questions were: “Describe the chart
to the best of your capabilities”, “Assign a ranking for each ques-
tion type based on their usefulness.”, “How easy was it to use this
interface?”, “How useful is this tool?”

The final part centered on the components’ combined function-
ality to assess the potential advantages of their collaborative opera-
tion. After having been exposed to the entire system, participants
were asked to reassess VizAbility based on ease of use and func-
tionality. We maintained a consistent order for the parts without
randomization. We conducted a brief post-task survey, which we
distributed to each participant immediately after their completion
of the study, to learn about the participants’ overall experience with
VizAbility. Participants completed their surveys within 24 hours
of participating in the study, allowing sufficient time for reflection
whilst ensuring that VizAbility remained fresh in their minds.
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PID Gender Age Vision Level Screen Reader Expertise Screen Reader Chart Selected

P1 Male 45-54 Blind with later onset Expert JAWS Bar Chart
P2 Female 65 or older Blind since birth Advanced VoiceOver Line Chart
P3 Female 25-34 Blind with later onset Intermediate JAWS Choropleth Map
P4 Female 25-34 Blind since birth Advanced JAWS Scatterplot
P5 Male 45-54 Blind with later onset Expert JAWS Bar Chart
P6 Male 55-64 Blind with later onset Advanced NVDA Choropleth Map

Table 5: Distribution of Participant Information, detailing gender, age range, level of vision impairment, screen reader expertise,

preferred screen reader technology, and the type of chart selected for the study.

6.3 Analysis Process

Our analysis process involved a qualitative method, considering
the study’s small scale. During each session, the session moderator
took detailed notes, capturing key observations and participant
responses in real-time. Post-session, they reviewed the recordings
of the interviews and interactions. This step involved careful, re-
peated listening to the audio to extract in-depth insights and to
cross-reference them with the notes taken during the sessions as
well as usability survey results. The analysis focused on identifying
recurring themes, patterns of user behavior, and specific instances
of user-system interaction challenges or successes. The analytical
process was iterative, with findings from the initial sessions in-
forming subsequent reviews. Analysis results were discussed with
a senior author to validate interpretations and ensure a diverse
perspective in the analysis.

6.4 Behavioral Observations

Here, we detail participants’ actions and feedback while using Viz-
Ability during the study sessions.

6.4.1 Navigating the tree view. Participants were able to utilize
the tree view using arrow keys and tab shortcuts as reported in
prior studies [47, 75], although the learning curve proved to be
slightly steeper for P2 and P5. P5 remarked on the “cumbersome”
structure of the tree for the bar chart, noting that it was due to
the presence of over 170 unique data values. Rather than tediously
navigating through the data using the down arrow key, P5 wished
for a more efficient method to move between specific nodes within
the tree view. P2 echoed this sentiment, highlighting the risk of
disorientation, particularly with larger and more intricate data sets.

Several participants (P1, P3, P4, P5, P6) independently recognized
the distinctive structure of the tree view, which presents a data set
through visual encoding variables. For example, P5, after navigating
a choropleth map and expressing frustration over manually sifting
through 172 countries without an apparent order, was pleasantly
surprised when using the right arrow key led him to the same
data set, this time organized by vaccination rates in 10 percent
increments. This participant then confirmed that the tree view was
more effective in conveying a visualization’s structure compared
to a traditional data table.

After having used their keyboard to navigate through the tree
view, participants were asked to describe the visual stimuli to the

best of their capabilities. Responses were mixed, with two partici-
pants (P3 and P4) only being able to identify the variables repre-
sented by each axis (country v. percent of population vaccinated,
and average life expectancy v. GDP per capita, respectively). This
result suggests that despite being a good overall indicator of chart
structure, the tree view alone is not sufficient for complete data vi-
sualization. The result was reaffirmed by the usefulness rating most
individuals attributed to the system, with the average hovering
around a 3 out of 5.

6.4.2 Exploring the conversational module. Although 4 Participants
(P1, P2, P3, P5) gravitated towards the text input modality, all af-
firmed the importance of retaining an option for voice input as
well. All but one participant (P1, P2, P3, P4, P5) immediately asked
data-driven questions (either simple fetches for data, like “What
is the vaccination percentage for Haiti” or more complex queries
involving multiple steps), with P6 instead asking a contextual ques-
tion: ”Is there a way to rank the various countries into continents?”
(regarding the choropleth map). This coincided with subsequent
participant ratings for the usefulness of the four query types, with
all users asserting analytical queries as the most useful for chart
comprehension. Most users (P1, P2, P3, P5) could not fathom the
possibility that more broad questions were supported.

Following this independent exploration of the conversational
model, participants were made aware of the four distinct types of
queries and were once again directed to input their own questions;
however, this time around, they had to broadly adhere to one of the
four query classifications. Users demonstrated a greater proficiency
with the conversational module during this guided exploration, with
P1 even chaining multiple individual queries to arrive at a broader
understanding of the chart. By consecutively asking “What is the
temperature for 2020?” and “What color is 2020?”, the participant
was able to deduce that the color ‘red’ indicates positive temperature
values.

