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ABSTRACT

The reference implementation of Cartesian Genetic Programming
(CGP) was written in the C programming language. C inherently
follows a procedural programming paradigm, which entails chal-
lenges in providing a reusable and scalable implementation model
for complex structures and methods. Moreover, due to the limiting
factors of C, the reference implementation of CGP does not provide
a generic framework and is therefore restricted to a set of prede-
fined evaluation types. Besides the reference implementation, we
also observe that other existing implementations are limited with
respect to the features provided. In this work, we therefore propose
the first version of a modern C++ implementation of CGP that
pursues object-oriented design and generic programming paradigm
to provide an efficient implementation model that can facilitate
the discovery of new problem domains and the implementation
of complex advanced methods that have been proposed for CGP
over time. With the proposal of our new implementation, we aim to
generally promote interpretability, accessibility and reproducibility

in the field of CGP.
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1 INTRODUCTION

Cartesian Genetic Programming (CGP) can be considered a well-
established graph-based representation model of GP. The first pi-
oneering work towards CGP was done by Miller, Thompson, Kal-
ganova, and Fogarty [9, 28, 33] by the introduction of a graph
encoding model based on a two-dimensional array of functional
nodes. CGP can be considered an extension to the traditional tree-
based representation model of GP since it enables many appli-
cations in problem domains that are well-suited for graph-based
representations such as circuit design [4, 41], neural architecture
search [45, 45] and image processing [2]. Miller officially introduced
CGP over 20 years ago [32] and provided a reference implementa-
tion written in the C programming language. Since then, several
implementations have been provided in other popular program-
ming languages such as Java or Python, which follow modern
programming paradigms. Besides implementations, several sophis-
ticated methods for CGP have been proposed over time, and the
significance of various developments has been recently surveyed
and discussed in the context of the status and future of CGP [30].
Miller’s reference implementation is based on the procedural pro-
gramming paradigm, which naturally entails challenges and limita-
tions to provide a flexible, reusable and generic architecture that
can facilitate the implementation of complex methods and their
corresponding structures. Moreover, Julian F. Miller passed away
in 2022 [43]"! and his website? which served as a resource for his
original implementation, disappeared shortly after his death for
unknown reason to the authors of this paper. The above-described
points and circumstances motivates our work, in which we present
a modern implementation of CGP written in C++ called CGP++.
Our implementation builds upon paradigms and methodologies
commonly associated with the modern interpretation of the C++
programming language, such as generic programming. Since C++
has a reputation for providing excellent performance while rep-
resenting a high-level object-oriented language that offers many
features for generic programming, we feel that C++ is a suitable
choice for a modern and contemporary implementation of CGP.
This paper is structured as follows: In Section 2 we describe GP and
CGP and address major problem domains in these fields. Section 3
surveys existing implementations of CGP that have been proposed
for various programming languages. In Section 4 we introduce our
new implementation by presenting key features and addressing
relevant implementation details. Section 5 gives an overview of the
architecture and workflow of CGP++. In Section 6 we compare our
implementation to the implementations that have been addressed
in this paper. Section 7 discusses the potential role of CGP++ in the
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ecosystem of CGP implementations and addresses prospects as well
as challenges of enhancements that will be considered by future
work. Finally, Section 8 concludes our work.

2 RELATED WORK

2.1 Genetic Programming

In the wider taxonomy of heuristics, Genetic Programming (GP)
can be considered an evolutionary-inspired search heuristic that
enables the synthesis of computer programs for problem-solving.
The fundamental paradigm of GP aims at evolving a population of
candidate computer programs towards an algorithmic solution of
a predefined problem. GP transforms candidate genetic programs
(Definition 2.1), that are traditionally represented as parse-trees,
iteratively from generation to generation into new populations of
programs with (hopefully) better fitness. However, since GP is a
stochastic optimization process, obtaining the optimal solution is
consequently not guaranteed. A formal definition of GP is provided
in Definition 2.2. GP traditionally uses a parse-tree representation
model that is inspired by LISP S-expressions. An example of a parse
tree is illustrated in Figure 1. In addition to the conventional (tree-
based) GP, GP is also used with linear sequence representations [35,
36], graph-based representation models [28, 37], or grammar-based
representations [38].

