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ABSTRACT
In Recommender System (RS) applications, reinforcement learning
(RL) has recently emerged as a powerful tool, primarily due to its
proficiency in optimizing long-term rewards. Nevertheless, it suf-
fers from instability in the learning process, stemming from the
intricate interactions among bootstrapping, off-policy training, and
function approximation. Moreover, in multi-reward recommenda-
tion scenarios, designing a proper reward setting that reconciles
the inner dynamics of various tasks is quite intricate. To this end,
we propose a novel decision transformer-based recommendation
model, DT4IER, to not only elevate the effectiveness of recom-
mendations but also to achieve a harmonious balance between
immediate user engagement and long-term retention. The DT4IER
applies an innovative multi-reward design that adeptly balances
short and long-term rewards with user-specific attributes, which
serve to enhance the contextual richness of the reward sequence,
ensuring a more informed and personalized recommendation pro-
cess. To enhance its predictive capabilities, DT4IER incorporates
a high-dimensional encoder to identify and leverage the intricate
interrelations across diverse tasks. Furthermore, we integrate a
contrastive learning approach within the action embedding pre-
dictions, significantly boosting the model’s overall performance.
Experiments on three real-world datasets demonstrate the effective-
ness of DT4IER against state-of-the-art baselines in terms of both
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1 INTRODUCTION
In today’s digital age, platforms spanning from social media to
e-commerce have led to an explosion in the amount of information
available online, underscoring the importance of efficient naviga-
tion tools [1]. Recommender Systems (RS) have emerged as a crucial
technology in this realm, adeptly improving content suggestions
and optimizing recommendations according to user interests in-
ferred from their historical engagement. In recent years, researchers
have proposed various methods for Recommender Systems, en-
compassing collaborative filtering [42], matrix factorization-based
approaches [27], and those powered by deep learning [7, 14, 69].
Among them, transformer-based models, notably BERT4Rec [50]
and SASRec [26] have risen to prominence, redefining the land-
scape of recommendation systems. It is believed that the strength
of transformers lies in the attention mechanisms [57], which can
dynamically capture the inherent dependencies in data, offering
an accurate understanding of user patterns. This adaptability and
precision make transformers well-suited for navigating the realm
of user preferences inference and immediate feedback prediction.

1https://github.com/Applied-Machine-Learning-Lab/DT4IER
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In practice, a range of metrics such as clicks, likes, and ratings
are widely used as indicators of user preferences. Though effective,
these immediate metrics offer limited insights into the user’s lasting
impression in the long term. In some cases, they can be misleading
indicators of content quality [62, 66]. For instance, content with
an eye-catching title but poor content quality may initially draw
attention and obtain positive feedback, but only to later abuse the
users’ trust and undermine their loyalty. This highlights a pressing
need to balance the RS’s focus between short-term user engagement
and long-term user satisfaction [58] . To this end, methods based
on Reinforcement Learning (RL) have emerged [11]. By modeling
sequential user behaviors using a Markov Decision Process (MDP),
RL-based systems can dynamically adapt recommendations at ev-
ery user interaction juncture [39, 79]. The strength of RL lies in its
capability to optimize cumulative rewards over extended sequences
in the future, allowing it to capture long-term objectives and trends,
and ensure sustained user engagement. A recent finding [4] shows
that RL-based RS can even directly optimize user retention, a cru-
cial metric often ignored but paramount in real-world business
contexts [13, 81] that is closely related to daily active users (DAU).

Despite their promises, RL-based systems have some inherent
challenges. Firstly, the long-term credit assignment through boot-
strapping leads to the Deadly Triad issue which emerges from the
complex interplay between bootstrapping, off-policy training, and
function approximation, often making the learning process un-
stable [10]. Secondly, the standard practice of discounting future
rewards in Temporal Difference (TD) learning can inadvertently
drive the system to be overly focused on immediate gains at the
expense of long-term objectives [64]. To circumvent these prob-
lems and unlock the full potential of RL-based recommendation
systems, the innovative Decision Transformer (DT) [8] has been
introduced and then applied in RS. During inference, the recom-
mendation policy is conditioned on the rewards, i.e. returns-to-go
(RTG). During training, it reformulates the reinforcement learn-
ing paradigms into sequence modeling tasks, and the transformer
model is used to capture not only the interactions but also the
user rewards. With this transformation, DT converts the intricate
landscape of RL into a tractable one close to supervised learning.
Additionally, DT has also been proven to be efficient in boosting
recommendation performance with respect to user retention [72].

We posit that focusing solely on immediate user feedback or long-
term retention is insufficient. A more holistic approach requires
optimizing both metrics simultaneously, offering a comprehensive
perspective on user behavior. This approach frames the problem as
a long short-term multi-task learning challenge. Adapting Decision
Transformers (DT) to multi-reward contexts, however, presents
significant challenges. Firstly, the intricate dynamics among var-
ious user responses in historical data underscore the complexity
involved in designing corresponding rewards. This is crucial as it
directly impacts the quality of the recommendations [47]. Secondly,
the presence of multiple objectives introduces additional complexity
to the training process. This arises from the sophisticated and often
unpredictable interdependencies among different tasks, potentially
impairing the model’s learning efficiency.

To address these challenges, we introduce DT4IER, a novel
framework based on the Decision Transformer, crafted for long
short-term multi-task recommendation scenarios. Our approach

deploys an innovative multi-reward configuration, reinforced by
a high-dimensional encoder designed to capture the intricate rela-
tionships among different tasks effectively. Furthermore, we apply
an innovative approach to reward structuring, skillfully balancing
short-term and long-term rewards. It does so by incorporating user-
specific attributes, which serve to enhance the contextual richness
of the reward sequence ensuring a more informed and personalized
recommendation process. We also introduce a contrastive learning
objective to ensure that the predicted action embeddings for dis-
tinct rewards do not converge too closely. Our key contributions in
this paper can be summarized as follows:
• We emphasize the importance of long short-term multi-task se-
quential recommendations and introduce DT4IER, a novel De-
cision Transformer-based model engineered for integrated user
engagement and retention.

