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This paper studies online resource allocation with replenishable budgets, where budgets can be replenished

on top of the initial budget and an agent sequentially chooses online allocation decisions without violating the

available budget constraint at each round. We propose a novel online algorithm, called OACP (Opportunistic
Allocation with Conservative Pricing), that conservatively adjusts dual variables while opportunistically

utilizing available resources. OACP achieves a bounded asymptotic competitive ratio in adversarial settings as

the number of decision rounds 𝑇 gets large. Importantly, the asymptotic competitive ratio of OACP is optimal

in the absence of additional assumptions on budget replenishment. To further improve the competitive ratio,

we make a mild assumption that there is budget replenishment every 𝑇 ∗ ≥ 1 decision rounds and propose

OACP+ to dynamically adjust the total budget assignment for online allocation. Next, we move beyond the

worst-case and propose LA-OACP (Learning-Augmented OACP/OACP+), a novel learning-augmented algorithm

for online allocation with replenishable budgets. We prove that LA-OACP can improve the average utility

compared to OACP/OACP+ when the ML predictor is properly trained, while still offering worst-case utility

guarantees when the ML predictions are arbitrarily wrong. Finally, we run simulation studies of sustainable

AI inference powered by renewables, validating our analysis and demonstrating the empirical benefits of

LA-OACP.
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1 INTRODUCTION
Online allocation subject to resource (or budget) constraints models a sequential decision-making

problem where the agent needs to allocate resources without violating the available budget con-

straint at each round. It is a central problem of critical importance in numerous applications, such

as revenue management, online advertising, computing resource management, among many others.

For example, Internet companies need to select advertisements based on online user arrivals subject
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to advertisers’ budget constraints; cloud operators need to dynamically allocate user requests to

available machines subject to resource constraints; and edge devices need to dynamically optimize

its battery energy usage while intermittently harvesting energy from the surrounding environment.

As such, the problem of online allocation and its variants have received rich attention in the past

few decades [9, 11, 31, 40, 55, 59].

Online allocation decisions are temporally coupled due to total budget constraints, thus requiring

complete offline information to obtain the optimal solution. Nonetheless, the availability of only

online information in practice makes online allocation extremely challenging. To meet budget

constraints in online settings, a commonly considered approach is Lagrangian relaxation, which

includes weighted budget constraints as a regularizer for online decision making where the weights

are dual variables and can be interpreted as the budget/resource price [21, 45, 49, 63]. Consequently,

by adjusting the resource price, the agent’s budget consumption is also governed so as to meet

the budget constraint. For example, there have been a variety of approaches to updating the dual

variables online [1, 9, 11, 45, 63].

Despite these efforts and advances in various (relaxed) settings such as stochastic utility functions

[9], optimizing the total utility subject to strict budget constraints still remains a challenging problem

in adversarial settings, where the utility functions can be arbitrarily presented to the agent. In fact,

competitive online algorithms for adversarial settings have only been proposed very recently. More

concretely, online resource allocation with a single-inventory constraint [41] and a multi-inventory

constraint [40] are two of the very few known competitive online algorithms with a finite number of

decision rounds under the assumption that the utility functions of each inventory are separable. In

[11], an online allocation algorithm that adjusts the dual variable is proposed, achieving a bounded

asymptotic competitive ratio in adversarial settings when the length of each problem instance

is sufficiently long. Nonetheless, these studies [11, 40, 41] are crucially limited in the following

aspects.

• No budget replenishment. First and foremost, the total budget constraint is fixed without al-

lowing replenishment online [11, 40, 41]. In fact, these algorithms explicitly assume that budgets

are not replenishable, which would otherwise void their competitive analysis. However, budget

replenishment in an online manner is common in practice, e.g., dynamic energy harvesting (see

Section 2.3 for additional examples). While some studies [7, 28, 30, 50, 60] have considered budget re-

plenishment, they typically focus on independent and identically distributed budget replenishment.

In contrast, arbitrary budget replenishment in adversarial settings naturally provides additional

power to the adversary, thus creating significantly more challenges.

• Worst-case performance only. Second, the studies [11, 40, 41] only focus on the worst-case

performance in terms of the competitive ratio. As a result, the conservativeness needed to address

the worst possible problem input significantly limits their average-case performance for most typical

problem inputs. Online algorithms based on machine learning (ML) models have been considered

for various problems [2, 12, 35, 59], including online resource allocation [23, 24]. Nonetheless,

unlike the hand-crafted online algorithms [11, 40, 41], ML-based online optimizers may not offer

worst-case performance guarantees and can result in significantly bad results when, for example,

the training-testing distribution differs. Even though heuristic techniques such adversarial training

can empirically mitigate the lack of performance robustness to some extent, it is still challenging to

provably guarantee the worst-case performance of ML models. Thus, it remains an open problem

to achieve the best of both worlds — improving the average utility while offering the worst-case

robustness (in the presence of budget replenishment). In fact, as highlighted above, there even do

not exist competitive online algorithms that address budget replenishment in adversarial settings,

let alone a learning-augmented algorithm that can improve the average performance while provably

offering worst-case performance guarantees.
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Algorithm Budget replenishment Budget cap Worst-case robustness Average utility bound

CR-Pursuit [41] ✘ NA ✔ ✘

A&P [40] ✘ NA ✔ ✘

DMD [11] ✘ NA ✔ ✘

OACP (our work) ✔ ✔ ✔ ✘

OACP+ (our work) ✔ ✔ ✔ ✘

LA-OACP (our work) ✔ ✔ ✔ ✔

Table 1. Comparison between our work and recent online competitive allocation algorithms for adversarial
settings. Algorithms for non-adversarial settings are discussed in Section 6 and not shown in the table.

Contributions. In this paper, we address the above points and consider online allocation with

replenishable budgets, where the agent receives budget replenishment on the fly and needs to

choose irrevocable online decisions to allocate𝑀 resources. The goal of the agent is to maximize the

total utility over 𝑇 rounds subject to per-round available budget constraints, where the per-round

utility is a function in terms of the online allocation decision.

We first consider an adversarial setting and propose an online algorithm, called OACP (Oppor-
tunistic Allocation with Conservative Pricing), that updates the dual variable (i.e., resource pricing)

online to regulate the agent’s budget allocation and achieves an asymptotic competitive ratio as

𝑇 → ∞. The key insight of OACP is that we treat the uncertain budget replenishment differently

than the initially-assigned fixed budget and set the resource price in a conservative manner, which

encourages the agent to be more frugal while still allowing the agent to opportunistically utilize

the replenished budgets when applicable. Most importantly, we prove in Theorem 3.1 that OACP
achieves the same asymptotic competitive ratio bound as the state-of-the-art optimal bound in

[11] that does not address budget replenishment. In our setting with replenishable budgets, the

adversary naturally has more power than the setting of a fixed known budget, as it can arbitrarily

present budget replenishments to the agent. Therefore, achieving the same asymptotic competitive

ratio as that of the state-of-the-art algorithm for fixed budget allocation [11] highlights the benefit

of OACP in terms of addressing additional uncertainties of replenished budget.

Next, we propose OACP+ to utilize the budget replenishment more efficiently under a mild

assumption that the budget is replenished at least every𝑇 ∗ ≥ 1 decision rounds. Specifically, OACP+
divides the whole episode of 𝑇 rounds into 𝐾 frames of unequal lengths and performs frame-level

budget assignment online and a round-level online budget allocation within each frame. To account

for the maximum budget cap, a new threshold-based budget assignment strategy is proposed to

decide the assigned budget for each frame. Given the assigned budget for each frame, we apply OACP
for round-level budget allocation while deferring all the budget replenishment to future frames.

We prove that OACP+ achieves a higher asymptotic competitive ratio than OACP if the total budget

replenishment is positive in every 𝑇 ∗
rounds (Theorem 3.2).

Last but not least, we move beyond the worst-case and aim to maximize the average utility while

still offering worst-case utility guarantees. We propose a novel learning-augmented algorithm,

called LA-OACP (Learning-Augmented OACP), that integrates a trained ML predictor with OACP. More

concretely, LA-OACP utilizes the ML prediction (i.e., online allocation decision by the ML-based

optimizer) and expert decision (from OACP or OACP+) as advice, and judiciously combine them.

The key novelty of LA-OACP is to introduce a new reservation utility that produces a constrained

decision set within which all decisions can meet the worst-case utility constraint (defined with

respect to OACP or OACP+). Meanwhile, LA-OACP ensures that the online decisions are chosen from

the constrained decision set while being close to ML predictions so as to exploit the benefits of
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ML predictions to improve the average utility. We rigorously prove that LA-OACP can improve the

average utility compared to OACP when the ML predictor is properly trained, while still offering

worst-case utility guarantees (see Theorems 4.1 and 4.2).

Finally, we run simulation studies of sustainable AI inference to maximize the total utility subject

to energy constraints with renewable replenishment. Our results validate the analysis of OACP,
OACP+ and LA-OACP, demonstrating the empirical advantage of LA-OACP in terms of the average

utility over OACP and OACP+ as well as other baseline algorithms.

We highlight the main difference between our algorithms and recent online allocation algorithms

that consider adversarial settings in Table 1. Our major contributions are also summarized as
follows. First, we propose two novel online algorithms OACP and OACP+ that achieve bounded

asymptotic competitive ratios for online allocation with replenishable budgets in adversarial

settings (Theorem 3.1 and Theorem 3.2). To our knowledge, the proposed provably-competitive

algorithms advance the existing competitive online algorithms to address budget replenishment

in adversarial settings for the first time [11, 40, 41]. Second, we move beyond the worst case and

propose a novel learning-augmented algorithm, LA-OACP, that probably improves the average

utility compared to OACP or OACP+ (Theorem 4.2), while still offering worst-case utility guarantees
for online allocation with budget replenishment for any problem instance (Theorem 4.1).

2 PROBLEM FORMULATION
In this section, we present the problem formulation for online allocation with replenishable budgets.

Notations: For the convenience of presentation, we first introduce the common notations used

throughout the paper. Unless otherwise noted, we use [𝑁 ] to denote the set {1, 2, · · · , 𝑁 } for a
positive integer 𝑁 . E(·) is the expectation operator, P is a probability measure, I(𝑥) is an indicator

function (i.e., I(𝑥) = 1 if the condition 𝑥 is true and I(𝑥) = 0 otherwise), and R𝐷+ and R𝐷++ are

𝐷-dimensional non-negative and strictly positive real number spaces, respectively. For a vector 𝑥 ,

𝑥 𝑗 denotes its 𝑗-the element and ∥𝑥 ∥ is its norm (𝑙2 norm by default). For two vectors 𝑥 and𝑦, we use

𝑥 ≤ 𝑦 to denote element-wise inequality, i.e., 𝑥 𝑗 ≤ 𝑦 𝑗 for all 𝑗 and use 𝑥 ⊙ 𝑦 to denote element-wise
product. min(𝑥,𝑦) denotes the element-wise minimization. We also use [𝑥]𝑏 = min (𝑥, 𝑏) and
[𝑥]+ = max (𝑥, 0), where the capping and rectifying operators are applied for each element when 𝑥

is a vector. For a sequence of variables 𝑐1, · · · , 𝑐𝑇 , we use 𝑐𝑖:𝑗 to denote the subsequence 𝑐𝑖 , · · · , 𝑐 𝑗
for 1 ≤ 𝑖 ≤ 𝑗 ≤ 𝑇 ; we have 𝑐𝑖:𝑗 = ∅ if 𝑖 > 𝑗 .

2.1 Model
We consider an online allocation problemwith replenishable resource budgets, where each sequence

(a.k.a., problem instance) includes 𝑇 consecutive rounds and involves sequential allocation of𝑀

types of resources based on online information.

At the beginning of a sequence (i.e., round 𝑡 = 1), the decision maker (i.e., agent) is endowed with

an initial resource budget 𝐵1 = [𝐵1,1, · · · , 𝐵𝑀,1] ∈ R𝑀++, where 𝐵𝑚,1 = 𝑇𝜌𝑚 is the initial resource

budget for type-𝑚 resource, with 𝜌𝑚 > 0 being the per-round average budget initially assigned

to the agent, for 𝑚 ∈ [𝑀]. Moreover, we have 𝐵1 ≤ 𝐵max, where 𝐵max = [𝐵1,max, · · · , 𝐵𝑀,max]
represents the maximum budget cap. The inclusion of 𝐵max is both practical and general: 𝐵max

captures practical constraints such as battery capacity for energy resources, space constraint for

product inventory, among others, and the budget cap can be effectively voided when setting a large

𝐵𝑚,max → ∞ for𝑚 ∈ [𝑀], to which case our design also applies.

At the beginning of each round 𝑡 ∈ [𝑇 ], the agent is presented with a utility function 𝑓𝑡 (𝑥) :

R𝑀+ → R+, where 𝑥 ∈ X is the allocation decision. Additionally, the agent also receives a potential

budget replenishment𝐸𝑡 =
[
𝐸1,𝑡 , · · · , 𝐸𝑀,𝑡

]
∈ R𝑀+ , resulting in a total budget ofmin

(
𝐵𝑡 + 𝐸𝑡 , 𝐵max

)
=
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𝐵𝑡 + 𝐸𝑡 , available for allocation at round 𝑡 , where 𝐵𝑡 is the remaining budget at the end of round 𝑡 .

In other words, due to the budget cap, the actual budget replenishment is 𝐸𝑡 = min(𝐸𝑡 , 𝐵max − 𝐵𝑡 )
at round 𝑡 .

The agent’s allocation decision for round 𝑡 is 𝑥𝑡 = [𝑥1,𝑡 , · · · , 𝑥𝑀,𝑡 ] ∈ X, where X = {𝑥 ∈ R𝑀+ |0 ≤
𝑥 ≤ 𝑥} with 𝑥 = [𝑥1, · · · , 𝑥𝑀 ] representing the maximum allocation for each resource type at each

round. Note that we have 𝑥 ≤ 𝐵max since otherwise the maximum budget cap is more stringent

while the maximum allocation constraint 𝑥 is never binding.

Given the budget replenishment and the agent’s allocation decision, the budget evolves as

𝐵𝑡+1 = min

(
𝐵𝑡 + 𝐸𝑡 , 𝐵max

)
− 𝑥𝑡 = 𝐵𝑡 + 𝐸𝑡 − 𝑥𝑡 for round 𝑡 + 1. Thus, the information revealed to the

agent at the beginning of each round 𝑡 can be summarized as 𝑦𝑡 = (𝑓𝑡 , 𝐸𝑡 ), while all the information

for a sequence can be written as 𝑦 = [𝑦1, · · · , 𝑦𝑇 ] ∈ Y, where Y denotes the space of all possible

episodic information. When the context is clear, we also use 𝑦 to denote a sequence. Any remaining

budgets at the end of an sequence are wasted without rolling over to the next sequence. If an

algorithm 𝜋 is used to solve the problem with information 𝑦, the total the total utility is denoted as

𝐹𝜋
𝑇
(𝑦) = ∑𝑇

𝑡=1
𝑓𝑡 (𝑥𝑡 ).

To summarize, for a sequence 𝑦, the offline problem can be formulated as

max

𝑥1:𝑇 ∈X𝑇

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥𝑡 ) (1a)

𝑠 .𝑡 ., 𝑥𝑡 ≤ 𝐵𝑡 + 𝐸𝑡 and 𝑥𝑡 ∈ X, ∀𝑡 ∈ [𝑇 ] (1b)

𝐵𝑡+1 = 𝐵𝑡 + 𝐸𝑡 − 𝑥𝑡 and 𝐸𝑡 = min

(
𝐸𝑡 , 𝐵max − 𝐵𝑡

)
, ∀𝑡 ∈ [𝑇 ] (1c)

Next, we make the following standard assumptions on the utility function 𝑓𝑡 (𝑥) for 𝑡 ∈ [𝑇 ].

Assumption 1 (Utility function 𝑓𝑡 (𝑥)). For any 𝑡 ∈ [𝑇 ], the utility function 𝑓𝑡 (𝑥) : R𝑀+ → R+ is
assumed to be non-negative, have subgradients at each point of 𝑥 ∈ X. In addition, we assume

𝑓𝑡 (0) = 0 and sup 𝑓𝑡 (𝑥) = ¯𝑓 for 𝑡 ∈ [𝑇 ] and 𝑥 ∈ X.

The assumptions are standard in the literature on online allocation with budget constraints

[9, 11, 40]. Note that we do not require concavity of the utility functions, making our algorithms

applicable for a wide range of applications.

2.2 Performance Metrics
With complete information 𝑦 = [𝑦1, · · · , 𝑦𝑇 ] ∈ Y provided to the agent at the beginning of a

sequence, the problem in (1) can be efficiently solved via subgradient methods for constrained

optimization [13, 16, 27]. If the utility functions are concave, subgradient methods such as the

projected subgradient method and the primal-dual subgradient method have provable convergence

guarantees [16, 27]. Nonetheless, in practice, the agent only has access to online information 𝑦1:𝑡

before making its decision 𝑥𝑡 at round 𝑡 ∈ [𝑇 ], adding substantial challenges.

Our goal is to design an online algorithm 𝜋 that maps available online information 𝑦1:𝑡 to a

decision 𝑥𝑡 ∈ X subject to the budget constraint (1b) at each round 𝑡 ∈ [𝑇 ]. To measure the decision

quality of an online algorithm 𝜋 , we use the following metrics that capture the worst-case and
average-case performance, respectively.

Definition 1 (Asymptotic competitive ratio [10, 14]). The asymptotic competitive ratio of an online

algorithm 𝜋 is 𝐶𝑅𝜋 if lim𝑇→∞ sup𝑦∈Y
1

𝑇

(
𝑂𝑃𝑇 (𝑦) − 1

𝐶𝑅𝜋
𝐹𝜋
𝑇
(𝑦)

)
≤ 0, where 𝐹𝜋

𝑇
(𝑦) = ∑𝑇

𝑡=1
𝑓𝑡 (𝑥𝑡 ) is

the total utility of algorithm 𝜋 and𝑂𝑃𝑇 (𝑦) is the optimal utility obtained by the oracle given offline

information.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 4. Publication date: March 2024.



4:6 Jianyi Yang, et al.

Definition 2 (Average utility). Given an online algorithm 𝜋 , the average utility is defined as

𝐴𝑉𝐺𝜋 = E𝑦∈Y
[
𝐹𝜋
𝑇
(𝑦)

]
, where the expectation is over the sequence information 𝑦 ∼ P𝑦 .