We also observed an affinity for contextual queries among the
participant pool. One user (P4) who had little to no experience with
map visualizations prior to the study asked: “What is a choropleth
map?”, to which the LLM outputted a correct response. However,
when the same participant asked, “What is a temporal polarity”
(pertaining to the bar chart), the LLM responded with a definition
tied to linguistics. Although initially taken aback, the user acknowl-
edged the possible ambiguities with the word “temporal polarity”
(which has multiple meanings), and upon rephrasing her query to
incorporate more precision, received a more accurate response. The
participant attributed her realization to the VizAbility’s justification
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(outputted alongside the response), which explicitly told her that it
sourced its answer from the internet.

6.4.3 Integrating the two components. Participants were then in-
troduced to navigation queries. We explained the purpose of these
queries, emphasizing their role in wayfinding and orientation, and
then allowed them to formulate their own navigation queries. All
users concurred that these queries were essential for understanding
the tree view (P6: "Maybe not as much as for smaller datasets, but
I definitely see their use for complex data like this"), a sentiment
echoed in the usefulness ratings they assigned to the integrated
system. While previous Likert scale ratings for the individual com-
ponents averaged around 3, after this introduction, participants
consistently rated the complete system between 4 and 5, with 5
being extremely useful.

Most participants tended to input short and concise navigation
queries. Rather than inputting “How do I get from my current loca-
tion to the percentage vaccinated value for Guam”, one user (P5)
opted for the much simpler “Take me to Guam”. Showcasing its
conversational strengths, our model was able to precisely identify
the starting as well as ending nodes from this colloquial text, yield-
ing the instructions: “Press the right arrow key. Press the down
arrow key two times.”

6.5 User Feedback and Reflection

Participants completed a post-study questionnaire based on the
System Usability Scale (see Figure 8). Notably, most participants (4
Agree; 1 Strongly Agree; 1 Disagree) concurred with the statement:
“I found the various functions in this system were well integrated.”
Results can be found in Figure 8. Participants also valued Viz-
Ability’s commitment to accessibility and transparency, especially
within the conversational module. They envisioned real-world ap-
plications for VizAbility, relating it to their personal experiences.
For instance, P1 saw its potential in providing testing accommoda-
tions for GRE exams, noting its superiority over human proctors
in translating visual graphs. P6, who teaches the NVDA screen
reader to the BLV community, expressed interest in incorporating
the system into his lessons. However, there was also constructive
feedback.

Although most participants deemed the structure of navigation
query responses (a sequence of directions) to be satisfactory, P2
advised that the system should automatically transport the user’s
cursor to the desired location, as opposed to currently requiring the
user to manually traverse the tree view themselves. One participant
(P5) sought more control over the nature of LLM responses out-
putted by the conversational model. He brought up the necessity of
having some implementation of a dial to regulate the verboseness
of the outputted answers. The same user who commented on the
cumbersome structure of the tree view (P5) further elaborated that
he would prefer a more concise raw data table in its place, especially
for less extensive datasets. Apropos implementing a raw data table,
P5 remarked: "I would prefer a simple table. I’m used to it. I know
how to do it. Not all blind people do, but I do".

6.6 Changes After User Feedback

Here, we briefly describe how we incorporated the lessons learned
from the user study.

Injecting chart information into contextual queries. D3 Partici-
pant 4’s experience revealed a limitation in our initial contextual
query handling: VizAbility often misinterpreted user intent due
to missing chart information. For instance, it treated “temporal
polarity” as a linguistic term, not a data dimension depicted in
the chart. We addressed this by enriching prompts with chart tree
view text (Figure 3), which led to correct interpretation of the data
(e.g., "temporal polarity" in global temperature data). This observa-
tion also led to exploring query ambiguity in general, resulting in
pre-processing question refinement (Section 4.5).

Automating navigation to end-points in the tree view. D4 Partici-
pant 2’s preference for automatic traversal suggested that manually
pressing a series of keys can be cumbersome, especially for lengthy
navigation paths. Originally, we aimed to ensure transparency and
grant users control over the process. However, recognizing this
issue, we decided to introduce an option for automatic traversal
(see Section 4.4.4). While manual navigation might become tedious
with familiarity, we kept it as a default option to accommodate
varying technical proficiencies.

Providing a raw data table. D5 To address Participant 5’s con-
cerns regarding the complexity of navigating the tree view, we
introduced a conventional raw data table as an alternative (see
4.3). Though this addition may not significantly contribute to the
novelty of our work, it underscores our dedication to creating an
inclusive system.

Providing query suggestions. D6 The initial self-guided explo-
ration of charts showed that most participants (P1, P2, P3, P5)
struggled to ask questions beyond data-retrieval queries. Despite
recognizing the value of visual, contextual, and navigation queries,
participants were unaware of these query types until they were
explicitly explained by the moderator. This observation, along with
P2’s suggestion for help documentation and preference for inter-
active guidance, led to the addition of query suggestions to the
system (see Section 4.5 and Section 4.6).

