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ABSTRACT
Deep learning (dl) models are being widely deployed in real-world
applications, but their usage remains computationally intensive
and energy-hungry. While prior work has examined model-level
energy usage, the energy footprint of the dl frameworks, such as
TensorFlow and PyTorch, used to train and build these models, has
not been thoroughly studied. We present Greenlight, a large-scale
dataset containing fine- grained energy profiling information of
1284 TensorFlow api calls. We developed a command line tool
called CodeGreen to curate such a dataset. CodeGreen is based on
our previously proposed framework FECoM, which employs static
analysis and code instrumentation to isolate invocations of Tensor-
Flow operations and measure their energy consumption precisely.
By executing api calls on representative workloads and measuring
the consumed energy, we construct detailed energy profiles for the
apis. Several factors, such as input data size and the type of opera-
tion, significantly impact energy footprints. Greenlight provides
a ground-truth dataset capturing energy consumption along with
relevant factors such as input parameter size to take the first step
towards optimization of energy-intensive TensorFlow code. The
Greenlight dataset opens up new research directions such as pre-
dicting api energy consumption, automated optimization, modeling
efficiency trade-offs, and empirical studies into energy-aware dl
system design.

KEYWORDS
Energy measurement, Green Artificial Intelligence, Fine-grained
energy measurement

1 INTRODUCTION
dl models have set state-of-the-art performance across several do-
mains such as computer vision, natural language processing, and
speech recognition [3, 5]. However, their extensive computational
requirements for training and inference incur massive energy costs
that continue to grow over time. For example, a recent study found
that an image generation model consumed enough energy to fully
charge an average smartphone to create a single image [13]. This
level of energy intensity has raised serious concerns over the sus-
tainability of increasingly large dl models. In fact, the computing
needs of state-of-the-art models double approximately every 3.4
months [1]. Given these trends, it is required to improve their effi-
ciency and limit the environmental impact of resource-intensive
artificial intelligence [19].

The energy efficiency of dl-based systems can be improved by
optimizing frameworks such as TensorFlow, PyTorch, and JAX,
which are used to construct dl models. These frameworks expose
apis as building blocks that can be selected and composed in ways
that profoundly affect model energy footprints. The same model
can have vastly different energy costs depending on framework
choice [6], hardware accelerators [4, 15], and the organization of
its internal computations and data flows [10, 11].

For instance, Georgiou et al. [6] found that TensorFlow pro-
grams are generally more energy-efficient than PyTorch equivalents
during the training stage, while PyTorch offers better energy effi-
ciency during the inference phase. Optimizing energy consumption
of a large dl model requires fine-grained energy profiles of their
building blocks. Attributing energy consumption to specific apis
can help us isolate inefficiencies and, in turn, facilitate addressing
them. api-level profiling provides the necessary “white-box” vis-
ibility to make informed optimizations that improve the energy
efficiency of dl software.

Prior work on improving the energy efficiency of dl has focused
primarily on model-level techniques such as pruning, quantization
and knowledge distillation [7, 12]. However, there has been lim-
ited investigation into the software frameworks and api calls used
to construct, train, and run these models. Existing studies lack a
detailed examination of the energy footprint of common frame-
work operations. While existing tools can provide coarse-grained
energy measurements at the system or process level, fine-grained
attribution and profiling at the api level is missing. To the best of
our knowledge, no comprehensive dataset exists quantifying the
energy consumption of individual dl framework api invocations.
This hinders developers from making optimized api choices and de-
veloping energy-aware coding practices. For example, a developer
using tf.keras.Model.fit(), which can consume over 100 Joules
per epoch when training CNNs, may be unaware that switching
to tf.keras.Model.fit_generator() can reduce energy usage
by over 20% in certain contexts by eliminating redundant data pro-
cessing. Our fine-grained profiling provides developers with the
information needed to substitute energy-intensive apis with more
efficient alternatives depending on usage context.

Our work addresses the lack of fine-grained energy profiling
for dl-based software through Greenlight, an api-level energy
consumption dataset for TensorFlow. We developed a command
line interface (cli) tool that utilizes FECoM [16] to instrument
TensorFlow code and measure the energy usage of api calls. We
make the following contributions to the state of the art.
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Figure 1: Dataset construction process

• Greenlight: A dataset containing 1, 100 fine-grained en-
ergy measurements for TensorFlow apis along with other
relevant meta-data including execution time, timestamps,
power draw time series, input argument, keyword and ob-
ject size, hardware temperatures, Git commit info such as
date, hash, and api call code location.