Definition 2.1 (Genetic Program). A genetic program B is an
element of T X § x €:

e & is a finite non-empty set of functions
e T is a finite non-empty set of terminals

e € is a finite non-empty set of edges

Let ¢: P — ¥ be a decode function which maps P to a phenotype
v

Definition 2.2 (Genetic Programming). Genetic Programming is
an evolutionary algorithm-based method for the automatic deriva-

tion of computer programs. Let %I(Jg ) be a population of y individu-
als and let 58;,9 1 be the population of the following generation:

o Each individual is represented with a genetic program and a
fitness value.

e Genetic Programming transforms 23},9 ) %l(,gH) by the
adaptation of selection, recombination and mutation.

2.2 Cartesian Genetic Programming

CGP can be considered an extension of conventional tree-based
GP since it represents a genetic program as an acyclic and directed
graph, and trees as data structures naturally entail combinational
limitations. A genetic program is encoded in the genotype of an
individual and is decoded to its corresponding phenotype before
evaluation. Originally, the programs were represented with a rect-
angular n; X n¢ grid of nodes. However, later work focused on a
representation with merely one row. A formal definition of a carte-
sian genetic program (CP) is given in Definition 2.3. In CGP, function
nodes are used to execute functions, defined in the function set,
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F={+.-,x+}
T={AX CB}
¥=(A+X)x*(C+B)

Figure 1: Example of a parse tree as used in conventional GP.
A parse tree can be considered a composition of elements
taken from the function set ¥ and terminal set 7. The de-
coding of the parse tree in the example leads to the symbolic
expression V.

on the input values. The decoding routine distinguishes between
groups of genes, and each group represents a node of the graph,
except the last one, which refers to the outputs. Two types of genes
are used to encode a node: 1) the function gene, that indexes the
function number in the function set and 2) the connection genes,
which index the inputs of the node. The number of connection
genes varies based on the on the predefined maximum arity n, of
the function set. The decoding of function nodes is embedded in a
backward search that is performed for all output genes.

The backward search is illustrated in Figure 2 for the commonly
used single-row integer representation, which starts from the pro-
gram output and processes all linked nodes in the genotype until
the inputs are reached. Consequently, only active nodes are pro-
cessed during evaluation. The genotype illustrated in Figure 2 is
grouped whereby the first (underlined) gene of each group refers
to the function number in the function set. In contrast, the non-
underlined genes which refer to the respective input connections
of the node. Function nodes, that are not linked in the genotype,
remain inactive and are visualized in gray color as well as dashed
lines. A parameter called levels-back [ is commonly used to control
the connectivity of the graph by constraining the node index from
which a function or output node can get its inputs.

Definition 2.3 (Cartesian Genetic Program). A cartesian genetic
program is an element of the Cartesian product 9t X e x N X F :

e N; is a finite non-empty set of input nodes
o Ji¢ is a finite set of function nodes
o N, is a finite non-empty set of output nodes

o ¥ is a finite non-empty set of functions

The number of inputs nj, outputs n,, and the length of the geno-
type remain static during a run of CGP. Therefore, each candidate
program can be represented with n; % n¢ * (ny + 1) + no integers.
However, although the length of the genotype is static, the length of
the corresponding phenotype can vary during a run, which enables
a certain degree of flexibility of the CGP representation model. CGP
is commonly used with a (1 + A) evolutionary algorithm (EA) and
a selection strategy called neutrality, which is based on the idea
that the adaption of a neutral genetic drift mechanism (NGD) can
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Algorithm 1 Exemplification of the (1+1)-EA variant with neutral
genetic drift

1: initialize(P) > Initialize parent individual
2: repeat > Until termination criteria not triggered
3: Q « breed(P) > Breed A offspring by mutation
4: Evaluate(Q) > Evaluate the fitness of the offspring
5: Qt «— best (Q,P) > Get individuals which have better fitness as the parent
6: Q equal(Q, P) > Get individuals which have the same fitness as the parent
7: > If there exist individuals with better fitness
8: if |Q"| > 0 then
9: > Choose one individual from Q* uniformly at random