• Our innovative framework applies a novel multi-reward setting
that balances immediate feedback with long-term retention by
user-specific features, and then complements by a corresponding
high-dimensional embedding module and a contrastive loss term.

• We validate the performance of DT4IER through extensive ex-
perimentation compared with state-of-the-art Sequential Recom-
mender Systems (SRSs) and Multi-Task Learning (MTL) models
on three real-world datasets.

2 PRELIMINARIES
In this section, we provide an overview of the foundational concepts
and primary notations used throughout this paper.

2.1 Offline Reinforcement Learning
Given aMarkov decision process (MDP) formulated as (S,A, 𝑃,R, 𝛾)
where S is the set of state 𝑠 ∈ R𝑑 ,A is the set of action 𝑎, 𝑃 (𝑠′ |𝑠, 𝑎)
is the transition probabilities from state 𝑠 to new state 𝑠′ given
action 𝑎, R is the reward function for specific state-action pairs and
𝛾 is the discount rate. The trajectory from timestamp 0 to 𝑇 can be
written as (𝑠0, 𝑎0, 𝑟0, · · · , 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , · · · , 𝑠𝑇 , 𝑎𝑇 , 𝑟𝑇 ), where (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 )
are state, action and reward pairs at timestamp 𝑡 . The learning ob-
jective of RL is to determine an optimal policy that maximizes the
expected cumulative return E

[∑𝑇
𝑡=1 𝛾

𝑡𝑟𝑡
]
given a specific reward

function and discount rate.

2.2 Decision Transformer
Rather than employing traditional RL algorithms such as training
an agent policy or approximating value functions [23], the deci-
sion transformer follows a different routine that recasts RL into a
sequence modeling problem with supervised learning objectives.
To equip the transformer with the capability to discern significant
patterns, the corresponding trajectory representation with 𝑇 times-
tamps is designed as:

𝜏 =

(
𝑅1, 𝑠1, 𝑎1, . . . , 𝑅𝑡 , 𝑠𝑡 , 𝑎𝑡 , . . . , 𝑅𝑇 , 𝑠𝑇

)
(1)

In this representation, 𝑅𝑡 =
∑𝑇
𝑘=𝑡

𝑟𝑘 defines the returns-to-go
(RTG) which represents the cumulative reward from time 𝑡 through
to time 𝑇 , without applying any discount. Given the RTG and
state information, the DT is capable of predicting the next action
𝑎𝑇 by a causally masked transformer architecture with layered



Sequential Recommendation for Optimizing Both Immediate Feedback and Long-term Retention SIGIR ’24, July 14–18, 2024, Washington, DC, USA

self-attention and residual connections [8]. In each layer,𝑚 input
embeddings, denoted as {𝑥𝑖 }𝑚𝑖=1, are processed to yield correspond-
ing output embeddings {𝑧𝑖 }𝑚𝑖=1. Each token’s position, 𝑖 , dictates
its transformation into a key 𝑘𝑖 , a query 𝑞𝑖 , and a value 𝑣𝑖 [57].
The resultant output for the same position is derived by adjusting
values, 𝑣 𝑗 , using the normalized dot product between the query 𝑞𝑖
and its associated keys 𝑘 𝑗 which is further processed by a softmax
activation function 𝜎𝑠 :

𝑧𝑖 =

𝑚∑︁
𝑗=1

𝜎𝑠

(
{⟨𝑞𝑖 , 𝑘𝑙 ⟩}𝑚𝑙=1

)
𝑗
· 𝑣 𝑗 (2)

In the realm of recommendation systems, the inference process
utilizing the DT can be concisely described as follows: Initially, the
model receives a combination of state and action inputs. These
inputs are processed through the Decision Transformer, result-
ing in an output that consists of an action embedding specifically
prompted by a designed reward which is integral to guiding the
model’s decision-making process. Subsequently, this action em-
bedding undergoes a decoding process, which ultimately yields a
sequence of recommended items.

3 THE PROPOSED FRAMEWORK
In the following section, we provide a comprehensive overview
of our proposed method, DT4IER. We begin with the problem for-
mulation, setting the stage for a deeper understanding, and then
detailing the intricate design and settings of the specific modules.

3.1 Problem Defination
In the conventional sequential recommendation scenario, the ob-
jective is to recommend items based on a user’s historical sequence
optimized for specific indicators. However, from a business per-
spective, focusing on a single metric can be limiting since user
behavior can be influenced by various factors and can exhibit differ-
ent patterns over time. Therefore, we prioritize the optimization of
two key performance indicators: click-through rate (CTR) and re-
turn frequency. The former serves as a widely recognized business
metric in numerous real-world applications, offering immediate
insight into user engagement. The latter is intrinsically tied to vital
operational metrics, including daily active users (DAU), which are
essential for sustained platform growth and user retention. This
optimization strategy is applicable to a variety of digital platforms,
encompassing streaming services, e-commerce websites, and social
media networks, where both immediate user engagement and long-
term user retention are critical for success. To realize this, we adapt
the DT framework to a multi-reward setting, whose architecture
can be naturally extended to handle multiple reward signals. Given
the input trajectory 𝜏 =

(
R̂1, s1, a1, . . . , R̂𝑡 , s𝑡 , a𝑡 , . . . , R̂𝑇 , s𝑇

)
, the

state-action and RTG is defined as:

• Session 𝑡 represents an individual timestamp within a trajectory
of length 𝑇 . It also signifies a specific day for a particular user.

• State s𝑡 ∈ R𝐻 represents the historical interaction information
for a user before session 𝑡 , which comprises user-clicked item
IDs, zero-padded to length 𝐻 . It will be updated based on clicked
items in the current action.