Both competitive ratio and average utility are important in practice, characterizing the robustness

of an online algorithm (in terms of its utility ratio to the optimal oracle) and its quality for typical

problem instances, respectively. Here, we consider an asymptotic competitive ratio (in the sense of

𝑇 → ∞) because of the intrinsic hardness of our problem — even for online allocation of a fixed

budget without replenishment, only an asymptotic competitive ratio is attainable in the state of

the art [11]. We shall design in Section 3 online allocation algorithms to address the worst-case

robustness, while we will consider the average performance (subject to a worst-case robustness

constraint) in Section 4.

2.3 Application Examples
We now provide a few examples as motivating applications to make our model more concrete.

Online advertising with budget replenishment. Online advertisement serves as a prominent, if not

the most prominent, source of revenue for Internet companies [11]. Advertisers need to dynamically

set a biding budget, which will then be used by the publisher to maximize profits or the number

of impressions for advertisers per their contracts with the publisher. Meanwhile, they can also

increase budgets anytime they like. Thus, by viewing the bidding budget as an online decision, this

problem fits nicely into the online allocation of replenishable budgets.

Sustainable AI inference. Nowadays, the rapidly increasing demand for artificial intelligence

(AI) inference, especially large language models, has resulted in large carbon emissions [43]. To

achieve sustainable AI inference, it is important to exploit renewable generation to replenish on-site

energy storage. Meanwhile, for the same AI inference service, there often exist multiple models

(e.g., eight different GPT-3 models [17]), each having a distinct model size to offer a flexible tradeoff

between accuracy performance and energy consumption. However, the renewables are known to

be time-varying and unstable. Thus, by viewing the intermittent renewables as replenished budgets,

the resource manager needs to schedule an appropriate AI model for inference in an online manner

to maximize the utility (e.g. maximizing the accuracy) given available energy constraints [51, 53].

Online inventory management with dynamic replenishment. Manufacturers need to dynamically

dispatch available inventory to different distributors based on market demands. Meanwhile, they

will also replenish the inventory through newly manufactured products. The goal is to manage

the available inventory to maximize the total profit/revenue given dynamic replenishment and

environment (e.g., market demands and supply-chain situation), to which our model is well suited.

3 OACP: OPPORTUNISTIC ALLOCATIONWITH CONSERVATIVE PRICING
In this section, we address the worst-case robustness in adversarial settings and design an asymptot-

ically competitive online algorithm, called OACP, that conservatively updates the dual variable based
on mirror descent and opportunistically allocates replenished budgets. Using a novel technique,

OACP provably offers the optimal worst-case performance guarantees for adversarial settings of

online allocation with replenishable budgets (Theorem 3.1). Then, by making an additional assump-

tion on the minimum budget replenishment, we extend OACP to OACP+, which offers an improved

asymptotic competitive ratio (Theorem 3.2).

To solve the online allocation problem in (1), one can equivalently relax the budget constraints

using Lagrangian techniques. More specifically, instead of directly solving (1), we introduce a

regularizer and solve 𝑥𝑡 = arg max𝑥∈X{𝑓𝑡 (𝑥) − 𝜇⊤𝑡 𝑥} where 𝜇𝑡 ∈ R𝑀+ is the Lagrangian multiplier

vector (a.k.a., dual variable) with each entry corresponding to one resource budget constraint. The
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Algorithm 1 Opportunistic Allocation with Conservative Pricing (OACP)

Require: Initialize dual variable 𝜇1, and budget 𝐵1 = 𝜌𝑇 for 𝜌 > 0

1: for 𝑡 = 1 to 𝑇 do
2: Receive utility function 𝑓𝑡 (𝑥) and potential budget replenishment 𝐸𝑡 .

3: Get the actual replenished budget 𝐸𝑡 = min{𝐸𝑡 , 𝐵max − 𝐵𝑡 }
4: Pre-select action 𝑥𝑡 based on 𝜇𝑡 : 𝑥𝑡 = arg max𝑥∈X{𝑓𝑡 (𝑥) − 𝜇⊤𝑡 𝑥}
5: if 𝑥𝑡 ≤ 𝐵𝑡 + 𝐸𝑡 then
6: 𝑥𝑡 = 𝑥𝑡 and 𝑔𝑡 = −𝑥𝑡 + 𝜌 //for conservative pricing
7: else
8: 𝑥𝑡 = 0 and 𝑔𝑡 = 0

9: end if
10: Update budget 𝐵𝑡+1 = 𝐵𝑡 + 𝐸𝑡 − 𝑥𝑡
11: Dual mirror descent:

𝜇𝑡+1 = arg min𝜇≥0 𝑔
⊤
𝑡 𝜇 + 1

𝜂
𝑉ℎ (𝜇, 𝜇𝑡 ) where 𝑉ℎ (𝜇, 𝜇𝑡 ) = ℎ(𝜇) − ℎ(𝜇𝑡 ) − ▽ℎ(𝜇𝑡 )⊤ (𝜇 − 𝜇𝑡 ) is the

Bregman divergence in which ℎ(𝜇) is a 𝜎-strongly convex reference function (Assumption 2)

12: end for

interpretation of 𝜇𝑡 is that it can be viewed as the resource price [49, 56]: a higher price encourages
resource conservation to meet the budget constraints, and vice versa.

If we were able to optimally set 𝜇𝑡 ∈ R𝑀+ for 𝑡 ∈ [𝑇 ], we could optimally solve (1) while satisfying

the per-round budget constraints. Nonetheless, like in the original problem (1), finding the optimal

𝜇𝑡 for 𝑡 ∈ [𝑇 ] requires the complete offline information 𝑦 = [𝑦1, · · · , 𝑦𝑇 ] at the beginning of an

episode, but this information is clearly lacking for online allocation.

Despite this challenge, the interpretation of the dual variable 𝜇𝑡 as the resource price at round

𝑡 ∈ [𝑇 ] provides us with inspiration for the design of OACP. Specifically, in view of the dynamic

budget replenishment 𝐸𝑡 , we propose to conservatively update the price 𝜇𝑡+1 to a higher value for

each round 𝑡 + 1 as if 𝐸𝑡 does not exist, and then opportunistically use the actually available budget

𝐵𝑡 + 𝐸𝑡 . Our algorithm, called OACP, is described in Algorithm 1.

3.1 Competitive Algorithm Design
At each round 𝑡 ∈ [𝑇 ], given 𝜇𝑡 and online information, we solve the following relaxed optimiza-

tion problem:

𝑥𝑡 = arg max

𝑥∈X
{𝑓𝑡 (𝑥) − 𝜇⊤𝑡 𝑥}. (2)

Next, we check if 𝑥𝑡 satisfies the current budget constraint 𝐵𝑡 + 𝐸𝑡 : we set 𝑥𝑡 = 𝑥𝑡 if the budget
constraint is satisfied, and 𝑥𝑡 = 0 otherwise. Then, we update the dual variable based on mirror

descent 𝜇𝑡+1 = arg min𝜇≥0 𝑔
⊤
𝑡 𝜇 + 1

𝜂
𝑉ℎ (𝜇, 𝜇𝑡 ), where 𝑉ℎ (𝜇, 𝜇𝑡 ) = ℎ(𝜇) − ℎ(𝜇𝑡 ) − ▽ℎ(𝜇𝑡 )⊤ (𝜇 − 𝜇𝑡 ) is

the Bregman divergence defined with respect to a reference function ℎ(𝜇).
The goal of mirror descent is to update the dual variable 𝜇𝑡+1 such that it can set a resource

price that reflects the current budget level while staying not too far away from the current dual

variable 𝜇𝑡 as regularized by
1

𝜂
𝑉ℎ (𝜇, 𝜇𝑡 ) in terms of Bregman divergence. In particular, the usage

of mirror descent to update dual variables for online constrained optimization has begun to be

explored recently [7, 9, 11]. Nonetheless, the prior studies on online allocation under adversarial

settings have only considered a fixed budget without dynamic budget replenishment [11].

Key insight. The key insight of OACP lies in how we set 𝑔𝑡 and choose 𝑥𝑡 in Lines 5 and 6 of

Algorithm 1. The dual variable 𝜇𝑡 is updated based on 𝑔𝑡 = −𝑥𝑡 + 𝜌 , whose inverse (i.e., 𝑥𝑡 − 𝜌)
measures the overuse of the current allocation compared with a reference per-round budget 𝜌 =

𝐵1

𝑇
.
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When 𝑔𝑡 is smaller, the degree of budget overuse is greater, and 𝜇𝑡+1 tends to be greater in the

mirror descent step, encouraging the agent to use fewer resources at round 𝑡 + 1. Under the setting

of no budget replenishment, it is natural to set the per-round budget 𝜌 =
𝐵1

𝑇
to evaluate the degree

of over-consumption for each round. Nonetheless, in the presence of budget replenishment, we

cannot simply use 𝜌 + 𝐸𝑡 as the reference to incorporate new replenishment 𝐸𝑡 in resource pricing.

The reason is that the sequence of 𝐸𝑡 can be arbitrary and the future replenishment 𝐸𝑡+1, · · · , 𝐸𝑇
is unknown. As a result, aggressively using 𝜌 = 𝜌 + 𝐸𝑡 as the reference per-round resource

consumption can result in an unnecessarily low resource price 𝜇𝑡+1. Instead, OACP still sets the

reference per-round budget as 𝜌 =
𝐵1

𝑇
as if no budget replenishment were received. Consequently,

the resource price 𝜇𝑡+1 tends to be higher than using 𝜌 + 𝐸𝑡 otherwise, encouraging the agent to be

more frugal in resource consumption. On the other hand, the budget replenishment 𝐸𝑡 can be still

used opportunistically by increasing the actual available budget from 𝐵𝑡 to 𝐵𝑡 +𝐸𝑡 (Line 5). Thus, by
doing so, OACP tends to be more conservative in resource pricing (i.e., 𝜇𝑡 ), while still opportunistically
using budget replenishment in actual allocation decisions.

Next, to make Algorithm 1 self-contained, we specify the following assumptions on the reference

function ℎ(𝜇) used in the mirror descent step.

Assumption 2 (Reference function ℎ(𝜇)). The reference function ℎ(𝜇) : R𝑀+ → R is differentiable

and 𝜎-strongly convex in ∥ · ∥1-norm in R𝑀+ , i.e., ℎ(𝜇) − ℎ(𝜇′) ≥ ▽ℎ(𝜇′)⊤ (𝜇 − 𝜇′) + 𝜎
2
∥𝜇 − 𝜇′∥2

1
for

any 𝜇, 𝜇′ ∈ R𝑀+ .

Assumption 2 is standard in the analysis of mirror descent-based algorithms [9, 11]. Along with

Assumption 1 on the utility function, it essentially ensures that there is always a unique solution

in the mirror descent step in Line 11 of Algorithm 1. Importantly, this step can recover common

gradient-based update algorithms by a proper choice of the reference function. For example, with

ℎ(𝜇) = ∑𝑀
𝑚=1

𝜇𝑚 log(𝜇𝑚), the update in Line 11 of Algorithm 1 becomes 𝜇𝑡+1 = 𝜇𝑡 ⊙ exp(−𝜂𝑔𝑡 ) and
captures multiplicative weight updates, where the operator “⊙” is the element-wise product [6];

for ℎ(𝜇) = 1

2
∥𝜇∥2

2
, the update rule becomes 𝜇𝑡+1 = [𝜇𝑡 − 𝜂𝑔𝑡 ]+ and recovers online sub-gradient

descent method [11].

3.2 Performance Analysis
We proceed with the analysis of OACP in terms of its worst-case performance. Our result highlights

that OACP is asymptotically competitive against the offline oracle𝑂𝑃𝑇 , generalizing the prior results

on the allocation of a fixed budget [11] to replenishable budgets.

Theorem 3.1. For any episode 𝑦 ∈ Y and 𝜂 > 0, by Algorithm 1, the utility of OACP satisfies

𝑂𝑃𝑇 (𝑦) − 𝛼𝐹 OACP𝑇 (𝑦) ≤ 𝛼 ¯𝑓 + 𝛼 (𝜌 + ∥𝑥 ∥∞)2 𝜂𝑇

2𝜎
+ 𝛼
𝜂
𝑉ℎ (𝜇, 𝜇1), (3)

where 𝛼 = max𝑚∈[𝑀 ]
𝑥𝑚
𝜌𝑚

, 𝜌 = max𝑚∈[𝑀 ] 𝜌𝑚 is the maximum per-round average budget initially
assigned to the agent at round 𝑡 = 1, 𝑥 is the maximum per-round resource allocation constraint,
𝑉ℎ (𝜇, 𝜇1) is the Bregman divergence between 𝜇 and the initial dual variable 𝜇1 given the 𝜎-strongly
convex reference function ℎ, and 𝜇 = 0 if Line 5 of Algorithm 1 is always true, and otherwise, 𝜇 =

¯𝑓

𝛼𝜌 𝑗
𝑒 𝑗

with 𝑗 = arg min𝑚∈M𝐴
𝑉ℎ (

¯𝑓

𝛼𝜌𝑚
𝑒𝑚, 𝜇1) where M𝐴 =

{
𝑚 | ∃𝑡 ∈ [𝑇 ] such that 𝑥𝑚,𝑡 > (𝐵𝑡 + 𝐸𝑡 )𝑚

}
, 𝑒𝑚

is a standard𝑀-dimensional unit vector. Furthermore, by optimally setting𝜂 = 1

𝜌+∥𝑥 ∥∞

√︁
2𝜎𝑉ℎ (𝜇, 𝜇1)/𝑇 ,

we have

lim

𝑇→∞
sup

𝑦∈Y

1

𝑇

(
𝑂𝑃𝑇 (𝑦) − 𝛼𝐹 OACP𝑇 (𝑦)

)
≤ lim

𝑇→∞

1

𝑇

(
𝛼 ¯𝑓 + 𝛼 (𝜌 + ∥𝑥 ∥∞)

√︂
𝑉ℎ (𝜇, 𝜇1)𝑇

2𝜎

)
= 0, (4)
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i.e., OACP achieves an asymptotic competitive ratio of 1

𝛼
= min𝑚∈[𝑀 ]

𝜌𝑚
𝑥𝑚

against 𝑂𝑃𝑇 .1

The proof of Theorem 3.1 is deferred to Appendix A to keep the main body of the paper more

concise for better readability. Our proof relies on a technique specifically designed for budget

replenishment. Concretely, without budget replenishment, the allocation algorithm (e.g., DMD in

[11]) stops allocation whenever any resource type in the initial budget 𝐵1 is exhausted. In contrast,

OACP continues allocation until the end of an episode due to new budget replenishment. To account

for this, we introduce a group T𝐴 of rounds that each has a budget violation event, and bound the

total utility for rounds that are not in T𝐴.
Theorem 3.1 can be interpreted as follows. Without optimally setting 𝜂, by rearranging the terms

in (3), we have 𝐹 OACP
𝑇

(𝑦) ≥ 1

𝛼
𝑂𝑃𝑇 (𝑦) − ¯𝑓 − (𝜌+∥𝑥 ∥∞ )2𝜂𝑇

2𝜎
− 1

𝜂
𝑉ℎ (𝜇, 𝜇1). That is, for any episode 𝑦 ∈ Y,

OACP can obtain a total utility of at least
1

𝛼
times the optimal oracle’s utility, minus per-round

utility bound
¯𝑓 and a term related to the convergence of 𝜇. Moreover, by setting 𝜂 ∼ 𝑂 ( 1√

𝑇
), OACP

achieves an asymptotic competitive ratio bound of
1

𝛼
as 𝑇 → ∞. The parameter 𝛼 = max𝑚∈[𝑀 ]

𝑥𝑚
𝜌𝑚

measures how stringent the initially assigned per-round budget is with respect to the agent’s own

maximum allocation constraint. Naturally, the larger 𝛼 (i.e., the initial budget is relatively more

limited), a lower competitive ratio bound. Moreover, the asymptotic competitive ratio bound in

Theorem 3.1 matches the optimal bound for online allocation of a fixed budget [11].

We also note that, with the added uncertainties due to budget replenishment, the optimal (offline)

resource price 𝜇∗𝑡 can also be time-varying, while the optimal resource price 𝜇∗ is fixed when

without budget replenishment [11]. Consequently, even if we aggressively update the resource

price 𝜇𝑡 by directly incorporating replenished budgets at each round, there is still no hope to learn

the optimal dynamic resource price 𝜇∗𝑡 with a sublinear regret (or an asymptotic competitive ratio

of 1); instead, we can incur additional utility losses due to aggressive but potentially incorrect

tracking of 𝜇∗𝑡 in an adversarial setting. Therefore, OACP utilizes the design of conservative pricing

while using opportunistic allocation for actual decisions. It adds to the literature by generalizing

the state-of-the-art (asymptotically) competitive online algorithm for the setting of a fixed budget

[11] to replenishable budgets.

In our setting with replenishable budgets, the adversary naturally has more power than the setting

of a fixed budget, as it can adversrially present budget replenishments to the agent. Thus, achieving

the same optimal asymptotic competitive ratio as that of state-of-the-art DMD for fixed budget

allocation [11] demonstrates the merit of OACP in terms of addressing additional uncertainties of

replenished budget.

Importantly, our asymptotic competitive ratio
1

𝛼
is optimal in the adversarial budget replenish-

ment setting. Specifically, in the adversarial case, it is possible that there is zero budget replenish-

ment, or the budget replenishment only arises in the last decision round and the utility function for

this round is chosen as zero by the adversary. As a consequence, the replenished budget cannot be

utilized to improve the utility, and our setting essentially reduces to the no budget replenishment

setting in the worst case. This means that without further assumptions on the budget replenishment,

one cannot find a higher competitive ratio than the optimal bound
1

𝛼
for online allocation with a

fixed budget [11].

3.3 Extension to OACP+ with Minimum Budget Replenishment Assumption
In the unrestricted adversarial budget replenishment case, there can be zero budget replenishment

and hence, one cannot expect a higher asymptotic competitive ratio than that of the optimal bound

for fixed budget allocation. Next, to avoid the trivial case of no budget replenishment and improve

1
Throughout the paper, the asymptotic competitive ratio is naturally no greater than 1, i.e.,𝐶𝑅OACP = min{1, 1

𝛼
}.
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Algorithm 2 Opportunistic Allocation with Conservative Pricing + (OACP+)

Require: Unit frame length 𝑇 ∗
and initial budget 𝐵1 = 𝜌𝑇 for 𝜌 > 0

1: for frame 𝑖 = 1 to 𝐾 do
2: Initialize 𝜇𝑇𝑖−1+1, set learning rate 𝜂𝑖 > 0, assign the budget 𝐵

(𝑖 )
𝑇𝑖−1+1

= 𝐵 (𝑖 )
as Eqn. (5) and

𝜌𝑖 = 𝐵
(𝑖 )/(𝑇𝑖 −𝑇𝑖−1), where 𝑇𝑖 = (2𝑖 − 1)𝑇 ∗

.

