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Figure 1: We present FaceDiffuser, an end-to-end non-deterministic neural network architecture for speech-driven 3D facial
animation synthesis. Our proposed approach produces realistic and diverse animation sequences and is generalizable to both
temporal 3D vertex based mesh animation datasets (top 3 rows) and temporal blendshape based datasets (bottom 2 rows).

ABSTRACT
Speech-driven 3D facial animation synthesis has been a challeng-
ing task both in industry and research. Recent methods mostly
focus on deterministic deep learning methods meaning that given
a speech input, the output is always the same. However, in real-
ity, the non-verbal facial cues that reside throughout the face are
non-deterministic in nature. In addition, majority of the approaches
focus on 3D vertex based datasets and methods that are compatible
with existing facial animation pipelines with rigged characters is
scarce. To eliminate these issues, we present FaceDiffuser, a non-
deterministic deep learning model to generate speech-driven facial
animations that is trained with both 3D vertex and blendshape
based datasets. Our method is based on the diffusion technique and
uses the pre-trained large speech representation model HuBERT to
encode the audio input. To the best of our knowledge, we are the
first to employ the diffusion method for the task of speech-driven

3D facial animation synthesis. We have run extensive objective and
subjective analyses and show that our approach achieves better
or comparable results in comparison to the state-of-the-art meth-
ods. We also introduce a new in-house dataset that is based on a
blendshape based rigged character. We recommend watching the
accompanying supplementary video. The code and the dataset will
be released publicly1.

CCS CONCEPTS
• Computing methodologies→ Neural networks; Animation;
• Human-centered computing→ User studies.

KEYWORDS
facial animation synthesis, deep learning, virtual humans, mesh
animation, blendshape animation
1https://github.com/uuembodiedsocialai/FaceDiffuser
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1 INTRODUCTION
3D facial animation is an important component in various appli-
cations such as gaming and XR. Generating facial animations is
a tedious task, often done by experienced technical animators us-
ing keyframes or done by capturing and retargeting a performer’s
expression to a rigged model with blendshapes and facial con-
trols. The former requires time and expertise to achieve while
the latter requires specialised capture systems [11, 13, 16]. Recent
pipelines such as Unreal Engine MetaHuman Animator [15] aims
to provide more scalable facial animation capture solutions. Re-
search on speech-driven 3D facial animation can be divided into
phoneme-based procedural [6, 26] and data-driven approaches in-
cluding recent deep learning based methods using intermediary
representations of speech units [47, 58] and end-to-end deep learn-
ing [8, 17, 22, 29, 42, 54] eliminating the need for intermediary rep-
resentations. Phoneme-based methods require explicit definition
of co-articulation rules and manual work. Deep learning methods
automatically discover patterns that can map new speech input to
output animations. Our work is an end-to-end speech-driven 3D
animation method that uses a diffusion based deep learning model
to generate facial animations non-deterministically.

End-to-end deep learning based approaches effectively gener-
ate whole face animation producing promising results for accurate
lip-sync and upper face animations. Karras et al. [29] proposes an
end-to-end CNN based method mapping input waveforms to the
3D vertex coordinates. VOCA [8] proposes a CNN based approach
that takes advantage of the pre-trained DeepSpeech [21] model
including identity control. MeshTalk [42] learns a latent space rep-
resentation of facial expressions by employing a U-Net autoencoder
network and generates animations based on audio together with
a template mesh as input. With the success of transformers, Fan
et al. [17] proposed FaceFormer, a self-supervised representation
learning model which employs Wav2Vec 2.0 as a speech encoder.
Haque and Yumak [22] proposed FaceXHuBERT, an efficient end-
to-end encoder-decoder model based on the large speech model
HuBERT [25] including identity and emotion control. None of these
methods take into account the non-deterministic nature of facial
animations meaning given the same speech input, they produce
the same results. However, the non-verbal facial cues that reside
throughout the face are non-deterministic in nature [34].

There are a few works that employ non-deterministic methods.
Learning2Listen [34] generates facial animation for the listening
party in two-party dyadic interactions and uses a Vector Quantised
Variational Auto Encoder (VQ-VAE) [51]. CodeTalker [54] incor-
porates self-supervised Wav2Vec 2.0 inspired by FaceFormer [17]
together with the idea of having a latent codebook using VQ-VAE
inspired by [34]. TalkShow [56] also employs VQ-VAE to generate
both face, upper body and hand animations. Recent work on non-
deterministic body motion synthesis such as [1, 49, 50] employs
diffusion models. However, diffusion models have not yet been used
in the speech-driven 3D facial animation domain and to our knowl-
edge we are the first to do that. Our model employs a HuBERT
[25] audio encoder together with a specialised diffusion model and
produces facial animation both for 3D vertex based and rigged char-
acters. Fig. 1 shows animations generated with our model using five
different datasets. Our extensive objective and subjective analysis

shows that our model produces better or comparable results in
comparison to state-of-the-art methods. The main contributions of
our work are enumated below:
• FaceDiffuser is the first to incorporate the diffusion mechanism

for speech-driven 3D facial animation synthesis task.
• Our model performs better than the state-of-the-art methods in

terms of objective metrics onmultiple temporal high dimensional
3D vertex based mesh animation datasets.

• We extend our approach to show that the proposed model can
generalise to lower dimensional blendshape and facial control
based datasets. A new in-house built facial controls based facial
animation dataset for rigged characters is also introduced.

• Extensive qualitative analysis and ablation studies were pre-
sented to demonstrate the importance of the diffusion mecha-
nism and the ability to synthesise high-quality, diverse facial
animation sequences with a discussion on the capabilities and
limitations of deterministic and non-deterministic approaches.

2 RELATEDWORK
Speech-driven facial animation can be classified into two categories:
(i) neural rendering of 2D talking heads which resides in the pixel
space [27, 32, 57] and (ii) 3D speech-driven animation synthesis
using temporal 3D vertex data [8, 17, 22, 42, 54] and blendshape
data for a rigged character [2, 58]. Another line of research focuses
on 3D reconstruction of faces from 2D videos [9, 20, 44] however
they are not speech-driven. For an extensive survey on 3D face
reconstruction, tracking and morphable models, we refer to [14, 33].

In this paper, we focus on the 3D speech-driven facial anima-
tion synthesis problem using a diffusion model. Therefore in the
following two sub-sections, we first present the state-of-the-art on
speech-driven 3D facial animation and then motion synthesis using
diffusion models.

