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Abstract

The joint use of node features and network topology to detect communities is called community detection in attributed networks.

Most of the existing work along this line has been carried out through objective function optimization and has proposed numerous

approaches. However, they tend to focus only on lower-order details, i.e., capture node features and network topology from

node and edge views, and purely seek a higher degree of optimization to guarantee the quality of the found communities, which

exacerbates unbalanced communities and free-rider effect. To further clarify and reveal the intrinsic nature of networks, we conduct

triangle-oriented community detection considering node features and network topology. Specifically, we first introduce a triangle-

based quality metric to preserve higher-order details of node features and network topology, and then formulate so-called two-level

constraints to encode lower-order details of node features and network topology. Finally, we develop a local search framework

based on optimizing our objective function consisting of the proposed quality metric and two-level constraints to achieve both non-

overlapping and overlapping community detection in attributed networks. Extensive experiments demonstrate the effectiveness and

efficiency of our framework and its potential in alleviating unbalanced communities and free-rider effect.
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1. Introduction

Networks provide a natural way to express the complex rela-

tionships in our daily life, such as scientific collaborations [1],

friend interactions [2], information dissemination [3], and mod-

ule associations [4]. Typically, the individuals and their rela-

tionships in real-world scenarios are represented as the nodes

and edges in networks where each node is associated with one

or more features characterizing the properties of the individual

it corresponds. More formally, we call the networks follow-

ing the above way of expression as attributed networks [5, 6].

The goal of community detection in attributed networks is to

identify the communities hidden inside the networks by utiliz-

ing the node features and network topology comprehensively,

which not only helps us get a deeper understanding of the net-

work structure, but also gives the people new insights into a

series of related issues [7–10].

Over the past several decades, objective function optimiza-

tion has shown its significance in detecting communities in at-

tributed networks, thus attracting a great deal of attention from

numerous researchers [11–16]. Roughly speaking, existing

studies in this field can be categorized into two families based

on the strategies they employ in integrating node features and

network topology. The former kind of approaches address the

node features and network topology sequentially. For instance,
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SA-Cluster [11], AGGMMR [12], and kNN-enhance [13] first

embed the node features into the network topology adopting the

way like adding (weighting) nodes or edges, and then deal with

the objective optimization problem on the augmented network.

In contrast, the latter one handles the node features and net-

work topology simultaneously. For example, CESNA [14], CA-

MAS [15], and MOEA-SA [16] first define the objective func-

tions based on the node features and network topology respec-

tively, and then find a balance of optimization through methods

such as a trade-off parameter, multi-objective optimization, and

non-negative matrix factorization.

Although the above methods have been proven successful

in many cases, there remain some issues that deserves care-

ful consideration when performing community detection in at-

tributed networks. Firstly, most of the approaches focus on

lower-order details only, i.e., capturing the node features and

network topology from the node and edge views. Studies [17–

19] have demonstrated that higher-order details, i.e., motifs,

are conducive to uncovering the underlying mechanisms of net-

works. Though there are some attempts [20–22] which detect

communities based on motifs, they are often not applicable to

attributed networks. Secondly, it is a consensus [5, 6, 11–16]

that we wish the nodes belonging to the same community are

with dense edges and homogeneous features while the nodes

falling into different communities are not. However, it is unwise

to focus on nothing but the optimal value of the objective func-

tion to achieve the above goal, since it may lead the communi-

ties we find suffer from overload, unbalance [23] or free-rider
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effect [24]. Thirdly, scalability, ignored by many researchers, is

an important factor to consider. Optimization based on global

models [14, 25, 26] is computational expensive, especially un-

der the case with large-scale features and complex topology.

Precisely for this reason, many of the existing approaches are

impossible to be used for many tasks.

In this study, we still follow the principle of objective func-

tion optimization and try to improve the quality of the found

communities through addressing the above-mentioned issues

appropriately. Specifically, we first introduce a quality met-

ric to preserve the higher-order details of the node features and

network topology by making a trade-off between them in accor-

dance with the information from the network. Then, we define

two constraint items to factor into the lower-order details of the

node features and network topology for the purpose of allevi-

ating the unbalance and free-rider effect which may occur in

the found communities. Finally, an optimization scheme is de-

signed from a local perspective to make our method have high

efficiency. The specific contributions of our work are listed as

follows:

• We propose a parameter-free quality metric based on the

concept of closed topology and feature triangles, which

not only evaluates the quality of higher-order structures,

but can also be treated as an optimization objective to

achieve triangle-based community detection.

• We formulate the so-called two-level constraints from the

node and edge perspectives to enhance the capability of

the proposed metric as an optimization objective, which

further improves the topological tightness and feature ho-

mogeneity of each community found.

• We develop a local search framework based on optimizing

our objective function consisting of the proposed metric

and two-level constraints, which effectively and efficiently

reveals both non-overlapping and overlapping community

structures in attributed networks.