10: P — QF[r],r ~U[0, |@*| - 1]

11: > Otherwise, if there exist individuals with equal fitness

12: else if |Q~| > 0 then

13: > Choose one individual from Q™ uniformly at random

14: P — Q7[r],r ~U[0, |Q%| - 1]

15: end if

16: until P meets termination criterion

17: return >

Genotype

Decode

Function Lookup Table

Index Symbol Function
0 = Negation
1 & Logical and
2 Il Logical or
3 @ Exclusive or

Figure 2: Illustration of the decoding procedure of the CGP
genotype to the corresponding phenotype. The identifiers
IP1 and IP2 refer to the two input nodes with node index 0
and 1. The identifier OP stands for the output node of the
graph.

contribute significantly to the escape from local optima. NGD is im-
plemented by extending the classical selection mechanism in such
a way that individuals which have equal fitness as the normally se-
lected parent are first determined, and one equal-fitness individual
is then selected uniformly at random. NGD can be therefore consid-
ered as a random walk on the neutral neighborhood of equal-fitness
offspring. A new population is formed in each generation with the
selected parent from the previous population and the A bred oft-
spring. An exemplification of the (1 + A)-EA variant used in CGP is
provided in Algorithm 1. For the breeding procedure point mutation
is predominantly used to exchange gene values of the genotype
within the valid range by chance. The mutations triggered by this
operator can alter the functionality of the phenotype as well as the
connectivity depending on which type of gene is mutated. Genetic
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programs are mostly encoded with natural numbers in CGP that is
commonly refereed to as integer-based or standard CGP. However,
an alternative encoding model that is called real-valued CGP [1] has
been proposed. It uses real numbers to encode candidate programs
with the intention to adapt intermediate recombination which is
commonly used for real-valued representations in Genetic Algo-
rithms [3]. In contrast, integer-based CGP is predominantly used
merely with mutation due to its long history of stagnation regarding
the question about the effectiveness of recombination [30]. Recent
studies, however, have found that various recombination operators
such as subgraph [14], block [7] and discrete crossover [11] can be
effectively used for various problems [13].

2.3 Problem Domains in GP

GP gained significant popularity when Koza [19, 23, 24] applied
his parse tree representation model to practically relevant problem
domains, for instance, symbolic regression, algorithm construction,
logic synthesis, or classification. In this section, we describe two
popular representatives of the GP application scope in more detail
which have a reputation for being major real-world application
scopes for GP as well as for their relevance for benchmarking GP
methods:

2.3.1  Symbolic Regression. Symbolic Regression (SR) is located in
the broader taxonomy of regression analysis, where a symbolic
search is performed in a space of mathematical compositions to ob-
tain candidate functions that match the ideal input-output mapping
of a given data set as closely as possible. Symbolic regression in
the context of GP can therefore be considered a black-box problem
domain. In general, SR by means of GP relates to the application of
GP models to synthesize mathematical expressions that represent
input-output mapping of the the unknown function as closely as
possible. Quite recently, it has been proved SR to be a NP-hard
problem, since it is not always possible to find the best fitting math-
ematical expression for a given data set in polynomial time [50].

2.3.2 Logic Synthesis. Logic synthesis [5, 6] as tackled with GP
comprises the synthesis of Boolean expressions that match input-
output mappings of given Boolean functions. Boolean expressions
are generally a way of formally expressing Boolean functions. LS
as approached with GP predominantly addresses two major tasks
located in the scope of this problem domain:

(1) Synthesis of a Boolean expression that matches the correct

input-output mapping of a given Boolean function.

(2) Optimization of a Boolean expression (i.e. reduction of com-

plexity).