2.1 Speech-driven 3D Facial Animation
3D speech-driven facial animation typically uses phoneme-based
procedural approaches [6, 26]. Although these methods come with
the advantage of animation control and easy integration to artist-
friendly pipelines, they are not fully automatic and require defining
explicit rules for co-articulation. Another line of research uses
machine learning [48] or graph-based approaches [5] to learn
speech-animation mappings from data. These methods rely on
blending between speech units and cannot capture the complexity
of the dynamics of visual speech [47]. Recent approaches on 3D
speech animation synthesis effectively employ deep learning mod-
els [2, 8, 17, 22, 29, 42, 47, 58]. Taylor et al. [47] proposes a sliding
window approach instead of an RNN focusing on capturing coar-
ticulation effects. VisemeNet [58] builds upon the viseme-based
JALI [26] model and combines this with an LSTM-based neural
network. However, these two methods [47, 58] still rely on inter-
mediary representations of phonemes and they focus on the mouth
movement only. Most previous works do not include automatic
tongue animation except [2]. Some methods use 3D face recon-
struction methods from in-the-wild videos to generate their data,
e.g. dyadic speech-driven facial animation [28, 34]. However, these
methods are prone to 3D reconstruction errors. Most of the deep
learning based approaches are based on 3D vertex based datasets
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[8, 17, 22, 29, 42] and are not compatible with traditional animation
pipelines with rigged characters except a few examples such as
[2, 47, 58].

Closest to our work are [2, 8, 17, 22, 29, 42, 47, 58]. Karras et al.
[29] proposed an end-to-end method using CNNs aiming to resolve
the ambiguity in mapping between audio and face by introducing
an additional emotion component to the network. However, the
method is not trained on multiple speakers and cannot handle
identity variations. Instead, Cudeiro et al. [8] presents the audio-
driven facial animation method VOCA that generalizes to new
speakers eliminating the need for retargeting. However, VOCA
fails to realistically synthesise upper face motion and does not
include emotional variations. Richard et al. [42] aims for audio-
driven animation that can capture variations in multiple speakers
including a large dataset of subjects. They address the problem of
lack of upper face motions using a categorical latent space that
disentangles audio-correlated and audio-uncorrelated information
based on a cross-modality loss. Fan et al. [18] proposes an audio
and text-driven facial animation method that incorporates the large
language model GPT-2 [39]. FaceFormer [17] uses a self-supervised
pretrained speechmodel that addresses the scarcity of available data
in existing audio-visual datasets. The model uses a modified version
of transformers to handle longer sequences of data. FaceXHuBERT
[22] proposes a more efficient network and incorporates HuBERT
[25] as the audio encoder as well as includes identity and emotion
control.

However, these methods do not take into account the non- de-
terministic nature of facial animations. Learning2Listen [34] gener-
ates facial expressions non-deterministically in two-party dyadic
interactions and uses a Vector Quantised Variational Auto Encoder
(VQ-VAE) [51] to generate facial animation for the listening party.
CodeTalker [54] incorporates self-supervised Wav2Vec 2.0 inspired
by FaceFormer [17] and a modified version of VQ-VAE inspired
by Learning2Listen [34]. TalkShow [56] also employs VQ-VAE to
generate face, upper body and hand animations. None of these
methods incorporate the diffusion process to generate a variety of
3D facial animations driven by speech input.

2.2 Diffusion for Motion Synthesis
The concept of diffusion was introduced in 2015 by Sohl-Dickstein
et al. [45] and is based on a concept in non-equilibrium thermo-
dynamics. The idea is that a sample from the data distribution is
gradually noised by the diffusion process and then a neural model
learns the reverse process of gradually denoising the sample [49]. It
is widely used in the computer vision domain by denoising images
noised e.g. with a Gaussian noise and a neural network is trained
to reverse the diffusion process [23, 46]. It was used successfully in
text-to-image generation tasks leading to examples such as DALL-
E2 [40] and StableDiffusion [43]. For a survey of diffusion models
applied in the image domain, we refer to [7].

3D body motion generation and 2D talking face generation are
the closest work we found in the literature to our work with re-
spect to the use of diffusion process. In the domain of 3D body
motion synthesis, Tevet et al. [49] proposed Human Motion Dif-
fusion Model (MDM), a model that can generate body animations

based on text descriptions. They employ a transformer-based ar-
chitecture and introduce the noised ground truth motions as an
additional input to the network. By doing this, they succeed in
generating non-deterministic animations at inference time. With
the success of MDM, other works generate body animations given
music and audio as input [1, 50, 55]. Tseng et al. [50] train a model
that can generate dance animations conditioned on music, while
Yang et al. [55] use a similar approach for speech-driven gesture
motion synthesis. Alexanderson et al. [1] apply diffusion both for
co-speech gesture and dance motion generation. In the domain of
2D talking faces, a speech driven video editing method is proposed
by Bigioi et al. [4]. By taking a template video as input along with
a new speech segment, the model generates new lip motions that
follows the target speech sequence. The model is capable of general-
ising across different speaker identities. DAE-Talker [12] makes use
of diffusion for generating talking head animation with a 2-stage
learning process. They employ a diffusion autoencoder approach
initially introduced by Preechakul et al. [36] on images and extend
it to generating videos. They first train a diffusion autoencoder
that learns the latent space of facial expressions from the training
data. The first stage has no temporal awareness and only learns
to reconstruct an image from its encoding and its noised represen-
tation. In the second stage, a transformer-based encoder-decoder
architecture is used to encode the audio input and output frame
embeddings. To our knowledge, no work in the literature apply
diffusion models for the 3D speech-driven facial animation task.

3 PROBLEM FORMULATION
Let 𝐴 be an audio input associated with a sequence of ground truth
frames 𝑥1:𝑁0 = (𝑥10 , 𝑥

2
0 , ..., 𝑥

𝑁
0 ), where 𝑁 is the number of visual

frames sampled at a certain FPS specific to datasets. Each frame
in the sequence 𝑥𝑛0 is represented as an array of vertex positions
with the length 𝑉 x 3, where 𝑉 is the number of mesh vertices in
the topology, and 3 is the number of spatial axes. In the case of
blendshape or facial control datasets, 𝑥𝑛0 represents a vector of rig
controls or blendshape values, having the length 𝐶 , the number of
controls or blendshapes driving the facial rig. Based on audio input
𝐴, the goal of our architecture is to predict an animation sequence,
𝑥1:𝑁0 that resemble the ground truth frames 𝑥1:𝑁0 . Additionally, the
predictions will be guided by a style 𝑆 in the form of a one-hot vector
with a length equal to the number of training subjects (for vertex
based datasets only in our experiments) and noise 𝑥1:𝑁

𝑇
sampled

from the normal distribution N(0, 1) and with the same shape
as the ground truth sequence 𝑥1:𝑁0 . It is to be noted that, models
trained on vertex data generates animations in the form of vertex
displacements with respect to neutral face templates. Whereas,
models trained on blendshape or facial control does not require this
step as the neutral face of the rigged face is not a variable in our
setting.

The abstraction of the formulated problem is presented with the
following equation:

𝑥0 = FaceDiffuser(A, 𝑥𝑡 , 𝑡) (1)

Where, 𝑥0 is the predicted animation sequence, A is the input
audio sequence and 𝑥𝑡 is the sequence 𝑥0 after t diffusion steps.
Here, 𝑡 = 𝑇, 𝑥𝑡 = 𝜎1:𝑁 drawn from N(0, 1).
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Figure 2: FaceDiffuser learns to denoise facial expressions and generate animations based on input speech. Audio speech
embeddings from pre-trained HuBERT model combined with embeddings from the noised ground truth animation sequence
are used to train the Facial Decoder. The Facial Decoder is comprised of a sequence of GRU layers followed by a fully connected
layer and learns to predict (i) vertex displacements or (ii) rig control (blendshape) values. The predicted sequence 𝑥0 is compared
with the ground truth sequence 𝑥0 by computing the loss, which is then backpropagated to update the model parameters.