The remainder of this study is organized as follows. We re-

view the related work in Section 2, and Section 3 formulates

the problem of community detection in attributed networks and

illustrates the quality metric referenced in this study. A detailed

description of our methodology is presented in Section 4, and

Section 5 shows our experimental results. Finally, we conclude

this study and give guidelines for our future work in Section 6.

2. Related Work

Since node features and network topology are two different

kinds of information, community detection in attributed net-

works aims to make them complement each other to identify

high quality communities. Existing approaches that follow ob-

jective optimization can be divided into three groups. In this

section, we give a brief review of their recent advances and then

discuss how our study differs from theirs.

The first group is node-oriented approaches [11, 27–30],

which focus on formulating various distance or similarity func-

tions to find communities through attributed network cluster-

ing. For instance, Zhou et al. [11] developed a clustering frame-

work SA-Cluster, which uses a unified distance metric to mea-

sure both topological and feature similarity [31], and follows

the clustering process of K-medoids. Xu et al. [27] trans-

formed attributed network clustering into a standard probabilis-

tic inference problem based on a defined Bayesian probabilis-

tic model [32] and proposed a variational algorithm to solve it,

which avoids the artificial design of distance functions. Bu et

al. [28] formalized attributed network clustering as a dynamic

cluster formation game, and found a balanced solution by de-

signing the feasible action set, the utility function, and the self-

learning strategy for each node. Xu et al. [29] first built an

attributed network embedding framework and adopted a dis-

tributed algorithm to obtain the embedding vector of each node,

and then automatically determined the number of found com-

munities based on curvature and modularity. Finally, the com-

munity detection results are obtained by clustering the embed-

dings. Cao et al. [30] proposed an NMF-based model combin-

ing node features and network topology, which employs graph

regularization to penalize the dissimilarity of nodes and intro-

duces so-called K-near neighbor consistency to recover feature

information.

The second group is edge-oriented approaches [12, 33–36].

Since community detection considering network topology has

been widely studied [37, 38], an intuitive strategy is to en-

hance the network topology with node features, and then find

communities based on the enhanced topology. For instance,

Smith et al. [33] introduced node features into the description

of information flow, and then fine-tuned the Infomap algorithm

to find communities with large information flow among nodes

and similar node features. Malhotra and Chug [34] designed

four variants based on the label propagation algorithm that ex-

ploit node features and edge strength to improve the quality of

found communities and overcome the random community allo-

cation problem. Berahmand et al. [35] also considered the label

propagation algorithm. First, a weighted network combining

node features and network topology is generated. Then the in-

fluence of each node is calculated using Laplacian centrality,

thus enhancing the update path of community labels. Zhe et

al. [12] developed a three-stage framework AGGMMR consist-

ing of augmented graph construction and weight initialization,

weight learning with modularity maximization, and modularity

refinement to find communities in attributed networks. Xie et

al. [36] defined a scoring function to check the properties and

influence of communities and developed two community search

algorithms by maximizing it, and then designed a graph refining

algorithm and pruning rules to ensure search efficiency.

The third group is motif-oriented approaches [20–22, 39–

42]. Motifs lie between the microscopic proximity structure

and mesoscopic community structure and help find commu-

nities that maintain building blocks in the network. Recent

studies [20–22, 39, 40] usually only consider network topol-

ogy and rarely involve node features. For instance, Huang

et al. [21] studied the motif-based graph partitioning (MGP)
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problem. First, a sampling-based MGP (SMGP) framework

is designed, which employs an unbiased sampling mechanism

to estimate edge weights. Furthermore, an adaptive sampling

framework SMGP+ is proposed, which adaptively adjusts the

sampling distribution and iteratively partitions the input graph

based on up-to-date estimated edge weights. Sotiropoulos and

Tsourakakis [39] demonstrated the power edge triangle counts

for spectral sparsification and advanced the understanding of

triangle-based graph partitioning by empirically analyzing two

heuristics for community detection. Li et al. [40] proposed an

edge enhancement method for motif-aware community detec-

tion in purely topological networks. For attributed networks,

they [41] first formulated an AHMotif adjacency matrix to en-

code node features and network topology from a higher-order

perspective, and then utilized proximity-based methods to find

communities. Hu et al. [42] composed tensors to model higher-

order patterns in terms of node features and network topology,

and developed a novel algorithm to capture these patterns to

find communities.

Although community detection in attributed networks

through objective optimization has been extensively studied,

our study is significantly different from most of the existing

work in the following respects. First, we consider both node

features and network topology based on observations of the na-

ture of networks rather than pursuing an elaborate integration

strategy. Second, we exploit node features and network topol-

ogy from both higher- and lower-order perspectives, namely

closed topology and feature triangles, and two-level constraints.

Third, our proposed local search framework is suitable for dif-

ferent community detection tasks. To sum up, our study guaran-

tees the robustness of the process of community detection and

shows better effectiveness and efficiency.

3. Preliminaries

In this section, we first formulate the problem of commu-

nity detection in attributed networks and give the notations used

throughout this study. Then, we introduce the quality metric

weighted community clustering (WCC).