3: for 𝑡 = 𝑇𝑖−1 + 1 to 𝑇𝑖 do
4: Receive utility function 𝑓𝑡 (𝑥).
5: Pre-select action 𝑥𝑡 based on 𝜇𝑡 : 𝑥𝑡 = arg max𝑥∈X{𝑓𝑡 (𝑥) − 𝜇⊤𝑡 𝑥}
6: if 𝑥𝑡 ≤ 𝐵

(𝑖 )
𝑡 then

7: 𝑥𝑡 = 𝑥𝑡 and 𝑔𝑡 = −𝑥𝑡 + 𝜌𝑖
8: else
9: 𝑥𝑡 = 0 and 𝑔𝑡 = 0

10: end if
11: Update budget 𝐵

(𝑖 )
𝑡+1

= 𝐵
(𝑖 )
𝑡 − 𝑥𝑡 and the actual remaining budget 𝐵𝑡+1 = 𝐵𝑡 + 𝐸𝑡 − 𝑥𝑡

12: Update dual 𝜇𝑡+1 = arg min𝜇≥0 𝑔
⊤
𝑡 𝜇 + 1

𝜂𝑖
𝑉ℎ (𝜇, 𝜇𝑡 ).

13: end for
14: end for

the asymptotic competitive ratio, wemake amild assumption on theminimumbudget replenishment

every 𝑇 ∗
rounds (referred to as a unit frame) and propose a new algorithm called OACP+.

3.3.1 The Design of OACP+. As discussed in the key insight of Algorithm 1, aggressively setting

𝑔𝑡 = −𝑥𝑡 + 𝜌 + 𝐸𝑡 for resource pricing cannot improve the competitive ratio since 𝐸𝑡 is arbitrary

and 𝜌 + 𝐸𝑡 is not a reliable reference per-round budget in the adversarial case. On the other hand,

a higher fixed budget means that the online allocator is less starved and hence can increase the

competitive ratio [9, 11]. Thus, this provides us with an inspiration to improve the competitive

ratio of OACP: Batching the budget replenishment and allocating it later as if we had a higher fixed
budget.

Concretely, we design a new two-level online allocation algorithm, called OACP+, which divides

an entire episode of 𝑇 rounds into 𝐾 frames and batches the budget replenishment in frame 𝑖

for resource allocation in frame 𝑖 + 1. Then, within each frame, OACP+ views the effective budget
replenishment (subject to frame-level budget allocation to be specified in Eqn. (5)) in the previous

frame as if it were a fixed resource and allocates it online.

OACP+ is described in Algorithm 2, where we introduce a unit frame of length 𝑇 ∗ ≥ 1 rounds

during which a minimum amount of budget is replenished (see Definition 3). Note that OACP+ only

needs the information of 𝑇 ∗
, but does not know the minimum budget replenishment within 𝑇 ∗

rounds. Within each frame 𝑖 ∈ [𝐾] starting from round 𝑇𝑖−1 + 1 to round 𝑇𝑖 , we initialize the dual

variable, assign the budget 𝐵 (𝑖 )
as the initial budget for frame 𝑖 , and set the reference per-round

budget 𝜌𝑖 = 𝐵
(𝑖 )/(𝑇𝑖 −𝑇𝑖−1). Then, by considering that all the budget replenishment in frame 𝑖 is

deferred for allocation in frame 𝑖 + 1 (Line 11 of Algorithm 2), we apply OACP with a fixed assigned

frame-level budget 𝐵 (𝑖 )
to choose actions for all rounds in frame 𝑖 . The dual variable is updated

based on the reference per-round budget 𝜌𝑖 and learning rate 𝜂𝑖 for frame 𝑖 . Note that in Line 6,

we make sure the allocation is not larger than the remaining frame budget 𝐵
(𝑖 )
𝑡 which is a part

of the fixed assigned frame-level budget 𝐵 (𝑖 )
. This means that the new budget replenishment in

frame 𝑖 is not incorporated in the resource pricing or used for allocation in frame 𝑖 . The remaining

frame-level budget 𝐵
(𝑖 )
𝑡 and the actual remaining budget 𝐵𝑡 are updated simultaneously in Line 11.
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By batching the budget replenishment in frame 𝑖 and deferring it for allocation in frame 𝑖 + 1, OACP+
can allocate more resources as if it had a higher fixed budget in frame 𝑖 + 1.

Nonetheless, to improve the competitive ratio, there are two key challenges in the design of

OACP+— frame construction and frame-level budget assignment — which we address as follows.

Frame construction. To defer the budget replenishment in one frame to the next frame and

allocate it as fixed budget, it is crucial to appropriately decide the length of each frame, i.e., frame

construction. An intuitive way of frame construction is to divide the entire episode of 𝑇 rounds

uniformly into 𝐾 = ⌈𝑇 /𝑇 ∗⌉ frames, each with 𝑇 ∗ ≥ 1 rounds (which is the length of a unit frame).

By doing so, OACP+ incurs an additional term of O(
√
𝑇 ∗) in the reward bound of each frame by

Theorem 3.1 and hence a total additional term of O
(√
𝑇 ∗ ⌈𝑇 /𝑇 ∗⌉

)
, which grows linearly with

𝑇 . Thus, to avoid the additional linear term O
(√
𝑇 ∗ ⌈𝑇 /𝑇 ∗⌉

)
, OACP+ utilizes a doubling frame

construction as follows.

Specifically, the entire episode of𝑇 rounds is divided into𝐾 =
⌈
log

2
(𝑇 /𝑇 ∗)

⌉
frames, where𝑇 ∗ ≥ 1

is the length of a unit frame. The 𝑖-th frame starts from round 𝑇𝑖−1 + 1 and ends at round 𝑇𝑖 , where

𝑇𝑖 = (2𝑖 − 1)𝑇 ∗
.
2
In other words, assuming the first frame has a length of 𝑇 ∗

rounds, the length of

frame 𝑖 = 2, · · · , 𝐾 is 2
𝑖−1𝑇 ∗

, doubling the length of its previous frame 𝑖 − 1. For each frame 𝑖 , the

additional term incurred by OACP+ is O(
√

2
𝑖−1𝑇 ∗), the sum of which is still sublinear with respect

to 𝑇 , keeping the asymptotic competitive ratio independent of the choice of the initial dual in each

frame.

Frame-level budget assignment. It remains to set the frame-level budget 𝐵 (𝑖 )
for each frame 𝑖

given uncertain future budget replenishment. The initial fixed budget 𝐵1 = 𝑇𝜌 is proportionally

divided into 𝐾 frames: the frame-level budget 𝐵 (𝑖 )
for each frame 𝑖 includes a fixed budget 2

𝑖−1𝑇 ∗𝜌 ,
where 2

𝑖−1𝑇 ∗
is the length of frame 𝑖 . Additionally, the assigned frame-level budget 𝐵 (𝑖 )

also includes

an additive budget Ω𝑖 which comes from the budget replenishment and unused budgets assigned

in previous frames. Without a maximum budget cap (i.e. 𝐵max = ∞), we can directly set Ω𝑖 as the
actual budget accumulation 𝐵𝑇𝑖−1+1 − (𝑇 −𝑇𝑖−1)𝜌 , where 𝐵𝑇𝑖−1+1 is the actual remaining budget at

the beginning of frame 𝑖 and (𝑇 − 𝑇𝑖−1)𝜌 = (𝑇 − (2𝑖−1 − 1)𝑇 ∗)𝜌 is the sum of the fixed budget

assignment reserved for the remaining frames (including frame 𝑖). Thus, by combining the fixed

budget and replenished budget (including unused assignments) from previous frames, the assigned

total budget for frame 𝑖 is 𝐵 (𝑖 ) = 𝐵𝑇𝑖−1+1 − (𝑇 − (2𝑖 − 1)𝑇 ∗)𝜌 .
However, if the maximum budget cap 𝐵max exists, it can restrict the actual budget replenishment.

Thus, if we assign all the actually accumulated budget for frame 𝑖 , it can happen that little additional

budgets (other than the fixed budget 2
𝑖𝑇 ∗𝜌) can be used for frame 𝑖 + 1. To further explain this

point, consider an online allocation problem with a linear utility function 𝑓𝑡 (𝑥) =< 𝑐𝑡 , 𝑥 > (i.e.,

the inner product of 𝑐𝑡 and 𝑥). Suppose that the remaining budget 𝐵𝑇1+1 at the beginning of the

second frame (which has a length 2𝑇 ∗
rounds) is as large as 𝐵max. This is possible if there is a large

budget replenishment during the first frame. As a result, new budget replenishments cannot be

accumulated due to the budget cap 𝐵max unless some budgets have been consumed. Assume that the

budget replenishment 𝐸𝑡 and context parameter 𝑐𝑡 for the second frame are as follows. In the first

𝑇 ∗ + 1 rounds of the second frame, the budget replenishment is 𝐸𝑡 > 0 and the context is 𝑐𝑡 = 0; in

the following𝑇 ∗ − 1 rounds of the second frame, the budget replenishment for each round is 𝐸𝑡 = 0

and the context parameter 𝑐𝑡 is sufficiently large. In this example, OACP+ will not consume any

resource during the first 𝑇 ∗ + 1 rounds, and instead consume all of the assigned budget 𝐵 (2)
during

the remaining𝑇 ∗ − 1 rounds. As a result, no budget replenishment can be accumulated in this frame

2
The last frame (i.e., 𝐾-th frame) starts from round (2𝐾−1 − 1)𝑇 ∗ + 1 and ends at the last round𝑇 . For the convenience of

presentation, we assume𝑇 = (2𝐾 − 1)𝑇 ∗
to be consistent with the previous frame’s ending round𝑇𝑖 = (2𝑖 − 1)𝑇 ∗

.
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due to the maximum budget cap. If we still assign the frame budget as 𝐵 (2) = 𝐵𝑇 ∗+1 − (𝑇 − 3𝑇 ∗)𝜌
as if there were no budget cap, the remaining budget at the beginning of the third frame will be

𝐵𝑇2+1 = (𝑇 − 3𝑇 ∗)𝜌 and the assigned total budget for the third frame will be 4𝑇 ∗𝜌 , resulting in zero

additive budget for the third frame (Ω3 = 0) other than the fixed budget assignment 4𝑇 ∗𝜌 .
To ensure a positive additive budget for each future frame, we need to allocate the budget

replenishment Ω𝑖 for frame 𝑖 more conservatively: the additive budget Ω𝑖 , 𝑖 ∈ [2, 𝐾 − 1] is set as
the minimum of the actual budget accumulation 𝐵𝑇𝑖−1+1 − (𝑇 − (2𝑖−1 − 1)𝑇 ∗)𝜌 and a threshold Γ𝑖 ,
i.e., Ω𝑖 = min{𝐵𝑇𝑖−1+1 − (𝑇 − (2𝑖−1 − 1)𝑇 ∗)𝜌, Γ𝑖 }.
It remains to design a proper threshold Γ𝑖 for frame-level budget assignment. Naturally, if the

budget cap 𝐵max becomes larger, the threshold Γ𝑖 should be set higher; also, Γ𝑖 should increase

with the length of the frame. We set the threshold as Γ𝑖 = 2
𝑖−2𝑇 ∗𝜌max ⊙ 𝛽 where the operator

“⊙” is the element-wise product, 𝜌max =
𝐵max

𝑇
and 𝛽 ∈ 𝑅𝑀+ is a hyper-parameter indicating the

level of conservativeness to balance between the aggressive budget assignment for the next frame

and conservative budget reservation for subsequent future frames. Therefore, the assigned total

frame-level budget for frame 𝑖 is the sum of the fixed budget assignment 2
𝑖−1𝑇 ∗𝜌 (where 𝜌 =

𝐵1

𝑇
)

and an additive budget Ω𝑖 , i.e.

𝐵 (𝑖 ) = 2
𝑖−1𝑇 ∗𝜌 + Ω𝑖 , (5)

where Ω1 = 0, Ω𝑖 = min

{
𝐵𝑇𝑖−1+1 − (𝑇 − (2𝑖−1 − 1)𝑇 ∗)𝜌, Γ𝑖

}
with Γ𝑖 = 2

𝑖−2𝑇 ∗𝜌max ⊙ 𝛽 for 𝑖 ∈
[2, 𝐾 − 1], and Ω𝐾 = 𝐵𝑇𝐾−1+1 − 2

𝐾−1𝑇 ∗𝜌 . When 𝜌max =
𝐵max

𝑇
is sufficiently large such that the

threshold Γ𝑖 is not activated, the assigned budget becomes 𝐵 (𝑖 ) = 𝐵𝑇𝑖−1+1 − (𝑇 − (2𝑖 − 1)𝑇 ∗)𝜌 , which
reduces to the budget assignment without a maximum budget cap and shows the flexibility of our

design of frame-level budget assignment.

3.3.2 Performance Analysis. In this section, we give the asymptotic competitive ratio of OACP+ to

highlight the benefits of budget replenishment. To avoid the adversarial case which can reduce to

the no budget replenishment setting, we first define the minimum replenishment 𝐸min ≥ 0 for a

unit frame with length 𝑇 ∗
and then provide the asymptotic competitive ratio relying on 𝐸min. The

assumption of minimum budget replenishment in each unit frame is reasonably mild in practice,

especially for large 𝑇 ∗
. For example, it is reasonable to assume that a minimum amount of solar

renewables are replenished each day [7, 11, 51]. Note that 𝐸min is decided by the environment and

OACP+ does not need the knowledge of 𝐸min.

Definition 3 (Minimum budget replenishment). Given a unit frame of𝑇 ∗ ≥ 1 rounds, the minimum

potential budget replenishment for type-𝑚 resource within each unit frame is 𝐸min,𝑚 ≥ 0, i.e.,

𝐸min,𝑚 = inf 𝑗

{∑𝑗 ·𝑇 ∗

𝑡=( 𝑗−1)𝑇 ∗+1
𝐸𝑡,𝑚

}
, where 𝐸𝑡,𝑚 is the budget that would be replenished at round 𝑡 if

𝐵max,𝑚 → ∞, 𝑗 = 0, · · · , ⌈𝑇 /𝑇 ∗⌉ − 1 is the index of a unit frame and 𝐸min =
[
𝐸min,1, · · · , 𝐸min,𝑀

]
.

Theorem3.2. If the learning rate for frame 𝑖 is chosen as𝜂𝑖 = 1

𝜌+
¯𝛽

2
𝜌max+∥𝑥 ∥∞

√︁
2𝜎𝑉ℎ (𝜇, 𝜇𝑇𝑖−1+1)/(2𝑖−1𝑇 ∗)

with 𝜌max = max𝑚 𝜌max,𝑚 where 𝜌max,𝑚 =
𝐵max,𝑚

𝑇
and ¯𝛽 = max𝑚 𝛽𝑚 , OACP+ achieves an asymptotic

competitive ratio against 𝑂𝑃𝑇 as

𝐶𝑅OACP+ = min

𝑚∈[𝑀 ]

𝜌𝑚 + Δ𝜌𝑚
𝑥𝑚

, (6)

where 𝑥𝑚 is the maximum per-round allocation of type-𝑚 resource and Δ𝜌𝑚 ≥ 0 is the improvement
due to budget replenishment. Specifically, if 𝐵max,𝑚 ≥ (𝑇 + 𝑇 ∗)𝜌𝑚 holds for a resource𝑚, we have

Δ𝜌𝑚 = min

{
𝐸min,𝑚

2𝑇 ∗ ,
2𝐵max,𝑚

3(𝑇+𝑇 ∗ ) −
𝜌𝑚
3

}
with the optimal choice of 𝛽𝑚 = 4𝑇

3(𝑇+𝑇 ∗ ) −
2𝜌𝑚

3𝜌max,𝑚
; and if 𝐵max,𝑚 <

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 4. Publication date: March 2024.



Online Allocation with Replenishable Budgets: Worst Case and Beyond 4:13

(𝑇 +𝑇 ∗)𝜌𝑚 holds for a resource𝑚, we have Δ𝜌𝑚 = min

{
𝐸min,𝑚

2𝑇 ∗ ,
𝐵max,𝑚

6𝑇 ∗ − (𝑇−𝑇 ∗ )𝜌𝑚
6𝑇 ∗

}
with the optimal

choice of 𝛽𝑚 = 𝑇
3𝑇 ∗ − 𝑇−𝑇 ∗

3𝑇 ∗
𝜌𝑚

𝜌max,𝑚
. Moreover, without the minimum budget replenishment (i.e., 𝐸min,𝑚 =

0), we have Δ𝜌𝑚 = 0 and the asymptotic competitive ratio 𝐶𝑅OACP+ reduces to the one in Theorem 3.1.

The proof of Theorem 3.2 is deferred to Section B. The key challenge is to lower bound the

assigned frame-level budget 𝐵 (𝑖 )
in Eqn. (5) for frame 𝑖 and get an effective per-round budget

𝜌 = 𝜌 + Δ𝜌 . To do so, we construct an effective additive budget Ω̂𝑖 (𝛽) for frame 𝑖 given any 𝛽 > 0

in (21) and prove that Ω̂𝑖 (𝛽) is the infimum of the additive budget Ω𝑖 (𝛽) by OACP+ for any 𝛽 > 0.

Then, by selecting the worst-case per-round effective reference budget 𝜌 + Ω̂𝑖/(2𝑖−1𝑇 ∗) for each
frame 𝑖 and optimizing it by choosing 𝛽 , we obtain the per-round budget 𝜌 = 𝜌 + Δ𝜌 . At last, by
summing up the utility bounds of all the frames, the difference between the optimal utility and

OACP+ is bounded as𝑂𝑃𝑇 (𝑦) −𝛼𝐹 OACP+
𝑇

(𝑦) ≤ 𝐶1 +𝐶2

√
𝑇 , where 𝛼 = max𝑚∈[𝑀 ]

𝑥𝑚
𝜌𝑚+Δ𝜌𝑚 , and𝐶1 and

𝐶2 are two finite constants in Appendix B. This is then translated to the asymptotic competitive

ratio in Theorem 3.2.