7 DISCUSSION & FUTUREWORK

Our evaluation studies underscore the potential of VizAbility and
also pinpoint areas for enhancement. We reflect on the limitations
and challenges, paving the way for future opportunities.

7.1 Limitations and Opportunities

Customizing verbosity levels. Despite our initial aim to offer
concise and informative answers, P5’s recommendation for user-
adjustable response verbosity underscored the importance of user
agency over designer-imposed settings. Given that speech is pro-
cessed serially, the text length read by screen readers becomes a
pivotal design consideration. This concern has been reiterated in
prior research [9, 14, 38, 40, 75]. Similarly, offering users the capa-
bility to customize node descriptions in the tree view could prove
advantageous.

Enhancing understanding of user context and question answer-

ability. Our quantitative study results show that there is still an
opportunity to improve the conversation module. These enhance-
ments encompass recognizing unanswerable questions, effectively
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managing broad queries, and further refining the accuracy of an-
alytical and visual query responses. Although the conversational
module is not perfect in interpreting the ambiguous nature of natu-
ral languages, our efforts to make responses safe and explanatory
still allowed participants to easily recover from mistakes.

7.2 Need for Rigorous and Inclusive Benchmark

Testing

The cornerstone of our work is the conversational module, designed
to address the challenges with keyboard navigation. While the
existing dataset enabled ameaningful evaluation of response quality
based on real-world queries, our study revealed the need for a more
extensive and inclusive benchmarking dataset that incorporates
viewpoints of blind and low-vision individuals [30].

Addressing advanced query types for a variety of chart types. Our
evaluation was constrained not only by the four chart types but
also by the limited range of questions (e.g., three query types),
preventing a full assessment of VizAbility’s scalability to larger
datasets and more nuanced queries. For example, although we
noted some visual queries necessitating reasoning over data and
contextual queries seeking chart information, our limited dataset
was not sufficient to capture multi-category questions requiring
advanced multi-hop reasoning [18]. Furthermore, our study did not
evaluate situational questions related to a user’s current interest
point within the tree view, which our dataset lacks. Questions
dependent on understanding previous conversational context were
also not explored. Considering the generative abilities of LLMs,
synthetically generating these types of questions using human-
created examples and advanced prompt engineering might be a
viable method [49].

Incorporating vision and testing with varied metrics. Although
GPT4V falls short in performance compared to VizAbility, it shows
promising visual description capabilities. This advancement con-
trasts with a few years ago when interpreting synthetic images like
graphic designs and data visualizations was inferior to natural scene
images [16]. Similarly, recent image-based ChartQAs still depend on
OCR to extract text from images and create data tables [37, 44]. An-
alyzing the capabilities of emerging vision-LLMs—from low-level
analytic tasks like value look-ups and comparisons to higher-level
cognitive operations like explaining chart patterns—will help find
ways to integrate vision capability with the symbolic processing of
VizAbility to achieve greater performance. Moreover, expanding
beyond mere correctness to include other pertinent measures such
as fluency, informativeness, and relevance to the query [52] will be
helpful for further improving the user experience of VizAbility.

7.3 Integrating into Existing Visualization Tools

Accommodating practitioners’ visualization workflows. Since Viz-
Ability operates under the assumption that a chart specification is
available, it may not be directly applicable to charts currently found
on the web. Instead, our vision is to integrate VizAbility within
existing data visualization platforms. Prior research underscores
that many data visualization practitioners base their choices on the
accessibility features of these platforms [39]. Another study high-
lights the lack of accessible design support these tools offer [47].

Exploring the design space to determine how VizAbility can seam-
lessly fit into current data visualization workflows would be com-
pelling. Additionally, considering the degree of customization for
data visualization designers, such as setting default verbosity lev-
els and offering query guidance & suggestions, warrants further
investigation.

Supporting multiple-coordinated and dynamic data visualizations.

Furthermore, many existing visualization tools are evolving beyond
creating singular charts to producing multi-coordinated charts or
dashboards. Exploring the expansion of VizAbility to accommodate
these advanced forms of visualization presents an intriguing chal-
lenge. A recent study by Srinivasan et al. [65] investigates this prob-
lem by developing dashboards tailored for screen reader navigation,
integrated with descriptions that aid in dashboard comprehension
and interaction. Key questions arise in this context: How might
we integrate a conversational agent into these dashboards? How
should the agent resolve ambiguities in user queries about relevant
charts? What constitutes an ideal design for mixed-initiative inter-
action in such environments? Furthermore, an exciting frontier is
enabling users to interactively generate charts for data exploration.
These questions open up new and unexplored avenues in the field
of visualization accessibility.

8 CONCLUSION

In this study, we introduced VizAbility, a tool that enhances struc-
tured chart navigation through conversational interactions. Our
quantitative assessments demonstrate a notable advancement be-
yond existing systems, and our qualitative analyses underscore the
importance of the system’s integrated approach and its dedication
to transparency. As a direction for future research, we aim to de-
velop a more comprehensive and inclusive benchmark dataset to
foster continuous enhancements of VizAbility, along with integrat-
ing vision capabilities to bridge the current performance gaps.
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