3.1. Problem Formulation

Consider representing an attributed network as an undirected

and unweighted graph G = (V , E, F), where V = {v1, v2, ...,

vn} is a set of n nodes, E ⊆ V × V is a set of m edges that

connect two nodes of V , and F = {f1, f2, ..., fn} is a set of feature

vectors associated with the nodes in V . For any node vi ∈ V , the

neighborhood of vi is the set N(vi) = {v j ∈ V | (vi, v j) ∈ E},

the degree of vi is defined as di = |N(vi)|, and fi ∈ R
1×p denotes

the feature vector of vi, where p is the dimension of the feature

vector. We also use the adjacency matrix A ∈ {0, 1}n×n and the

node feature matrix B = {Bi j} ∈ R
n×p to represent the topology

and the attributes of graph G, respectively. Thus, an edge (vi,

v j) ∈ E, Ai j = A ji = 1; otherwise, Ai j = A ji = 0. If the jth feature

is presented in fi of node vi, then Bi j ∈ (0, 1]; otherwise, Bi j =

0. Note that our discussion is not limited to binary features, but

also continuous-valued features.

Community detection in graph G aims to find a partition C =

{C1,C2, ...,CK} of its nodes such that V =
⋃K

k=1Ck and a certain

balance between the following two objectives is achieved:

Tightness, i.e., a group of nodes have a high density of edges

within them, and a lower density of edges between groups.

Homogeneity, i.e., a group of nodes have similar feature val-

ues within them, and may have diverse feature values between

groups.

3.2. Quality Metric: WCC

In general, the probability of closed topological triangles

among nodes in the same community is larger than the expected

among nodes in different communities. WCC [43, 44] is in-

spired by this to measure the quality of a partition of nodes.

Given the topology (V , E) of graph G, the degree of belonging

of a node vi to a community Ck, namely WCC(vi,Ck), is defined

as follows:























t(vi,Ck)

t(vi,V)
·

vt(vi,V)

|Ck − {vi}| + vt(vi,V −Ck)
, t(vi,V) , 0;

0, t(vi,V) = 0;

(1)

where t(vi,Ck) and t(vi,V) mean the number of closed topolog-

ical triangles composed of node vi and the nodes in Ck and V ,

respectively. vt(vi,V) and vt(vi,V − Ck) mean the number of

nodes in V and V −Ck that form at least one closed topological

triangle with node vi, respectively. |Ck − {vi}| means the size of

Ck except node vi.

Then, the WCC score of a community Ck is defined as fol-

lows:

WCC(Ck) =
1

|Ck |

∑

∀vi∈Ck

WCC(vi,Ck). (2)

Finally, for a partition C = {C1,C2, ...,CK}, the WCC score is

defined as follows:

WCC(C) =
1

|V |

K
∑

k=1

(|Ck | ·WCC(Ck)). (3)

It is obvious that this metric is suitable for both non-

overlapping and overlapping community detection, and a higher

score means better community structure found.

4. Methodology

In this section, we first extend the WCC metric by introduc-

ing the concept of closed feature triangles. Then, we describe

the proposed tightness and homogeneity constraints, which can

improve the capability of the extended WCC as an optimiza-

tion objective. Finally, we design a local search framework to

achieve both non-overlapping and overlapping community de-

tection by maximizing the objective function consisting of the

extended WCC and the above constraints.
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Table 1: Statistics of Edges in Closed Feature Triangles in Facebook and Sinanet Ground-truths

Network
Total number

of triangles1

Number of triangles with different number of edges

no edge one edge two edges three edges

Facebook 30, 738, 546 13, 748, 452 10, 110, 887 3, 803, 458 3, 075, 749

Sinanet 138, 407, 278 137, 037, 199 1, 307, 192 60, 282 2, 605
1 Those closed feature triangles are formed by nodes belonging to the same community.

Table 2: Number of Closed Topology and Feature Triangles in Facebook and

Sinanet Ground-truths

Network
Type of

triangle

Number of triangles

ground-truths1 all communities2

Facebook
Topology 1, 209, 670 1, 125, 137

Feature 1, 007, 762, 916 30, 738, 546

Sinanet
Topology 35, 882 5, 915

Feature 208, 039, 606 138, 407, 278
1 Those nodes that form the triangle are in the ground-truths.
2 Those nodes that form the triangle belong to the same community in the

ground-truths.

4.1. Extension of WCC

Triangles, as fundamental paths and motifs that recur in real-

world networks, could be used to define and identify communi-

ties and more general classes of nodes. WCC only focuses on

the properties of communities from the perspective of closed

topological triangles. In fact, there is a consensus from exten-

sive research [5, 6] that node feature information can be treated

as a supplement to explain the formation mechanism of com-

munities as it becomes available. Hence, we define the closed

feature triangle based on the intuition of WCC as follows:

Definition 1. A triangle is called the closed feature triangle

if there exists at least one feature dimension such that for any

three nodes vx, vy, vz ∈ V, the following condition is satisfied:

In term of binary features, we directly compare the feature

values, i.e., ∃l ∈ {1, 2, ..., p}, Bxl = Byl = Bzl = 1.