Both tasks are carried out with respect to Boolean logic and alge-
bra. Truth tables are a common way to represent Boolean functions
and to describe their input-output mapping besides to representing
them with algebraic expressions. Synthesis of Boolean expressions
is typically approached by defining one or multiple respective op-
timization objectives. LS as an GP application area was greatly
popularized by Koza when he started addressing LS by using his
parse tree representation model [20-22]. Moreover, Koza utilized
his approach to evolve expressions for Boolean functions such as
digital multiplexers and parity since these functions can be repre-
sented as LISP S-expressions. However, digital circuits are often
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characterized by Boolean functions with multiple outputs such as
digital adders or multipliers. This resulted in the predominant use
of CGP for LS since its graph encoding model is well-equipped to
represent such functions [4, 41]. A real-world application of the LS
domain is the automatic design of digital circuits.

2.4 Modern C++

C++ as a versatile and powerful programming language, has evolved
significantly over the course of the last decade. Starting with the
release of C++11 [8] and the subsequent versions C++14, C++17,
and C++20, various new features and corresponding best practices
have been introduced, allowing developers to write more efficient
and maintainable programs. Moreover, features that are associated
with modern C++ have noticeably changed the way code is written
in C++ remarkably improved the safety and expressiveness of C++
and are provided in the C++ Standard Library. Some of the language
features that shaped modern C++ are:

e Template type deduction
Templates are a feature that enables the use of generic types
for functions and classes. Template type deduction there-
fore allows the creation of functions or classes that can be
adapted to more than one type without re-implementing the
code constructs for each type. In C++ this can be achieved
using template parameters.

e Smart Pointers

Smart Pointers provide a wrapper class around a raw pointer
that have overloaded access operators such as * and ->.
Smart pointer managed objects have similar appearance as
regular (raw) pointers. However, smart pointers can be deal-
located automatically, in contrast to raw pointers. Smart
pointers are therefore used to ensure that programs are free
of memory leaks and, in this way, simplify the dynamic mem-
ory allocation in C++ while maintaining efficiency.

e Lambda Expressions:

A concise method for defining inline functions or function
objects is to use lambda expressions, especially when work-
ing with algorithms or when a function is used as parameter.
Lambdas can make the code more readable by allowing more
direct expressions of intentions, since they do not require
explicit function declarations. Lambdas are, therefore, also
called anonymous functions.

o Constexpr
The primary intention behind constant expression is to en-
able performance improvement of programs by doing com-
putations at compile time rather than runtime. C++11 in-
troduced the keyword constexpr, which declares that it is
possible to evaluate the value of a certain function or vari-
able at compile time.

e Concurrency
Concurrency support was initially introduced in C++11 in
order to boost program efficiency and allow multitasking.
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The Concurrency Support Library of C++ provides support
for threads, atomic operations, mutual exclusion, and condi-
tion variables. Although concurrency enables multitasking,
it does not necessarily mean that the desired tasks are exe-
cuted simultaneously but are more approached by efficient
switching between tasks.

3 EXISTING CGP IMPLEMENTATIONS

This section reviews existing implementations of CGP that are later
considered for a comparison to CGP++. Some implementations have
already been addressed in Miller’s review on the state and future
of CGP [30]. However, with the intention to complete the picture
further and to allow a more comprehensive comparison, we con-
sider additional implementations and address their key features and
purpose briefly. Despite the fact that the resource for Julian Miller’s
C reference implementation went down a while ago, a modified
version still exists and is publicly available®. The modified ver-
sion has been adapted for hyperparameter tuning experiments and
search performance evaluations across several methods suitable for
combinatorial optimization and combinational synthesis [17, 42].
The implementation has therefore been additionally equipped with
search algorithms such as simulated annealing. Another C imple-
mentation is the CGP-Library* published by Turner and Miller [48].
It supports standard CGP as well as the recurrent CGP [47] variant
and provides the functionality for evolving artificial neural net-
works [18, 46]. The popular Java-based Evolutionary Computation
Research System (EC]J) [25, 40] provides a CGP contrib package
that supports integer-based CGP as well as real-valued CGP. More-
over, the ECJ CGP contrib package covers functionality, data and
benchmarks for applications such as logic synthesis, classification
and symbolic regression. Recently, a set of implementations of var-
ious advanced genetic operators has been added to the repository.
The CGP Toolbox® is a framework that primarily focuses on LS
addressed with CGP and has been proposed by Vasicek and Sekan-
ina [49]. It is shipped in four different versions that, in each case,
support LS or SR for either 32 or 64 bit architecture and enables
efficient phenotype evaluation based on machine code vectoriza-
tion. A CGP toolbox for Matlab that focuses on audio and image
processing called CGP4Matlab has been proposed by Miragaia et
al. [34] which was used to apply CGP to the problem of pitch estima-
tion. HAL-CGP® is a pure Python implementation of CGP designed
to target applications that are characterized by computationally
expensive fitness evaluations [39]. CartesianGP. j17 is a library
for using CGP in Julia. However, according to the authors, the code
should be considered pre-alpha at the moment.