• Action a𝑡 ∈ R𝑁 is the recommendation list containing item IDs
of length 𝑁 , denoting the action based on state 𝑠𝑡 .

• Reward r𝑡 = (𝑟𝑠,𝑡 , 𝑟𝑙,𝑡 ) ∈ R2 represents the feedback corre-
sponding to the actions 𝑎𝑡 executed at session 𝑡 . In this paper,
our focus is primarily on two pivotal metrics in real-world rec-
ommender systems. The short-term indicator 𝑟𝑠,𝑡 is quantified as
the click-through rate for recommended action 𝑎𝑡 at session 𝑡 .
And long-term indicator 𝑟𝑙,𝑡 is defined as the return frequency
for a given session 𝑡 to measure user retention.

• Return-to-go (RTG) R̂𝑡 ∈ R2 denote the accumulative reward
accumulated from session 𝑡 through to 𝑇 , without the introduc-
tion of any discount factor, which can be expressed as:

R̂𝑡 = [𝑅𝑠,𝑡 , 𝑅𝑙,𝑡 ] =
[
𝑇∑︁
𝑖=𝑡

𝑟𝑠,𝑖 ,

𝑇∑︁
𝑖=𝑡

𝑟𝑙,𝑖

]
(3)

Our method aims to optimize a spectrum of objectives that en-
compass both short-term and long-term rewards. This approach
can be regarded as both an evolution and a specialization within
the MTL framework, one that is finely tuned to balance and achieve
both immediate and enduring user engagement metrics.

3.2 Framework Overview
The overall structure of DT4IER is illustrated in Figure 1. While
it shares foundational elements with the conventional DT [8], our
design incorporates modifications designed to accommodate rec-
ommendation tasks with a multi-task setting. Here’s a step-by-step
overview of DT4IER’s forward process:

• Adaptive RTG Balancing Block: To effectively capture the
intricate dynamics of short-term and long-term user behaviors,
we propose to apply user feature-based reweighting to the RTG
sequence. Further insights can be found in Section 3.3.

• Embedding Module: The modified trajectory data then under-
goes an embedding transformation to be represented as dense
vectors. To be specific, the state and action sequences are pro-
cessed using a Gated Recurrent Unit (GRU) [15], detailed further
in Appendix B.1. In contrast, the reward sequence employs a
high-dimensional encoder which is further explained in Section
3.4. Additionally, a positional session encoding is integrated.

• Transformer Decision Block: Upon processing, the dense tra-
jectory vectors serve as context, guiding the generation of action
embeddings for the subsequent timestamp. This decision-making
module is underpinned by the transformermodel, detailed further
in the Appendix B.2.

• ActionDecoding Block: Using the predicted action embeddings,
our decoding unit strives to construct an action sequence that
aligns closely with the reference of ground truth actions, detailed
further in Appendix B.3.

• Training Objective: We employ an objective function designed
to minimize the differences between the predicted and ground
truth actions. Besides, a supplementary contrastive learning ob-
jective is introduced, serving as a catalyst to amplify the model’s
robustness. More details are given in Section 3.5.
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Figure 1: Overview Framework of DT4IER.

3.3 Adaptive RTG Balancing
In settings that involve long short-term reward optimization, strik-
ing a balance between short-term and long-term performance met-
rics is notably challenging. This complexity arises from inherent
conflicts between immediate and deferred objectives, as well as from
the convoluted interdependencies among tasks [47]. To adeptly bal-
ance this equilibrium, we propose a novel strategy: the balancing of
the RTG sequence, adaptively controlled by distinct user features.
Since these user features hold a wealth of information about user
preferences, they serve as a reliable guide for understanding user
behaviors, bridging the gap between their immediate feedback and
long-term retention.

Considering the diverse nature of user features, it is crucial to
treat numerical and categorical data distinctly. We process categor-
ical features through an embedding layer to capture their unique
attributes effectively. Meanwhile, numerical features are refined
using a Multilayer Perceptron (MLP). The outputs of both processes
are then combined and fed into another MLP which is designed to
refine the data further and produce tailored weights that strike a bal-
ance between immediate responses and long-term engagement in
user behavior. Specifically, given a set of user features U = (un, uc),
where un are numerical features and uc are categorical features.
The whole process can be summarized as:

• Feature Extraction: The transformation of categorical features
into an embedded space is given by:

e𝑖 = 𝐸 (𝑐𝑖 ), ∀𝑐𝑖 ∈ uc (4)

where 𝐸 represents the embedding function, and e𝑖 is the embed-
ding for the 𝑖-th categorical feature. The embedded vectors are
then concatenated to form ue = [e1, e2, . . . , e𝑛].
The numerical features are transformed by an MLP with the
sigmoid activation function to obtain:

uM = MLP1 (unum) (5)

To derive the long short-term balancing weights, the combined
feature vector ucom = [ue, uM] is processed by another MLP with
softmax activation function to yield a set of weights B = (𝑏𝑠 , 𝑏𝑙 )
which indicates the importance of each reward indicator:

z = MLP2 (ucom) (6)

B = softmax(z) =
[

𝑒𝑧𝑖∑𝐾
𝑗=1 𝑒

𝑧 𝑗

]𝐾=2
𝑖=1

(7)

where 𝑧𝑖 represents the 𝑖-th element of the output vector z, and
𝐾 is the total number of elements in z, representing weights for
balancing immediate response and long-term retention.