In term of continuous-valued features, we intuitively con-

sider the feature dimension with the largest value, i.e., ∃l ∈

{1, 2, ..., p}, max Bxl , 0 ∧max Byl , 0 ∧max Bzl , 0.

To better illustrate our definition of closed feature triangles,

we select two real-world networks, Facebook and Sinanet, for

empirical analysis. Their node feature types are binary and

continuous-valued, respectively. More detailed descriptive in-

formation about them will be introduced in the experimental

section.

As shown in Tables 1 and 2, in term of Facebook, the ratio of

the number of closed topological triangles within all communi-

ties in ground-truths to the total number of closed topological

triangles in ground-truths is as high as 93%, which means that

considering closed topological triangles is helpful to improve

the performance of community detection. As for closed fea-

ture triangles, the number is huge because the probability of

formation is much larger than that of closed topological trian-

gles. However, closed feature triangles are not all conducive to

community detection. We further examine the number of edges

in closed feature triangles within all communities. The results

show that most of closed feature triangles contain only zero or

one edge, and the number of closed feature triangles containing

two or three edges is roughly in the same order of magnitude as

the number of closed topological triangles. This inspires us to

construct closed feature triangles around adjacent nodes, which

also seems to be more in line with the fact that communities are

mesoscopic structure [45].

In term of Sinanet, its feature type is continuous, and we

count the number of closed feature triangles based on Defini-

tion 1. It is not difficult to find from Tables 1 and 2 that the

number of closed topological triangles within all communities

is relatively small, while the number of closed feature trian-

gles is still huge. This further reflects the significance of node

features as a supplement. Furthermore, the conclusions pre-

sented on the number of edges within closed feature triangles

are consistent with Facebook, which demonstrates that our def-

inition is appropriate. To sum up, we believe that the influence

of closed feature triangles formed by adjacent nodes is equal to

that of closed topological triangles, and rewrite WCC(vi,Ck) to

WCC∗(vi,Ck) as follows:























t f (vi,Ck)

t f (vi,NC)
·

vt f (vi,NC)

|Ck − {vi}| + vt f (vi,N(vi))
, t f (vi,NC) , 0;

0, t f (vi,NC) = 0;
(4)

where NC = N(vi) ∪ Ck represents a set consisting of the neigh-

bors of a given node and nodes within the candidate community.

t f (·, ·) represents the number of closed topological and feature

triangles, and vt f (·, ·) represents the number of nodes forming

at least one closed topological or feature triangle. The rest have

been explained before and will not be repeated here.

4.2. Two-Level Constraints

Intuitively, if only the network topology is considered, a good

community should ensure that internal links are as dense as pos-

sible, or form more closed triangles. Extensive research [46, 47]

proposes quality metrics such as modularity Q [48] and nor-

malized cut [49] based on such a principle, and achieves com-

munity detection by maximizing or minimizing the value of

the given quality metric. However, it is not true that the opti-

mization of quality metrics always performs satisfactorily, e.g.,

the resolution limit of modularity [50], the unbalanced scale of

communities [23], the free-rider effect [24]. Although the value

of the corresponding quality metric is optimal, the natural com-

munity structure of a network is not clearly revealed.

In addition, in network representation, node features are

the most important dimension besides the topology structure.

Those approaches [5, 6] that utilize node features to detect

communities usually formulate distance or similarity functions,
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or consider feature embeddings to evaluate the differences be-

tween node features. As a result, nodes in the same community

share more features. However, each node has multiple features,

not all of which are helpful in determining the community a

node belongs to. In some cases, node features even provide

contradictory information with topological structure [6]. More-

over, existing evaluation methods are generally difficult to apply

to different feature types, and too many features also affect the

efficiency of evaluation.

Hence, to identify more natural communities from an at-

tributed network, we cannot blindly pursue the best value for

a given quality metric, but at the same time, we should pre-

vent communities from being over-scaled and over-featured.

We now describe the proposed two-level constraints from the

perspective of tightness and homogeneity, which can alleviate

these restrictions mentioned above when WCC∗ is used as an

optimization objective.

The tightness constraint emphasizes the topology of each

community by focusing on the connections between nodes. In

general, nodes with higher degrees can be regarded as leaders

with greater influence, thus identifying their communities, and

the belongings of the remaining nodes will be continuously de-

termined [45]. However, once the leaders’ communities are bi-

ased, the impact on the final outcome is severe. We intuitively

consider the number of edges between nodes. It is worth not-

ing that the more neighbor nodes of a node belong to the same

community, the more likely the node itself belongs to that com-

munity. Therefore, we formulate the first-level constraint item

as follows:

Definition 2. The tightness constraint of a node vi and a com-

munity Ck is defined as follows:

T (vi,Ck) =

∑

v j∈Ck
Ein

vi,v j

di · |Ck|
. (5)

When there is an edge between node vi and node v j ∈ Ck,

Ein
vi ,v j
= 1, otherwise 0. In other words, the more edges be-

tween node vi and nodes in community Ck, the larger the value

of
∑

v j∈Ck
Ein

vi,v j
. Thus, by maximizing T (vi,Ck), the joined

node will improve the topological properties of the community.

