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Context: The constant growth of primary evidence and Systematic 

Literature Reviews (SLRs) publications in the Software Engineering 

(SE) field leads to the need for SLR Updates. However, searching 

and selecting evidence for SLR updates demands significant effort 

from SE researchers. Objective: We present emerging results on 

an automated approach to support searching and selecting stud- 

ies for SLR updates in SE. Method: We developed an automated 

tool prototype to perform the snowballing search technique and 

to support the selection of relevant studies for SLR updates using 

Machine Learning (ML) algorithms. We evaluated our automation 

proposition through a small-scale evaluation with a reliable dataset 

from an SLR replication and its update. Results: Effectively au- 

tomating snowballing-based search strategies showed feasibility 

with minor losses, specifically related to papers without Digital  

Object Identifier (DOI). The ML algorithm giving the highest perfor- 

mance to select studies for SLR updates was Linear Support Vector 

Machine with approximately 74% recall and 15% precision. The use 

of such algorithms with conservative thresholds to minimize the 

risk of missing papers can already significantly reduce evidence 

selection efforts. Conclusion: The preliminary results of our eval- 

uation point in promising directions, indicating the potential of 

automating snowballing search efforts and of reducing the num- 

ber of papers to be manually analyzed by about 2.5 times when 

selecting evidence for updating SLRs in SE. 

 

 

KEYWORDS 

Systematic Review Update, SLR Update, Searching for evidence, 

Selecting evidence 

 

 

1 INTRODUCTION 

Evidence-Based Software Engineering (EBSE) has as the main in- 

strument Systematic Literature Reviews (SLRs) to summarize evi- 

dence from primary studies (e.g., case studies, surveys, controlled 

experiments), providing recommendations for practitioners and 

supporting the decision-making process in Software Engineering 

(SE) [15]. 

Over the almost 20 years of SLRs in SE, the number of SLRs has 

increased substantially [17, 19], leading to the need to update SE 

SLRs [17]. A not-maintained SLR could lead researchers to obsolete 

conclusions or decisions about a research topic [33] (e.g., studies 

that employed a particular technology that is now outdated) [36]. 

Performing SLR updates demands significant effort especially 

because of the rapid increase of available evidence [31, 38]. Identi- 

fying studies for SLR consists of two main activities: (i) searching 

for potentially relevant studies and (ii) selecting the real relevant 

ones. 

Aiming to facilitate the search activity, Felizardo et al. [8] in- 

troduced the use of forward snowballing (i.e., citations analysis 

from the included studies in the original SLR a.k.a. seed set [34]) 

to support searching for evidence in SLR updates. A few years 

later, Wohlin et al. [36] further evaluated search strategies for SLR 

updates and found that the use of a single iteration forward snow- 

balling employing as a seed set the original SLR and its primary 

studies tends to be the most cost-effective way to search for new 

evidence when updating SLRs. 

With respect to reducing the effort of study selection consider- 

ing specifically the SLR update scenario, only two attempts have 

been investigated by researchers [11, 33]. Both studies present ap- 

proaches addressing automation support: Felizardo et al. [11] based 

their approach on Visual Text Mining (VTM) techniques, while 

Watanabe et al. [33] demonstrated the potential of supervised Ma- 

chine Learning (ML) algorithms to support the selection activity. 
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The goal of this study is to propose and evaluate an automated an 

approach to support both the searching and selecting of studies for 

SLR updates in SE. To achieve this goal, we developed an automated 

tool prototype to perform the snowballing search technique [34] 

and also to support the selection of relevant studies for SLR updates 

by investigating the practical use of ML algorithms. We evaluated 

our automation proposition by performing small-scale evaluation 

[37] with a reliable dataset from an SLR replication [35] and an 

ongoing update. Our preliminary results indicate that snowballing- 

based search strategies can be fully automated with minor losses 

and that significant effort can be saved in SLR update study selection 

using ML, allowing a conservatively reduced number of papers to 

be manually analyzed by about 2.5 times. 