• Balanced Reward Loss: To guide the user-specific weight op-
timization process, we hope the learned balancing weights can
maximize the overall weighted sum of immediate response re-
ward 𝑟𝑠,𝑖 and long-term retention reward 𝑟𝑙,𝑖 and also balance
them to reach a better balance. This objective can be written as:

O =

𝐾∑︁
𝑘=1

[
𝐼𝑘∑︁
𝑖=1

[(𝑏𝑠 · 𝑟𝑠,𝑖 + 𝑏𝑙 · 𝑟𝑙,𝑖 ) −
𝑏𝑠 · 𝑟𝑠,𝑖 − 𝑏𝑙 · 𝑟𝑙,𝑖22]]

≤
𝐾∑︁
𝑘=1

[(𝑏𝑠 · 𝑅𝑠,𝑘 + 𝑏𝑙 · 𝑅𝑙,𝑘 ) −
𝑏𝑠 · 𝑅𝑠,𝑘 − 𝑏𝑙 · 𝑅𝑙,𝑘22] (8)

where 𝐾 is the number of users, 𝐼𝑘 is the number of interacted
items for user 𝑘 . 𝑏𝑠 and 𝑏𝑙 represent the weights for immediate
feedback and long-term retention with condition 𝑏𝑠 + 𝑏𝑙 = 1.
To achieve a balanced consideration of rewards for immediate
feedback and long-term retention, we implement an 𝐿2 regulariza-
tion approach which imposes a penalty on substantial deviations
between the weighted values of short-term and long-term re-
wards. Such a strategy is designed to prevent the system from
disproportionately favoring one type of reward over the other,
thus maintaining an equitable focus on both immediate and sus-
tained user engagement. Then the second inequality in Equation
(8) is derived from the fact that RTG is the sum of rewards.
To maximize the objective O, we design the corresponding Bal-
ancedRewardLoss function as follows:

L𝑏𝑟 = −
𝐾∑︁
𝑘=1

[(𝑏𝑠 · 𝑅𝑠,𝑘 + 𝑏𝑙 · 𝑅𝑙,𝑘 ) − 𝛾
𝑏𝑠 · 𝑅𝑠,𝑘 − 𝑏𝑙 · 𝑅𝑙,𝑘22] (9)

where 𝛾 is a hyperparameter to control the balance term.
The overall design of the BalancedRewardLoss function aligns

with the objective of achieving a sustainable and effective recom-
mendation strategy, addressing both immediate user responses and
long-term user retention. The existing RTG sequence is further
rebalanced by the weights 𝐵 and we also use the same notation for
the RTG sequence R̂𝑡 .
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3.4 Multi-reward Embedding
In the architecture of DT, the reward mechanism is crucial as it
drives the process of predicting actions. The reward signals to the
model what outcomes to strive for, influencing its predictive de-
cisions. However, the use of a simplistic embedding strategy for
representing these rewards falls short, as it fails to preserve the
essential partial order relationships among them. This limitation is
particularly acute in scenarios involving multiple rewards, where
the model must understand and respect the hierarchy of rewards
to make accurate and contextually relevant embeddings. In or-
der to effectively solve this problem, we introduce an innovative
multi-reward embedding module specifically tailored for our RTG
setting. This method employs learnable weights derived from an
MLP, anchoring the weights directly to the reward values. Such
an approach not only allows for a more nuanced representation of
rewards but also ensures that the model remains adaptive to shifts
in user behavior patterns. This process can be delineated as follows:

• Discretization of RewardsWith the given numerical reward
value R̂𝑡 = [𝑅𝑠,𝑡 , 𝑅𝑙,𝑡 ] as a starting point, we apply a discretiza-
tion technique enabling us to extract distinct meta-embeddings
E𝑅 = [𝐸𝑅𝑠,𝑡 , 𝐸𝑅𝑙,𝑡 ] tailored to each task’s reward. The principle
behind this is to transform continuous reward values into cate-
gorical bins, each associated with a specific embedding, allowing
for more subtle representations.

• Weighted Score Generation The reward values, once processed,
are channeled into an MLP with a specific architecture, which
translates the reward value into a multi-weighted score. To be
specific, the MLP layer can be formulated as follows:

h𝑛+1 = 𝜎 (W𝑛h𝑛 + b𝑛) , 𝑛 = 0, 1, ..., 𝑁 − 2
h𝑁 = 𝜎∗ (W𝑁−1h𝑁−1 + b𝑁−1)

(10)

where h𝑛 represent the 𝑛-th hidden layer, characterized by its
weight W𝑛 and bias b𝑛 . For this layer, the activation function
used is Leaky-ReLU, denoted as 𝜎 . Meanwhile, the output layer,
symbolized by h𝑁 , employs the softmax function 𝜎∗. Here the
output of MLP is a 2-D vector withw = h𝑁 = [𝑤1,𝑤2]. The core
purpose of this step is to harness the potential of deep learning to
derive a relational significance score for each task, highlighting
the underlying relationship between rewards.

• Embedding Concatenation Upon obtaining the weighted meta-
embeddings specific to each task, we proceed to concatenate
them to ensure a unified, comprehensive reward representation,
providing a holistic view of the reward dynamics across tasks:

Ê
𝑅
= 𝑐𝑜𝑛𝑐𝑎𝑡𝑒 (𝑤1𝐸

𝑅
𝑠,𝑡 ,𝑤2𝐸

𝑅
𝐼,𝑡 ) (11)

where 𝑐𝑜𝑛𝑐𝑎𝑡𝑒 () represents the concatenation operation.

This embeddingmodule corresponds to the shared representation in
MTL, drawing from both types of rewards to offer a comprehensive
understanding of the tasks. Thus, while not being classic MTL, our
approach borrows the foundational principle of jointly optimizing
for multiple objectives to enhance overall performance.