Meanwhile, the degree di of node vi is introduced for normaliza-

tion, and the scale |Ck | of community Ck is considered to prevent

oversize, so that the detected communities are more compact.

The homogeneity constraint grasps the feature distribution

of a community by highlighting the similarity between node

features. Element-by-element matching [46] is the simplest

method, such as jaccard and cosine similarity, the higher the

matching degree, the higher the similarity. Regularization [51]

is also a widely adopted method, such as L1 and L2 norm,

which can mitigate the negative impacts of outliers and miss-

ing data. Since we consider both binary and continuous-valued

features, the applicability of a given method is our primary con-

cern. Therefore, we formulate the second-level constraint item

as follows:

Definition 3. The homogeneity constraint of a node vi and a

community Ck is defined as follows:

H(vi,Ck) =

∑

v j∈Ck
|fi − f j|

p · |Ck |
. (6)

When the features of two nodes are highly consistent, the

two nodes are strongly similar, and the corresponding value of

|fi−f j|will be small regardless of the feature type. Thus, by min-

imizing H(vi,Ck), finding nodes that agree on more features,

the feature distribution of each community is more explicit. As

for feature dimension p and community scale |Ck|, their effects

are equivalent to di and |Ck | in the tightness constraint, so the

detected communities are more appropriate.

Discussion: In general, a well-separated community con-

tains about 100 nodes, and meaningful larger communities

can be generated by merging these relatively small commu-

nities [6, 45]. However, unrestricted merging will generate

oversized communities, which will further lead to unbalanced

communities and free-rider effect. Our quality metric considers

higher-order details from the perspective of closed topological

and feature triangles, which helps to extract tight core com-

munities, but nodes and edges that are difficult to form closed

triangles are excluded from the communities. Our two-level

constraints consider lower-order details from the perspective of

edge tightness and node feature homogeneity, which guide the

growth of core communities as nodes and edges are selectively

added. As a consequence, communities remain self-contained

unless highly correlated. Therefore, the merging of commu-

nities will be regulated and the scale of communities will be

widely distributed.

4.3. Local Search Framework

Combining the proposed quality metric with two-level con-

straints, denoted as U, the optimization objective function we

maximize in this study is as follows:

U =

K
∑

k=1

∑

∀vi∈Ck

[WCC∗(vi,Ck) + T (vi,Ck) − H(vi,Ck)]. (7)

When WCC∗(vi,Ck) , 0, U is equivalent to the revision of

WCC∗(C), which enhances its applicability in different tasks.

Otherwise, the optimization objective is reduced to two-level

constraints, and the performance of community detection can

still be used as a benchmark.

Greedy objective function maximization reduces the compu-

tational cost significantly, but the quality of the results highly

depends on the order of processing [12]. To prevent this is-

sue, we design a local search framework based on maximizing

the utility function of each node extracted from the optimiza-

tion objective U. Specifically, given a node vi, its utility in the

community Ck is defined as follows:

uik = WCC∗(vi,Ck) + T (vi,Ck) − H(vi,Ck). (8)

Based on Equation (8), the utility gain (∆uik→ik′) of node vi

moving from the current Ck to a new community Ck′ can be
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measured. Thus, our search process for both non-overlapping

and overlapping communities is summarized as follows:

• Step 1: (Cumulative Node Utility Updating). Let’s de-

note u
t
ik as the cumulative utility of node vi in round t,

which also reflects the degree to which node vi belongs

to community Ck at this time. Given any community Ck′

that includes at least one neighbor of vi, then in round t+1,

the cumulative utility of vi joining the community (ut+1
ik′ ) is

updated as follows:

u
t+1
ik′ = α · ∆uik→ik′ + (1 − α) · u

t
ik. (9)

Note that the value of α ∈ [0, 1] indicates a trade-off be-

tween historical utility and current utility gain. We empir-

ically specify it as 0.2.

• Step 2: (Candidate Community Labels Filtering).

Node vi filters its candidate community labels set (CLt+1
i

)

for round t + 1 based on the cumulative utility collected

from Step 1:

CLt+1
i = {k′ | u

t+1
ik′ ≥ u

t
ik}. (10)

Note that the community for vi in round t + 1 is either its

current community Ck or the community Ck′ in CLt+1
i

.

• Step 3: (Appropriate Community Labels Assigning).

1) Sort the community labels in CLt+1
i

based on succes-

sive decreasing of u
t+1
ik′ , and remove the last 1/|CLt+1

i
| [52]

community labels; 2) The remaining community labels in

CLt+1
i

are regarded as overlapping communities to which

vi belongs in round t + 1; 3) Among them, the commu-

nity label with the greatest utility is regarded as the non-

overlapping community to which vi belongs in round t+1.