4 PROPOSED APPROACH
4.1 Training
We propose a general model that can be employed for both vertex
based and blendshape based datasets with slight modifications in
terms of hyperparameters. We refer to the vertex based model
configuration as V-FaceDiffuser, and to the blendshape based model
as B-FaceDiffuser. The main difference being the additional Noise
Encoder as it can be seen in Fig. 2 enclosed in dashed red box. The
noise encoder helps to project high dimensional vertex data into low
dimensional latent representation. The diffusion noising process
takes in 𝑥1:𝑁0 to compute noised 𝑥1:𝑁𝑡 , retaining its original shape.

From Fig. 2, we can identify the following main components that
are included in both versions of the model:

Audio Encoder: We use the pretrained large speech model, Hu-
BERT as the audio encoder similar to [22] and it is kept the same in
both versions of the architecture. We employ a pre-trained version
of the HuBERT architecture and use the released hubert-base-ls960
version of it, which was trained on 960 hours of LibriSpeech[35]
dataset.

Diffusion Process: Let 𝑥1:𝑁0 be a sequence of ground truth
visual frames from the dataset with shape (𝑁,𝐶), where𝐶 is either
the number of vertices, multiplied by the 3 (for 3 spatial axes), or
the number of rig facial controls (or blendshape values). During
training, we randomly sample an integer timestep 𝑡 from [1,𝑇 ],
indicating the number of noising steps to be applied to 𝑥1:𝑁0 and to
obtain 𝑥1:𝑁𝑡 with the formula:

𝑥1:𝑁𝑡 = 𝑞(𝑥1:𝑁𝑡 |𝑥1:𝑁𝑡−1) = N(
√︁
1 − 𝛽𝑡𝑥

1:𝑁
𝑡−1, (𝛽𝑡 )I) (2)

Where, 𝑁 is the number of visual frames in the sequence, 𝑡 is the
diffusion timestep and 𝛽𝑡 is the constant noise at timestep 𝑡 such
that 0 < 𝛽1 < 𝛽2 < ... < 𝛽𝑇 < 1.

After the forward noising process, ideally, we want to be able
to compute the reverse process and go backwards from 𝑥1:𝑁

𝑇
∼

N(0, 1) to 𝑥1:𝑁0 . Therefore the conditional distribution function
𝑝 (𝑥1:𝑁

𝑡−1 |𝑥
1:𝑁
𝑡 ) needs to be known beforehand.Ho et al. [24] proposes

to achieve that by learning the latent representation variance of the
dataset. The training objective is defined as learning to predict the
noise 𝜖 that was added to the input 𝑥0. However, we deviate from
[24] and follow MDM [49] and EDGE [50], choosing for our model
to learn to predict actual animation data instead of the noise level
in the data. We consider this to be more suitable for our task since
the results are also conditioned on the input audio. Furthermore,
by choosing this approach, our model is able to predict acceptable
results even from the first denoising steps of the inference process,
allowing for faster sampling. However following the full inference
process would give the best results.

We employ a simple loss for training similar to [49] and [50].
More thorough experimentation was conducted by Ho et al. [24],
who also claim that utilising the simple loss for learning the varia-
tional bound proved to be both easier to implement and also advan-
tageous for the quality of the sampled results. The loss is defined
as:

L = 𝐸𝑥0∼𝑞 (𝑥0 |𝑐 ),𝑡∼[1,𝑇 ] [∥𝑥0 − 𝑥0∥] (3)

Facial Decoder: The facial decoder is responsible for producing
the final animation frames from latent representation of the encoded
audio and noise. It is comprised of multiple GRU layers followed
by a final fully connected layer that predicts the output sequence.
During the decoding step, a style embedding can also be added
in the form of an element-wise product between a learned style
embedding vector and the hidden states output. We explain the
choice of the GRU decoder in the ablation section.
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Figure 3: FaceDiffuser inference is an iterative process fromT
decreasing to 1. The initial noise being represented by actual
noise from the normal distribution N(0, 1). At each step, we
provide the network with the audio and noised animation
input. The predicted motion is then diffused again and fed
to the next step of the iteration.

4.2 Inference
The inference is an iterative process, during which we go through
all of the diffusion timesteps backwards from 𝑇 to 1, gradually im-
proving the prediction at each inference step. During inference,
the ground truth noised sequence as input to the model is missing
compared to training time. Therefore, at inference time 𝑇 , a ran-
domly sampled noise is provided to the model from the uniform
distribution N(0, 1). Fig. 3 depicts the inference process.

5 EXPERIMENTAL SETUP
For our experiments, we trained our model on 3D vertex datasets.
We use BIWI [19] as our primary vertex based dataset for com-
parisons against the state-of-the-art methods such as VOCA [8],
FaceFormer [17] and CodeTalker [54]. The dataset contains audio-
4D scan pairs of 14 subjects, each uttering 40 sentences twice- with
neutral emotion and with emotional expressions. We adopt the ex-
act same dataset split for BIWI as done in [17, 54] and only use the
emotional sequences subset. The split results into training set BIWI-
Train that contains 192 sentences and validation set BIWI-Val that
contains 24 sentences from 6 training subjects. There are two test
sets: BIWI-Test-A, containing 24 sentences from seen subjects and
BIWI-Test-B, containing 32 sentences from the 8 remaining unseen
subjects. The former test set is used for computing objective met-
rics while both facilitate the qualitative analysis and the perception
study. BIWI-Test-B is further used to compute the diversity metric
that we define in the next section. We also train all the methods on
VOCASET, adopting the VOCASET-Train and VOCASET-Test split
following [8, 17, 54] and similar to these works, we use the test set
to generate animations for the perceptual user study. In addition,
we also employ the Multiface dataset [53] which was also used in
MeshTalk [42] to demonstrate the generalisability capability of our
proposed method and compare our results to two state-of-the-art
methods. Among these three datasets, only Multiface has proper
eye-blinks while for VOCASET, there are no examples of eye-blinks
and for BIWI, the face topology does not contain proper eye-lids. In
our experiments, we used BIWI andMultiFace for objective analysis
and BIWI and VOCASET for perceptual studies with users. For the

Hyperparameter V-FaceDiffuser B-FaceDiffuser

Optimizer Adam Adam
Learning Rate 1𝑒−4 1𝑒−4

Number of epochs 50 100
Diffusion Steps 500 1000
𝛽 schedule linear linear

Input Embedding Dim 512(B); 256(V,M) N/A
Number of GRU Layers 2 4(U);2(B)

GRU hidden size 512 1024(U); 256(B)
GRU dropout 0.3 0.3

Table 1: Hyperparameter values of our proposed approach.
For V-FaceDiffuser, since the vertex data is high dimensional,
we embed it to a latent dimension. The input embedding di-
mension is 512 for BIWI (represented as 512(B)) while for VO-
CASET andMultiface, it is 256 (i.e.- 256(V,M)). B-FaceDiffuser
does not need this projection as the data is low dimensional.
Different number of GRU layers and hidden sizes were used
for BEAT and UUDaMM, denoted by (B) and (U) respectively.

qualitative analysis, all datasets were used. For clarity, we defined
the models trained on vertex data in V-FaceDiffuser configuration.