The remainder of this study is organized as follows. Section 

2 presents a brief background and related work. In Section 3 we 

describe the prototype tool. The small-scale evaluation is reported 

in Section 4. Section 5 discusses our results. Section 6 relates threats 

to validity. Finally, Section 7 concludes our work. 

 
2 BACKGROUND AND RELATED WORK 

According to Mendes et al. [17] an SLR update is a new version 

of a published SLR that includes new primary studies that can 

come from a different search strategy than the original SLR (e.g., 

snowballing, manual or database search). Identifying new relevant 

evidence for updating an SLR is one of the initial steps in identifying 

the need and possibility of updating an SLR. 

In SE, there are studies that investigated search strategies dedi- 

cated to searching for evidence for updating SLRs. Felizardo et al. 

[8] proposed the use of forward snowballing as a search strategy 

to update SE SLRs. Their results showed a reduction of more than 

five times the quantity of primary studies to be analyzed during 

an SLR update. Later, in 2020, Wohlin et al. [36] further investi- 

gated the use of forward snowballing to update the SE SLRs. Their 

study proposed and evaluated guidelines for the search strategy 

to update SLRs in SE. They found that using a single iteration of 

forward snowballing, with Google Scholar as the search engine, 

and employing the original SLR and its primary studies as a seed set 

tends to be the most cost-effective way to search for new evidence 

for updating an SLR. One of the goals of our study is to automate 

forward snowballing as proposed by [8, 36] to facilitate the search 

activity. 

Given that the selection of evidence resulting from the execution 

of the search strategy is a laborious activity [7, 10], there are two 

related works that address alternatives to remedy this issue in 

SLR updates. The first one by Felizardo et al. [11] explored visual 

text mining to support selecting new evidence (primary studies) 

for SLR updates. The tool presented, called Revis, connects the 

new evidence with the evidence of the original SLR applying the 

KNN (K-Nearest Neighbor) Edges Connection technique presenting 

the results in two different visualizations: content-map and Edge 

Bundles diagram. The results showed an increase in the number 

of studies correctly included compared to the traditional manual 

approach. 

The second one by Watanabe et al. [33] also takes advantage 

of the fact that a published SLR that needs updating already has a 

list of included studies. They investigated using text classification 

 
techniques, including supervised ML algorithms (Decision Tree and 

Support Vector Machines), to make the initial selection of primary 

evidence (based only on the title and abstract of the studies) to 

update SLRs. The study indicated potential of using automated 

techniques to reduce the effort required to select studies for SLR 

updates. 

It is worth mentioning that automation of the search and selec- 

tion of studies has been also investigated in the context of SLR 

conduction, for example: (i) Carver & Felizardo [9] present an 

overview of existing automation alternatives for all the activities of 

the SLR process; and (ii) Napoleão et al. [20] focus on the search and 

selection activities presenting a systematic mapping on existing 

automation support to search and selection of studies addressing 

both the SE and medicine domains. 

Our study builds on knowledge gathered in the related work and 

proposes and investigates a search and selection approach with 

main focus on the SLR update scenario. 

 

 
3 TOOL DEVELOPMENT 

In this Section, we present details about our prototype tool devel- 

oped to support the snowballing search activity and the selection 

of studies activity for SLR Updates. 

We started with the development of a prototype tool to perform 

both snowballing techniques, forward (citation analysis) and back- 

ward (references analysis) [34]. Even though the main objective 

of this study is to investigate automation support for searching 

and selecting studies for the SLR updates, which do not require 

backward snowballing, during development we noticed that the de- 

sign of the forward solution was easily replicated for the backward 

solution. Therefore, we opted for the development of a snowballing 

tool addressing both types. 

The execution flow of our proposed algorithm for developing 

the snowballing prototype tool is shown in Figure 1. The snow- 

balling automation is preceded by inputs from the user in the form 

of Digital Object Identifier (DOI) URLs of papers in the seed set. 