Different from the competitive ratio of OACP which relies on the fixed per-round budget 𝜌 , the

competitive ratio of OACP+ utilizes the effective per-round budget 𝜌 + Δ𝜌 , which includes the fixed

part 𝜌 and the additional part Δ𝜌 due to replenishment (subject to the maximum budget cap 𝐵max).

Importantly, Δ𝜌 is positive if the minimum replenishment over a unit frame 𝐸min > 0, resulting

in a higher asymptotic competitive ratio than OACP. When 𝐸min = 0, there is no guarantee of

minimum budget replenishment for each unit frame. Hence, the asymptotic competitive ratio of

OACP+ reduces to the one achieved by OACP in the worst case since we cannot rule out the case in

which there is no budget replenishment at all. Thus, the improvement of the competitive ratio by

OACP+ does not conflict with the optimality of the competitive ratio achieved by OACP for general

cases (which includes the case of no budget replenishment).

The insights of the asymptotic competitive ratio of OACP+ are further explained as follows. The

improvement of the competitive ratio compared with OACP depends onΔ𝜌𝑚 , which is lower bounded

by the minimum of two terms. The first term
𝐸min,𝑚

2𝑇 ∗ indicates the effect of the minimum amount of

budget replenishment within a unit frame. Naturally, a larger minimum budget replenishment can

make the problem less resource-constrained and lead to a higher competitive ratio. The second term

in the minimum operation shows the effect of the maximum budget cap 𝐵max,𝑚 on constraining the

actual budget replenishment following (1c). The second term has a different expression for resource

𝑚 with 𝐵max,𝑚 < (𝑇 +𝑇 ∗)𝜌𝑚 because a small 𝐵max,𝑚 can result in less space for replenishment. No

matter whether 𝐵max,𝑚 ≥ (𝑇 +𝑇 ∗)𝜌𝑚 holds, a higher budget cap 𝐵max allows more budgets to be

replenished, thus leading to a higher competitive ratio. If the budget cap 𝐵max is large enough, it

does not constrain the budget replenishment any more and the competitive ratio improvement only

depends on the minimum budget replenishment 𝐸min. In addition, the best choices of threshold

hyper-parameter 𝛽𝑚 increases with 𝜌max,𝑚 = 𝐵max,𝑚/𝑇 . This is consistent with the intuition that

with a larger budget cap 𝐵max,𝑚 , the threshold of the additive budget in Eqn. (5) can be set larger to

assign the frame-level budget more aggressively. These observations all confirm the intuition that a

larger budget cap can utilize the budget replenishment more effectively, increasing the asymptotic

competitive ratio.

4 LA-OACP: LEARNING-AUGMENTED ONLINE ALLOCATION
While OACP and OACP+ have provable worst-case performance guarantees (in terms of asymptotic

competitive ratio), they may not perform well on average due to their conservativeness in resource

pricing 𝜇𝑡 in order to address the worst-case uncertainties in budget replenishments. In this section,

we go beyond the worst-case and propose a novel learning-augmented approach, LA-OACP, that
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integrates an ML-based online optimizer with OACP (or OACP+) to improve the average performance

(Theorem 4.2) while still being able to guarantee the worst-case performance (Theorem 4.1).

4.1 Average Utility Maximization with Worst-Case Utility Constraint
We first present our optimization objective of designing a learning-augmented online algorithm 𝜋

as follows — maximizing the average utility subject to a worst-case utility constraint. Since the

competitive algorithms (i.e., OACP or OACP+) have been proved to ensure the asymptotic competitive

ratios, we guarantee the worst-case utility of the learning-augmented online algorithm 𝜋 by

comparing it with the utility of a competitive algorithm. Thus, the objective of our learning-

augmented online algorithm is

max

𝜋
E𝑦

[
𝐹𝜋𝑇 (𝑦)

]
(7a)

𝑠 .𝑡 ., 𝐹𝜋𝑇 (𝑦) ≥ 𝜆𝐹𝜋
†

𝑇 (𝑦) − 𝑅, ∀𝑦 ∈ Y, (7b)

where 𝐹𝜋
𝑇
(𝑦) =

∑𝑇
𝑡=1

𝑓 (𝑥𝑡 , 𝑐𝑡 ) is the total utility of an online algorithm 𝜋 , 𝜆 ∈ [0, 1] represents
multiplicative competitiveness of the online algorithm 𝜋 with respect to the algorithm 𝜋†

(i.e.,

OACP or OACP+ in our case) and 𝑅 ≥ 0 indicates the additive slackness in the utility constraint.

Note that considering a sequence-wise distribution of 𝑦 ∼ P𝑦 differs from the standard stochastic

setting where each online input 𝑦𝑡 for 𝑡 ∈ [𝑡] is assumed to follow an independent and identically

distributed (i.i.d.) distribution (e.g., i.i.d. utility function 𝑓𝑡 in [11], or i.i.d. potential replenishment

𝐸𝑡 in [7]), because 𝑦𝑡 for 𝑡 ∈ [𝑡] within an sequence can still be arbitrary in our problem (7).

The parameters 𝜆 ∈ [0, 1] and 𝑅 ≥ 0 can be viewed as worst-case robustness requirement

with respect to OACP or OACP+ (denoted as 𝜋†
for the convenience of presentation). Concretely,

when 𝜆 ∈ [0, 1] increases and/or 𝑅 ≥ 0 decreases, the online algorithm 𝜋 is closer to 𝜋†
in

terms of the worst-case utility, and vice versa. Moreover, as 𝜋†
itself has performance guaran-

tees and is asymptotically competitive against the optimal oracle 𝑂𝑃𝑇 (Theorem 3.1 and Theo-

rem 3.2), the constraint in (7b) also immediately translates into provable asymptotic competitive-

ness of the online algorithm 𝜋 with respect to 𝑂𝑃𝑇 . That is, given the asymptotic competitive

ratio 𝐶𝑅𝜋
†
achieved by 𝜋†

, the constraint (7b) leads to lim𝑇→∞ sup𝑦
1

𝑇

(
𝑂𝑃𝑇 (𝑦) − 1

𝜆𝐶𝑅𝜋
† 𝐹

𝜋
𝑇
(𝑦)

)
≤

lim𝑇→∞ sup𝑦
1

𝑇

(
𝑂𝑃𝑇 (𝑦) − 1

𝐶𝑅𝜋
† 𝐹

𝜋†

𝑇
(𝑦) + 𝑅

𝜆𝐶𝑅𝜋
†

)
≤ 0, guaranteeing an asymptotic competitive ra-

tio of 𝜆 ·𝐶𝑅𝜋†
for 𝜋 . In fact, considering a baseline algorithm for worst-case robustness is also a

common practice in existing learning-augmented algorithms [19, 39, 52]. Thus, in the following, it

suffices to consider (7) to achieve the best of both worlds: maximizing the average utility while

bounding the worst-case utility (directly with respect to OACP or OACP+ and also indirectly with

respect to 𝑂𝑃𝑇 ).

Unlike OACP or OACP+ that is particularly designed to address the worst-case robustness, an ML

model can readily exploit statistical information of 𝑦 ∈ Y based on history instances. Thus, one

may want to use a pure ML-based online optimizer to maximize the average utility for solving

(7). Nonetheless, ML-based optimizers typically do not have worst-case performance guarantees

as hand-crafted algorithms (OACP or OACP+ in our case) due to, e.g., training-testing distributional

shifts. In fact, even by assuming perfect ML-based optimizers, maximizing the average utility alone

does not necessarily guarantee the worst-case robustness in (7b). The reason is that maximizing the

average utility needs to prioritize many typical problem instances, while the worst-case robustness

needs to address those rare but possible corner cases. In general, the trade-off between average

utility and worst-case robustness is unavoidable and well-known for online optimization problems,

thus spurring the emerging field of learning-augmented online algorithms that leverage both
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ML predictions and hand-crafted algorithms (see, e.g., [5, 19, 52, 57] for studies in other online

problems).

4.2 Algorithm Design
We now present the design of LA-OACP, a novel learning-augmented algorithm for online allocation

with replenishable budgets under an additional mild assumption of Lipschitz utility functions.

Assumption 3 (Lipschitz utility). For any 𝑡 ∈ [𝑇 ], the utility function 𝑓𝑡 (𝑥) is 𝐿-Lipschitz continu-
ous with respect to 𝑥 , i.e. ∀𝑥, 𝑥 ′ ∈ X, we have |𝑓𝑡 (𝑥) − 𝑓𝑡 (𝑥 ′) | ≤ 𝐿∥𝑥 − 𝑥 ′∥, where 𝐿 > 0 and ∥ · ∥ is
a norm operator.

The Lipschitz assumption implies a bounded utility change given a bounded action change,

which is reasonable for real applications and commonly assumed in online problems. Remember

that to guarantee a competitive ratio, OACP in Algorithm 1 and OACP+ in Algorithm 2 conservatively

set their resource prices 𝜇𝑡 in two different conservative manners. Thus, the key goal of LA-OACP
is to overcome the conservativeness of competitive algorithms like OACP and OACP+ by exploiting

the distribution of 𝑦 ∈ Y to improve the average utility while bounding the worst-case utility loss

with respect to OACP/OACP+.3 Towards this end, LA-OACP utilizes an ML policy/predictor (denoted

as 𝜋̃ ) as well as a competitive algorithm (denoted as 𝜋†
) that output their decisions as advice, and

then judiciously chooses the actual online decisions.

Naturally, always following the decisions of competitive algorithm satisfies the worst-case utility

constraint in (7b), but fails to utilize ML for average utility improvement. On the other hand, blindly

following the ML policy can potentially improve the average performance but the worst-case utility

constraint is not guaranteed.

Thus, a key challenge of learning-augmented online algorithms is how to utilize the decisions

of the ML policy and a worst-case robust algorithm (i.e., OACP and OACP+ in our case) as online

advice [19, 52]. To address this challenge, given 𝑥𝑡 and 𝑥
†
𝑡 that represent the allocation decisions by

the ML policy and the competitive algorithm, respectively, LA-OACP chooses the actual decision 𝑥𝑡
using a novel reservation utility which we introduce as follows. In the following, to be consistent

with the literature [19], we also refer to the ML policy’s decision 𝑥𝑡 as ML predictions.

Constrained decision set. To ensure that an online algorithm 𝜋 satisfies the worst-case utility

constraint (7b) for any sequence 𝑦 ∈ Y, it might seem sufficient to guarantee

∑𝑡
𝜏=1

𝑓𝑡 (𝑥𝑡 ) ≥
𝜆
∑𝑡
𝜏=1

𝑓𝑡 (𝑥†𝑡 ) − 𝑅 for each round 𝑡 ∈ [𝑇 ]. Nonetheless, even though the constraint

∑𝑡
𝜏=1

𝑓𝑡 (𝑥𝑡 ) ≥
𝜆
∑𝑡
𝜏=1

𝑓𝑡 (𝑥†𝑡 ) − 𝑅 is satisfied for round 𝑡 , it may not be guaranteed at round 𝑡 + 1, thus potentially

violating the worst-case utility constraint at the end of the sequence. Let us now consider an

illustrative example to explain this point. Suppose that the algorithm 𝜋 satisfies

∑𝑡
𝜏=1

𝑓𝑡 (𝑥𝑡 ) ≥
𝜆
∑𝑡
𝜏=1

𝑓𝑡 (𝑥†𝑡 ) − 𝑅 but allocates more resources than 𝜋†
up to round 𝑡 . Then, in future rounds, it

is possible that there is very little budget replenishment and the algorithm 𝜋†
can still allocate

resources to gain a higher utility, whereas the algorithm 𝜋 does not have enough resources to match

the utility of 𝜋†
. In other words, if 𝜋 uses more resources than 𝜋†

up to round 𝑡 , the satisfaction of

utility constraint by 𝜋 in terms of

∑𝑡
𝜏=1

𝑓𝑡 (𝑥𝑡 ) ≥ 𝜆
∑𝑡
𝜏=1

𝑓𝑡 (𝑥†𝑡 ) − 𝑅 is just temporary and can still be

violated in the future.

To address such uncertainties in the future, we introduce a novel reservation utility Δ(𝑥𝑡 ) =
𝜆𝐿

∑𝑀
𝑚=1

[
(𝐵†𝑡 + 𝐸

†
𝑡 − 𝑥

†
𝑡 )𝑚 − (𝐵𝑡 + 𝐸𝑡 − 𝑥𝑡 )𝑚

]+
into the utility constraint for each round 𝑡 , where

(𝐵𝑡 + 𝐸𝑡 − 𝑥𝑡 )𝑚 means the remaining budget for the type-𝑚 resource at the end of round 𝑡 . The

3
For notational simplicity, we use LA-OACP to represent our learning-augmented algorithm, noting that the competitive

algorithm used by LA-OACP can also be OACP+.
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Algorithm 3 Learning-Augmented Online Allocation with Replenishable Budgets (LA-OACP)

Require: ML policy 𝜋̃ and the competitive algorithm 𝜋†
(OACP or OACP+)

1: for 𝑡 = 1 to 𝑇 do
2: Receive reward function 𝑓𝑡 , and potential budget replenishment 𝐸𝑡 .

3: Get replenished budgets 𝐸𝑡 = min{𝐸𝑡 , 𝐵max − 𝐵𝑡 } for LA-OACP, and 𝐸†𝑡 = min{𝐸𝑡 , 𝐵max − 𝐵†𝑡 }
for 𝜋†

4: Get ML prediction 𝑥𝑡

5: Get the action 𝑥
†
𝑡 of 𝜋

†
based on its own history (by Algorithm 1 or Algorithm 2)

6: Choose 𝑥𝑡 by solving

𝑥𝑡 = arg min

𝑥∈X
∥𝑥 − 𝑥𝑡 ∥ (9a)

𝑠 .𝑡 .,

𝑡∑︁
𝑖=1

𝑓𝑡 (𝑥𝑖 ) ≥ 𝜆

𝑡∑︁
𝑖=1

𝑓𝑡 (𝑥†𝑖 ) + Δ(𝑥𝑡 ) − 𝑅, and 𝑥𝑡 ≤ 𝐵𝑡 + 𝐸𝑡 , (9b)

where Δ(𝑥𝑡 ) = 𝜆𝐿
∑𝑀
𝑚=1

[
(𝐵†𝑡 + 𝐸

†
𝑡 − 𝑥

†
𝑡 )𝑚 − (𝐵𝑡 + 𝐸𝑡 − 𝑥𝑡 )𝑚

]+
7: Update budgets 𝐵𝑡+1 = 𝐵𝑡 − 𝑥𝑡 + 𝐸𝑡 for LA-OACP, and 𝐵†𝑡+1

= 𝐵
†
𝑡 − 𝑥

†
𝑡 + 𝐸

†
𝑡 for 𝜋

†

8: end for

interpretation of Δ(𝑥𝑡 ) is to bound the maximum potential utility advantage (scaled by 𝜆 ∈ [0, 1])
obtained by 𝜋†

in future rounds, if 𝜋†
has more remaining budgets compared to 𝜋 at the end of

round 𝑡 ; on the other hand, if the algorithm 𝜋 has even more resources available than 𝜋†
, there is no

need to add the reservation since 𝜋 can always roll back to the decision of 𝜋†
in the future without

worrying about budget shortages. Here, we simply use Δ(𝑥𝑡 ) for the convenience of presentation
while suppressing its dependency on other terms such as 𝑥

†
𝑡 . Thus, by adding Δ(𝑥𝑡 ), we now have

a new constraint on the decision 𝑥𝑡 as follows:

𝑡∑︁
𝑖=1

𝑓𝑡 (𝑥𝑖 ) ≥ 𝜆

𝑡∑︁
𝑖=1

𝑓𝑡 (𝑥†𝑖 ) + Δ(𝑥𝑡 ) − 𝑅, (8)

which, if satisfied at round 𝑡 , guarantees the existence of at least one feasible decision that can still

satisfy the constraint. In other words, if the decisions 𝑥𝑡 are chosen out of the constrained set (8)

for round 𝑡 ∈ [𝑇 ], worst-case utility constraint (7b) can be satisfied at the end of any sequence

𝑦 ∈ Y. To our knowledge, the design of Δ(𝑥𝑡 ) for constructing a constrained decision set (8) is

novel for online allocation with replenishable budgets and also differs from many prior learning-

augmented algorithms (e.g., [5] uses a pre-determined threshold for dynamically switching between

ML prediction 𝑥𝑡 and the worst-case robust action 𝑥
†
𝑡 ).

Algorithm. Next, we describe the online optimization process of LA-OACP in Algorithm 3. In

LA-OACP, the competitive algorithm (i.e., 𝜋†
) runs independently for the purpose of bounding

the worst-case utility constraint (7b), and the ML predictor 𝜋̃ takes the actual online information

𝑦1:𝑡 (including the actual remaining budget 𝐵𝑡 and replenishment 𝐸𝑡 ) as its input and generates

its prediction 𝑥𝑡 as advice to LA-OACP. Then, 𝑥𝑡 is projected into a constrained decision set (8)

to find the actual decision 𝑥𝑡 that guarantees the worst-case utility constraint. The purpose of

the projection in LA-OACP is to ensure that 𝑥𝑡 is both close to the ML prediction 𝑥𝑡 to exploit its

potential for improving the average utility, while still staying inside the constrained decision set (8)

for worst-case utility constraint (7b).

ML training. Up to this point, we have assumed that the ML predictor/policy 𝜋̃ has been

provided to LA-OACP for online optimization. Next, we discuss how to train 𝜋̃ used in Algorithm 3.
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In the context of online optimization, the ML-based predictor/policy is typically trained offline and

then applied online for inference [2, 23, 35, 37]. Here, we adopt this standard practice for LA-OACP.
Specifically, we collect a training dataset S of episodic information 𝑦 ∈ Y based on history data

and/or data augmentation techniques, and build an ML model (e.g., a recurrent neural network for

online sequential decision making, with each base network parameterized by the same weights

[2, 35]).

We train the ML model 𝜋̃ by optimizing the expected utility obtained by Algorithm 3. Denote

LA-OACP (𝜋̃ ) as the algorithm LA-OACP with the ML model 𝜋̃ . The training objective is expressed as

max

𝜋̃

1

|S|
∑︁
𝑦∈S

𝐹
LA-OACP(𝜋̃ )
𝑇

(𝑦), (10)

where 𝐹
LA-OACP(𝜋̃ )
𝑇

(𝑦) is the total utility of LA-OACP(𝜋̃) for the sequence 𝑦.
To train the ML model, we apply the state-of-the-art backpropagation, while noting that dif-

ferentiation of the projection operator (which itself is a constrained optimization problem) with

respect to the ML prediction 𝑥𝑡 is needed and can be performed based on implicit differentiation

techniques [3, 4, 34].