3.5 Objective Function with Contrastive
Learning Term

While DT typically predicts actions based on the prospect of ob-
taining the maximum reward, this may inadvertently sideline data
samples associated with lower rewards [72]. Furthermore, for opti-
mal performance, it’s essential that actions with different reward
values are distinctly separable in the embedding space. To achieve
this, we introduce a contrastive learning-based loss term, ensuring
the model effectively differentiates between actions corresponding
to varied rewards. It can be written as:

L𝑐𝑜𝑛𝑡𝑟𝑎 = −
∑︁

Ê
𝐴−∈Ω−

𝐷 (Ê𝐴, Ê𝐴−) (12)

where Ê
𝐴
is the predicted action embedding, Ω− is the set for

negative samples Ê
𝐴−

, and function𝐷 (𝑥,𝑦) calculates the similarity
of two sequences. In our context, negative samples are identified as
data points where the rewards 𝑟1,𝑡 and 𝑟2,𝑡 are consistently below
0.6. This threshold signifies that these samples underperform, falling
below average in both click rate and retention metrics.

Besides, in the original Decision Transformer model, the 𝐿2 loss
is employed for scenarios involving a continuous action space.
However, in our specific setting, the action comprises video IDs
with a length of 30, representing a discrete space. To adapt to this
context, each element within the action space is converted into a
one-hot encoded label. Consequently, we utilize the cross-entropy
loss function, which effectively measures the divergence between
the predicted action distribution and the ground truth action:

L𝑐𝑟𝑜𝑠𝑠 = −
𝑍∑︁
𝑧=1

𝑦𝑜,𝑧 log
(
𝑝𝑜,𝑧

)
(13)

where 𝑍 is the length of the action sequence, 𝑦𝑜,𝑧 is the binary
indicator equal to 1 if the current predicted action 𝑜 is inside the
action table with label 𝑧, 𝑝𝑜,𝑧 is predicted probability for current
predicted action 𝑜 is of class 𝑧. Ultimately, the overall objective
function can be expressed as:

L = L𝑐𝑟𝑜𝑠𝑠 + 𝛼L𝑐𝑜𝑛𝑡𝑟𝑎 (14)

where 𝛼 is the contrastive learning loss weight.

4 EXPERIMENT
In this section, we assess the performance of the DT4IER framework
using experiments conducted on two real-world datasets.

4.1 Dataset
We carried out our experiment using three datasets.
• Kuairand-Pure 2 is an unbiased sequential recommendation
dataset featuring random video exposures.

• MovieLens-25M 3, a widely-used benchmark for SRSs, boasts a
more extensive scale but with a sparser distribution.

• RetailRocket4 dataset is collected from a real-world e-commerce
website. To optimize the transformer’s memory requirements,
item IDs have been reindexed.

2https://kuairand.com/
3https://grouplens.org/datasets/movielens/25m/
4https://www.kaggle.com/datasets/retailrocket/ecommerce-dataset
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Table 1: Overall Performance on three datasets for different models.

Dataset Metric Model

MMoE PLE RMTL-PLE BERT4Rec SASRec DT4Rec DT4IER

Kuairend-Pure

BLEU 0.654 0.658 0.674 0.781 0.787 0.821 0.892*
ROUGE 0.889 0.888 0.891 0.855 0.874 0.911 0.89
HR 0.655 0.657 0.668 0.681 0.687 0.731 0.838*
NDCG 0.531 0.534 0.552 0.690 0.732 0.754 0.852*
SB-URS 411,278 412,359 432,402 507,831 512,490 526,032 529,741

ML-25M

BLEU 0.268 0.27 0.273 0.476 0.479 0.560 0.594*
ROUGE 0.264 0.268 0.269 0.324 0.331 0.388 0.415*
HR 0.267 0.269 0.272 0.281 0.287 0.334 0.401*
NDCG 0.281 0.284 0.286 0.322 0.338 0.361 0.418*
SB-URS 114,231 115,087 115,842 135,928 141,823 151,302 153,135

RetailRocket

BLEU 0.268 0.273 0.294 0.455 0.457 0.572 0.628*
ROUGE 0.872 0.870 0.878 0.892 0.898 0.889 0.908*
HR 0.371 0.377 0.384 0.393 0.398 0.411 0.439*
NDCG 0.411 0.415 0.431 0.45 0.461 0.487 0.544*
SB-URS 187,943 188,462 193,210 201,764 204,218 225,628 238,338

“*”: the statistically significant improvements (i.e., two-sided t-test with 𝑝 < 0.05) over the best baseline.
Underline: the best baseline model. Bold: the best performance among all models.

4.2 Evaluation Metrics
We evaluate DT4IER’s effectiveness using various metrics, focusing
on both short-term recommendation accuracy and long-term user
retention. Detailed metrics are provided below:

• BLEU [44] assesses the precision of the predicted recommenda-
tion list which is a common metric in SRSs.

• ROUGE [29] calculates the recall rate of the predicted recom-
mendation list.

• HR@K quantifies the likelihood of ground-truth items ranking
within the top-K recommendations.

• NDCG@K [61] calculates the normalized cumulative gainwithin
the top-K recommendations, factoring in positional relevance.

• Similarity-Based User Return Score (SB-URS) [72] is an estab-
lished metric for assessing the retention impact of recommended
lists, determined by the weighted sum of the actual user retention
score. In our approach, we categorize samples into eight distinct
classes based on their reward values, uniformly ranging from
0 to 1. The similarity, represented by the BLEU score, is then
computed by comparing the predicted recommendations with
the ground truth for each class:

SB − URS =

7∑︁
𝑐=0

𝑠𝑖𝑚𝑐 ·
(
𝑟𝑐 −

1
2

)
· 𝑁𝑐 (15)

Here, 𝑠𝑖𝑚𝑐 represents the similarity for class 𝑐 , 𝑟𝑐 denotes the
corresponding ground truth retention reward, and 𝑁𝑐 signifies
the count of samples with a reward classification of 𝑐 .

4.3 Baselines
In our analysis, we contrast the performance of our approach with
state-of-the-art (SOTA) models spanning both multi-task learning
and decision transformer-based sequential recommendations:

• MMoE [37]: Renowned as a robust multi-task learning model,
MMoE employs gating mechanisms to manage the interplay
between the shared foundation and task-specific layers.