Following this, the implementation code is run and the user is asked 

to inform the number of snowballing iterations he/she wants to 

run and whether they wish to proceed with either backward or 

forward snowballing, or both. We chose to add these two inputs 

because, for the context of SLR updates, a single iteration of forward 

snowballing is enough to return the relevant studies [8, 36]. 

The snowballing solution (backward and forward) is implemented 

by querying the Semantic Scholar API [30] based on the DOI of 

studies. The metadata returned as the query results are employed 

to extract the DOIs of citations and references cited in the queried 

study. In case of studies without DOIs, CrossRef API [5] is queried 

for DOIs by providing the input as a reference string generated 

using the keys ‘authors’, ‘title’, ‘venue’, and ‘year’ returned in the 

metadata by Semantic Scholar [30]. 

Next, the acquired DOIs are passed through a redundancy check 

(for subsequent iterations) to ensure that the extraction has not 

been done for them in previous iterations. The main part of the  

data acquisition starts with getting the bibliographical metadata  

of the references and citations in the BibTeX format, by making a 

request to the DOI using the Urllib [24] library. 
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Figure 1: Execution flow of the snowballing tool 

 

The abstract is usually missing in the response and hence we 

need to apply other methods to get the abstract. For the abstract  

extraction, we make use of ResearchGate [27], which allows re- 

searchers and students free access to abstracts of scientific publica- 

tions and preprints of research work. We employed web scraping 

to log in to ResearchGate with institutional credentials, and query 

for the studies using the DOIs. As the page is rendered by the 

browser, the abstract is extracted and saved to the BibTeX of the 

corresponding study. 

The results of the multiple iterations of the snowballing process 

are stored in one common CSV file and one common BibTeX file 

at the end of the runs. This applies to each type of snowballing.  

Therefore, if the user wishes to perform both backward and forward 

snowballing together, there will be 2 separate files (CSV and .bib) 

for each type of snowballing. The CSV file stores the reference 

strings, the corresponding DOIs, the status of the extraction, and 

the iteration number. The reference string is generated using the 

keys ‘authors’, ‘title’, ‘venue’, and ‘year’ returned in the metadata by 

Semantic Scholar [30], which are joined to produce a string similar 

to the Chicago format of referencing. This is done because the full 

reference of a study is not returned by the Semantic Scholar. The 

status of the extraction for a particular study uses the following 

implicit phrases: “Extraction successful", “DOI not found”, “.bib file 

not found”, “Abstract not found”, and “Done already in X” where X 

is the iteration number. 

Since we store the results of all the iterations in a common CSV 

file, the column “iteration number” tells us in which iteration of 

snowballing a particular study was discovered. The BibTeXs of the 

studies are stored in a common .bib file. Each BibTeX is appended 

to the common BibTeX file after each extraction phase. Another 

feature of the tool helps us to obtain the BibTeX file for the seed 

set as well. 

Regarding the selection of studies portion of the tool, we opted 

to evaluate a range of ML algorithms known to perform well for 

text classification [1, 22]: XGBoost (XGB) [4], Linear Support Vec- 

tor Machines (LSVM) [16], Logistic Regression (LogReg) [12], and 

Multinomial Naïve Bayes (MNB) [14]. We chose them because all 

four algorithms have a regularization term, which plays an impor- 

tant role in combating overfitting and underfitting in unbalanced 

datasets by adding penalties to the loss function. The second-most 

important term is “class weight” which prevents the prejudice of the 

it. They are reciprocal of the class frequencies. We detail the tool’s 

selection process and parametrization in Section 4.2 by providing a 

practical evaluation example. 

4 SMALL-SCALE EVALUATION 

To evaluate our prototype tool, we performed a small-scale eval- 

uation [37]. According to the smell indicator proposed by Wohlin 

& Rainer [37], the correct label for our evaluation is small-scale 

evaluation instead of a case study. However, to guide and report our 

evaluation process we followed the five main steps for case studies 

proposed by Runeson et al. [28]: Design, preparation, collecting 

data, analysis, and reporting. 