4.3 Performance Analysis
We now present the performance analysis of LA-OACP in terms of its worst-case utility as well as its

average performance. As formally stated below, our results highlight that LA-OACP guarantees the

worst-case utility constraint for any sequence 𝑦 ∈ Y and meanwhile is able to exploit the benefits

of ML predictions to improve the average utility.

4.3.1 Worst-Case Utility. We first present the worst-case utility of LA-OACP.

Theorem 4.1. For any 𝜆 ∈ [0, 1] and 𝑅 ≥ 0, given any ML predictor 𝜋̃ and by the design Δ(𝑥𝑡 ) =
𝜆𝐿

∑𝑀
𝑚=1

[
(𝐵†𝑡 + 𝐸

†
𝑡 − 𝑥

†
𝑡 )𝑚 − (𝐵𝑡 + 𝐸𝑡 − 𝑥𝑡 )𝑚

]+
, LA-OACP in Algorithm 3 always guarantees the worst-

case utility constraint (7b) for any sequence 𝑦 ∈ Y.

The proof of Theorem 4.1 is available in Appendix C and shows that, based on the design of

Δ(𝑥𝑡 ), if (8) is satisfied for round 𝑡 , then there must always exist a feasible solution satisfying (8)

for round 𝑡 + 1.

Theorem 4.1 guarantees that the worst-case utility constraint (7b) is always satisfied for any

sequence 𝑦 ∈ Y regardless of how bad the ML predictions are. Thus, even when the training-testing

distributions differ and/or the ML predictions are adversarially modified, LA-OACP can still offer

worst-case utility guarantees with respect to the competitive algorithm OACP or OACP+.

4.3.2 Average Utility. Besides the robustness guarantee, the performance of a learning-augmented

algorithm is often analyzed by considering the worst-case competitive ratio (a.k.a., consistency)

under the assumption that ML predictions are perfect and offline optimal for any sequence 𝑦 ∈ Y
[5, 57]. The consistency metric measures how closely a learning-augmented algorithm can follow

the perfect ML predictions in the worst case. However, an ML model in practice is typically not

perfect and instead is trained to maximize the average performance in practice. Thus, to measure

the capability of LA-OACP for following ML predictions, we directly bound the average utility

of LA-OACP and compare it with the average utility of the optimal unconstrained ML model

𝜋̃∗ = arg max𝜋 E𝑦
[
𝐹𝜋
𝑇
(𝑦)

]
that provides the best average performance. As such, given an optimally

trained ML model, we measure the average-case consistency of LA-OACPwith respect to the optimal

unconstrained ML model 𝜋̃∗
in terms of the average utility difference between LA-OACP and 𝜋̃∗

.

Our consideration of an optimal ML model essentially parallels the assumption of “perfect ML

Proc. ACM Meas. Anal. Comput. Syst., Vol. 8, No. 1, Article 4. Publication date: March 2024.



4:18 Jianyi Yang, et al.

prediction” for worst-case consistency analysis of learning-augmented algorithms [52, 57], while

noting that our optimality is in the average sense subject to our designed constrained decision set

(8).

More concretely, we consider an optimal ML predictor that optimizes the average utility of

LA-OACP, i.e.

𝜋̃◦ = arg max

𝜋̃
E𝑦

[
𝐹
LA-OACP(𝜋̃ )
𝑇

(𝑦)
]
, (11)

where LA-OACP(𝜋̃) outputs the actions 𝑥𝑡 satisfying (8) given the ML prediction 𝑥𝑡 , and show the

average utility bound of LA-OACP in the next theorem.

Theorem 4.2. For any 𝜆 ∈ [0, 1] and 𝑅 ≥ 0, the average utility of LA-OACP with the optimal ML
model 𝜋̃◦ is bounded by

E𝑦

[
𝐹
LA-OACP(𝜋̃◦ )
𝑇

(𝑦)
]
≥ max

{
E𝑦

[
𝐹 𝜋̃

∗

𝑇 (𝑦)
]
− 𝐿(1 − 𝛾𝜆,𝑅)E𝑦

[
𝑇∑︁
𝑡=1

∥𝑥†𝑡 − 𝑥∗𝑡 ∥
]
,E𝑦

[
𝐹𝜋

†

𝑇 (𝑦)
]}

(12)

where 𝛾𝜆,𝑅 = min

{
1, 𝑅

2𝜆𝐿𝜃

}
, 𝜃 = max𝑦

∑𝑇
𝑡=1

∥𝑥∗𝑡 − 𝑥
†
𝑡 ∥1 indicates the maximum cumulative decision

difference between the action 𝑥†𝑡 of OACP or OACP+ and the action 𝑥∗𝑡 of the optimal unconstrained ML
predictor 𝜋̃∗, and 𝐿 is the Lipschitz constant of the utility function (Assumption 3).

The proof of Theorem 4.2 is available in Appendix D. The key idea is to translate the constraint

(8) into a new distance constraint between 𝑥𝑡 and 𝑥
†
𝑡 . Thus, if 𝑥𝑡 is sufficiently close to 𝑥

†
𝑡 for each

round 𝑡 ∈ [𝑇 ], we guarantee the worst-case utility constraint (7b). Meanwhile, by considering

the optimal unconstrained ML predictor 𝜋̃∗ = arg max𝜋 E𝑦
[
𝐹𝜋
𝑇
(𝑦)

]
, we find the closest distance

between 𝑥𝑡 and the ML prediction 𝑥∗𝑡 subject to the distance constraint between 𝑥𝑡 and 𝑥
†
𝑡 , and use

this as a feasible online algorithm. The bound of such a closest distance requires an analysis of

the remaining budget perturbation depending on the non-linear budget dynamics in (1c) due to

the maximum budget cap. Next, by optimality of 𝜋̃◦
used by LA-OACP to explicitly maximize the

average utility satisfying our constraint (8), we obtain the bound in Theorem 4.2.

Theorem 4.2 shows that the average utility of LA-OACP(𝜋̃◦) with the optimal ML model 𝜋̃◦
is

no worse than that of the competitive algorithm 𝜋†
(OACP or OACP+) which is the second term in

the maximum operator. The reason is that the competitive algorithm 𝜋†
is one of the decision

policies with actions in the constrained decision sets (8), whereas LA-OACP(𝜋̃◦) is the optimal

policy satisfying the decision constraints (8). This indicates that, while providing the worst-case

performance guarantee, LA-OACP can still improve the average utility comparedwith the competitive

algorithm (OACP or OACP+). The improvement relies on the first term in the maximum operator,

which bounds the average utility difference between LA-OACP and the optimal-unconstrained ML

model 𝜋̃∗
.

The first term in the maximum operator in Theorem 4.2 provides the key insight into the tradeoff

between the worst-case performance and average performance. Specifically, with a smaller 𝜆 ∈ [0, 1]
and/or greater 𝑅 ≥ 0, the worst-case utility constraint is less stringent and hence provides more

flexibility for LA-OACP to exploit the benefits of ML predictions for higher average utility, and vice

versa. In particular, when 𝑅 is large enough or 𝜆 is small enough, the worst-case utility constraint

in (7b) is so relaxed that it does not affect average utility maximization. In such cases, LA-OACP
approaches the average utility of the optimal unconstrained ML predictor. When the decisions of

the optimal-unconstrained ML predictor and the competitive algorithm become more distinct (i.e.,

increasing 𝜃 or E𝑦

[∑𝑇
𝑡=1

∥𝑥†𝑡 − 𝑥∗𝑡 ∥
]
in Theorem 4.2), it is natrually more difficult to follow the ML

predictions while still staying close to the competitive algorithm for worst-case utility, unless we

lessen the worst-case utility constraint by decreasing 𝜆 ∈ [0, 1] and/or increasing 𝑅 ≥ 0.
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Theorem 4.2 gives the bound of average utility by assuming an optimal ML model 𝜋̃◦
which

parallels the assumption of “perfect ML prediction” for the worst-case consistency analysis in

existing learning-augmented algorithms [52, 57]. However, if the ML model 𝜋̃ in LA-OACP is not
optimally trained, we can define the ML prediction imperfectness as 𝜖 = E𝑦

[
𝐹 𝜋̃

◦

𝑇
(𝑦) − 𝐹 𝜋̃

𝑇
(𝑦)

]
,

where 𝜋̃◦ = arg max𝜋̃ E𝑦

[
𝐹
LA-OACP(𝜋̃ )
𝑇

(𝑦)
]
is the optimal ML model for LA-OACP. The imperfectness

can come from a variety of sources, including finite model capacity and potential training-testing

distributional shifts. Then, the average utility boundwith respect to 𝜋̃ can be obtained by subtracting

the ML imperfectness 𝜖 from the average utility bound in Theorem 4.2. Nevertheless, even when

𝜖 → ∞, the average utility of LA-OACP is always bounded by 𝜆E𝑦
[
𝐹𝜋

†

𝑇
(𝑦)

]
−𝑅, where E𝑦

[
𝐹𝜋

†

𝑇
(𝑦)

]
is the average utility of the competitive algorithm (OACP or OACP+) used by LA-OACP. This is a
natural byproduct of Theorem 4.1, which guarantees the worst-case utility constraint of LA-OACP
with respect to the competitive algorithm.

In general, achieving the optimal tradeoff between average utility and the worst-case utility is

extremely challenging for learning-augmented algorithms (see, e.g., [19, 52] for discussions on

smoothed online convex optimization). Nonetheless, although it remains an open problem to achieve

the best tradeoff, our result in Theorem 4.2 provides the first characterization of such a tradeoff in

the context of learning-augmented algorithms for online allocation with budget replenishment. In

fact, even a competitive online algorithm with budget replenishment is lacking prior to our design

of OACP and OACP+.

5 SIMULATION STUDY
In this section, we run a simulation study on sustainable AI inference powered by renewables. First,

we present the experimental setup, followed by the comparative analysis of the results from our

algorithms with existing baselines. We show that LA-OACP has improved performance in terms of

average utility while still being able to offer good worst-case utility.

5.1 Setup
This section presents our problem setting, dataset, baseline algorithms, and ML model architecture.

Problem setting. Edge data centers are becoming a major platform for AI inference thanks to

their proximity to end users. To achieve sustainable AI inference on the edge, it is important to

exploit renewable generation to replenish on-site energy storage. This can significantly lower the

carbon emissions caused by the surging demand for AI inference [43]. For a given AI inference

service, multiple models are often available. For instance, there are eight different GPT-3 models

[17], each with distinct model sizes, providing a flexible balance between accuracy and energy

consumption. However, the renewable sources are known for their time-varying and unstable

nature. Thus, we can use intermittent renewables to replenish the energy budgets, and schedule an

appropriate AI model for inference in an online manner to maximize the utility given available

energy budget constraints [51, 53].

Specifically, we focus on an edge data center with an on-site energy storage unit (e.g., batteries)

for AI inference. The initial energy budget is 𝐵1 = 12𝑘𝑊ℎ. At each round 𝑡 , the time-varying

renewable energy 𝐸𝑡 is replenished to the energy storage subject to themaximum capacity constraint

𝐵max = 30𝑘𝑊ℎ. Each problem instance has 120 rounds. If served by the full AI model, the energy

consumption for inference is 𝑐𝑡 , which also measures the total demand. Nonetheless, the resource

manager can decide an AI model at each round 𝑡 , which consumes energy 𝑥𝑡 . If a smaller AI model

is chosen, then 𝑥𝑡 is also smaller, but the inference accuracy is potentially lower. Here, we use a

utility function to denote the reward by consuming 𝑥𝑡 energy for serving the demand. Specifically,
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we model the utility of serving each unit of AI inference demand as log(1 + min{1, 𝑥𝑡
𝑐𝑡
}), where

the min operator means that over-using energy 𝑥𝑡 beyond the maximum demand does not offer

additional utility. Next, by using the total demand 𝑐𝑡 to scale the demand, we have a utility function

of 𝑓𝑡 (𝑥𝑡 ) = 𝑐𝑡 log(1 + min{1, 𝑥𝑡
𝑐𝑡
}) at time 𝑡 . Note that choosing 𝑥𝑡 = 0 means that the inference

demand is not processed by the edge (and routed to cloud data centers beyond our scope). The

remaining budget in the energy storage is then updated according to (1c). The goal of the resource

manager is to maximize

∑𝑇
𝑡=1

𝑓𝑡 (𝑥𝑡 ) subject to the energy budget constraint.

Dataset. In our experiment, the inference demand 𝑐𝑡 comes from the GPU power usage of the

BLOOM model (a large lanugage model) API running on 16 Nvidia A100 GPUs [43]. The budget

replenishment 𝐸𝑡 (harvested renewable energy) is constructed based on the renewable dataset

from California Independent System Operator [47], which contains hourly solar renewables. The

values are scaled down to our setting. We extend the BLOOM trace data by data augmentation to

construct a training dataset consisting of 1600 problem instances, each with 120 hours. Then, the

entire dataset is divided into training and testing sets with a 3:1 ratio.

Baseline algorithms. To compare our results, we consider the following baseline algorithms.

– OPT : OPT is the optimal oracle algorithm that solves (1) based on complete offline information.

Thus, OPT has the highest utility for any problem instance.

– Equal: Equal uniformly allocates the initial budget, and greedily uses the replenished budget

whenever applicable, i.e., 𝑥𝑡 = min{𝑥, 𝜌 + 𝐸𝑡 }.
– Greedy: Greedy allocates as much budget as possible at each round, i.e., 𝑥𝑡 = min{𝑥, 𝐵𝑡 + 𝐸𝑡 }.
– DMD: DMD (Dual Mirror Descent) updates the dual variable by mirror descent [11]. With

replenishable budgets, DMD updates the dual variable based on subgradient 𝑔𝑡 = 𝜌 + 𝐸𝑡 − 𝑥𝑡 .
–ML:ML uses a standalone ML predictor to yield online allocation decisions subject to per-round

budget constraints. Such ML-based online optimizer empirically have superior average performance

in a variety of online problems (when training-testing distributions are consistent) [2, 23, 35], but

cannot guarantee worst-case utility bounds.

The hyperparameters for these algorithms, if applicable, are tuned based on our validation

dataset to achieve the maximum utility. While it is not possible to compare our algorithms with

all the existing baselines in the literature, our choice of baseline algorithms is representative in

the sense that they cover the strongest OPT, naive Greedy, state-of-the-art competitive online

algorithm DMD, as well as state-of-the-art ML-based online optimizers. Thus, we do not consider

other competitive algorithms than state-of-the-art DMD, or other algorithms that focus on average

performance but do not have as empirically good performance as ML. Importantly, our design of

OACP or OACP+ is provably-competitive and LA-OACP can provably satisfy the worst-case utility

constraint (7b) with respect to any available online algorithm by using it to replace OACP or OACP+
as 𝜋†

in Algorithm 3.

ML model architecture. We implement the ML model based on a neural network with 2

hidden layers each having a width of 10 with ReLu activation. To train the model, we use the

Adam optimizer for 100 epochs with a batch size of 20 and a learning rate of 0.001. The same ML

architecture is also used in LA-OACP.

5.2 Results
In this section, we present a comparative analysis of different baselines with our proposed algorithms

in terms of the average utility and empirical competitive ratio. The average utility is empirically

calculated as the average utility of the testing samples and is normalized by the optimal average

utility. The competitive ratio is empirically calculated as the minimum ratio of an online algorithm’s

utility to the optimal utility among the testing samples. Because of the provably better asymptotic
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ML OACP OACP+ LA-OACP-0.3 LA-OACP-0.6 DMD Greedy Equal

AVG In 0.9340 0.8959 0.9130 0.9311 0.9301 0.8715 0.8574 0.7246

OOD 0.8975 0.9036 0.9041 0.8953 0.8981 0.9016 0.9000 0.7528

CR In 0.8645 0.8481 0.8565 0.8303 0.8223 0.8200 0.8048 0.5650

OOD 0.7916 0.8234 0.8411 0.7916 0.8003 0.8076 0.8048 0.5650

Table 2. Comparison of average utility (AVG) and empirical competitive ratio (CR). LA-OACP-𝑛 indicates
LA-OACP with 𝜆 = 𝑛. “In” and “OOD” mean in-distribution and out-of-distribution, respectively. The average
utility is normalized by that of OPT (i.e., 80.2771 and 78.8540 for the in-distribution and out-of-distribution
cases, respectively).... Bold values represent the best for the respective metrics.

competitive ratio of OACP+, we use OACP+ in LA-OACP and set 𝑅 = 0 in (7b) by default. All the utility

values are normalized with respect to that of OPT.

Comparison with baselines. We first compare OACP, OACP+ and LA-OACP with the baseline

algorithms in Table 2 under an in-distribution case where the training-testing instances are drawn

from the same distribution. Our results show that ML has the highest average utility among the

considered online algorithms, while LA-OACP, OACP, and OACP+ outperform other baselines (DMD,

Greedy and Equal) in terms of the average utility. Importantly, by setting 𝜆 = 0.3 and 𝜆 = 0.6, the

average utilities of LA-OACP are both improved compared to OACP and OACP+, and closer to that of

ML.

For the in-distribution testing case, the empirical competitive ratio of ML is also the best, although

ML does not have a guaranteed competitive ratio. Besides, OACP and OACP+ both have higher

competitive ratios than other baselines (DMD, Greedy, Equal), demonstrating their advantages in

competitive ratio guarantees. Note that the empirical competitive ratios of OACP are higher than
that of DMD which sets its resource price more aggressively, showing the benefit of conservative

pricing in OACP. Moreover, while the empirical competitive ratios of LA-OACP are lower than ML,

they have provable competitive ratio which is scaled down by 𝜆 compared to that of OACP+.
Training-testing distributional shifts. The above results consider that the training and testing

instances are drawn from the same distribution. Now, we consider an out-of-distribution (OOD)
testing case by adding perturbation noises to 30% of the testing instances, and show the results in

Table 2. OOD is commonly seen in practice, making ML predictions potentially untrusted. Since

the testing distribution shifts compared to the training distribution under the OOD setting, the

performances of ML in terms of both average utility and competitive ratio decrease and become

worse than OACP and OACP+. Still, OACP and OACP+ outperform the other baselines (DMD, Greedy

and Equal) in terms of the empirical competitive ratio, again showing their benefits in the worst-case

competitive guarantee. The learning-augmented algorithm LA-OACP improves the competitive ratio

of ML with a large 𝜆, showing its effects in providing the ML with guaranteed competitiveness.