• PLE [56]: Standing out as a leading multi-task learning solution,
PLE handles complex task interrelations by employing a blend
of shared experts and task-specific expert layers.

• RMTL [35]: This is a reinforcement learning-based multi-task
recommendation model with adaptive loss weights.

• BERT4Rec [50]: It employs a bidirectional Transformer archi-
tecture to effectively capture sequential patterns in user behavior
with a masked language model.

• SASRec [26]: This model applies a left-to-right unidirectional
Transformer to capture user preference.

• DT4Rec [72]: Operating on the decision transformer paradigm,
this Sequential Recommendation System (SRS) model is meticu-
lously tailored for optimizing user retention.

Furthermore, we’ve adapted the model architectures of MMoE and
PLE to facilitate sequential recommendations, utilizing a weighted
score derived from multiple tasks.

4.4 Implementation Details
For the Decision Transformer model, we use a trajectory length 𝑇
of 20 for both datasets, and we set the maximum sequence length
the same for state and action 𝐻 = 𝑁 = 30. The model configuration
includes 2 Transformer layers, 8 heads, and an embedding size of
128.We employ the Adam optimizer, with a batch size set to 128. The
learning rates are 0.005 for Kuairand-Pure and 0.02 for ML-25M and
RetailRocket. The action decoder is capped at a maximum sequence
length of 30. The balanced reward loss utilizes a balance term 𝛾 of
0.5, and a contrastive loss parameter 𝛼 of 0.1. For other baseline
models, we either adopt the optimal hyper-parameters suggested
by their original authors or search within the same ranges as our
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model. All results are showcased using the optimal configurations
for each model, as detailed in Appendix A.

4.5 Overall Performance and Comparison
We assessed the efficacy of our proposed DT4IER model against
four baselines across two datasets. A comprehensive performance
summary is shown in Table 1, yielding the following insights:

• Limitations of MMoE: Among all models, MMoE demonstrates
the least satisfactory performance concerning both recommenda-
tion accuracy and long-term retention across the datasets. While
MMoE’s design proficiently handles multiple tasks by balancing
parameter interactions between shared components and task-
specific towers, its architecture, optimized for parallel task pro-
cessing, struggles to adapt to the dynamic and evolving nature
of sequential data. Similarly, PLE faces the same challenge, po-
tentially resulting in diminished outcomes in sequential recom-
mendation contexts.

• Strengths of DT4Rec: DT4Rec achieves the best performance in
both recommendation accuracy and retention among all baseline
models. Its unique auto-discretized reward prompt design guides
the model training towards boosting long-term user engagement,
thus enhancing user retention appreciably.

• Superiority of DT4IER: The DT4IER model consistently out-
performs the four baselines in both the realms of recommenda-
tion accuracy and user retention score across datasets. Particu-
larly on the Kuairand-Pure dataset, DT4IER exhibits 0.07-0.09
improvement in recommendation accuracy compared to the top-
performing baseline. By interpreting RL as an autoregressive
setting and integrating a structure designed for multiple rewards,
our model strikes a balance between immediate feedback and
long-term retention, resulting in significant enhancements in
recommendation performance while retaining user engagement.

To conclude, the DT4IER model represents a significant advance-
ment over existing state-of-the-art multi-task learning (MTL) frame-
works and transformer-based sequential recommendation systems.
It excels in providing superior recommendation accuracy and sus-
taining long-term user retention across diverse real-world datasets.
This is largely due to its sophisticated reward structure, which has
been meticulously designed to harmonize the delivery of immediate
feedback and long-term retention.

4.6 Ablation Study
In this subsection, we delve into an ablation study to underscore the
significance of the distinct modules integrated within our proposed
model. By contrasting variants of the primary model with specific
modules omitted, we aim to measure the impact of each component.
The variant models are delineated as follows:

• NAW represents the model variant devoid of the adaptive RTG
weighting module, with all other components kept constant.

• NRE In this configuration, a standard reward embedding is em-
ployed without considering intricate task relations.

• NCL This variant exclusively leverages the cross-entropy loss in
its objective functions without the contrastive loss component.

The outcomes of our ablation study, conducted on the DT4IER
model utilizing the Kuairand-Pure dataset, are illustrated in Figure
2. From the results, we have several key insights:
• Importance of RTG Balancing: Our DT4IER model consis-
tently outperforms the NAW variant across diverse metrics, span-
ning recommendation accuracy to long-term retention metrics.
Specifically, it achieves improvements of 1.50% in BLEU, 1.90% in
NDCG, and 0.08% in SB-URS. This can be largely attributed to the
RTG balancing module, which adaptively weights the immediate
reward and long-term retention by distinct user features. The
result effectively underscores the contribution of this module.

• Limitations of NRE: The NRE configuration achieves the most
modest performance across both immediate feedback and long-
term retention metrics. Compared with the NRE variant, the
DT4IER model achieves improvements of 1.80% in BLEU, 2.30%
in NDCG, and 0.19% in SB-URS. Its primary shortcoming arises
from its encoder module, which struggles to efficiently map 2-
D rewards or discern the intrinsic connections between tasks.
This underscores the efficiency of our proposed multi-reward
embedding module in driving better performance.

• Impact of Contrastive Loss: The absence of contrastive loss
in the NCL variant notably diminishes its performance. This is
mainly because, without this component, the action embeddings
for distinct rewards aren’t adequately separated. The DT4IER
model achieves improvements of 1.02% in BLEU, 1.60% in NDCG,
and 0.03% in SB-URS against NCL. Notably, while the SB-URS
metrics between DT4IER and the NCL variant are comparable,
our model manages to boost recommendation accuracy without
compromising on long-term retention capabilities.