• CodeGreen: An easy-to-use cli tool to profile the energy
consumption of TensorFlow apis.

Replication package: The proposed dataset Greenlight [18] as
well as our cli tool CodeGreen [17] are publicly available.

2 DATASET CONSTRUCTION
This section summarizes the mechanism that we adopt to iden-
tify and download the repositories and set up the environment to
execute CodeGreen to obtain energy consumption data.

2.1 Downloading repositories
As shown in step 1 of Figure 1, we follow the steps mentioned
below to identify and download repositories.

• First, we filter repositories using the GitHub Search api.
In this step, we consider repositories with ≥ 100 stars and
“tensorflow” in the title or owner name.

• We filter out repositories that have not been updated since
Sept 2019 (TensorFlow 2 release) to focus on code using
TensorFlow 2.

• Weobtain 146 repositories covering a diverse set of domains,
including computer vision, natural language processing,
distributed computing, and so on.

2.2 Preprocessing
In step 2 , we preprocess the selected repositories, adopting the
following steps. We filter out repositories that do not come with
the declared required dependencies, such as requirements.txt.
Such declarations are critical to recreate execution environments.
In this study, we keep our focus on Python notebooks as target
scripts because they are standalone without the complexities of
local dependencies. The final filtered set contains 564 Python note-
book projects written using TensorFlow 2 apis suitable for energy
profiling targets.

2.3 Creating virtual environments
Once the final set of 564 target projects is identified, as shown in
3 , we create isolated virtual environments for each project to
install the required modules and dependencies, ensuring smooth
execution. We utilize requirements.txt in each repo to install
dependencies using the pip package manager into the virtual envi-
ronment. This automated setup ensures properly configured virtual
environments to run notebooks, making our experiments repeatable
and replicable.

2.4 CodeGreen
Step 4 involves invoking our tool CodeGreen. It is a cli tool that
wraps our FECoM framework [16] to perform energy profiling of
TensorFlow code. CodeGreen enhances FECoM by providing an
easy installation via pip, a streamlined interface and automation
for energy profiling workflows. The cli abstraction makes utilizing
FECoM’s capabilities more accessible to developers. It operates in
three key stages that we elaborate on below.

2.4.1 Patching. The tool CodeGreen leverages and extends a static
instrumentation module of FECoM referred to as Patcher to isolate
TensorFlow api calls within the code. Patcher parses the abstract
syntax tree of the Python code and inserts wrapper code before
and after each identified TensorFlow invocation. This wrapper
code triggers the start and end of energy measurement for that api
call. Patcher also extracts metadata such as function arguments,
keywords, objects and their respective sizes, and execution times.
CodeGreen enhances Patcher to capture GitHubmetadata, expand
support for profiling different argument types, and track the code
line number of each api call.

2.4.2 Program execution. In step 5 , CodeGreen executes the
instrumented Python notebook within its configured virtual envi-
ronment. The tool invokes the profiled TensorFlow apis wrapped
by the instrumentation code.

2.4.3 Energy measurement. As each instrumented api call executes,
the inserted wrapper code triggers our FECoM framework to start
and stop energy measurement as shown in 6 . FECoM uses hard-
ware performance counters provided by hardware vendors and
exposed by the operating system to capture precise energy con-
sumption data from the cpu, gpu, and ram during api execution.
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Ensuring machine stability and temperature is a critical aspect
in this context. CodeGreen performs pre-measurement checks fol-
lowing the approach used in FECoM. This includes a temperature
check that the cpu and gpu are below a threshold to maintain ther-
mal stability. An energy stability check is also conducted to ensure
cpu, ram, and gpu power draw have low fluctuation, indicating
no outside processes are interfering. Once both temperature and
energy stability criteria are met, CodeGreen proceeds to execute
instrumented scripts and collect measurements. These rigorous
stability checks reduce noise and variability that could skew results,
ensuring consistent conditions. To further improve robustness, each
api call measurement is repeated five times. The mean energy is
taken as the final measurement.