4 THE PROPOSED IMPLEMENTATION

4.1 General Motivation and Philosophy

Since Miller officially proposed CGP, increasing development has
taken place over the course of the past two decades in the relatively
young field of graph-based GP by proposing new representation

3http://github.com/paul-kaufmann/cgp/
http://www.cgplibrary.co.uk/
Shttp://www.fit.vutbr.cz/~vasicek/cgp/
®http://github.com/Happy- Algorithms-League/hal-cgp
7http://github.com/um- tech-evolution/CartesianGP.jl


http://github.com/paul-kaufmann/cgp/
http://www.cgplibrary.co.uk/
http://www.fit.vutbr.cz/~vasicek/cgp/
http://github.com/Happy-Algorithms-League/hal-cgp
http://github.com/um-tech-evolution/CartesianGP.jl

CGP++: A Modern C++ Implementation of Cartesian Genetic Programming

variants, promising forms of crossover, mutation and search algo-
rithms, as well as benchmarks. With the proposal of CGP++, we
think that our proposed implementation can address the following
aspects to enhance the following points in the field of CGP:

e Maintaining accessibility for the use of CGP by extending
the ecosystem of existing CGP implementations

o Improving the interpretability of sophisticated methods by
providing a comprehensible architecture.

e Facilitating reproducibility of existing results by supporting
benchmarking frameworks.

The fundamental philosophy behind CGP++ is to utilize aspects
of modern C++ that have been described in Section 2 to implement
features and properties that are provided by state-of-the-art (SOTA)
heuristic frameworks. In the following subsections, we will address
the key features and properties of CGP++ and share some details
about the respective implementation details of that we used from
modern C++.

4.2 Key Features and Properties

4.2.1 Object-oriented and Generic Design. CGP++ pursues an object-
oriented and generic design to maintain an interpretable and reusable
architecture for fundamental as well as sophisticated functional-
ity, with the intention to assist further implementations of new
techniques and the corresponding extension of the underlying ar-
chitecture.

4.2.2  Advanced Genetic Variation. Since CGP has been predom-
inantly used without recombination in the past, most implemen-
tations only support CGP in the standard mutation-only fashion.
However, since recent work proposed new recombination opera-
tors and demonstrated the effectiveness for various problems [13],
block [7] and discrete recombination [11] have been integrated into
CGP++. Besides to the (1+A4)-EA variant used in CGP that has been
exemplified in Algorithm 1, an implementation of a (u+1)-EA is pro-
vided to allow the recombination-based use of CGP. Furthermore,
since recent work demonstrated that the consecutive execution of
multiple mutation operators can benefit the search performance
of CGP [10, 12], CGP++ therefore supports mutation pipelining and
provides advanced mutations such as inversion and duplication.

4.2.3 Benchmarking. CGP++ provides an interface to the bench-
marks that have been recently proposed for the General Boolean
Function Benchmark Suite (GBFS) which provides a diverse set of
LS problems for GP [15]. The provided PLU files contain compressed
truth tables that can be used to set up the corresponding black-box
problem. Moreover, CGP++ also provides a dataset generator and a
set of objective functions for the SR benchmarks that have been
proposed by McDermott et al. [27] in the framework of the first
review on benchmarking standards in GP.

4.2.4 Hyperparameter Configuration. Hyperparameters related to
the CGP functionality can be configured by using either a pro-
vided command-line interface or a parameter file, offering a flexible
approach that can be used to apply CGP++ to contemporary frame-
works for hyperparameter tuning such as irace [26].