NAW NRE NCL
DT4IER
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0.875
0.880
0.885
0.890
0.895 (a) BLEU Metric

NAW NRE NCL
DT4IER

0.812
0.817
0.822
0.827
0.832
0.837
0.842
0.847
0.852

(b) NDCG Metric

NAW NRE NCL
DT4IER

527500
527800
528100
528400
528700
529000
529300
529600

(c) SB-URS

Figure 2: Ablation Study Results.

4.7 RTG Prompting Analysis
The inference mechanism of the Decision Transformer (DT) oper-
ates on the principle of supervised action prediction, conditioned
on the highest possible Return-to-Go (RTG) values. In our specific
context, this RTG value is represented as [1,1], implying an antici-
pated 100% click rate along with the expectation that the user will
return in the subsequent session. However, in practical applica-
tions, this ideal scenario isn’t always achieved which underscores
the potential benefit of utilizing RTG prompting with a reduced pro-
portion to potentially boost model performance. Drawing from this
observation, we evaluate the model’s performance over RTG values
ranging from 0.4 to the upper limit of 1.0, with 1.0 representing the
utilization of the maximum RTG. The results are presented in Fig-
ure 3, offering insights into the interplay between RTG proportions
and recommendation efficacy.

From the figure presented, a distinct pattern emerges in the
performance metrics. Notably, both the BLEU and NDCG scores
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exhibit a consistent ascent with increasing RTG proportions, pre-
dominantly in the 0.4 to 0.8 range. The best performance for these
metrics is achieved at an RTG proportion of 0.8, beyond which no
incremental benefit is observed. This pattern suggests that while
higher RTG promptings enhance recommendation accuracy, there
exists a saturation point beyond which further increments do not
translate to performance gains. The result exactly validates our
hypothesis regarding RTG prompting.

0.30.40.50.60.70.80.91.0
RTG Propotion

0.79
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0.85

0.88

0.91
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EU

(a) BLEU
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0.72
0.76
0.80
0.84
0.88
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(b) NDCG

Figure 3: RTG Prompting Analysis.

4.8 Case Study
In this subsection, we highlight DT4IER’s effectiveness in improv-
ing recommendation performance through a case study on the
Kuairand-Pure dataset. The selected user for this study has a his-
tory of four interactions, with the ground truth action sequence
comprising details of five different videos. Figure 2 shows that when
provided with the user’s state and the goal of maximizing retention,
DT4Rec recommends four videos. This recommendation achieves
a BLEU score of 0.625 and an NDCG of 0.710. In contrast, DT4IER
outperforms by recommending five actions, all of which align with
the ground truth action sequence. This leads to a higher prediction
accuracy, with a BLEU score of 0.887 and an NDCG of 0.947. These
results underscore our model’s enhanced efficiency, attributed to
its consideration of short-term clicks and long-term retention.

User State Information

[3310, 3706, 1018, 0, 0, … , 0, 0]

DT4Rec

DT4IER

[5246, 6767, 7438, 0, 0, … , 0, 0]

[5246, 6767, 7438, 399, 0, 0, … , 0, 0]

BLUE 0.625   NDCG 0.710

BLUE 0.887   NDCG 0.947

Ground Truth Action
[5246, 6767, 399, 7298, 7438, 0, 0, … , 0, 0]

Decision Transformer

Return-to-go State Action

Predicted Action

Action DecoderAction Decoder

Reward Embedding Reward Embedding
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Figure 4: Case Study on Kuairand-Pure

5 RELATEDWORK
In this section, we briefly discuss existing research related to se-
quential recommender systems, RL-based recommender systems,
and MTL-based recommender systems.

5.1 Sequential Recommender Systems
Sequential Recommendation refers to a recommendation system
paradigm that models patterns of user behavior and items over time
to suggest relevant products or content [20, 28, 32, 33, 67]. Among
the myriad of approaches available, Markov Chains (MCs) [48] and
Recurrent Neural Networks (RNNs) stand out for their prowess in
sequence modeling [17]. The adaptability and capability of RNNs in
integrating diverse information make them especially effective for
crafting sequential recommendations. RU4Rec [55] was a pioneer in
leveraging RNNs, tapping into their potential to process sequential
data. Subsequently, GRU4Rec [22] unveiled a parallel RNN structure
to process item features, thus boosting recommendation quality.
Further, the generalization power of the transformer architecture
has given rise to its prominence in Sequential Recommendation
Systems, birthing models such as BERT4Rec [50] and SASRec [26].
Building upon these foundations, the decision transformer was con-
ceptualized to tackle user retention challenges, aiming to directly
predict actions using a reward-driven autoregressive framework
[72]. However, a gap remains in current research concerning the
optimization of multi-reward settings.

5.2 Reinforcement Learning Based
Recommender Systems

The validity of applying RL-based solutions [2, 52, 60, 68, 73, 75] for
sequential recommendation comes from the assumption of Markov
Decision Process [49]. And the key advantage of RL solutions is
the ability to improve the expected cumulative reward of future
interactions with users, rather than optimizing the one-step rec-
ommendation. Specifically, for scenarios with small recommen-
dation spaces, one can use tabular-based [39, 41] or value-based
methods [24, 54, 77, 80] to directly evaluate the long-term value
of the recommendation; For scenarios where action spaces are
large, policy gradient methods [6, 9, 51, 78] and actor-critic meth-
ods [3, 5, 16, 18, 30, 31, 34, 46, 53, 63, 76] are adopted to guide the
policy towards better recommendation quality. Knowing that the
web service may want to optimize multiple metrics, several works
have discussed the challenge of multi-objective optimization [5, 12]
where the user behaviors might have different distributional pat-
terns. Among all user feedback signals, user retention has been con-
sidered one of the most challenging to optimize, while recent work
has shown a possible RL-based approach [4] for this uphill struggle.
This work aims to simultaneously optimize immediate feedback and
user retention. Similar to our work, to overcome the gap between
experiments on real user environments and offline evaluations, user
simulators are widely used to bypass this paradox [25, 71, 74]. Our
approach can be thought of as a likelihood-based method while
employing a sequence modeling objective rather than relying on
variational techniques.