Performance under varying 𝜆. Next, we show in Fig. 1(a) the impact of 𝜆 ∈ [0, 1] on LA-OACP
in terms of the average utility. We see that under the in-distribution setting, when 𝜆 increases,

the average utility of LA-OACP can decrease due to the increasingly more stringent worst-case

robustness constraint (7b). Interestingly, LA-OACP can achieve higher average utility than ML under

some 𝜆. This is due to the fact that OACP+ used by LA-OACP can correct the ML predictions for some

problem instances in which the original ML predictions do not perform well. For the OOD setting,

the average utility of ML is lower due to the distribution shift. By integrating OACP+ with ML,

LA-OACP is more beneficial in terms of improving the average utility. This confirms our analysis of

LA-OACP in Theorems 4.1 and 4.2.

We show the empirical competitive ratios under different 𝜆 in Fig. 1(b). In practice, it is difficult

to evaluate the competitive ratio empirically since the adversarial samples for the algorithms

under evaluation may not exist in the actual testing dataset under evaluation. As a result, a few
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(a) Average utility of LA-OACP
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(c) Constraint violation rate of ML

Fig. 1. (a) Average utility of LA-OACP with varying 𝜆 ∈ [0, 1]; (b) Empirical competitive ratio of LA-OACP with
varying 𝜆 ∈ [0, 1] (dotted lines represent the theoretical competitive ratio bounds); (c) Utility constraint (7b)
violation probability by the pure ML predictor.

unfavorable instances can affect the empirical competitive ratio significantly. Our results show

that LA-OACP has an empirical competitive ratio higher than the theoretical bound in Theorem 4.1

(dotted line in Fig. 1(b)), which is also very common in practice.

Finally, we show in Fig. 1(c) the worst-case utility constraint violation probability for the pure

standalone ML predictor. Naturally, when 𝜆 increases, the worst-case utility constraint in (7b)

becomes tighter, making the pure ML predictor violate the constraint more frequently. This high-

lights the lack of worst-case utility guarantees of pure ML, as well as the necessity of LA-OACP to

safeguard the ML predictions. Thus, although ML empirically can have a good competitive ratio

(against OPT) as shown in Table 2 for the in-distribution case, this empirical advantage is not

always guaranteed.

6 RELATEDWORKS
Online constrained allocation is a classic problem extensively studied in the last few decades. For

example, some earlier works [20, 26] solve online allocation by estimating a fixed Lagrangian mul-

tiplier using offline data, while other studies design online algorithms by updating the Lagrangian

multiplier or resource price in an online manner [1, 21, 63]. Likewise, online algorithms have

also been proposed for online stochastic optimization with distributional information [32]. Online

algorithms that allow budget violations are also available [42, 45, 46]. In the context of network

optimization, Lyapunov optimization can address various resource constraints by introducing

resource queues (equivalent to the Lagrangian multiplier), but the extension to adversarial settings

with strict budget constraints is challenging [28, 29, 45, 61].

Online allocation with budget constraints in adversarial settings is very challenging and has not

been fully resolved yet. Concretely, for online allocation with inventory constraints, competitive

online algorithms are designed by pursuing a pseudo-optimal algorithm, but the utility function

either takes a single scalar [41] or is separable over multiple dimensions [40]. A recent study [9]

considers online allocation with a more general convex utility function and proposes dual mirror

descent (DMD) to update the Lagrangian multiplier given stochastic inputs at each round, while

the extension to adversarial settings has been considered more recently in [11] and extension to

uncertain time horizons is studied in [8]. Nonetheless, these studies do not apply to online budget

replenishment, which we address by proposing provably-competitive OACP and OACP+.
ML predictors/policies have been emerging for exploiting the distributional information of

problem inputs and hence improving the average performance of various (online) optimization

problems [18, 36, 54]. For example, online scheduling, resource management, and classic secretary

problems [12, 35, 54, 62] have all been considered. Nonetheless, amajor drawback of these standalone
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ML-based optimizers is that they do not have worst-case performance guarantees and may have

very high or even unbounded losses in the worst case. As a consequence, they may not be suitable

for mission-critical applications. While constrained ML-based policies [22, 25, 33, 58] are available,

they focus on orthogonal challenges (i.e., unknown cost/utility functions) and typically focus on

the average constraint, rather than worst-case utility constraint for any problem instance.

LA-OACP is relevant to the emerging field of learning-augmented algorithms [15, 15, 19, 38, 44, 57].

The goal of typical learning-augmented algorithms is to improve the worst-case competitive ratio

when theML prediction is perfect, while bounding theworst-case competitive ratiowhenML predici-

tion is arbitrarily bad. While it has been considered in a variety of settings, a learning-augmented

algorithm for online allocation with replenishable budgets is still lacking. Thus, LA-OACP addresses

this gap and is the first learning-augmented algorithm for online allocation with replenishable

budgets that offers worst-case utility guarantees for any problem instance.

7 CONCLUSION
In this paper, we study online resource allocation with replenishable budgets, and propose novel

competitive algorithms, called OACP and OACP+, that conservatively adjusts dual variables while

opportunistically utilizing available resources. We prove, for the first time, that OACP and OACP+
both achieve bounded asymptotic competitive ratios in adversarial settings as the number of

decision rounds 𝑇 → ∞. In particular, under the mild assumption that the budget is replenished

every 𝑇 ∗
rounds, OACP+ can improve the asymptotic competitive ratio over OACP. Then, to address

the conservativeness of OACP, we move beyond the worst-case and propose LA-OACP, a novel

learning-augmented algorithm for our problem setting. LA-OACP can provably improve the average

utility compared to OACP and OACP+ when the ML predictor is properly trained, while still offering

worst-case utility guarantees. Finally, we perform simulation studies using online power allocation

with energy harvesting. Our results validate our analysis and demonstrate the empirical benefits of

LA-OACP compared to existing baselines.
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APPENDIX
A PROOF OF THEOREM 3.1
We now prove Theorem 3.1 and first restate the convergence lemma of online mirror descent.

Lemma A.1 ([11, 48]). Let 𝑉ℎ (𝑥,𝑦) = ℎ(𝑥) − ℎ(𝑦) − ▽ℎ(𝑦)⊤ (𝑥 − 𝑦) be the Bregman divergence
based on a 𝜎-strongly convex function ℎ. If𝑤𝑡 (𝜇) is a convex function with respect to 𝜇 ∈ D where
D is a convex set and its sub-gradient satisfies ∥𝜕𝜇𝑤𝑡 (𝜇)∥∞ ≤ 𝐺 , by updating the variable 𝜇𝑡+1 =

arg min𝜇∈D 𝜇⊤𝜕𝜇𝑤𝑡 (𝜇) + 1

𝜂
𝑉ℎ (𝜇, 𝜇𝑡 ) from some initial variable 𝜇1, it holds for any 𝜇 ∈ D that

𝑇∑︁
𝑡=1

𝑤𝑡 (𝜇𝑡 ) −𝑤𝑡 (𝜇) ≤
𝐺2𝜂

2𝜎
𝑇 + 1

𝜂
𝑉ℎ (𝜇, 𝜇1). (13)

Proof of Theorem 3.1

Proof. We define T𝐴 =
{
𝜏1, · · · , 𝜏 | T𝐴 |

}
as a set of rounds when 𝑥𝑡 violates the budget constraint,

i.e. ∀𝜏 ∈ T𝐴, there exists a dimension𝑚 such that (𝑥𝜏 )𝑚 > (𝐵𝜏 + 𝐸𝜏 )𝑚 . By our algorithm design, if

𝑡 ∈ T𝐴, we choose 𝑥𝑡 = 0 and 𝑔𝑡 = 0. Define a sequence of functions as

𝑤𝑡 (𝜇) = 𝜇⊤𝑡 𝑔𝑡 =
{
𝜇⊤𝑡 (𝜌 − 𝑥𝑡 ), 𝑡 ∉ T𝐴,

0, 𝑡 ∈ T𝐴 .
(14)

By Lemma A.1, we have

𝑇∑︁
𝑡=1

𝑤𝑡 (𝜇𝑡 ) −𝑤𝑡 (𝜇) ≤
𝐺2𝜂

2𝜎
𝑇 + 1

𝜂
𝑉ℎ (𝜇, 𝜇1), (15)

where 𝐺 = sup ∥𝑔𝑡 ∥∞ ≤ 𝜌 + ∥𝑥 ∥∞. By our algorithm design, ∀𝑡 ∉ T𝐴, the action is chosen as

𝑥𝑡 = arg max𝑥∈X{𝑓𝑡 (𝑥) −𝜇⊤𝑡 𝑥}, we have 𝑓𝑡 (𝑥∗𝑡 ) ≤ 𝑓𝑡 (𝑥𝑡 ) +𝜇⊤𝑡 (𝑥∗𝑡 −𝑥𝑡 ) and 0 = 𝑓𝑡 (0) ≤ 𝑓𝑡 (𝑥𝑡 ) −𝜇⊤𝑡 𝑥𝑡 .
Thus we have

𝛼 𝑓𝑡 (𝑥𝑡 ) = 𝑓𝑡 (𝑥𝑡 ) + (𝛼 − 1) 𝑓𝑡 (𝑥𝑡 )
≥ 𝑓𝑡 (𝑥∗𝑡 ) − 𝜇⊤𝑡 𝑥∗𝑡 + 𝜇⊤𝑡 𝑥𝑡 + (𝛼 − 1) 𝑓𝑡 (𝑥𝑡 )
≥ 𝑓𝑡 (𝑥∗𝑡 ) − 𝜇⊤𝑡 𝑥∗𝑡 + 𝜇⊤𝑡 𝑥𝑡 + (𝛼 − 1)𝜇⊤𝑡 𝑥𝑡
= 𝑓𝑡 (𝑥∗𝑡 ) − 𝛼𝜇⊤𝑡 (𝜌 − 𝑥𝑡 ) − 𝜇⊤𝑡 𝑥∗𝑡 + 𝛼𝜇⊤𝑡 𝜌
≥ 𝑓𝑡 (𝑥∗𝑡 ) − 𝛼𝑤𝑡 (𝜇𝑡 ),

(16)

where the last inequality holds by setting 𝛼 = max𝑚∈[𝑀 ]
𝑥𝑚
𝜌𝑚

.
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Then for any 𝜇 > 0, we have

𝑂𝑃𝑇 (𝑦) − 𝛼𝐹𝑇 (𝑦)

≤
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥∗𝑡 ) − 𝛼
∑︁
𝑡∉T𝐴

𝑓𝑡 (𝑥𝑡 )

≤
𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥∗𝑡 ) −
∑︁
𝑡∉T𝐴

𝑓𝑡 (𝑥∗𝑡 ) +
∑︁
𝑡∉T𝐴

𝛼𝑤𝑡 (𝜇𝑡 )

≤
∑︁
𝑡 ∈T𝐴

𝑓𝑡 (𝑥∗𝑡 ) + 𝛼
∑︁
𝑡∉T𝐴

𝑤𝑡 (𝜇) + 𝛼
(
𝐺2𝜂

2𝜎
𝑇 + 1

𝜂
𝑉ℎ (𝜇, 𝜇1)

)
≤|T𝐴 | ¯𝑓 + 𝛼

∑︁
𝑡∉T𝐴

𝜇⊤ (𝜌 − 𝑥𝑡 ) + 𝛼
(
𝐺2𝜂

2𝜎
𝑇 + 1

𝜂
𝑉ℎ (𝜇, 𝜇1)

)
(17)

where the first inequality holds because the utility are non-negative, the second inequality holds

by (16), the third inequality holds by Lemma A.1, and the last inequality holds by 𝑓𝑡 ≤ ¯𝑓 .

Now it remains to choose 𝜇 to get the bound. If |T𝐴 | = 0, set 𝜇 = 0, and the bound holds.

Otherwise, we choose 𝜇 as follows. Define M𝐴 is the set of resources of which the corresponding

constraints are violated, i.e. for𝑚 ∈ M𝐴, ∃𝑡 ∈ [𝑇 ] such that 𝑥𝑚,𝑡 > (𝐵𝑡 + 𝐸𝑡 )𝑚 . Since the consumed

resource plus 𝑥𝑡,𝑚 is larger than the initial budget 𝐵1,𝑚 when the constraint resource𝑚 is violated

and 𝑥𝑡,𝑚 ≤ 𝑥𝑚 , it holds for resource𝑚 ∈ M𝐴 that∑︁
𝑡∉T𝐴

𝑥𝑡,𝑚 + 𝑥𝑚 ≥ 𝐵1,𝑚 = 𝜌𝑚𝑇 .
(18)

We choose one resource 𝑗 ∈ M𝐴 and set 𝜇 =
¯𝑓

𝛼𝜌 𝑗
𝑒 𝑗 where 𝑒 𝑗 is a unit vector with 𝑗th entry being

one and other entries being zero, it holds that

𝛼
∑︁
𝑡∉T𝐴

𝜇⊤ (𝜌 − 𝑥𝑡 )

=𝛼
∑︁
𝑡∉T𝐴

𝜇 𝑗 (𝜌 𝑗 − 𝑥𝑡, 𝑗 )

≤𝛼 (𝑇 − |T𝐴 |)𝜇 𝑗𝜌 𝑗 − 𝛼𝜇 𝑗 (𝑇𝜌 𝑗 − 𝑥 𝑗 )
≤ − 𝛼 |T𝐴 |𝜇 𝑗𝜌 𝑗 + 𝛼𝜇 𝑗𝑥 𝑗
≤ − |T𝐴 | ¯𝑓 + 𝛼 ¯𝑓 ,

(19)

where the first inequality holds by (18), and the last inequality holds by the choice of 𝜇.

Substituting (19) into (17), we get the bound as

𝑂𝑃𝑇 (𝑦) − 𝛼𝑅𝐷𝑀𝐷𝑇 (𝑦) ≤ 𝛼 ¯𝑓 + 𝛼𝐺
2𝜂𝑇

2𝜎
+ 𝛼
𝜂
𝑉ℎ (𝜇, 𝜇1), (20)

where𝛼 = sup𝑚∈[𝑀 ]
𝑥𝑚
𝜌𝑚

, and 𝜇 = 0 ifM𝐴 = ∅. Otherwise, 𝜇 =
¯𝑓

𝛼𝜌 𝑗
𝑒 𝑗 , 𝑗 = arg min𝑚𝑉ℎ (

¯𝑓

𝛼𝜌𝑚
𝑒𝑚, 𝜇1),𝑚 ∈

M𝐴}. Thus, we complete the proof. □

B PROOF OF THEOREM 3.2
Lemma B.1. If a fixed budget 𝐵 (𝑖 ) = 2

𝑖−1𝑇 ∗𝜌 + Ω𝑖 where Ω𝑖 = min{𝐵𝑇𝑖−1+1 − (𝑇 − (2𝑖−1 −
1)𝑇 ∗)𝜌, 2𝑖−2𝑇 ∗𝜌max ⊙ 𝛽} where 𝜌max = 𝐵max/𝑇 is assigned to each frame 𝑖, 1 ≤ 𝑖 ≤ 𝐾 with 2

𝑖−1𝑇 ∗
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𝟎 𝑻∗ 𝟑𝑻∗ 7 𝑻∗

𝑩𝒎𝒂𝒙

𝑩𝟏 = 𝑻𝝆
𝑩𝟏

𝑻∗𝝆

𝑩𝑻∗&𝟏

𝑩𝟐
𝑩𝟑𝑻∗&𝟏

𝑩𝟑

𝑩𝟕𝑻∗&𝟏

𝚪𝟐
𝚪𝟑

Fig. 2. An example of budget assignment with 𝑇 = 7𝑇 ∗. Colored rectangles indicate the amount of re-
mained budget and white rectangles are the spaces in the storage. Dark blue rectangles indicate permanent
budgets 2

𝑖−1𝑇 ∗𝜌 for the current frame. Light blue rectangles indicate permanent budgets for the future
frames (𝑇 − (2(𝑖 ) − 1)𝑇 ∗)𝜌 . Green rectangles indicate the budget accumulation min{𝐵𝑇𝑖−1+1 − (𝑇 − (2𝑖−1 −
1)𝑇 ∗)𝜌, 2𝑖−2𝑇 ∗𝜌max ⊙ 𝛽}.

rounds, the additive budget Ω𝑖 is greater or equal to equivalent additive budget Ω̂𝑖 , 1 ≤ 𝑖 ≤ 𝐾 − 1

which is expressed as

Ω̂1 = 0 (21a)

Ω̂2 = min{𝑇𝜌max −𝑇𝜌, 𝐸′min
} (21b)

Ω̂𝑖 = min{𝑇𝜌max − 2
𝑖−3𝑇 ∗𝜌max ⊙ 𝛽 − (𝑇 − (2𝑖−2 − 1)𝑇 ∗)𝜌, 2𝑖−2𝐸′

min
}, 3 ≤ 𝑖 ≤ 𝐾 (21c)

where 𝐸′
min

= min{𝐸min,𝑇
∗𝜌max ⊙ 𝛽}.

Proof. We prove that the equivalent additive budget Ω̂𝑖 does not exceed the true additive budget
Ω𝑖 for any frame 𝑖 .

For the first frame, it is obvious that Ω̂1 ≤ Ω1 = 0 holds. For the second frame, we discuss the

value of Ω2 in the following cases.