4.2.5 Checkpointing. To ensure caching of intermediate search
results that have been obtained over the course of the search process,
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CGP++ supports the creation of checkpoints that are automatically
written during a run. The created checkpoint file can be used to
resume a run in the case that it has been disrupted.

4.3 Implementation Details and Challenges

4.3.1 Generic Template. The generic template of CGP++ can be
formally described as a tuple 7 = (&, G, ¥ ) where & defines the
evaluation type, G the type of the CGP genome and ¥ the type of
fitness. CGP++’s generic approach is achieved by using C++ class
templates. The respective data types can be configured via typedef.
To restrict the data type of certain template classes such as the type
of the genome, we use constexpr to evaluate the defined template
type at compile time.

4.3.2  Smart Memory Management. CGP++ utilizes two types of
smart pointers: std: :unique_ptr and std: :shared_ptr to pro-
vide safe memory allocation as well as efficient passing of objects,
containers and data to functions and classes. In our implemen-
tation, std: : shared_ptr is used for shared ownership of objects
among instances of different classes. In contrast, std: :unique_ptr
is used in cases where single or exclusive ownership of a resource
is desired.

4.3.3 Memorization. Memorization is used to speed up genotype-
phenotype decoding by caching the immediate results of function
nodes and consequently preventing reevaluating already computed
results. The node-value mapping are stored by using std: :map
during the decoding routine.

4.3.4 Concurrency. Besides to consecutive evaluation of individ-
uals, CGP++ takes the first step towards concurrency by providing
concurrent evaluation of the population. For this purpose, the popu-
lation is divided into chunks of individuals whose number is defined
by the number of evaluation threads that can be set in the configu-
ration. The chunks are then evaluated within several instances of
std: : thread. CGP++ supports deep cloning of problem instances
to create the corresponding thread pool. The pool of threads are
synchronized after evaluation via std: : thread: : join. However,
the genotype-phenotype mapping of CGP and the corresponding
requirement of a decoding procedure poses a bottleneck for the
use of concurrency. At this time, we have to limit the concurrency
feature in CGP++ for parts of the decoding and evaluation procedure
of the genotype by using mutual exclusion via std: :mutex. We
will address potential solutions for this issue in the discussion.

4.4 Resources

The source code of CGP++ and a user guide are publicly available
in our GitHub repository®.

5 ARCHITECTURE AND WORKFLOW
OVERVIEW
5.1 Fundamental Architecture

Abstraction and inheritance depict fundamental pillars of the top
level architecture of-CGP++ to enable a high degree of reusability of
its core functionality. Figure 3 provides a high-level class diagram

8http://github.com/RomanKalkreuth/cgp-plusplus
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Figure 3: Illustration of the high-level architecture of CGP++ which uses abstraction and inheritance to facilitates reusability and
flexibility for further extensions. Smart pointers are used to provide safe and efficient access to elements across the framework.

that covers its key architecture elements. The Initializer is designed
to instantiate the core elements for the heuristic search performed
by CGP, such as the selected search algorithm and defined problem.
To bundle essential sub-elements for the heuristic search process,
a composite is initialized, which can be accessed by other core
elements such as the problem and algorithm instances. The com-
posite includes crucial elements and features for the GP search
process, such as the population, breeding execution frameworks
for crossover and mutation, function and terminal (constants) sets
but also backbone elements such as hyperparameter interfaces as
well as checkpointing. CGP++ supports the generation of ephemeral
random constants (ERC) to create the terminal set, which, together
with the function set, is an integral part of the Composite. After
initialization, the Evolver executes the considered number of in-
stances (jobs) and reports final as well as immediate results via
command line and output file. The high-level architecture of CGP++
is fundamentally inspired by ECJ [25, 40].

5.2 Top-level Workflow

The top-level workflow of CGP++ is shown in Figure 4 that illus-
trates the interplay between the elements that have been described
related to the fundamental architecture. CGP++ can be used to run

experiments that require several instances to ensure statistical va-
lidity. The Evolver therefore supports the execution of consecutive
jobs, whose numbers can be configured via the parameter interface.
The workflow within the framework of a job instance maps the
typical workflow of the adapted (1+1) and (u+A) strategies. To facil-
itate the integration of other types of evolutionary algorithm, we
provide an abstract base class that can be used as a design pattern.