Algorithm 1 shows the detailed procedures of the above pro-

cess step by step. Our framework only takes G as input. The

initial configuration (line 1) is to assign each node a unique

community label. After that, the program loops in four steps.

Specifically, in lines 3–7, each node updates the cumulative

utility, filters candidate community labels, and determines new

communities based on different types of community detection;

in lines 8–10, each node selects the community label with the

greatest cumulative utility for the next round of search. Finally,

if no nodes have changed community affiliation or satisfied the

convergence criterion (t > 20), the above procedures will ter-

minate and output non-overlapping and overlapping partitions.

5. Experiments

In this section, we evaluate the overall performance of

our proposed framework, LSF, on seven real-world network

datasets. All experiments were performed on a PC equipped

with an Intel quad-core i7 processor (2.60 GHz) and 16GB

memory. We conduct experiments as follows:

(1) By comparing the overall performance of LSF and twelve

baseline approaches, we demonstrate the effectiveness of the

proposed framework. (Section 5.2)

Algorithm 1 Local Search Framework (LSF)

Input: An attributed network G = (V, E, F);

Output: Non-overlapping (overlapping) partition C;

1: t = 0, initialize each node belongs to a community:

∀vi ∈ V , k←i, CL0
i
←{k}, u

0
ik←0

k′←any community Ck′ where vi
′s neighbors belong

2: while C changed in the previous round or t ≤ 20 do

3: for each node vi ∈ V do

4: Cumulative Node Utility Updating

5: Candidate Community Labels Filtering

6: Appropriate Community Labels Assigning

7: end for

8: for each node vi ∈ V do

9: k←community with the greatest cumulative utility

10: end for

11: t←t + 1

12: end while

13: return C

(2) By investigating the running time of LSF and twelve

baseline approaches, we verify the scalability and efficiency of

the proposed framework. (Section 5.3)

(3) By revealing the convergence of LSF, the effect of two-

level constraints, and the topological density and feature en-

tropy of each found community, we make an in-depth analysis

of the proposed framework. (Section 5.4)

5.1. Experimental setup

Experimental data. Seven real-world network datasets are

used in our experiments, and their ground-truth communities

are all known. Facebook, Twitter, and Gplus are friendship

networks derived from online social networking sites, and the

profile of each node is described by binary features. Youtube

and Livejournal are friendship networks obtained from a video

sharing site and a free blogging site, and nodes have no feature

details. These five networks are available from the Stanford

Network Analysis Platform (SNAP1). Sinanet is a microblog

user relationship network extracted from the sina-microblog

site. The topic distribution of each user in the forums gener-

ated by the LDA topic model is treated as a continuous-valued

feature for each node. Diabetes is a citation network formed

by citation relationships for scientific publications on diabetes

from the PubMed database. The continuous-valued feature for

each node corresponds to the TF/IDF weighted word represen-

tation of each publication. These two networks are provided by

GitHub2 and LINQS3, respectively.

We provide some basic statistics for these datasets in Table 3,

where |V |, |E|, |F |, 〈d〉 = 2|E|/|V |, #Comm., and Overlaps =
∑K∗

k∗=1 |C
∗
k∗
|/|V | indicate the number of nodes, edges, and fea-

tures, the average degree of the network, the number of ground-

truth communities, and the overlap rate of the ground-truth par-

1http://snap.stanford.edu/data/index.html.
2https://github.com/smileyan448/Sinanet.
3https://linqs.soe.ucsc.edu/data.
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Table 3: Network Datasets used in Experiments

Network |V | |E| |F | 〈d〉 #Comm. Overlaps

Sinanet 3, 490 28, 657 10 16.42 10 1.00

Diabetes 19, 717 44, 338 500 4.50 3 1.00

Facebook 4, 039 88, 234 157 43.69 146 1.46

Twitter 81, 306 1, 342, 296 33, 208 33.02 3, 170 2.22

Gplus 102, 100 12, 113, 501 805 237.30 438 2.69

Youtube 1, 134, 890 2, 987, 624 - 5.27 8, 385 2.40

Livejournal 3, 997, 962 34, 681, 189 - 17.35 287, 512 5.88

tition, respectively, where K∗ = #Comm. and C∗
k∗

is the k∗th

community in the ground-truth partition.

Baseline approaches. Twelve state-of-the-art community de-

tection approaches are selected as baselines for performance

comparison, and we divide them into three groups. The

first group of baselines consider topology and binary features:

CESNA [14] finds overlapping communities based on a proba-

bilistic generative model combining network topology and node

features. EDCAR [25] uses the greedy stochastic adaptive

search principle to approximate the optimal clustering solution

to detect overlapping clusters with high topology density and

high feature similarity. CAMAS [15] is based on the estab-

lished cluster-aware multi-agent system to achieve overlapping

clustering in attributed networks.