Firstly, if for a resource𝑚 ∈ [𝑀], 𝐵𝑇 ∗+1,𝑚 − (𝑇 −𝑇 ∗)𝜌𝑚 ≤ 𝑇 ∗𝛽𝑚𝜌max,𝑚 , the additive budget Ω2,𝑚

is 𝐵𝑇 ∗+1,𝑚 − (𝑇 −𝑇 ∗)𝜌𝑚 , and it comprises the replenishment in the first frame

∑𝑇1

𝑡=1
𝐸𝑡,𝑚 and the

unconsumed budget in the first frame 𝐵1

𝑚 − ∑𝑇1

𝑡=1
𝑥𝑡,𝑚 . We can bound the replenishment in the first

frame as

𝑇1∑︁
𝑡=1

𝐸𝑡,𝑚 ≥ min{𝐵max,𝑚 −𝑇𝜌𝑚, 𝐸min,𝑚} ≥ min{𝐵max,𝑚 −𝑇𝜌, 𝐸′
min,𝑚} = Ω̂2,𝑚 . (22)

The reason is that if the truly replenished budget of resource𝑚 at each round of the first frame is

not constrained by 𝐵max,𝑚 , i.e. 𝐸𝑡,𝑚 = 𝐸𝑡,𝑚,∀𝑡 ∈ [1,𝑇1], we have
∑𝑇1

𝑡=1
𝐸𝑡,𝑚 =

∑𝑇1

𝑡=1
𝐸𝑡,𝑚 ≥ 𝐸min,𝑚 ≥

𝐸′
min,𝑚

. Otherwise, we must have

∑𝑇1

𝑡=1
𝐸𝑡,𝑚 ≥ 𝐵max,𝑚 −𝑇𝜌𝑚 since 𝐵max,𝑚 −𝑇𝜌𝑚 is the minimum

replenished budget such that the replenishment is constrained by the budget cap 𝐵max,𝑚 . Therefore

for the first case, we always have for the resource𝑚, Ω̂2,𝑚 ≤ ∑𝑇1

𝑡=1
𝐸𝑡,𝑚 ≤ Ω2,𝑚 .
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For the second case when 𝐵𝑇 ∗+1,𝑚 − (𝑇 −𝑇 ∗)𝜌𝑚 > 𝑇 ∗𝛽𝑚𝜌max,𝑚 for resource𝑚, we have Ω2,𝑚 =

𝑇 ∗𝛽𝑚𝜌max,𝑚 . Thus, we still have Ω̂2,𝑚 ≤ 𝐸′
min,𝑚

≤ 𝑇 ∗𝛽𝑚𝜌max,𝑚 = Ω2,𝑚 .

Since the inequality holds for all the resources𝑚, we have Ω̂2 ≤ Ω2.

For the 𝑖th (3 ≤ 𝑖 ≤ 𝐾 ) frame, we discuss for the value of Ω𝑖 in the following cases.

Firstly, if for a resource𝑚, 𝐵𝑇𝑖−1+1,𝑚 − (𝑇 − (2𝑖−1 − 1)𝑇 ∗)𝜌𝑚 ≤ 2
𝑖−2𝑇 ∗𝛽𝑚𝜌max,𝑚 , then the additive

budget Ω𝑖,𝑚 includes the replenishment in the (𝑖 − 1)th frame

∑𝑇𝑖−1

𝑡=𝑇𝑖−2+1
𝐸𝑡,𝑚 , the unconsumed

assigned budget in the (𝑖−1)th frame 𝐵𝑖−1

𝑚 −∑𝑇𝑖−1

𝑡=𝑇𝑖−2+1
𝑥𝑡,𝑚 , and the possibly saved budget [𝐵𝑇𝑖−2+1,𝑚−

(𝑇 − (2𝑖−2 − 1)𝑇 ∗)𝜌𝑚 − 2
𝑖−3𝑇 ∗𝛽𝑚𝜌max,𝑚]+ at the beginning of (𝑖 − 1)th frame. The truly replenished

budget in the (𝑖 − 1)th frame can be bounded as

𝑇𝑖−1∑︁
𝑡=𝑇𝑖−2+1

𝐸𝑡,𝑚 ≥ min{𝐵max,𝑚 − 𝐵𝑇𝑖−2+1,𝑚, 2
𝑖−2𝐸′

min,𝑚}. (23)

The reason is that if the replenishment at each round of the (𝑖 − 1)th frame is not constrained by

𝐵max,𝑚 , i.e. 𝐸𝑡,𝑚 = 𝐸𝑡,𝑚,∀𝑡 ∈ [𝑇𝑖−2 + 1,𝑇𝑖−1], we have
∑𝑇𝑖−1

𝑡=𝑇𝑖−2+1
𝐸𝑡,𝑚 =

∑𝑇𝑖−1

𝑡=𝑇𝑖−2+1
𝐸𝑡,𝑚 ≥ 2

𝑖−2𝐸min,𝑚 ≥
2
𝑖−2𝐸′

min,𝑚
. Otherwise, we must have

∑𝑇𝑖−1

𝑡=𝑇𝑖−2+1
𝐸𝑡,𝑚 ≥ 𝐵max,𝑚 − 𝐵𝑇𝑖−2+1,𝑚 since 𝐵max,𝑚 − 𝐵𝑇𝑖−2+1,𝑚 is

the minimum replenished budget such that the replenishment is constrained by the budget cap

𝐵max,𝑚 .

If it holds at the beginning of the (𝑖 − 1)th frame that 𝐵𝑇𝑖−2+1,𝑚 ≤ (𝑇 − (2𝑖−2 − 1)𝑇 ∗)𝜌𝑚 +
2
𝑖−3𝑇 ∗𝛽𝑚𝜌max,𝑚 , we further have

Ω𝑖,𝑚 ≥
𝑇𝑖−1∑︁

𝑡=𝑇𝑖−2+1

𝐸𝑡,𝑚 ≥ min{𝐵max,𝑚 − 2
𝑖−3𝑇 ∗𝛽𝑚𝜌max,𝑚 − (𝑇 − (2𝑖−2 − 1)𝑇 ∗)𝜌𝑚, 2𝑖−2𝐸′

min,𝑚} = Ω̂𝑖,𝑚 .

(24)

Otherwise, [𝐵𝑇𝑖−2+1,𝑚 − (𝑇 − (2𝑖−2 − 1)𝑇 ∗)𝜌𝑚 − 2
𝑖−3𝑇 ∗𝛽𝑚𝜌max,𝑚]+ is positive and is included in Ω𝑖,𝑚 .

Under such a case, we have

Ω̂𝑖,𝑚 =min{(𝑇 − 2
𝑖−3𝑇 ∗𝛽𝑚)𝜌max,𝑚 − (𝑇 − (2𝑖−2 − 1)𝑇 ∗)𝜌𝑚, 2𝑖−2𝐸′

min,𝑚}
≤ min{𝐵max,𝑚 − 𝐵𝑇𝑖−2+1,𝑚, 2

𝑖−2𝐸′
min,𝑚} + 𝐵𝑇𝑖−2+1,𝑚 − (𝑇 − (2𝑖−2 − 1)𝑇 ∗)𝜌𝑚 − 2

𝑖−3𝑇 ∗𝛽𝑚𝜌max,𝑚

≤
𝑇𝑖−1∑︁

𝑡=𝑇𝑖−2+1

𝐸𝑡,𝑚 + 𝐵𝑇𝑖−2+1,𝑚 − (𝑇 − (2𝑖−2 − 1)𝑇 ∗)𝜌𝑚 − 2
𝑖−3𝑇 ∗𝛽𝑚𝜌max,𝑚 ≤ Ω𝑖,𝑚,

(25)

where the first inequality holds because min{𝐴 + 𝐵,𝐶} ≤ min{𝐴,𝐶} + 𝐵 for 𝐴, 𝐵,𝐶 ≥ 0, the second

inequality holds by (23), and the last inequality holds since

∑𝑇𝑖−1

𝑡=𝑇𝑖−2+1
𝐸𝑡,𝑚 and [𝐵𝑇𝑖−2+1,𝑚 − (𝑇 −

(2𝑖−2 − 1)𝑇 ∗)𝜌𝑚 − 2
𝑖−3𝑇 ∗𝛽𝑚𝜌max,𝑚]+ are both included in Ω𝑖,𝑚 .

Secondly, if 𝐵𝑇𝑖−1+1,𝑚 − (𝑇 − (2𝑖−1 − 1)𝑇 ∗)𝜌𝑚 > 2
𝑖−2𝑇 ∗𝛽𝑚𝜌max,𝑚 , the additive budget Ω𝑖,𝑚 =

2
𝑖−2𝑇 ∗𝛽𝑚𝜌max,𝑚 , and we have Ω̂𝑖,𝑚 ≤ 2

𝑖−2𝐸′
min,𝑚

≤ 2
𝑖−2𝑇 ∗𝛽𝑚𝜌max,𝑚 = Ω𝑖,𝑚 .

Since the inequality holds for all the resources𝑚, we have Ω̂𝑖 ≤ Ω𝑖 for 3 ≤ 𝑖 ≤ 𝐾 . □

Proof of Theorem 3.2

Proof. Since dual mirror descent is applied to each frame, using similar techniques as the proof

of Theorem 3.1, we can prove that within each frame 𝑖, 𝑖 ∈ [𝐾], given the choice of 𝜂 and 𝜇, it holds

that

𝑇𝑖∑︁
𝑡=𝑇𝑖−1

𝑓𝑡 (𝑥∗𝑡 ) − 𝛼𝑖 𝑓𝑡 (𝑥𝑡 ) ≤ 𝛼𝑖 ¯𝑓 + 𝛼𝑖 (𝜌 (𝑖 ) + ∥𝑥 ∥∞)
√︂
𝑉ℎ (𝜇, 𝜇1) (2𝑖−1𝑇 ∗)

2𝜎
, (26)
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where 𝑥∗𝑡 is the offline-optimal solution for the whole episode with length 𝑇 , 𝛼𝑖 = sup𝑚∈[𝑀 ]
𝑥𝑚

𝜌
(𝑖 )
𝑚

,

and 𝜌 (𝑖 ) = sup𝑚∈[𝑀 ] 𝜌
(𝑖 )
𝑚 .

To use the doubling trick, we need to bound 𝜌 (𝑖 ) = 𝐵 (𝑖 )

2
𝑖−1𝑇 ∗ . By Lemma B.1, we have 𝜌1 = 𝜌 ,

𝜌2 =
2𝑇 ∗𝜌+Ω𝑖

2𝑇 ∗ ≥ 2𝑇 ∗𝜌+min{𝑇𝜌max−𝑇𝜌,𝐸′
min

}
2𝑇 ∗ = 𝜌 + min{𝑇𝜌max−𝑇𝜌

2𝑇 ∗ ,
𝜌max⊙𝛽

2
,
𝐸min

2𝑇 ∗ }, and for 3 ≤ 𝑖 ≤ 𝐾 , we

have

𝜌 (𝑖 ) =𝐵 (𝑖 )/(2𝑖−1𝑇 ∗) = 2
𝑖−1𝑇 ∗𝜌 + Ω𝑖

2
𝑖−1𝑇 ∗ ≥ 2

𝑖−1𝑇 ∗𝜌 + Ω̂𝑖
2
𝑖−1𝑇 ∗

=𝜌 +
min

{
𝑇𝜌max − 2

𝑖−3𝑇 ∗𝜌max ⊙ 𝛽 − (𝑇 − (2𝑖−2 − 1)𝑇 ∗)𝜌, 2𝑖−2𝐸′
min

}
2
𝑖−1𝑇 ∗

=𝜌 + min

{
1

2
𝑖−1

(
𝑇𝜌max

𝑇 ∗ − 𝑇 +𝑇 ∗

𝑇 ∗ 𝜌

)
+ 𝜌

2

− 𝜌max ⊙ 𝛽
4

,
𝜌max ⊙ 𝛽

2

,
𝐸min

2𝑇 ∗

}
,

(27)

where the first inequality holds since Ω𝑖 ≥ Ω̂𝑖 , and the last equality holds since 𝐸′
min

= min{𝐸min,

𝑇 ∗𝜌max⊙𝛽}. If it holds for a resource𝑚 that 𝐵max,𝑚 < (𝑇 +𝑇 ∗)𝜌𝑚 , we have 1

2
𝑖−1

(
𝑇𝜌max,𝑚

𝑇 ∗ − 𝑇+𝑇 ∗

𝑇 ∗ 𝜌𝑚

)
+

𝜌𝑚
2
− 𝛽𝑚𝜌max,𝑚

4
≥ 𝑇𝜌max,𝑚−(𝑇+𝑇 ∗ )𝜌𝑚

4𝑇 ∗ + 𝜌𝑚
2
− 𝛽𝜌max,𝑚

4
. By optimally choosing 𝛽𝑚 = 𝑇

3𝑇 ∗ − 𝑇−𝑇 ∗

3𝑇 ∗
𝜌𝑚

𝜌max,𝑚
, we

have

𝜌
(𝑖 )
𝑚 ≥𝜌𝑚 + min

{
𝑇𝜌max,𝑚 − (𝑇 +𝑇 ∗)𝜌𝑚

4𝑇 ∗ + 𝜌𝑚
2

− 𝛽𝑚𝜌max,𝑚

4

,
𝛽𝑚𝜌max,𝑚

2

,
𝐸min,𝑚

2𝑇 ∗

}
=𝜌𝑚 + min

{
𝑇𝜌max,𝑚

6𝑇 ∗ − (𝑇 −𝑇 ∗)𝜌𝑚
6𝑇 ∗ ,

𝐸min,𝑚

2𝑇 ∗

}
.

(28)

If it holds for a resource 𝑚 that 𝐵max,𝑚 ≥ (𝑇 + 𝑇 ∗)𝜌𝑚 , we have 1

2
𝑖−1

(
𝑇𝜌max,𝑚

𝑇 ∗ − 𝑇+𝑇 ∗

𝑇 ∗ 𝜌𝑚

)
+ 𝜌𝑚

2
−

𝛽𝑚𝜌max,𝑚

4
≥ 1

2
𝐾−1

(
𝑇𝜌max,𝑚

𝑇 ∗ − 𝑇+𝑇 ∗

𝑇 ∗ 𝜌𝑚

)
+ 𝜌𝑚

2
− 𝛽𝑚𝜌max,𝑚

4
≥ 𝑇𝜌max,𝑚−(𝑇+𝑇 ∗ )𝜌𝑚

𝑇+𝑇 ∗ + 𝜌𝑚
2
− 𝛽𝑚𝜌max,𝑚

4
given that

𝑇 ≥ (2𝐾−1 − 1)𝑇 ∗
. By optimally choosing 𝛽𝑚 = 4𝑇

3(𝑇+𝑇 ∗ ) −
2𝜌𝑚

3𝜌max,𝑚
, we have

𝜌
(𝑖 )
𝑚 ≥𝜌𝑚 + min

{
𝑇𝜌max,𝑚 − (𝑇 +𝑇 ∗)𝜌𝑚

𝑇 +𝑇 ∗ + 𝜌𝑚
2

− 𝛽𝑚𝜌max,𝑚

4

,
𝛽𝑚𝜌max,𝑚

2

,
𝐸min,𝑚

2𝑇 ∗

}
=𝜌𝑚 + min

{
2𝑇𝜌max,𝑚

3(𝑇 +𝑇 ∗) −
𝜌𝑚

3

,
𝐸min,𝑚

2𝑇 ∗

}
.

(29)

Therefore, we can bound 𝜌
(𝑖 )
𝑚 as 𝜌

(𝑖 )
𝑚 ≥ 𝜌𝑚 +min

{
2𝑇𝜌max,𝑚

3(𝑇+𝑇 ∗ ) − 𝜌𝑚
3
,
𝐸min,𝑚

2𝑇 ∗

}
when 𝐵max,𝑚 ≥ (𝑇 +𝑇 ∗)𝜌𝑚

and 𝜌
(𝑖 )
𝑚 ≥ 𝜌𝑚 + min

{
𝑇𝜌max,𝑚

6𝑇 ∗ − (𝑇−𝑇 ∗ )𝜌𝑚
6𝑇 ∗ ,

𝐸min,𝑚

2𝑇 ∗

}
when 𝐵max,𝑚 < (𝑇 + 𝑇 ∗)𝜌𝑚 . We define Δ𝜌𝑚 =

min{ 2𝑇𝜌max,𝑚

3(𝑇+𝑇 ∗ ) −
𝜌𝑚
3
,
𝐸min,𝑚

2𝑇 ∗ } when 𝐵max,𝑚 ≥ (𝑇 +𝑇 ∗)𝜌𝑚 and Δ𝜌𝑚 = min

{
𝑇𝜌max,𝑚

6𝑇 ∗ − (𝑇−𝑇 ∗ )𝜌𝑚
6𝑇 ∗ ,

𝐸min,𝑚

2𝑇 ∗

}
when 𝐵max,𝑚 < (𝑇 +𝑇 ∗)𝜌𝑚 . Thus, we have 𝜌 (𝑖 )

𝑚 ≥ 𝜌𝑚 + Δ𝜌𝑚 .

Also, we can get the upper bound of 𝜌 (𝑖 )
for 𝑖 ∈ [2, 𝐾] as 𝜌 (𝑖 ) ≤ 2

𝑖−1𝑇 ∗𝜌+2
𝑖−2𝑇 ∗𝜌max⊙𝛽

2
𝑖−1𝑇 ∗ = 𝜌 + 𝜌max⊙𝛽

2
,

where the inequality holds because Ω𝑖 ≤ 2
𝑖−2𝑇 ∗ (𝛽⊙𝜌max). Thus we have 𝜌 (𝑖 ) = sup𝑚∈[𝑀 ] 𝜌

(𝑖 )
𝑚 ≤ 𝜌+

¯𝛽

2
𝜌max, where 𝜌max = max𝑚 𝜌max,𝑚 ,

¯𝛽 = max𝑚 𝛽𝑚 . When 𝐵max,𝑚 ≥ (𝑇 +𝑇 ∗)𝜌𝑚 , the optimal 𝜌𝑚 ≤ 4

3

as 𝑇 → ∞. When 𝐵max,𝑚 < (𝑇 +𝑇 ∗)𝜌𝑚 , the optimal 𝜌𝑚 ≤ 2

3
as 𝑇 → ∞ since

𝑇
𝑇+𝑇 ∗ <

𝜌𝑚
𝜌max,𝑚

≤ 1.
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Define 𝛼 = min𝑚∈[𝑀 ]
𝑥𝑚

𝜌𝑚+Δ𝜌𝑚 . By summing up frames with the lower and upper bounds of 𝜌 (𝑖 )
,

we get

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥∗𝑡 ) − 𝛼 𝑓𝑡 (𝑥𝑡 ) ≤
3𝑇 ∗∑︁
𝑡=1

𝑓𝑡 (𝑥∗𝑡 ) − 𝛼 𝑓𝑡 (𝑥𝑡 ) +
𝐾∑︁
𝑖=3

𝑇𝑖∑︁
𝑡=𝑇𝑖−1

𝑓𝑡 (𝑥∗𝑡 ) − 𝛼𝑖 𝑓𝑡 (𝑥𝑡 )

≤ 3
¯𝑓 𝑇 ∗ +

𝐾∑︁
𝑖=3

𝛼𝑖 ¯𝑓 + 𝛼𝑖 (𝜌 +
¯𝛽

2

𝜌max + ∥𝑥 ∥∞)
√︂
𝑉ℎ (𝜇, 𝜇1) (2𝑖−1𝑇 ∗)

2𝜎

≤ 3
¯𝑓 𝑇 ∗ + 𝛼𝐾 ¯𝑓 + 𝛼 (𝜌 +

¯𝛽

2

𝜌max + ∥𝑥 ∥∞)
√︂
𝑉ℎ (𝜇, 𝜇1)

2𝜎

𝐾∑︁
𝑖=3

√︁
(2𝑖−1𝑇 ∗)

≤ 3
¯𝑓 𝑇 ∗ + 𝛼𝐾 ¯𝑓 + 𝛼 (𝜌 +

¯𝛽

2

𝜌max + ∥𝑥 ∥∞)
√︂
𝑉ℎ (𝜇, 𝜇1)

2𝜎
(1 +

√
2)
√
𝑇,

(30)

where the second inequality holds by (26) and the third inequality holds due to the fact that 𝛼 ≥ 𝛼𝑖
for any 𝑖 ∈ [3, 𝐾].