In addition, we trained our proposed method on blendshape
based datasets such as BEAT [31] and our in-house dataset, UU-
DaMM (Utrecht University Dyadic Multimodal Motion Capture
Dataset) for a rigged character. While both datasets include both
face and body animations, we use the facial data together with
the synchonously captured audio data only. While BEAT facial
animations are based on Apple ARKIT 52 blendshape standard,
UUDaMM dataset includes AutoDesk Maya facial controls. These
are much lower dimensional datasets compared to the vertex based
ones. Since there has not yet been any speech-driven facial ani-
mation work done with these two datasets in the literature to our
knowledge, we compare the results of our approach with a base-
line method that is identical to the proposed method without the
diffusion component. Moreover, because the compared state-of-the-
art methods are designed and proposed for vertex based datasets
specifically, employing those on the blendshape datasets for direct
comparison is not applicable. For BEAT, we use a subset (≈16 hour
data by native English speakers) of the full (≈76 hours) dataset. UU-
DaMM (≈ 10 hours) consists of multimodal motion capture data of
2 actors interacting in a natural dyadic setting. The dataset contains
full body motion, captured with Vicon [52], facial performance
capture with Dynamixyz [13], synchronised audio recording and
reference videos. The facial performance data was solved and re-
targeted to a publicly available model - Ray[41]. We then export
the temporal facial control values (where the facial controls drive
the artist generated blendshapes) to form the training dataset. We
defined the models trained on lower dimensional blendshape based
datasets as B-FaceDiffuser. Eye-blinks are present in both these
datasets while UUDaMM also includes eye gaze in the training
data. More details on these 5 datasets we used are available in the
supplementary material.

Implementation Details: All the model training was done on a
shared compute cluster running Linux with AMD EPYC 7313 CPU,
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Dataset Method MVE ↓ LVE ↓ FDD ↓ Diversity↑
x10−3 x10−4 x10−5 x10−3
mm mm mm mm

VOCA 8.3606 6.7155 7.5320 7.8507
FaceFormer 7.1658 4.9847 5.0972 5.9201
CodeTalker 7.3980 4.7914 4.1170 0.0003

BIWI V-FaceDiffuser 6.8088 4.2985 3.9101 9.2459

VOCA 15.782 25.067 14.253 0.5292
FaceFormer 7.6132 7.0770 5.0127 14.745
CodeTalker 12.170 20.392 6.6857 13.423

Multiface V-FaceDiffuser 7.0004 6.2295 5.9020 15.500

Table 2: Objective results computed over the temporal 3D
vertex datasets. Our approach achieves the best results in all
four objective metrics for the BIWI dataset. For theMultiface
dataset we score best on all metrics except the FDD metric.

Nvidia A16 GPU, 1TB RAM. Tab. 1 shows the hyperparameters we
use for the proposed approaches.

6 RESULTS
We evaluate our proposed approach quantitatively, qualitatively and
with a perceptual user study and compared our results to the state-
of-the-art methods. In the following subsections, we will present
and discuss the results.

6.1 Quantitative Evaluation
Following [17, 22, 54], we employ the lip vertex error (LVE for
V-FaceDiffuser, LBE for B-FaceDiffuser) in order to measure the lip-
sync error. Similar to [54], we also adopt the FDD metric that gives
an indication of the upper facemotion variation in terms of statistics
and how close it is to the variation observed in the ground truth.
Additionally, we also compute mean full-face vertex error (MVE
for V-FaceDiffuser, MBE for B-FaceDiffuser) as we are interested in
not only the lip-sync but also the motion that resides throughout
the entire face. We use the exact same set of lip and upper face
vertices to compute the mentioned metrics as provided in code
repositories of [54] and [42] for BIWI and Multiface respectively. In
order to demonstrate the diversity capability of our proposed model,
we introduce a novel diversity metric that is subject to animation
generated conditioned on different training subjects for the vertex
based datasets. For the blendshape based datasets, we manually
select the blendshapes related to lip and upper face movements for
LBE and FDD respectively.

MVE and MBE. Mean vertex (or blendshape) error measures
the deviation of all the face vertices (or all the blendshapes) of
a sequence with respect to the ground truth by computing the
maximal L2 error for each frame and by taking a mean over all
corresponding frame pairs.

LVE and LBE. Lip vertex (or blendshape) error is identical to
MVE (or MBE). We only consider the lip vertices (or blendshapes
related to lips) for computing the metrics.

FDD. Introduced in [54], it measures the variation of facial dy-
namics for a motion sequence against ground truth. It gives an

Dataset Method MBE ↓ LBE ↓ FDD ↓
w/o Diffusion 0.4170 0.1077 0.1482

BEAT B-FaceDiffuser 0.5152 0.1358 0.1471

w/o Diffusion 2.6963 1.5924 2.0553
UUDaMM B-FaceDiffuser 3.4479 1.6671 1.7752

Table 3: Objective evaluation results computed over the blend-
shape and controller based datasets. Best results are marked
as bold. Our model generates slightly higher error based on
frame-level low dimensional GT values while achieving bet-
ter FDD.

indication of how close the standard deviation (or upper face mo-
tion variation) of a generated sequence is compared to the observed
variation in ground truth.

Diversity. We introduce an additional metric that measures the
model’s ability to produce diverse animations. With the introduc-
tion of diffusion, our goal is to develop a model able to generate
a great range of motions and non-deterministic expressions for
the regions of the face that are uncorrelated or loosely correlated
to speech. Based on similar metrics used for diffusion models in
literature [49], we introduce a novel diversity metric for the face.
The diversity metric could be applied to different iterations of the
inference algorithm, however, to be compatible with deterministic
state-of-the-art baselines, we define the diversity across different
subjects. Therefore, we define the diversity metric as follows. Let 𝑥𝑠0
be a generated sequence, conditioned on subject 𝑠 ∈ 𝑆 , where 𝑆 is
the list of training subjects. We compute the mean vertex difference
between every 2 sequences conditioned on different subjects. We
then take the mean of these differences and define the diversity of
a sequence as follows:

𝐷𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 =

∑ |𝑆 |−1
𝑖=1

∑ |𝑆 |
𝑗=𝑖+1 ∥𝑥

𝑖
0 − 𝑥

𝑗

0 ∥
( |𝑆 |−1) · |𝑆 |

2

(4)

where 𝑆 denotes the list of the training subjects and 𝑥𝑖0 is the pre-
dicted animation sequence conditioned on the 𝑖th subject from 𝑆 .
In our training setting, the diversity metric is only suitable for the
vertex based datasets that allow using neutral face template meshes
that are different across subjects. This ensures different subjects
have different neutral facial physiognomy. Whereas for the blend-
shape based datasets, the neutral configuration of the blendshape
values remains identical for different actors/speakers. Hence, B-
FaceDiffuser is trained without the subject conditioning and we
evaluate the diversity in terms of animation graphs.