4.1 Design 

Our design consists in selecting a published SLR replication [35] and 

its ongoing SLR update evaluation instrument to search for studies 

through snowballing iterations and perform an initial selection of 

potentially relevant studies to be included in an SLR update. 

To evaluate the prototype tool’s capability of performing back- 

ward and forward snowballing, we opted to use the SLR replication 

study [35] since it documents in the supplementary material1 the 

results of each snowballing iteration. In summary, our goal with 

this is to illustrate the tool’s potential to be used to perform both 

snowballing search types in an SLR conduction process when a seed 

set of studies is known by the authors (e.g. selected from database 

search [35]). 

Next, to evaluate the tool’s capability of being employed in the 

SLR update context, the main goal of our study, we used the 45 

selected studies by the SLR replication [35] as a seed set to per- 

form an iteration of forward snowballing and then apply the ML 

algorithms on a reliable and complete dataset from the ongoing 

SLR update of [35]. In this replication and the ongoing update, the 

inclusion and exclusion of new studies were conducted based on 

individual assessments and the consensus of three experienced SLR 

researchers, allowing us to have confidence in this data for building 

reliable training and testing sets. 

4.2 Preparation and Collecting data 

To evaluate the tool’s capabilities to perform backward and forward 

snowballing we first prepared our seed set by obtaining the DOI of 

model towards the minority class, by assigning a higher weight to    
1  https://ars.els-cdn.com/content/image/1-s2.0-S0950584922000659-mmc2.pdf 
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the studies mentioned as seed set (9 studies) in the supplementary 

data of the SLR replication [35]. Next, we replicated with our tool the 

same 5 iterations of backward and forward snowballing performed 

manually by the authors. Finally, we compared our tool’s results 

with the manual execution. 

Regarding the analysis of the search and selection for SLR up- 

dates, we conducted three steps. First, we search performing a 

single forward snowballing iteration using the 45 included studies 

by the SLR replication [35] as seed set. Second, we train our ML 

algorithms with the “training set” containing both included and 

excluded studies of the SLR replication [35]. Finally, we perform 

the selection of studies using the trained algorithms on the results 

of the forward snowballing in the first step (“testing set”). 

The distribution of included and excluded studies in the training 

and the testing sets are shown in Figure 2. It is highly imbalanced 

with a minority of included studies. The imbalance represents the 

real-world scenario where out of a large number of studies only a 

few are typically relevant to the focus of a particular research topic. 

 

 

Figure 2: The data distribution of (a) Training set and (b) 

Testing set 

 
The results obtained using our algorithms are compared with 

the included articles selected manually for this SLR update (the 

“testing set”) to evaluate the recall, precision, and F-measure of the 

selected algorithms and the automated snowballing tool. Figure 3 

summarizes the evaluation of the tool’s selection process. 

Regarding the training process, for Training Data Collection, as 

shown in Figure 3, the input consists of the included and excluded 

studies in BibTeX format (.bib) of the SLR replication [35]. We 

converted the .bib file into CSV format by taking the ‘Title’ and 

‘Abstract’ fields of the studies. We also label them with relevance 1 

for included studies in the SLR replication [35], and relevance 0 for 

excluded studies from the SLR replication [35]. 