The second group of baselines consider topology and

continuous-valued features: I-Louvain [26] is implemented

following the exploration principle of Louvain and optimizes

the modularity and the proposed inertia based modularity.

NAGC [53] performs non-linear attributed network clustering

via symmetric non-negative matrix factorization with positive

unlabeled learning. kNN-enhance [13] adds the k nearest neigh-

bor graph of node features to alleviate the sparsity and noise ef-

fects of the original network, thus strengthening the found com-

munity structure.

As for the remaining baselines, they only focus on topology:

SCD [43] divides the network into non-overlapping groups

by maximizing the weighted community clustering metric.

InfoMap [54] reveals that non-overlapping communities aim

to optimize a quality metric expressing the code length of

an infinitely long random walk taking place on the network.

SCoDA [55] randomly and uniformly picks an edge in the net-

work that is more likely to connect two nodes in the same

community than two nodes in different communities, and ex-

ploits this idea to build non-overlapping communities by lo-

cal changes at each edge arrival. FOCS [56] explores locally

well-connected overlapping communities by computing com-

munity connectedness and neighborhood connectedness scores

for each node. BigClam [57] proposes a conceptual model

of network community structure, cluster affiliation model, and

then employs non-negative matrix factorization to find overlap-

ping communities based on this. LPANNI [52] detects overlap-

ping communities by adopting fixed label propagation sequence

based on the ascending order of node importance and label up-

date strategy based on neighbor node influence and historical

label preferred strategy.

Parameter settings. All baseline packages are implemented in

C++, Java, or Python and can be found on the websites pro-

vided by the papers. Since CESNA, NAGC, kNN-enhance, and

BigClam require a user-given parameter as the number of com-

munities they found, we set this parameter to #Comm. for com-

parison. All other parameters of the selected baselines use their

default settings.

Evaluation measures. We do not make any special distinc-

tion between non-overlapping and overlapping community de-

tection. Four evaluation measures are chosen to assess the qual-

ity of detected communities: Average F1 Score (AvgF1) [57],

Modularity Q [48], Density [47], and Entropy [13]. Given two

partitions C = {C1, ...,CK} and C∗ = {C∗
1
, ...,C∗

K∗
}, AvgF1 is

defined as follows:

AvgF1 =
1

2K

∑

Ck∈C

max
C∗

k∗
∈C∗

F1(Ck,C
∗
k∗ ) +

1

2K∗

∑

C∗
k∗
∈C∗

max
Ck∈C

F1(C∗k∗ ,Ck),

F1(Ck,C
∗
k∗ ) = 2·

Precision(Ck,C
∗
k∗

)·Recall(Ck,C
∗
k∗

)

Precision(Ck,C
∗
k∗

) + Recall(Ck,C
∗
k∗

)
,

Precision(Ck,C
∗
k∗) =

|Ck∩C∗
k∗
|

|Ck |
, Recall(Ck,C

∗
k∗ ) =

|Ck∩C∗
k∗
|

|C∗
k∗
|
.

Given a network with n nodes and m edges, and one partition

C = {C1, ...,CK}, modularity and density are defined as follows:

Modularity Q =
1

2m

n
∑

i=1

n
∑

j=1, j,i

(Ai j −
did j

2m
)

K
∑

k=1

cikc jk,

Density (Ck) =
2Ein

k

|Ck | · (|Ck | − 1)
,

where cik (c jk) represents the degree of belonging of node vi (v j)

to the kth community, and Ein
k

represents the number of internal

edges in the kth community.

Given a network with n nodes and p features per node, and

one partition C = {C1, ...,CK}, entropy is defined as follows:

Entropy (Ck) = −
|Ck|

n

p
∑

l=1

Plk log(Plk),

where Plk is the fraction of nodes with lth feature in the kth

community.

It is expected that better communities (high tightness and ho-

mogeneity) of a given network data will have larger values of

AvgF1, modularity Q, density, and smaller value of entropy.
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Table 4: Effectiveness Evaluation of LSF and Baselines ignoring Node Features (AvgF1)

Network SCD InfoMap SCoDA FOCS BigClam LPANNI LSF

Sinanet 0.096 0.167 0.025 0.114 0.286 0.174 0.308

Diabetes 0.004 0.325 0.003 0.098 0.002 0.097 0.397

Facebook 0.197 0.405 0.223 0.328 0.422 0.368 0.452

Twitter 0.167 0.151 0.178 0.078 0.101 0.133 0.299

Gplus 0.039 0.106 0.049 0.162 0.093 NaN 0.261

Youtube 0.177 0.084 0.161 0.148 0.038 0.141 0.194

Livejournal 0.139 0.059 0.169 0.145 0.103 NaN 0.165

Table 5: Efficiency Evaluation of LSF and Baselines ignoring Node Features (in seconds)