5.3 Multi-task Learning in Recommender
Systems

Multi-task learning (MTL) is a machine learning technique that ad-
dresses multiple tasks simultaneously [59, 70]. It captures a shared
representation of the input through a shared bottom layer and
then processes each task using distinct networks with task-specific
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weights. The overall performance is further enhanced by the knowl-
edge transfer between tasks. This approach has become particularly
popular in recommender systems, thanks to its prowess in effec-
tively sharing data across tasks and in recognizing a range of user
behaviors [21, 36, 38, 43, 45]. A significant portion of recent re-
search targets the enhancement of these architectures to promote
more effective knowledge sharing. Notably, some innovations focus
on introducing constraints to task-specific parameters [19, 40, 65],
while others aim to clearly demarcate shared from task-specific
parameters [37, 56]. The principal goal of these strategies is to am-
plify knowledge transfer through improved feature representation.
Additionally, some researchers are exploring the potential of rein-
forcement learning to enhance the MTL model by adjusting loss
function weights [35]. While many approaches prioritize item-wise
modeling, our research delves into the challenges of balancing both
short-term and long-term rewards in sequential recommendation
settings. Furthermore, we have refined the methodologies of both
the PLE and MMoE models for sequential recommendations.

6 CONCLUSION
In this work, we introduced DT4IER, an advanced decision trans-
former tailored for sequential recommendations within a multi-task
framework. Our primary objective was twofold: augmenting recom-
mendation accuracy and ensuring a harmonious balance between
immediate user responses and long-term retention. To achieve
this, DT4IER leverages an innovative multi-reward mechanism that
adeptly integrates immediate user responses with long-term re-
tention signals, tailored by user-specific attributes. Furthermore,
the reward embedding module is enriched by a high-dimensional
encoder that deftly navigates the intricate relationships between
different tasks. Empirical results on three business datasets consis-
tently positioned DT4IER ahead of prevalent baselines, highlighting
its transformative potential in recommender systems.
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A HYPER-PARAMETER SELECTION
In our study, we undertook a hyperparameter tuning process for
the DT4IER model to ensure the robustness and credibility of our
experimental results. These results represent the aggregated per-
formance across two datasets. A comprehensive breakdown of the
hyperparameter choices is provided in Table 2 for further reference.

Table 2: Hyper-parameter Selection for DT4IER

Hyper-parameter Tuning range Our choice

Trajectory length [10,20,30,40] 20
Number of heads [2,4,8,16] 8
Embedding size [64,128,256,512] 128
LR (Kuairand) [0.002,0.005,0.02,0.05] 0.005
LR (ML-25M) [0.002,0.005,0.02,0.05] 0.02
LR (RetailRocket) [0.002,0.005,0.02,0.05] 0.02
balance term 𝛾 [0.2,0.3,0.4,0.5,0.6,0.7,0.8] 0.5
Loss weight 𝛼 [0.05,0.1,0.2,0.3] 0.1

B OTHER MODEL DETAILS
B.1 State-action Encoder
Given the state and action sequence of length 𝐻 = 𝑁 , we apply
GRU to process the input sequence and specify by state s𝑡 :

𝑧𝑛 = 𝜎′
(
𝑊𝑧s𝑡,𝑛 +𝑈𝑧ℎ𝑛−1 + 𝑏𝑧

)
𝑜𝑛 = 𝜎′

(
𝑊𝑜s𝑡,𝑛 +𝑈𝑜ℎ𝑛−1 + 𝑏𝑜

)
ℎ𝑛 = 𝑓 (ℎ𝑛−1, 𝑧𝑛)

Ê
𝑠

𝑡 = ℎ𝑁

(16)

where 𝑧𝑛, 𝑜𝑛 are update gate vector and reset gate vector for 𝑛-th
item, ℎ𝑛 is the output vector, 𝜎′ is the logistic function,𝑊,𝑈 ,𝑏

are parameter matrices and vector, Ê
𝑠

𝑡 is the state embedding at 𝑡
timestamp which is also the last output vector for 𝑁 .

B.2 Transformer Block
We employ a unidirectional transformer layer equipped with a
multi-head self-attention mechanism as our primary model archi-
tecture. To combat overfitting, skip-connections are integrated, and
feed-forward neural layers are utilized for feature transformation:

Ê
𝐴
= FFN

[
MHA

(
𝝉 ′
) ]

(17)

where Ê
𝐴
is the predicted action embedding, 𝝉 ′ is the trajectory

information containing state-action and RTG embedding. MHA is
a multi-head self-attentive layer and FNN is the feed-forward neural
with Gaussian Error Linear Units (GELU) activation function.

B.3 Action Decoder
Given predicted action embedding Ê

𝐴
with 𝑡-th rows as 𝐴𝑡 and

user interaction histories 𝑖𝑛 , the action decoder aims to decode
sequences of items of interest to users with the GRU module:

�̂�𝑛 = 𝑖𝑛 ⊕ 𝐴𝑡
ℎ̂𝑛+1 = 𝑓 (̂𝑖𝑛, ℎ̂𝑛)

(18)

where ℎ̂𝑛 is the 𝑛-th output vector. To forecast the first item with-
out any prior information, we employ ’start’ as a checkpoint and
initialize �̂�0 arbitrarily. The decoding process can be expressed as:

â𝑡 = decode(start, �̂�1, . . . , �̂�𝑁−1)

= [ℎ̂1, . . . , ℎ̂𝑁 ]
(19)

where â𝑡 represents the predicted action for 𝑡-th instance.
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