Thus the labeled Training set CSV is ready to be passed to the 

Preprocessing phase. The block Training shows the training pro- 

cess after the training set is fed to the Binary Classifiers LSVM, 

XGBoost, LogReg and MNB, for training. After the initial training, 

hyperparameter tuning is done using the different parameters of the 

models to improve their performance on the minority class (here, 

1). Hyperparameter tuning was done by rerunning the algorithms 

several times with different values to find the model parameters 

most suited to our goal: maximizing recall (finding most of the 

relevant studies) [15] and precision (reducing the load on reviewers 

to check irrelevant studies). Our goal is to get at least an acceptable 

trade-off between recall and precision according to the classification 

presented in [6]. The best hyperparameter configurations obtained 

 
during the training phase using Sklearn toolkit [29] were as fol- 

lows: the hyperparameter term “alpha” is set as 2 to perform strong 

regularization on the LSVM model, and both classes are given due 

importance by setting the “class_weight” term as ‘balanced’ which 

follows a weighted loss function. This linear model is then trained 

using Stochastic Gradient Descent (SGD) [3] to optimize the loss 

function with a decreasing learning rate. A similar approach was 

followed for XGBoost and Logistic Regression. In XGBoost we set 

“gamma” (regularization term) as 20, the “scale_pos_weight” term 

as (number of articles in class 0)/(number of articles in class 1), 

and “sub_sampling” ratio term to 0.2 to prevent overfitting. In Lo- 

gistic Regression, “C” (the regularization term) is set to 0.01 and 

the “class_weight” term is set to ‘balanced’. For Multinomial Naïve 

Bayes the default parameters of Sklearn are used. In the first three 

models, strong regularization was done to maximize the recall and 

precision of the minority class by making the models more conser- 

vative and generalize better on testing data. 

Concerning the testing process, Testing Data Collection is divided 

into two parts. First, Testing Data Collection Part 1 implements one 

round of forward snowballing using the snowballing tool on the 

update seed set (45 selected studies from the SLR replication). The 

output of the forward snowballing process is a CSV file keeping 

track of the study extraction and a BibTeX file which holds the bib- 

liographical references of all the studies including their abstracts, 

in order to aid the authors in the selection of relevant studies. This 

task which is usually done manually is completely automated. Sim- 

ilarly as done for the training, the BibTeX file from the output of 

forward snowballing is converted to a CSV file taking the ‘Title’ 

and ‘Abstract’ fields of the studies. Second, in Testing Data Collec- 

tion Part 2 the BibTeX file of included papers is also converted to 

CSV and a comparison is done between the two CSVs to gener- 

ate a unique labeled CSV file for testing, labeling the relevance of 

included studies as 1 and excluded ones as 0. 

Thereafter, the labeled testing set CSV is passed through the 

Preprocessing phase. Finally, during Testing the trained model is 

used to predict inclusion or exclusion for the preprocessed testing 

data. 

Preprocessing is done similarly for the training and test CSV files. 

First, the ‘Title’ and ‘Abstract’ columns are merged to form a single 

string for each study under a column named ‘Merged’, which now 

serves as the text for text classification. The preprocessing treats 

this text by removing stop-words using the Nltk [21] library in 

Python [18], tokenizing the text, removing punctuation and URLs, 

performing lemmatization [23], and finally vectorizing using the 

Bag of Words [32] count vectorizer. The count vectorizer gives poor 

results when the n-gram range is increased as it predicts with a 

greater precision only for the majority class. In this sense, unigrams 

are used. The preprocessed text is then passed as input to the ML 

algorithm models for training. 

Finally, for Validation, we record the number of included studies 

identified during the forward snowballing round. The labels of the 

test set allowed us to compute the performance measures Precision, 

Recall, and F-measure based on the predictions obtained during the 

Testing phase. They are defined as follows [15]: 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜  𝑓  𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑠𝑡𝑢𝑑𝑖𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑎𝑠 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜  𝑓  𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑠𝑡𝑢𝑑𝑖𝑒𝑠 

recall = 
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Figure 3: Tool process to select studies for SLR Updates 

 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓  𝑟 𝑒𝑙 𝑒 𝑣𝑎𝑛𝑡 𝑠 𝑡𝑢𝑑𝑖 𝑒𝑠 𝑟 𝑒𝑡 𝑟 𝑖 𝑒 𝑣𝑒𝑑 𝑎𝑠 𝑟 𝑒𝑙 𝑒 𝑣𝑎𝑛𝑡 
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜  𝑓 𝑠𝑡𝑢𝑑𝑖𝑒𝑠 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 𝑎𝑠 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 

 

F-measure = harmonic mean of the precision and recall 

The results of our evaluation are presented in Section 4.3. 