5.3 Concurrent Evaluation

The concurrent evaluation architecture is illustrated in Figure 5.
When concurrent evaluation of the individuals is used, the eval-
uation procedure forks and joins a thread pool and each thread
is equipped with a chunk of individuals as well as a deep copy of
the problem instance. The respective functionalities such as deep
cloning are provided in the Population and Problem classes. Since
the Decoder is the shared resource in this framework, its access
is maintained via mutual exclusion, as already mentioned in the
previous section.

5.4 Checkpointing

The generation of a checkpoint is shown in Figure 6. For a check-
point, we consider the random seed, generation number, genomes
of the population, and the constants. These attributes are obtained
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Figure 4: Overview of CGP++’s top-level workflow, addressing
the execution of run instances as well as the main workflow
that is executed within an instance.
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¢ Thread 1 Thread 2
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v

Evaluation

Figure 5: Illustration of the architecture for concurrent evalu-
ation. In this example, the thread pool is simplified with two
threads to give a structured overview. However, in general,
CGP++ is capable of instantiating and executing more than
two threads.

from the respective instances and are then considered as a check-
point instance that is written to a checkpoint file. Instances can
be resumed by using the same configuration as the aborted run
and passing the checkpoint file to CGP++. When a checkpoint file is
detected, it is loaded by the Checkpointer and the run instance is
resumed at the given generation number.
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Figure 6: Illustration of the generation of a checkpoint that is
generated with the chromosomes obtained from the popula-
tion, the constants (ERC), the seed of the random generator,
and the generation number. The checkpoint is written to an
output file that can be used to resume a run.

6 IMPLEMENTATION COMPARISON

We considered various features for our comparison that can be
found in modern metaheuristics toolkits. These include program-
ming design, generic properties, checkpointing, variation pipelin-
ing, concurrency, and the existence of a parameter interface that
can be used for hyperparameter tuning. We consider vectorization
as a feature for our comparison, since it can be seen as a competi-
tive feature to concurrency in CGP. With respect to recent findings
about the role of crossover in CGP, we also consider this feature in
our comparison. Table 1 shows the result of our comparison, and
it is visible that the the supported features of our implementation
are on the level of a modern metaheuristics toolkit such as EC]J.
Please note that the evaluation of Julian Miller’s reference imple-
mentation is based on its modified version. The ECJ CGP contrib
package offers a wide range of features that are derived from the
underlying ECJ framework. For the other implementations, we no-
tice that the number of features is quite limited. However, the CGP
Toolbox supports vectorization, which is currently not supported
by CGP++. A finding that we will address in the following discussion.
CGP4Matlab and HAL-CGP use programming languages that pursue
dynamic typing concepts. However, we do not consider these con-
cepts as generic, since generic programming aims at enabling data
type independence while maintaining compile-time type safety. To
our best knowledge, this is not covered by default by the dynamic
typing concepts of these languages, and the generic extensions and
features are currently not used for the respective implementations.

7 DISCUSSION AND FUTURE WORK

The primary intention of this work is to propose the first version
of a modern implementation of CGP in the C++ programming
language. Another intention behind our work is to propose and
establish a flexible and reusable architecture that can facilitate and
simplify the implementation of further extensions. We therefore
deliberately chose C++ over Rust which would also have been a
suitable option. However, we consider Rust more a procedural and
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CGP-Library C++ P - - v/ - - - -
CGP Toolbox | C++ Pl- - - - - vV V/
CGP4Matlab | Matlab O | - - - - - - -
HAL-CGP | Python O | - - - - - -
CartesianGP.jl | Python P | V/ - - - -

O: object-oriented  P: procedural
Table 1: Results of our implementation comparison that con-
sidered different general features of modern heuristic toolk-
its but also CGP related aspects.

functional-oriented programming language rather than a strong
object-oriented one. Moreover, since we also focus on interpretabil-
ity of CGP methodologies implemented in CGP++, we find C++ code
more approachable than Rust code for this purpose.