Discussion. Tab. 2 and Tab. 3 show the objective results for
V-FaceDiffuser and B-FaceDiffuser respectively. Our approach per-
forms better than all the other methods on all the objective metrics
for the BIWI dataset. For the Multiface dataset, ours perform the
best on all objective metrics but FDD, for which FaceFormer per-
forms slightly better. For the blendshape based datasets, we cannot
compare our method with state-of-the-art methods as mentioned
earlier. Instead, we compare the diffusion MBE and LBE are higher
than the baseline model as our approach encourages randomness
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Figure 4: Visual comparison of frames from synthesised fa-
cial animation sequences generated by different methods
together with reference frames from GT sequence. The high-
lighted utterances are represented in visual frames. Our
method generates lip shapes that are close to the references
while encouraging diversity in the upper face.

and non-determinism while more resembling the upper face varia-
tion observed in the ground truth with lower FDD value. Further-
more, the diversity for B-FaceDiffuser is evaluated qualitatively in
Section 6.2.

6.2 Qualitative Evaluation
We carried out extensive qualitative analysis of the generated an-
imation sequences and compared them to both ground truth and
other methods. Our method generates accurate lip shapes resem-
bling ground truth lip motions while generating diverse upper-face
motions. A visual comparison can be observed in Fig. 4. Moreover,
our approach is generalisable to unseen speakers, noisy audio in-
put, multiple overlapping speakers in audio, speech in different
languages and text-to-speech audio.

In order to qualitatively demonstrate the diversity metric pre-
sented in Section 6.1, we sample animation sequences from BIWI-
Test-B generated with the same audio but conditioned on different
training subjects. Using the generated sequences, we plot the mean
and standard deviation of the motion and present it with a heatmap
visualisation as shown in Fig. 5. Because there is no subject con-
ditioning for B-FaceDiffuser, we demonstrate the diversity of the
generated sequences with animation graphs. We sample our model
multiple times using the same audio input and plot the animation
graphs of some key facial controls. This can be seen in Fig. 6 where
we can observe that upper face controls which are uncorrelated
or loosely correlated to speech, do not follow the ground truth
whereas the speech correlated lip controls resemble more to the
ground truth, especially the peaks in the graph. Furthermore, a
high diversity across different results can be observed, especially
in the case of eye blinks. For visual judgement, we refer to our
supplementary video.

Figure 5: Mean Motion comparison: Animation sequences
were sampled from BIWI-Test-B conditioned on different
training subjects. One set of two rows separated by the dashed
line depicts motion statistics of the same inference. Here we
present two sets of inferences generated using the same audio
but conditioned on two different training subjects. We notice
that conditioning of different subjects produces diversity in
generated animations. Whereas, the other methods are much
less diverse as seen in the mean motion heatmaps, where
dark blue means less observed motion and bright red means
more observed motion.

6.3 Perception Study
In addition to quantitative and qualitative analyses, we also con-
ducted a series of user studies to evaluate the user perception in
terms of realism, lip-sync and appropriateness. We adopt a similar
A/B testing strategy for the user study as done in the previous state
of the arts-[17, 54]. We conducted three separate user studies for
the compared models trained on three datasets - BIWI, VOCASET
and UUDaMM. As visual renders of Multiface resemble VOCASET
while BEAT resembles BIWI, these two were dropped for our per-
ception study. For the studies, we used the rendered videos of the
generated animation sequences by different methods and presented
randomly ordered pairs of videos in a side-by-side manner. The
participants were asked to judge three subjective aspects- realism,
lip-sync and appropriateness of the rendered animations with re-
spect to the audio. The user studies were hosted on Qualtrics[38]
and participants were recruited using Prolific[37], ensuring proper
remuneration for their time. Some additional participants were re-
cruited as well who did the studies voluntarily. In total, there were
83 survey responses for the three studies where 31 participated
in the study conducted on BIWI, 29 participated in the study on
VOCASET and finally, 23 people did the study on UUDaMM. More
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(a) Lower lip facial control. (b) Eye brow facial control.

(c) Eye ball rotation facial control. (d) Upper lid facial control.

Figure 6: Animation graphs of some facial controls (i.e.- low-
erlip, eyebrow, gaze, upperlid) of the UUDaMM dataset. We
synthesise animation data multiple times using the same
audio and plot the graphs together with the ground truth.
The black plots depict the ground truth whereas different
coloured plots depict different inferences. It is evident that
our approach produces lip control values similar to the
ground truth as seen in Fig. 6a while encouraging diversity
for the other facial controls as seen in Fig. 6b, Fig. 6c and
Fig. 6d.

details about the user studies can be found in the supplementary
material.

Tab. 4 shows the results of the 3 surveys we conducted. Our
model clearly outperforms VOCA in all three aspects for both BIWI
and VOCASET. However, renders of FaceFormer and CodeTalker
were perceived better than ours for BIWI whereas for VOCASET
ours perform similarly to FaceFormer while worse than CodeTalker.
As reported in Tab. 2, unlike CodeTalker which produces the same
motion conditioned on different training subjects, our model pro-
duces diverse animation. This might have affected the user study
results. For example, a generated sequence conditioned on a less
expressive training subject will have less motion for our model
while for CodeTalker, the motion is not affected by the subject con-
dition, see Fig. 5. Resulting in more motion and expressiveness in
the rendered videos for CodeTalker that might have affected the
perceived subjective aspects when presented side-by-side for this
kind of instances. For UUDaMM, there is a clear preference for
the results generated by our final model with diffusion than the
baseline model without diffusion. For all three datasets, ground
truth was perceived as superior, which is expected.

6.4 Ablation Study
To analyse the effects of the different components of our proposed
architecture, we experimented with different configurations of it,

Dataset- BIWI

Competitor Realism LipSync Appropriateness

VOCA 77.27 % 69.32 % 79.55%
FaceFormer 31.03 % 34.48 % 37.93 %
CodeTalker 44.94 % 44.94 % 41.57 %

GT 38.71 % 34.41 % 36.56 %

Dataset- VOCASET

VOCA 76.83 % 78.05 % 78.05 %
FaceFormer 49.38 % 46.91 % 51.85 %
CodeTalker 27.16 % 26.40 % 27.16 %

GT 23.81 % 33.33 % 27.38 %

Dataset- UUDaMM

w/o Diffusion 63.77 % 66.67 % 65.94 %
GT 18.48 % 27.17 % 20.65 %

Table 4: User study results.We conduct A/B testing and report
the percentage of responses where A (i.e. ours) was preferred
over B (i.e. competitor) in terms of realism, lip-sync and
appropriateness of the rendered animations.

by either removing or changing different modules. We conducted
ablation studies in terms of (i) diffusion mechanism, (ii) audio en-
coder and (iii) facial decoder. For the ablation study experiments,
we only employ BIWI for vertex based dataset, and UUDaMM for
blendshape based dataset.