 
4.3 Results - Analysis of our evaluation 

The evaluation of our tool prototype for the reproduction of back- 

ward and forward snowballing for the SLR replication is presented 

in Table 1. In total, our tool was able to automatically identify 41 

of the 43 (95.3%) studies manually identified by the authors when 

performing the same snowballing iterations (see Table 1 sum of  

column “Studies detected” + nine studies from the initial seed set). 

However, during iteration 2, a study identified manually during for- 

ward snowballing was identified by our tool during the backward 

snowballing execution (see lines highlighted with (*) in Table 1). 

We opted to conserve this result since it does not interfere with 

 

Table 1: Results of the snowballing search replicated by our tool 

 

  Iteration 1  
  Snowballing type   Seed set of the iteration    Studies detected (%)   

Backward 9 12/12 (100%) 

Forward 9 1/1 (100%) 

  Iteration 2  
  Snowballing type   Seed set of the iteration    Studies detected (%)   

Backward 13 (1+12) 1+1* = 2/1 (100%) 

Forward 13 (1+12) 12/14 (85.7%) 

  Iteration 3  
  Snowballing type   Seed set of the iteration    Studies detected (%)   

Backward 14 (2*+12) 3/4 (75%) 

Forward 14 (2*+12) 1/1 (100%) 

  Iteration 4  
  Snowballing type   Seed set of the iteration    Studies detected (%)   

Backward 4 (3+1) 1/1 (100%) 

Forward 4 (3+1) 0/0 

precision = 
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∼ 

 
the final result of the snowballing tool in this automated execution 

scenario. 

The two missing studies could not be identified because they do 

not have a DOI and the tool was not able to locate them through 

the implemented reference building (Chicago format). It is worth 

mentioning that the set of included studies of the SLR replication is 

composed of 45 studies in total, but two of them are not considered 

in this analysis because they were not retrieved by snowballing. In 

addition, our tool was able to execute automatically four iterations 

instead of five (manual) because the single study resulting from 

iteration 4 did not have a DOI available which made the snowballing 

process stop. However, in this case, the final result is still the same 

(manual versus automated) since the manual process also stopped 

for not retrieving any other relevant study. 

Regarding the evaluation of our tool applied in an SLR update 

scenario, the snowballing tool was able to retrieve 1012 unique 

studies in a single round of forward snowballing based on a seed 

set of 41 out of 45 studies included in the SLR replication. The 4 

remaining studies not identified did not have DOIs, consequently, 

we missed out on 28 citations (data from Google Scholar in Feb. 

2023). This leads to our final seed set being formed by the 41 studies 

and having 1012 unique citations to be analyzed in the selection 

phase by the ML algorithms. 

Out of 35 studies contained in the “testing set - included”, that 

are to be included in the SLR update, our search and selection 

tool identified 33 studies (94.3%) through the forward snowballing 

iteration, even without being able to include the 4 no-DOI studies 

in the seed set. 

The precision, recall, and F-measure scores on the testing for 

the class of interest (included papers) are illustrated in Figure 4. It 

can be seen that the performing model in terms of recall is LSVM 

(74.3%), followed by XGBoost (63.6%), Logistic Regression (45.4%), 

 
and Multinomial Naïve Bayes (42.4%). In terms of precision, the 

algorithms had almost similar results ( 15%) with the exception of 

XGBoost which had a lower precision (11.6%). Considering the fact 

that the F-measure combines the effect of both metrics, a high recall 

will give a low F-measure if the precision is low. The F-measure 

value was observed with the LSVM model (24.6%). It is able to pre- 

dict the highest number of studies belonging to the positive class 1 

(included), correctly. The precision value can be explained by the 

high false positive value which is due to the strict regularization 

performed in LSVM, hence, a trade-off between precision and recall 

is remarked. In fact, Dieste et al. [6] highlight that there will always 

be a trade-off between recall and precision because irrelevant stud- 

ies are more liked to be returned by a search execution the higher 

the recall is. 