We want to stress that with CGP++ we do not intend to pro-
pose a framework that we generally consider superior over other
implementations. With our contribution, we more intend to ex-
tend the already-existing ecosystem of CGP implementations. We
acknowledge that every programming language has its own spe-
cific characteristics, and each implementation has its own purpose
and philosophy. However, we feel that most CGP implementations
fall short of providing features that can facilitate the discovery of
novel applications and the integration of new techniques. More-
over, since the majority of the implementations that we considered
for our comparison follow the procedural programming paradigm,
we think that there is a need for frameworks that can facilitate
the implementation and maintenance of larger and more complex
methods that have been proposed for CGP. Another point that
should be discussed is related to how CGP is effectively used and
how this is related to future work on CGP++. CGP has a reputation
for being effectively used with relatively small population sizes
due to early experiments with Boolean functions [29, 31]. However,
recent studies on the parametrization of CGP demonstrated that
CGP can be also effectively used with large population sizes in the
SR domain [16]. In contrast, these studies also demonstrated that
CGP performs best in the LS domain when a (1+4)-ES with a very
small population size is used. Moreover, very recent work found
the (1 + 1)-ES to be the best choice for the evaluation of the General
Boolean Function Benchmark Suite (GBFS) [15] for LS. Based on
these findings, we think that at least two modalities in CGP have to
be considered for future work. Therefore, we would like to address
the following point as natural next steps for CGP++:

7.1 Concurrency

Since we already raised the issue of using concurrency for CGP, we
would like to discuss how the corresponding challenges could be
tackled in the future. In the first place, this would imply extending
the thread pool design by using multiple evaluator instances. How-
ever, we have to stress here that related elements such as the CGP
decoder have to be multiplied, and this would lead away from the
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idea of using a lightweight thread pool inside CGP++. Another idea
would be to consider an alternative concurrency design pattern that
could enable highly concurrent use and implements aspects from
parallel dynamic programming [44]. Currently, CGP++ only sup-
ports concurrency for the evaluation process. Therefore, another
contribution would be to enable breeding concurrency. In general,
despite the highlighted challenges, we think it is worthy to explore
whether concurrency could be effectively used for problems where
CGP seems to work well when large population sizes are being
considered.

7.2 Vectorization

The use of vector operations by using related extended SIMD in-
structions is another feature that we would like to consider for
future work. Vectorization with machine code that has been gener-
ated from CGP primitives and which contains SIMD instructions
has been successfully used to speed up the CGP evaluation proce-
dure [49]. The used SSE/SSE2 SIMD instruction calls operated with
128-bit vectors in that case. However, providing such a feature from
today’s perspective could also enable support for contemporary
instruction sets such as Advanced Vector Extensions (i.e. AVX-2 or
AVX-512). In view of the fact that the (1 + 1)-ES has been found to
be the best choice on GBFS, vectorization could be used to provide
a way to use CGP effectively in a consecutive fashion.

7.3 Towards a Modern General GP Toolkit

Even if this paper proposes the first version of CGP++, we do not
only see it as a implementation of CGP but also as a blueprint that
can shape the way towards a modern and general GP toolkit that
allows the use of multiple GP variants in a flexible and effective way.
Therefore, we consider extending CGP++ to GP++ in the future that
can benefit the GP domain across different representations with the
contributing factors that we intend to achieve with the proposal
of our implementation. As a first step towards that goal, we plan
to integrate tree-based and linear GP as popular representatives of
the GP domain.

8 CONCLUSION

In this paper we presented the first version of a modern C++ imple-
mentation of Cartesian Genetic Programming, which closes a major
gap in the framework of existing implementations. Our implementa-
tion provides key features and characteristics of modern heuristics
frameworks. Our proposed implementation offers a genetic design
and provides a reusable architecture that can facilitate the discovery
of new problem domains and the integration of new methods for
CGP. Equipped with interfaces and generators for benchmarking
in Logic Synthesis and Symbolic Regression, CGP++, also provides
a framework that can be used for the reproducibility of existing
results.
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