Ablation on Diffusion Process: To understand the contribu-
tion of the diffusion mechanism in our proposed model, we train a
similar model without diffusion and compare the results. We exper-
imented with both BIWI and UUDaMM datasets. The first segment
of Tab. 5 shows that the model without diffusion achieves slightly
worse results in terms of the objective metrics. Fig. 7 shows that
models with diffusion produce more motion throughout the face,
resembling mean motion observed in ground truth.

Ablation on Audio Encoder: We use HuBERT as our audio
encoder in the proposed model. Following [17], a lot of recent works
employed Wav2Vec 2.0[3] as the audio encoder. In order to justify
our choice of using HuBERT, we trained our model with Wav2Vec
2.0 as our audio encoder. The second segment in Tab. 5 shows a clear
improvement of using HuBERT over Wav2Vec 2.0 to encode audio
information for speech-driven downstream tasks of 3D animation
synthesis.

Ablation on Decoder: In order to motivate our choice of the
facial decoder in the proposed model, we carried out ablation study
experiments by using different sequence modelling method for the
decoder. We replaced the proposed GRU decoder with a simpler
RNN decoder and more complex transformer decoder and report
the objective results in Tab. 6 for both BIWI and UUDaMM. GRU
decoder performs the best out of the tested configurations, resulting
in lower error values on both datasets.
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(a) Mean motion plot using temporal vertex data of
inferences generated without (middle) and with diffu-
sion (right) for BIWI.

(b) Mean motion plot using optical flow
of inferences generatedwithout (left) and
with (right) diffusion for UUDaMM.

Figure 7: Ablation on the diffusion process. It is evident that
the diffusion mechanism encourages more non-verbal cues
throughout the face.

7 DISCUSSION AND LIMITATION
Our approach performs objectively better than state of the arts but
the perceptual evaluation shows that there is still room for improve-
ment in terms of subjective aspects. There is a limitation in terms
of available datasets. We argue that the sequences are too short to
capture the full range of expressions a person can have in [8, 19, 53],
therefore our model cannot capture long-term context from the
data. It would be interesting to see how our model performs against
other methods when a larger dataset is used. Furthermore, a dataset
comprising diverse captured sequences where for one textual con-
tent, subjects perform multiple times, would help to better analyse
the diversity capability of non-deterministic models in addition to
analysing the non-deterministic nature of non-verbal facial cues
uncorrelated or loosely correlated with speech. Only in BIWI, this
is available but only twice in terms of binary emotion conditions.
Incorporating emotion information can be a future direction to
explore, including categorical or continuous emotion models. Using
BEAT dataset or creating synthetic datasets using vision-based 4D
reconstruction and emotion recognition models such as EMOCA[9]
similar to [10], can be a potential future direction to this end. Since
our results have limitations in terms of perceived realism, employ-
ing a diffusion autoencoder similar to [12] can prove to be a poten-
tial future direction to achieve better quality 3D facial animation
synthesis in terms of the subjective aspects. Moreover, it would be
interesting to see how models proposed for vertex based datasets
perform when trained on lower dimensional blendshape datasets.
Furthermore, due to the iterative sampling process of the diffusion
mechanism, our model’s inference time is long and subject to the
diffusion timesteps used during training. Therefore, our approach
is not suitable for real-time applications.

Ablation on Diffusion Process

Model MVE ↓ LVE ↓ FDD ↓ Training
x10−3mm x10−4mm x10−5mm Time (m)

w/o Diffusion 6.8833 4.5870 4.6690 ≈ 67
FaceDiffuser 6.8088 4.2985 3.9100 ≈ 67

Ablation on Audio Encoder

Model MVE ↓ LVE ↓ FDD ↓ Training
x10−3mm x10−4mm x10−5mm Time (m)

Wav2Vec2 7.4593 5.1590 4.1950 ≈ 67
HuBERT 6.8088 4.2985 3.9100 ≈ 67

Table 5: Objective metrics computed over the test results
of BIWI dataset for ablation experiments of the diffusion
process and of different audio encoder.

Dataset- BIWI

Decoder MVE ↓ LVE ↓ FDD ↓ Training
Type x10−3 x10−4 x10−5 Time

mm mm mm (h)

GRU 6.8088 4.2985 3.9100 ≈ 1.12
RNN 7.0833 4.7870 4.0690 ≈ 1.12

Transformer(TF) 9.9767 10.1300 4.8587 ≈ 1.34
Transformer(AR) 7.0213 4.6941 4.3272 ≈ 5.00

Dataset- UUDaMM

Decoder MBE ↓ LBE ↓ FDD ↓ Training
Type Time (h)

GRU 3.6791 3.5812 1.8862 ≈ 4.5
RNN 3.8654 3.9196 1.8426 ≈ 2.92

Transformer(AR) 3.6881 3.7105 1.8533 ≈ 4.58
Table 6: Objective metrics computed over the BIWI test re-
sults for ablation experiments of facial decoder. Here, (TF)
and (AR) depict teacher-forcing scheme and autoregressive
scheme respectively for Transformer decoders.

8 CONCLUSION
We integrated the diffusion mechanism into a generative deep neu-
ral network trained to generate 3D facial animations conditioned
on speech. The proposed approach is generalisable to both high
dimensional temporal 3D vertex data as well as low dimensional
blendshape data with minimal changes. The quantitative analysis
shows that our approach performs better than the state of the arts.
We showed that our model is able to produce higher diversity of
motions between different style conditions than the competitors.
Our approach also produces diverse animation sequences for rigged
characters that can be observed in animation graphs of multiple
generations conditioned on the same audio. Extensive ablation stud-
ies support our network architecture design choices, showing the
benefits of different proposed components of the neural network
architecture.
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Ethical Consideration Face data can be used for generating con-
tent that can jeopardise privacy. We must act responsibly by con-
sidering the aspects pertaining to privacy and ethics.
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A SUPPLEMENTARY MATERIAL
A.1 User studies
In total, 83 survey responses were collected spread among the 3 ex-
periments as follows- 31 for the BIWI survey, 29 for the VOCASET
survey, and 23 for the UUDaMM survey. An additional 3 responses
were discarded due to the participants failing the attention checks.
The surveys were distributed online to different groups that volun-
tarily took part in the study without being remunerated, managing
to collect 38 responses out of the total. The additional 45 responses
were collected through the Prolific platform, which facilitates re-
sponse collection by allowing participants to take part in surveys
and get remuneration. We fairly compensated the participants by
awarding them the equivalent of 9$/ℎ. Most of the participants are
adults or young adults, with the following age distribution: 65.85%
in the 18-25 age group, 25.61 in the 26-35 age group, and 8.54% in
the 36-45 age group. Looking at the gender distribution, 36.59% of
the participants identify as female, 54.88% as male, and 8.53% as
non-binary/other.

In regards to the user familiarity with the subject, we computed
the average reported familiarity of the 3 areas that were questioned
and we obtained 2.71 average familiarity with virtual humans, 3.52
average familiarity with 3D animated movies, and 4.06 average
familiarity with video games on a 5 point likert scale.