Out of 33 studies, 26 studies were identified by the LSVM model, 

21 by XGB, 15 by LogReg, and 14 by MNB. The studies to be excluded 

correctly identified were 820 by LSVM and XGB, 890 by LogReg, and 

900 by MNB. LogReg and MNB give biased results for the majority 

class hence the true negative values are much higher than LSVM, 

but they have lower true positive values which is the number of 

included studies predicted correctly by the model. 

 

 

4.4 Reporting - Observations from the 

evaluation 

According to the analysis of the performance measures, the LSVM 

model showed the best result among the evaluated models. More- 

over, following the search strategies scale proposed by Dieste et al. 

[6], the recall and precision range resulted from the LSVM model 

showed to be acceptable (recall 72-80% and precision 15-25%) mean- 

ing a “good enough strategy”. 

 
 

 
 

Figure 4: The performance report of the ML models 
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5 DISCUSSION 

The motivation of this study was to investigate automated alterna- 

tives to support both activities of searching and selecting studies 

during SLR updates. Due to the effort required for these activities, 

authors often end up not giving enough attention to keeping SLRs 

up to date. The impact of not updating SLRs on the evolution of 

scientific knowledge can be severe, as outdated SLRs could lead 

researchers to obsolete conclusions. While we present emerging 

results, they already shed light on some meaningful automation 

limitations and possibilities. 

With respect to searching for new studies, we described solution 

options used when building our snowballing tool to face automation 

challenges (e.g., querying CrossRef to find DOIs, and complement- 

ing BibTex data with web scrapping). Besides providing an example 

of such solution options, our results indicate that snowballing-based 

search strategies can be fully automated with minor losses, at least 

for classical white literature (the only identified limitation was 

related to papers without DOI), reducing the effort of laborious 

manual snowballing iterations (cf. Table 1). In order to mitigate 

minor losses and the potential inclusion of non-classical white lit- 

erature, manual searches [15] can be performed to complement the 

results of the snowballing search. 

Regarding the selection of studies in SLR updates using ML 

algorithms trained based on papers included and excluded in the 

original SLR, the recall and precision obtained by these algorithms 

still represent only a "good enough strategy", according to the scale 

proposed by Dieste et al.. Still, they would allow to conservatively 

save some manual selection effort. In fact, if we take our proposed 

model (LSVM), even if we use a threshold that results in a max 

recall scenario of 97% for the classifier (one false negative) and only 

8% of precision, the SLR update author would have to manually 

analyze only 396 papers instead of 1012. I.e., for our investigation, in 

a scenario of conservatively minimizing the risk of missing papers 

to be included, it would still be possible to reduce the number of 

papers to be manually analyzed by more than 2.5 times. 

Overall, we believe that our results provide preliminary indica- 

tions that strengthen the belief that automated approaches could 

significantly help to reduce the SLR update efforts. 

Large Language Models (LLMs) gained attention over the last 

year. The main difference between LLMs and traditional ML algo- 

rithms combined with Natural Language Processing techniques is 

that ML algorithms often rely on labelled or annotated datasets  

specific to the SLR task. These datasets are typically created manu- 

ally by domain experts. On the other hand, LLMs are pre-trained 

on large general-domain unannotated datasets, and their language 

understanding capabilities can be fine-tuned with smaller domain- 

specific datasets (e.g. specific domain requirements of an SLR) 

[25, 39]. One may question the possible application of LLMs in 

the context of selection of studies for SLRs or SLRs updates. To 

the best of our knowledge, there is an initiative [2] that explored 

a deep-learning-based contextualized embedding clustering tech- 

nique employing two transformer-based language models BERT 

[13] and S-BERT [26] to perform the initial selection of studies for 

SLRs. To evaluate their proposal, the authors compared the gener- 

ated models’ resulting clusters with the results of two SLRs from 

medicine manually conducted. As a result, due to the small size of 

 
the training set, the models ran out of data to train and suffered 

from overfitting. The authors affirm that an extension with a larger 

dataset is needed to underline a conclusion [2]. In summary, LLM 

is still an emerging topic and requires further investigation and 

validation before being applied on the context of selection of studies 

for SLRs and SLRs updates. 