By automating the end-to-end process of instrumentation, ex-
ecution, and fine-grained energy profiling, CodeGreen enables
constructing api-level energy consumption dataset in a robust and
reproducible manner.

2.5 Greenlight dataset description
2.5.1 Dataset overview. The Greenlight dataset provides fine-
grained energy consumption measurements for 1284 TensorFlow
api calls for 527 unique TensorFlow apis across 564 open-source
TensorFlow projects. The dataset contains a diverse range of op-
erations, spanning layers, models, training, and other aspects of
TensorFlow.

As a result of the energy profiling, the dataset incorporates com-
prehensive metadata for each TensorFlow api call, as shown in
the example profile in Listing 1. This includes execution time of the
api call, timestamps such as start and end times for the api call, perf
measurement, and nvidia-smi sampling. Similarly, Timeseries power
draw data is captured for cpu, gpu, and ram during the api exe-
cution, input argument size (in bytes) are logged in for arguments,
keywords and objects, hardware temperatures captures thermal con-
text of cpu, gpu and ram. Additionally, git commit metadata such
as date, hash-id, script path, and api call code location is extracted
for the api invocation. This metadata is combined with the energy
measurements to generate detailed profiles for each TensorFlow
api invocation.
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Figure 2: Energy consumption by hardware component

2.5.2 Dataset size and distribution. The Greenlight dataset con-
tains a total energy consumption of 144, 067 Joules across the eval-
uated TensorFlow apis. As seen in Figure 2, the gpu is the most

{ "tensorflow.io.TFRecordWriter.close()":
{

"energy_data": {
"cpu": "Power draw time series",
"ram": "Power draw time series",
"gpu": "Power draw and Temp. time series",

},
"times": {

"start_time_execution": "Execution start time",
"end_time_execution": "Execution end time",
"start_time_perf": "perf start time",
"end_time_perf": "perf end time",
"sys_start_time_perf": "erf sys start time",
"start_time_nvidia": "nvidia-smi start time",
"end_time_nvidia": "nvidia-smi end time",
"sys_start_time_nvidia": "nvidia sys start time",
"begin_stable_check_time": "stability time stamp",
"begin_temperature_check_time":"temp. time stamp"

},
"cpu_temperatures": "Temperature time series",
"settings": {

"max_wait_s": 120,
"wait_after_run_s": 30,
"wait_per_stable_check_loop_s": 20,
"tolerance": 0,
"measurement_interval_s": 0.5,
"cpu_std_to_mean": 0.03,
"ram_std_to_mean": 0.03,
"gpu_std_to_mean": 0.01,
"check_last_n_points": 20,
"cpu_max_temp": 55,
"gpu_max_temp": 40,
"cpu_temperature_interval_s": 1

},
"input_sizes": {

"args_size": "Size in bytes",
"kwargs_size": "Size in bytes",
"object_size": "Size in bytes"

},
"project_metadata": {

"project_name": "Repo name",
"project_repository": "https://github.com/...",
"project_owner": "owner",
"project_branch": "master",
"project_commit": "Commit hash",
"project_commit_date": "Time stamp",
"script_path": "/home/...",
"api_call_line": "Line number"

}
}

}

Listing 1: Schema of a TensorFlow api call in Greenlight

energy-intensive component, consuming 79, 785 Joules (55%). The
cpu uses 55, 843 Joules (39%), while the ram uses 8, 439 Joules (6%).

The data exhibits high variability in energy consumption be-
tween operations as shown in Figure 2. The standard deviation of
total energy per api call is 3, 429 Joules, which is 268% of the mean.
This is likely due to differences in computational complexity and
hardware utilization between operations.
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The dataset covers a wide range of energy intensity, from a mini-
mum of 3.41 Joules for tf.constant to a maximum of 30, 000 Joules
for tf.keras.Sequential.fit. Optimizing the most intensive op-
erations can provide significant energy savings.

The variability and range highlight the importance of fine-grained
energy profiling. Subtle code changes can have an outsized impact
on hardware efficiency. The Greenlight dataset enables further
analysis into the root causes of energy hotspots within Tensor-
Flow workloads.

3 POTENTIAL RESEARCH APPLICATIONS
The Greenlight dataset and CodeGreen tool enable new research
directions to build greener and more energy-efficient deep learning
systems.