The first 2 surveys present users with 12 pair-wise comparisons.
To avoid the impact of random selection by users, we randomly
switch the side on which we show our model with our competitors.
For each comparison, the user is asked 3 questions. For the first 2
questions we follow previous works [17, 22, 54] and ask the users
about lip-sync quality and perceived realism of the animations.
Additionally, we add an extra question asking about the animation
appropriateness. Survey instruction and an example of the user
interface can be seen in Fig. 8a and Fig. 8b respectively.

The questions the users were presented with are as follows:
(1) Comparing the lips of the two animations, which one is

more in sync with the audio?
(2) Comparing the full faces of the two animations, which one

looks more realistic?
(3) Comparing the full faces of the two animations, which one

is more appropriate for the given audio?

A.2 Datasets
Here, we describe more in detail the datasets that were used in our
work. A summary of the datasets can be found in Tab. 7 and Tab. 8.

A.2.1 BIWI[19]. The dataset is comprised of 14 x 40 x 2 sequences
of paired audio and animation. For the creation of these sequences,
14 subjects were asked to read and emote 40 different sentences,
each sentence being read 2 times, one timewith a neutral expression
and one time with a more emotional one. Each sequence is on
average approximately 5 seconds long and is captured at 25𝑓 𝑝𝑠 .
The face meshes included are very high-definition comprising 23370
3D vertices, despite only the front of the head being depicted. Based
on previous work, we use the same data splits as in [17, 54] and
only use the emotional subset of sequences. During training, only
6 subjects (3 female and 3 male) are used, along with 32 spoken
sentences per subject. This amounts to a total of 192 sequences and

(a) User study instruction.

(b) User study UI.

Figure 8: Example screenshots of the user studies.

represents the BIWI-Train dataset. From the remaining 8 sentences
of these subjects, 4 are used for validations (24 in total), and 4 for
testing (24 in total). We refer to this test set as BIWI-Test-A and
will be used to compute objective metrics over our results. With
the remaining, 8 subjects and their last 4 sentences, BIWI-Test-B is
formed. This dataset represents the primary one we use during the
model experiment phase. Furthermore, the hyperparameter tuning
along with other experiments and the ablation study are mainly
performed on this dataset.

A.2.2 VOCASET[8]. . The dataset is comprised of 480 sequences
of audio-visual pairs which amount to a total length of just 29 min-
utes. The sequences are recorded at 60𝑓 𝑝𝑠 and the facial scans are
translated onto the FLAME head topology [30] which is comprised
of 5023 3D vertices. Unlike, the BIWI dataset, the mesh includes the
whole head and neck of the person, including eyeballs and eyelids.
Even though this would technically allow for more expressivity and
possibly even eye blinks to be captured, these are scarcely available
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Dataset BIWI VOCASET Multiface

Training Set
• 6 subjects
• 32 sequences per subject
• Total = 192 sequences

• 8 subjects
• 40 sequences per subject
• Total = 320 sequences

• 9 subjects
• 40 sequences per subject
• Total = 360 sequences

Validation Set
• 6 seen subjects
• 4 sequences per subject
• Total = 24 sequences

• 2 unseen subjects
• 20 sequences per subject
• Total = 40 sequences

• 9 seen subjects
• 5 sequences per subject
• Total = 45 sequences

Test Set A
• 6 seen subjects
• 4 sequences per subject
• Total = 24 sequences

-
• 9 seen subjects
• 5 sequences per subject
• Total = 45 sequences

Test Set B

• 8 unseen subjects
• 4 sequences per subject
• 6 conditions per sequence
• Total = 192 sequences

• 2 unseen subjects
• 20 sequences per subject
• 8 conditions per sequence
• Total = 320 sequences

• 4 unseen subjects
• 5 sequences per subject
• 9 conditions per sequence
• Total = 180 sequences

Table 7: Summary of the dataset split for the 3 vertex based datasets used in our work.

Dataset UUDaMM BEAT

Training Set
• 2 subjects
• 2029 10-second sequences per subject
• Total: 4058 sequences

• 4 subjects
• 2175 10-second sequences

Validation Set
• 2 subjects
• 254 10-second sequences per subject
• Total: 508 sequences

• 4 subjects
• 274 10-second sequences

Test Set
• 2 subjects
• 254 10-second sequences per subject
• Total: 508 sequences

• 4 subjects
• 275 10-second sequences

Table 8: Summary of the dataset split for the 2 blendshape based datasets used in our work.

in the dataset. In terms of data split, we utilise the one proposed
by the authors of the dataset and later used by other methods as
well [17, 54], 8 of the 12 subjects along with all of their sentences
are used for training (320 sequences), 2 subjects with 20 sentences
per subject are used for validation (40 sequences), and similarly the
last 2 subjects with the last 20 sentences are used for testing (40
sequences). This dataset is used mostly for validating our approach
in terms of generalizability and for conducting the user study.

A.2.3 Multiface[53]. The third vertex based dataset in our research,
namely theMultiface dataset, publicly released byWuu et al.[53]. To
the best of our knowledge, we are the first ones to use it for the task
of facial animation synthesis besides its creators. In comparison to
the other datasets, the face meshes included here are more complex
in terms of features, containing attributes such as hair, eyelids
and facial hair. Moreover, the dataset includes full 3D head scans,
including the back of the head as well as the neck.

The publicly released version of the dataset contains a total of
13 subjects out of 250 subjects that was used for training Meshtalk
[42]. Even though the full dataset is much larger, comprising a total
of 250 subjects, it is not available to the public. For each subject,
there are a total of 50 spoken sentences available. Since the se-
quences are split by subject and sentence, it allows us to have a
similar training technique, including the one-hot style embedding.

The authors of the dataset share that the sentences were chosen in
such a way that they are phonetically balanced ensuring a good
generalisation across the possible phonemes. The animation is se-
quence of 3D face meshes available at 30 frames per second. Each
frame is represented by the full 3D face of the actor, with a total
of 6172 3D vertices, including eyelids, neck, as well as different
hairstyles for the subjects. Since there is no previous work to follow
for this subset of the dataset, we propose our own data split (similar
BIWI in terms of number of sequences) and use 9 of the subjects
with the first 40 sentences for training (360 sequences) and call this
Multiface-Train, the following 5 sentences of the same 9 subjects
are used for validation (45 sequences), and the last 5 sentences make
up Multiface-Test-A and are used for testing (45 sequences). With
the other 4 subjects and their last 5 sentences that were unseen
during training, we form Multiface-Test-B.