 

6 THREATS TO VALIDITY 

In the following, we enumerate the main threats to the validity of 

our study. 

Construct Validity. With respect to searching for studies using 

snowballing, the adoption of Semantic Scholar has not been for- 

mally evaluated by researchers in the context of SLR updates [36], 

as Google Scholar. However, we noticed that, in our case, the results 

showed to be relevant for the study and comparable, with less noise. 

Also, Google Scholar does not allow the use of an API to perform 

searches. For study selection, our evaluation results might have 

been affected by the choice of ML algorithms. Other algorithms 

could have been explored in our study and can be considered as 

part of future work. 

External Validity. The dataset used in our analysis might not 

represent the diversity of SLR Updates in SE. Similar analyses could 

have been conducted based on other SLRs to improve the general- 

izability of our results. However, replicating our emerging results 

on other SLRs to strengthen external validity would require sig- 

nificant effort. Furthermore, it is challenging to acquire a reliable 

and detailed SLR dataset (e.g. containing the list of included studies 

in each iteration of the snowballing search) for SLRs that could 

potentially need an update and be considered in our analysis. 

Reliability. One limitation of our study is associated with the 

dataset used in our experiment and the possibility of sample bias. 

For the snowballing analysis, we used a dataset of an SLR repli- 

cation that involved experienced SLR researchers following strict 

guidelines for searching and selecting evidence [35]. The data used 

for the SLR Update analysis was acquired from the same authors 

who performed the SLR replication, also through a rigorous anal- 

ysis process. Also, to improve the reliability of our results, the  

tool prototype and the small-scale evaluation datasets are openly 

available. 

 

7 CONCLUSION 

In this paper, we presented and investigated an automation solu- 

tion proposal to support searching for new evidence and selecting 

evidence for SLR updates. We built a tool prototype and described it 

in detail. Based on a small-scale evaluation, we discuss automation 

limitations and perspectives for the SLR update context. 

Concerning searching for evidence, preliminary results of our 

investigation indicate that, while there are challenges faced when 

automating snowballing-based search strategies (e.g., to automati- 

cally gather DOIs for papers, to complement BibTeX information 

of identified papers automatically), these strategies can be fully 

automated with minor losses. This can be particularly helpful for 

updating SLRs, given that forward snowballing has been recom- 

mended for this context [8, 36]. Furthermore, applying automated 

snowballing iterations could also be employed to reduce the effort 

of applying SLR search strategies in general [35]. 
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We also investigated the selection of studies in SLR updates 

using ML algorithms trained based on papers included and excluded 

in the original SLR. While improvements can surely be obtained, 

emerging results obtained by our prototype tool are promising 

and already considered acceptable by literature [6]. In our small- 

scale evaluation, it was also possible to observe that using our 

proposed investigation using ML model (Linear SVM optimized 

using the SGD algorithm) conservatively minimizing the risk of 

missing papers during the SLR update, it would still be possible to 

reduce the number of papers to be manually analyzed in about 2.5 

times. 

Hence, we envision that automated approaches could signifi- 

cantly help to reduce the SLR update effort and put forward that 

investigations in this direction should be encouraged and under- 

taken to help the community keep SLRs up to date at the pace of 

the rapid increase of new evidence. 

In future work, we intend to improve our prototype tool to be 

capable of handling multiple inputs as well as further evaluate our 

proposition with other ML models and SLR datasets. 

7.1 Appendix 

The tool prototype and the small-scale evaluation datasets and re- 

sults are openly available at ⁀https://doi.org/10.5281/zenodo.7888956. 
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