Since 𝐾 =
⌈
log

2
(𝑇 /𝑇 ∗)

⌉
= 𝑂 (log(𝑇 )), it holds for any sequence 𝑦 that

lim

𝑇→∞

1

𝑇

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑥∗𝑡 ) − 𝛼 𝑓𝑡 (𝑥𝑡 ) ≤ 0, (31)

indicating an asymptotic competitive ratio of 𝐶𝑅OACP+ = 1

𝛼
= min𝑚∈[𝑀 ]

𝜌𝑚+Δ𝜌𝑚
𝑥𝑚

. □

C PROOF OF THEOREM 4.1
Proof. To prove the wost-case robustness of LA-OACP, we need to prove that there exists at

least one feasible action in each round. We prove by induction that 𝑥𝑡 = min{𝑥†𝑡 , 𝐵𝑡 + 𝐸𝑡 } is always
feasible for constraint (8).

When 𝑡 = 1, 𝑥
†
𝑡 is obviously a feasible solution of (8). Let 𝐹𝑡 =

∑𝑡
𝜏=1

𝑓𝜏 (𝑥𝜏 ) for any 𝑡 ∈ [𝑇 ].
Assume that at round 𝑡 − 1, 𝐹𝑡−1 − Δ(𝑥𝑡−1) + 𝑅 ≥ 𝜆𝐹

†
𝑡−1

. At round 𝑡 , we have

𝐹𝑡 − Δ(𝑥𝑡 ) + 𝑅 − 𝜆𝐹 †𝑡
=𝐹𝑡−1 − 𝜆𝐹 †𝑡−1

− Δ(𝑥𝑡 ) + 𝑅 + 𝑓𝑡 (𝑥𝑡 ) − 𝜆𝑓𝑡 (𝑥†𝑡 )
≥ (Δ(𝑥𝑡−1) − Δ(𝑥𝑡 )) + 𝑓𝑡 (𝑥𝑡 ) − 𝜆𝑓𝑡 (𝑥†𝑡 )

=𝜆𝐿

(
𝑀∑︁
𝑚=1

|𝐵†𝑚,𝑡 − 𝐵𝑚,𝑡 |+ − |𝐵†
𝑚,𝑡+1

− 𝐵𝑚,𝑡+1 |+
)
+ 𝑓𝑡 (𝑥𝑡 ) − 𝜆𝑓𝑡 (𝑥†𝑡 ),

(32)

where 𝐵𝑚,𝑡+1 = 𝐵𝑚,𝑡 + 𝐸𝑚,𝑡 − 𝑥𝑚,𝑡 and 𝐵†𝑚,𝑡+1
= 𝐵

†
𝑚,𝑡 + 𝐸

†
𝑚,𝑡 − 𝑥

†
𝑚,𝑡 by the budget dynamics.

Next, we prove 𝑥𝑡 = 𝑥𝑡 is always a feasible solution for constraint (8). If 𝑥𝑡 = 𝑥𝑡 , we have

𝐵𝑡+1 = 𝐵𝑡 + 𝐸𝑡 − 𝑥𝑡 . If 𝐵𝑚,𝑡 + 𝐸𝑚,𝑡 ≥ 𝑥†𝑚,𝑡 holds for𝑚, then 𝑥𝑚,𝑡 = 𝑥
†
𝑚,𝑡 and we have

|𝐵†
𝑚,𝑡+1

− 𝐵𝑚,𝑡+1 |+ = |𝐵†𝑚,𝑡 + 𝐸
†
𝑚,𝑡 − 𝐵𝑚,𝑡 − 𝐸𝑚,𝑡 |+

= | min{𝐵†𝑚,𝑡 + 𝐸𝑚,𝑡 , 𝐵max} − min{𝐵𝑚,𝑡 + 𝐸𝑚,𝑡 , 𝐵max}|+

≤ |𝐵†𝑚,𝑡 − 𝐵𝑚,𝑡 |+,

(33)
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where the last inequality holds by 1-Lipschitz of the function min{·, 𝐵max}. On the other hand, if

𝐵𝑚,𝑡 + 𝐸𝑚,𝑡 < 𝑥†𝑚,𝑡 holds for𝑚, then 𝑥𝑚,𝑡 = 𝐵𝑚,𝑡 + 𝐸𝑡 holds for𝑚. Thus

|𝐵†𝑚,𝑡 − 𝐵𝑚,𝑡 |+ − |𝐵†
𝑚,𝑡+1

− 𝐵𝑚,𝑡+1 |+

=(𝐵†𝑚,𝑡 − 𝐵𝑚,𝑡 ) − |𝐵†𝑚,𝑡 + 𝐸
†
𝑚,𝑡 − 𝑥

†
𝑚,𝑡 − 𝐵𝑚,𝑡+1 |+

= − 𝐵𝑚,𝑡 − 𝐸†𝑚,𝑡 + 𝑥
†
𝑚,𝑡

≥𝑥†𝑚,𝑡 − 𝑥𝑚,𝑡 ,

(34)

where the first equality holds because min{𝐵𝑚,𝑡 + 𝐸𝑚,𝑡 , 𝐵max} = 𝐵𝑚,𝑡 + 𝐸𝑚,𝑡 < 𝑥†𝑚,𝑡 ≤ 𝐵
†
𝑚,𝑡 + 𝐸

†
𝑚,𝑡 =

min{𝐵†𝑚,𝑡+𝐸𝑚,𝑡 , 𝐵max}, so 𝐵𝑚,𝑡 ≤ 𝐵
†
𝑚,𝑡 , the second equality holds because 𝐵𝑚,𝑡+1 = 𝐵𝑚,𝑡+𝐸𝑚,𝑡−𝑥𝑚,𝑡 =

0, and the inequality holds because 𝐸𝑚,𝑡 ≥ 𝐸
†
𝑚,𝑡 given 𝐵𝑚,𝑡 ≤ 𝐵

†
𝑚,𝑡 . Thus we have for any𝑚 ∈ [𝑀],

𝐿

(
𝑀∑︁
𝑚=1

|𝐵†𝑚,𝑡 − 𝐵𝑚,𝑡 |+ − |𝐵†
𝑚,𝑡+1

− 𝐵𝑚,𝑡+1 |+
)
≥ 𝐿(𝑥†𝑚,𝑡 − 𝑥𝑚,𝑡 ). (35)

Thus, by the Lipschiz continuity of 𝑓 , we have

𝑓𝑡 (𝑥†𝑡 ) − 𝑓𝑡 (𝑥𝑡 )

≤
𝑀∑︁
𝑚=1

𝐿 |𝑥†𝑚,𝑡 − 𝑥𝑚,𝑡 |

≤
𝑀∑︁
𝑚=1

𝐿( |𝐵†𝑚,𝑡 − 𝐵𝑚,𝑡 |+ − |𝐵†
𝑚,𝑡+1

− 𝐵𝑚,𝑡+1 |+).

(36)

Continuing with (32), when 𝑥𝑡 = 𝑥𝑡 , since 𝜆 ∈ [0, 1], we have

𝐹𝑡 − Δ(𝑥𝑡 ) + 𝑅 − 𝜆𝐹 †𝑡 ≥ (1 − 𝜆) 𝑓𝑡 (𝑥𝑡 ) ≥ 0. (37)

Thus we prove that there always exists 𝑥𝑡 = min{𝑥†𝑡 , 𝐵𝑡 + 𝐸𝑡 } such that 𝐹𝑡 − Δ(𝑥𝑡 ) + 𝑅 ≤ 𝜆𝐹
†
𝑡

holds for each round 𝑡 . Since Δ(𝑥𝑡 ) ≥ 0, if (8) holds for each round, we have (8) holds for the last

round, thus satisfying the worst-case utility constraint (7b). □

D PROOF OF THEOREM 4.2
Proof. The ML policy optimally trained aware of the projection for worst-case utility constraint

is the policy that optimizes the average utility that satisfies (8) for each round. Thus we bound the

average utility by bounding the average utility of the policy 𝜋◦
based on the optimal unconstrained

ML policy 𝜋̃∗
and OACP 𝜋†

, i.e. 𝜋◦ = 𝛾𝜋̃∗ + (1 − 𝛾)𝜋†
. The constructed policy 𝜋◦

gives the action

𝑥◦𝑡 = 𝛾𝑥∗𝑡 + (1 − 𝛾)𝑥†𝑡 where 𝑥∗𝑇 is the output of ML policy 𝜋̃∗
and 𝑥

†
𝑡 is the output of 𝜋

†
.

We first prove that 𝑥◦𝑡 is always a feasible action for the budget constraints. To show this, we

prove by induction that the remaining budget 𝐵◦𝑡 of 𝜋◦
at each round is no less than a linear

combination of the remaining budget 𝐵̃∗ of 𝜋̃∗
and the remaining budget 𝐵† of 𝜋†

. At the first round,

it holds that

𝐵◦
2
= min{𝐵1 + 𝐸1, 𝐵max} − 𝑥◦1
= 𝛾𝐵̃∗

2
+ (1 − 𝛾)𝐵†

2
.

(38)
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Assume for the round 𝑡, 𝑡 > 2, we have 𝐵◦𝑡 ≥ 𝛾𝐵̃∗𝑡 + (1 − 𝛾)𝐵†𝑡 . Then we have

𝐵◦𝑡+1
= min{𝐵◦𝑡 + 𝐸𝑡 , 𝐵max} − 𝑥◦𝑡
≥ min{𝛾𝐵̃∗𝑡 + (1 − 𝛾)𝐵†𝑡 + 𝐸𝑡 , 𝐵max} − 𝛾𝑥∗𝑡 − (1 − 𝛾)𝑥†𝑡
≥ 𝛾

(
min{𝐵̃∗𝑡 + 𝐸𝑡 , 𝐵max} − 𝑥∗𝑡

)
+ (1 − 𝛾)

(
min{𝐵†𝑡 + 𝐸𝑡 , 𝐵max} − 𝑥†𝑡

)
= 𝛾𝐵̃∗𝑡+1

+ (1 − 𝛾)𝐵†
𝑡+1
,

(39)

where the second inequality holds because min{·, 𝐵max} is a concave function. Thus, for any round

𝑡 ∈ [𝑇 ], we have 𝐵◦𝑡 ≥ 𝛾𝐵̃∗𝑡 + (1 − 𝛾)𝐵†𝑡 . Since the ML policy and OACP both guarantee that 𝐵̃∗𝑡 ≥ 0

and 𝐵
†
𝑡 ≥ 0, we have 𝐵◦𝑡 ≥ 0 which means 𝑥◦𝑡 is a feasible action for budget constraints.

Next, we need to find an 𝛾 such that the policy 𝜋◦
satisfy the robustness constraints. By the

robust algorithm design, we need to satisfy the robust constraint for each step 𝑡 which can be

expressed as

𝑡∑︁
𝑖=1

𝑓𝑖 (𝑥◦𝑖 ) ≥ 𝜆

𝑡∑︁
𝑖=1

𝑓𝑖 (𝑥†𝑖 ) + 𝜆𝐿
𝑀∑︁
𝑚=1

|𝐵†
𝑚,𝑡+1

− 𝐵◦𝑚,𝑡+1
|+ − 𝑅 (40)

By Lipschitz continuity of 𝑓𝑡 , we have 𝑓𝑖 (𝑥†𝑖 ) ≤ 𝑓𝑖 (𝑥◦𝑖 ) + 𝐿∥𝑥
†
𝑖
− 𝑥◦𝑖 ∥1 (We can use 𝐿1

-norm since

it returns the largest value among 𝐿𝑝 -norms (𝑝 ≥ 1). ), and thus get a sufficient condition for the

robust constriant (40) as

−𝜆𝐿
𝑡∑︁
𝑖=1

∥𝑥◦𝑖 − 𝑥
†
𝑖
∥1 − 𝜆𝐿

𝑀∑︁
𝑚=1

|𝐵†
𝑚,𝑡+1

− 𝐵◦𝑚,𝑡+1
|+ ≥ (𝜆 − 1)

𝑡∑︁
𝑖=1

𝑓𝑖 (𝑥◦𝑖 ) − 𝑅. (41)

By (39) and the monotonicity of ReLU operation, we have

|𝐵†
𝑚,𝑡+1

− 𝐵◦𝑚,𝑡+1
|+ ≤ |𝐵†

𝑚,𝑡+1
− 𝛾𝐵̃∗𝑚,𝑡+1

− (1 − 𝛾)𝐵†
𝑚,𝑡+1

|+ = 𝛾 |𝐵†
𝑚,𝑡+1

− 𝐵̃∗𝑚,𝑡+1
|+. (42)

Substituting the expressions of 𝑥◦𝑡 and (42) into the inequality, the sufficient condition for the robust

constraint (40) becomes

−𝛾𝜆𝐿
𝑡∑︁
𝑖=1

∥𝑥∗𝑖 − 𝑥
†
𝑖
∥1 − 𝛾𝜆𝐿

𝑀∑︁
𝑚=1

|𝐵†
𝑚,𝑡+1

− 𝐵̃∗𝑚,𝑡+1
|+ ≥ (𝜆 − 1)

𝑡∑︁
𝑖=1

𝑓𝑖 (𝑥◦𝑖 ) − 𝑅. (43)

By the definition of 𝐵
†
𝑡 and 𝐵̃

∗
𝑡 , we have

𝑀∑︁
𝑚=1

|𝐵†
𝑚,𝑡+1

− 𝐵̃∗𝑚,𝑡+1
|+

=

𝑀∑︁
𝑚=1

���(min{𝐵†𝑚,𝑡 + 𝐸𝑚,𝑡 , 𝐵max} − 𝑥†𝑚,𝑡
)
− min{𝐵̃∗𝑚,𝑡 + 𝐸𝑚,𝑡 , 𝐵max} − 𝑥∗𝑚,𝑡

���+
≤

𝑀∑︁
𝑚=1

|𝐵†𝑚,𝑡 − 𝐵̃∗𝑚,𝑡 |+ + |𝑥†𝑚,𝑡 − 𝑥∗𝑚,𝑡 |+ ≤
𝑡∑︁
𝑖=1

𝑀∑︁
𝑚=1

|𝑥†𝑚,𝑡 − 𝑥∗𝑚,𝑡 |+ ≤
𝑡∑︁
𝑖=1

∥𝑥†𝑡 − 𝑥∗𝑡 ∥1,

(44)

where the second inequality holds by 1-Lipschitz of min{·, 𝐵max}, and the second inequality holds

by iteratively applying the first inequality. Thus, the sufficient condition for the robust constraint

(40) becomes

2𝛾𝜆𝐿

𝑡∑︁
𝑖=1

∥𝑥∗𝑖 − 𝑥
†
𝑖
∥1 ≤ (1 − 𝜆)

𝑡∑︁
𝑖=1

𝑓𝑖 (𝑥◦𝑖 ) + 𝑅. (45)
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Since (1 − 𝜆)∑𝑡
𝑖=1

𝑓𝑖 (𝑥◦𝑖 ) ≥ 0, if 𝛾 ∈ [0, 1] satisfies

𝛾 ≤ min

{
1,

𝑅

2𝜆𝐿
∑𝑡
𝑖=1

∥𝑥∗
𝑖
− 𝑥†

𝑖
∥1

}
, (46)

then 𝑥◦𝑡 satisfies the robust constraint (40) for each round 𝑡 .

Thus, by the definition of 𝜃 = max𝑦

∑𝑇
𝑡=1

∥𝑥∗𝑡 − 𝑥
†
𝑡 ∥1, we further have the sufficient condition

that 𝑥𝑡 satisfies the robust constraint is 𝛾 ∈ [0, 1] satisfies

𝛾 ≤ min

{
1,

𝑅

2𝜆𝐿𝜃

}
:= 𝛾𝜆,𝑅, (47)

Next, we can bound the average utility of 𝜋◦ = 𝛾𝜆,𝑅𝜋̃
∗ + (1 − 𝛾𝜆,𝑅)𝜋†

which is also the bound of

the average utility of the proposed policy. Since the function 𝑓 is 𝐿−Lipschitz continuous, then we

have

E𝑦

[
𝐹𝜋

◦

𝑇 (𝑦)
]
= E𝑦

[
𝐹 𝜋̃

∗

𝑇 (𝑦)
]
− E𝑦

[���𝐹𝜋◦

𝑇 (𝑦) − 𝐹 𝜋̃∗

𝑇 (𝑦)
���]

≥ E𝑦
[
𝐹 𝜋̃

∗

𝑇 (𝑦)
]
− 𝐿E𝑦

[
𝑇∑︁
𝑡=1

∥𝑥◦𝑡 − 𝑥∗𝑡 ∥
]

= E𝑦

[
𝐹 𝜋̃

∗

𝑇 (𝑦)
]
− 𝐿(1 − 𝛾𝜆,𝑅)E𝑦

[
𝑇∑︁
𝑡=1

∥𝑥†𝑡 − 𝑥∗𝑡 ∥
]

= E𝑦

[
𝐹 𝜋̃

∗

𝑇 (𝑦)
]
− 𝐿max{0, 1 − 𝑅

2𝜆𝐿𝜃
}E𝑦

[
𝑇∑︁
𝑡=1

∥𝑥†𝑡 − 𝑥∗𝑡 ∥
]
,

(48)

where the inequality holds by the Lipschitz continuity of reward functions, and the second equality

holds since 𝑥◦𝑡 − 𝑥∗𝑡 = (1 − 𝛾𝜆,𝑅) (𝑥†𝑡 − 𝑥∗𝑡 ). Since the ML policy 𝜋̃◦
is optimally trained under the

constraint (40), we have E𝑦

[
𝐹
LA-OACP(𝜋̃◦ )
𝑇

(𝑦)
]
≥ E𝑦

[
𝐹𝜋

◦

𝑇
(𝑦)

]
, so we prove the average bound in our

theorem. □
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