A.2.4 Utrecht University DyadicMultimodalMotion Capture Dataset
(UUDaMM). Our in-house UUDaMMdataset consists of synchronously
captured dyadic conversations between 2 actors in terms of four
modalities- gesture, face, audio and text. The dataset contains 9
hours and 41 minutes of recorded conversations between two speak-
ers, of which 6 hours and 53 minutes represent active speech se-
quences, in which at least one of the two actors is speaking. For our
work in hand, we only discuss on the facial data in this document,
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Diffusion MVE ↓ LVE ↓ FDD ↓ Diversity ↑
Steps x10−3mm x10−4mm x10−5mm

100 7.2391 4.7703 5.0705 0.8236
250 6.9618 4.5515 4.2407 0.8331
500 6.8507 4.4364 4.3212 0.8446
750 7.1290 4.6428 4.1268 0.8725
1000 7.0387 4.6897 4.5889 0.8617

Table 9: Evaluation metrics computed over the test results of
different numbers for the diffusion timesteps

but we consider that the way the dataset was collected, is also
helpful for the task of facial animation via multi-modal learning
approaches as well as for modelling dyadic interaction.

The facial performance capture, done with Dynamixyz[13] sys-
tem at 120 FPS, is solved and retargeted to a virtual 3D character in
a Maya scene. We use a publicly available character[41] to ensure
ease of use among the research community. The character comes
with artist generated blendshapes as well as intuitive facial controls
that drive the blendshapes. After the facial performance is solved
and retargeted, we use a python script to extract the temporal facial
control values to form the training dataset. A similar python script
can be used to import the inferred data into the Maya scene as well.

A.2.5 BEAT[31]. The second blendshape based dataset we use is
the BEAT dataset [31]. Just like UUDaMM, the dataset also contains
body motion data along with facial capture, the difference being
that the facial animations are encoded as sequences of blendshape
weights instead of facial controls.

iPhone 12 Pro is used to capture the facial data of the actors,
encoded as 52 blendshape weights defined in Apple’s ARKit. The
frame rate of the facial capture is 60 FPS. The full dataset includes
30 participants, of which half are female and half male. Each par-
ticipant was asked to read 118 predefined texts, each resulting in
a one-minute recording, in various emotional ways in order to
cover multiple variations of emotional speech. The 8 emotions cap-
tured during the collection are neutral, happiness, anger, sadness,
contempt, surprise, fear, and disgust. An additional 12 recordings
of 10 minutes each were captured for each participant in which
they perform free-form conversations with an off-screen director.
Furthermore, the dataset contains sequences spoken in 4 different
languages: English, Chinese, Japanese, and Spanish, also includ-
ing native and non-native English speakers. The total size of the
recordings amounts to about 76 hours. For our training, we use a
16 hour subset of the dataset comprising native English speaking
sequences of 4 subjects. All these features make the dataset to be the
most diverse out of the ones we consider, the only downfall being
that "true" dyadic conversations are not recorded. In terms of pre-
processing, we do not apply any transformations to the values of
the features themselves, and merely split the sequences so that the
data follows a similar format to that present in the other datasets.
After splitting the provided sequences into 10-second segments, we
obtain a total of 11398 that are used for training. In terms of data
split, we employ an 80-10-10, training-validation-test split.

Figure 9: Ablation on the noise encoder.

Noise MVE ↓ LVE ↓ FDD ↓
Encoder x 10−3mm x 10−4mm x 10−5mm

MLP 7.1728 4.9453 3.7748
Conv1D + MaxPool (Ours) 6.8088 4.2985 3.9100

Conv1D + AvgPool 6.8735 4.5766 4.2383
3 x (Conv1D + MaxPool) 6.9217 4.5241 3.6020
3 x (Conv1D + AvgPool) 6.8415 4.4130 3.9621

Table 10: Results of different types of encoder for the noise

A.3 Additional Ablation on Diffusion Steps
We experimented with different diffusion step numbers as can be
seen in Tab. 9. Analysing the visual results we observe that the
number of diffusion steps does not influence the model’s capac-
ity of producing acceptable animations, all of the configurations
producing correct lip-sync animations. The differences are mostly
noticed when it comes to the general expressivity of the animations.
The results obtained with just 100 diffusion steps are generally the
worst both objectively and subjectively, while we do not see a lot
of visual differences between the results obtained with the other
tested values. Both 500 and 750 diffusion time steps yield accept-
able results, however increasing the value beyond that worsens the
results.

A.4 Additional Ablation on Noise Encoder
For V-FaceDiffuser, due to the large number of 3D vertices in the
data, we introduced a noise encoder in order to reduce the high
dimensionality of the noise input to a low dimensional latent rep-
resentation. We experimented with different configurations for the
noise encoder as follows-

• MLP. A series of 2 fully connected layers.
• Conv1D + MaxPool (Ours) One fully connected layer

followed by a single-dimensional convolution and a max
pooling layer.

• Conv1D + AvgPool One fully connected layer followed by
a single-dimensional convolution and an average pooling
layer.

• 3 x Conv1D +MaxPool Same as the second item but three
times.
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(a) An example of how the generated animation can be edited by
an animator after automatically generated by our model.

(b) By using the BEAT dataset, FaceDiffuser is able to generate
ARKit blendshape animations that can be used to animate a large
variety of 3D characters that are ARKIT Blendshape enabled such
as Ready Player Me avatars and Epic Games’ MetaHumans.

Figure 10: Use cases of our approach in existing animation
production workflows.

• 3 x Conv1D + AvgPool Same as the third item but three
times.

By analysing the results in both Tab. 10 and the heatmaps in Fig. 9,
we can see a trend in the expressivity of the animations, viewed
as a higher activation of the face, can be seen as the noise encoder
becomes more complex. Some more complex configurations (i.e.

row 4 and 5 in Tab. 10) were also tried, showing better results
in terms of the mean motion of the face. However, these come
at the detriment of the error metrics compared to ground truth
data. Out of the experimented configurations, our proposed choice
performed the best. We can also notice that the Conv1D approaches
are performing better than the MLP, both by looking at the results
in Tab. 10 and the visual representation in Fig. 9. Furthermore,
the method using max pooling performs slightly better than the
average pooling one.

A.5 Additional Use Cases
A.5.1 Animation Editing. By using a generalised animation encod-
ing such as the Apple ARKit blendshape expression space, we are
able to easily edit the resulting animations to better emulate our
desired results. This can be done by simply updating the animation
curves as can be seen in Fig. 10a and in the accompanying sup-
plementary video. A simple change like moving one of the curves
upwards would change the entire sequence expression and could
be used to generate various expressions. For example, an animator
might choose to generate more obvious mouth movements by ap-
plying a filter over the mouthOpen blendshape, which would make
mouth opens and closures more extreme. Considering that accurate
lip movements are automatically generated by a data-driven model
like ours, the animators then have freedom of customising those
animations to better fit their desires.

A.5.2 Animation Transfer. Another identifiable use case of gener-
ating ARKit blendhshape animations (with the model trained on
BEAT dataset) is the transferability of such animations between
different characters having the same blendshapes or semantically
the same/similar blendshapes with different names. No additional
retargeting steps are required if the blendshape names are the same
as ARKit ones while a trivial script that maps the blendshape names
between source data and target data would solve the retargeting
and therefore the transfer is easy even for novice animators. This
opens a wide-range of opportunities as there is a vast array of dif-
ferent faces that can be animated by using our model. However,
due to the limited capability in terms of expressiveness in ARKit
blendshapes, applying them to high fidelity photorealistic human
characters may cause the effect known as the uncanny valley effect.
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