• Predicting api energy consumption: The dataset pro-
vides ground truth measurements not only including total
energy consumed by an api but also other factors (such as
passed parameters and their size). The captured informa-
tion can be used to train machine learning models to predict
the energy consumption of TensorFlow operations. Such
an application can guide developers towards more efficient
apis.

• Automated api optimization: The energy profiles could
also be utilized to automate the optimization of deep learn-
ing code, such as by auto-selecting api alternatives with
lower energy or sequence optimizations.

• Modeling energy-efficiency trade-offs: Researchers can
leverage the dataset to gain insights into trade-offs between
model accuracy, performance, and energy consumption.
This can guide the development of energy-aware models.

• Enriching documentation: The api-level energy data
can be incorporated into TensorFlow documentation to
promote energy-aware usage.

• Education: Educators can adopt CodeGreen and the dataset
into courses on deep learning and green software engineer-
ing to instill energy-aware coding habits.

4 RELATEDWORK
Prior studies have examined the energy consumption of deep learn-
ing systems using coarse-grained measurements. Software tools
such as PowerTop and Perf leverage hardware counters to profile
system or process-level power but lack the granularity to attribute
energy to fine-grained specific code [14, 20]. Physical power me-
ters [9] enable accurate readings but require special equipment
and measure energy only at the system level. Recent frameworks
such as CodeCarbon [2] and Experiment Impact Tracker [8]
estimate energy during model training but use sampling intervals
> 10 seconds, which are too coarse for fine-grained analysis.

Research has also aimed to improve model efficiency through
compression, quantization, and specialized training algorithms [7,
12]. However, model-centric techniques require retraining and can-
not optimize existing models. Optimizing the surrounding Tensor-
Flow software stack is an under-explored dimension. Prior work
has lacked a detailed examination of the energy footprint of com-
mon TensorFlow ops used to build, train, and run deep learning
models. Our work addresses this gap through Greenlight, the

first fine-grained api energy profiling dataset for TensorFlow. By
isolating and measuring api calls through static instrumentation,
Greenlight establishes ground truth consumption for ops, reveal-
ing high variability across data sizes, hardware, and api sequences.

Greenlight complements model-based approaches by enabling
optimization of intensive TensorFlow code without changes to
model architecture or hardware. It encourages energy-aware soft-
ware development through detailed api-level profiling. By open-
sourcing Greenlight, we take a step towards sustainable and effi-
cient AI systems.

5 THREATS TO VALIDITY
Internal Validity: Several factors could potentially affect the accu-
racy of the fine-grained energy measurements. Background oper-
ating system processes running on the machine introduce noise
can skew results. We mitigate this by minimizing non-essential
processes and subtracting out baseline idle energy. Additionally, we
perform rigorous machine stability checks prior to measurement
to reduce variability in factors like temperature and power draw
that could impact results. To enhance reliability, we executed each
experiment 5 times and automated the patching, profiling, and data
collection. We provide detailed logs for replicability; the dataset
and tool are hosted on open-source repositories.
External Validity: Our experiments were conducted on a fixed hard-
ware configuration. Energy consumption is highly dependent on the
underlying processor, GPU, etc. However, we measure and subtract
baseline idle energy to improve hardware generalization. Analyzing
multiple systems could further strengthen generalizability.

6 CONCLUSIONS, LIMITATIONS, AND
FUTUREWORK

In this work, we present the Greenlight dataset containing fine-
grained energy profiling information for 1284 TensorFlowapi calls
across 564 projects. We also demonstrate an energy profiling tool,
CodeGreen. By providing an open-source tool for energy profiling
and offering the first ever created energy consumption dataset for
TensorFlow apis, we open up many research possibilities.

However, our study has certain limitations. Specifically, the pre-
sented dataset focuses only on the TensorFlow framework. Also,
experiments are limited to a single hardware configuration; ana-
lyzing the energy consumption of programs on multiple platforms
would improve generalizability. In the future, we aim to expand
the dataset from the framework, hardware, workload, and profiling
technique aspects. We will perform empirical studies to uncover
relationships between efficiency, code patterns and data properties.
We plan to incorporate energy profiles into TensorFlow documen-
tation to promote awareness. Finally, we hope to adopt Greenlight
in educational contexts to instil energy-aware coding habits in class-
rooms.
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