Network SCD InfoMap SCoDA FOCS BigClam LPANNI LSF

Sinanet 0.18 0.85 0.40 1.02 4.25 79.56 0.65

Diabetes 0.33 1.06 0.78 0.99 0.26 14.99 1.09

Facebook 0.53 1.17 0.96 1.21 19.50 510.40 1.16

Twitter 4.69 19.51 1.44 4.26 467.36 24, 930.29 50.24

Gplus 67.53 95.86 12.35 959.38 1, 804.60 NaN 494.67

Youtube 17.49 146.45 5.57 39.70 22, 680.47 80, 655.41 100.73

Livejournal 194.18 1, 553.29 30.40 232.65 37, 426.82 NaN 2, 057.95

Figure 1: Effectiveness Evaluation of LSF and Baselines using Node Features

5.2. Effectiveness Evaluation

To better evaluate the effectiveness of our framework, we

comprehensively compare the quality of non-overlapping and

overlapping communities found by LSF and twelve baselines

on seven experimental datasets. Figure 1 and Table 4 present

the AvgF1 scores for all tested approaches, with the best sce-

narios in bold. The NaNs in Table 4 are due to the fact that the

node’s feature type is not suitable for the baseline tool, or some

baseline tools run out of memory or too expensive to run as the

scale of the network increases.

We have the following observations and conclusions from

these results. In terms of approaches that consider continuous-

valued features, kNN-enhance performs the best, which indi-

cates that our processing of continuous-valued features still

needs to be further improved. However, the performance of our

framework is also acceptable as it outperforms I-Louvain and

NAGC. In terms of approaches that consider binary features,

although CESNA and CAMAS are competitive, our frame-

Figure 2: Efficiency Evaluation of LSF and Baselines using Node Features

work performs significantly better than all of them, which also

demonstrates that our processing of binary features is appropri-

ate. In terms of approaches that only focus on topology, our

framework maintains the best performance, and only SCoDA

is slightly better than ours on Livejournal. This declares that

the integration of network topology and node features is indeed

helpful to improve the quality of the found communities.

It is not difficult to find that the superiority of our framework

is obvious. Specifically, it can handle different types of node

features and exhibits satisfactory overall performance in differ-

ent community detection tasks.

5.3. Efficiency Evaluation

To better evaluate the efficiency and scalability of our frame-

work, we present the running time of LSF and twelve baselines

on seven experimental datasets in Figure 2 and Table 5, with the

best scenarios also in bold. Like Table 4, the NaNs in Table 5

are also due to the fact that the node’s feature type is not suitable

8



Figure 3: Convergence Verification of LSF based on the Number of Nodes

Changed and Modularity Q

for the baseline tool, or some baseline tools run out of memory

or too expensive to run as the scale of the network increases.

We have the following findings and determinations from

these results. In terms of approaches that consider continuous-

valued features, the superiority of our framework is obvious.

Although the performance of kNN-enhance is better than ours,

its time cost is too high to be applied to larger-scale networks.

In terms of approaches that consider binary features, CAMAS

is the most efficient, followed by our framework, and both con-

sistently outperform CESNA and EDCAR. The efficiency dif-

ference between ours and CAMAS tends to weaken as the scale

of the network increases. In terms of approaches that only focus

on topology, SCoDA is the best, followed by SCD and FOCS,

then InfoMap and ours, and finally BigClam and LPANNI.

Since our framework considers both topology and node fea-

tures, our efficiency is inferior to some baselines, but the overall

performance is still acceptable.

It is not difficult to find that approaches that combine topol-

ogy and node features are generally less efficient than ap-

proaches that only focus on topology. However, our framework

maintains satisfactory efficiency and scalability, on the same or-

der of magnitude as CAMAS and InfoMap. While still not as

good as some baselines, we can identify higher quality com-

munities, which is enough to make up the slight inferiority on

efficiency.

5.4. Inside Analysis

To better interpret the good performance of our framework,

we here take a further look inside the framework. Specifically,

we analyze the convergence of LSF, the effect of the proposed

constraints, and the quality of each community found.

Verification of convergence. We select four datasets Twitter,

Gplus, Youtube, and Livejournal as representatives, and exam-

ine the number of nodes whose community labels change and

the value of modularity Q in each round of our framework runs.

The results are shown in Figure 3.

We can find: In terms of the number of nodes whose commu-

nity labels change, Twitter and Gplus have similar trends, with

the number of nodes decreasing by an order of magnitude in al-

most every round, while Youtube and Livejournal have similar

trends, generally two or three rounds will also decrease by an

Figure 4: Evaluation of the Effects of Two-level Constraints

order of magnitude. In terms of the value of modularity Q, the

trends are very similar regardless of the datasets. The Q value

increases continuously over several rounds and then tends to be

smooth. In summary, our framework is robust and converges

fast, and exhibits great potential on large-scale networks. Con-

sidering the fact that Twitter and Gplus are dense, and Youtube

and Livejournal are sparse, the results of the convergence ver-

ification reveal that our framework seems to be more suitable

for dense networks.

Effects of two-level constraints. We select four datasets Face-

book, Twitter, Sinanet, and Diabetes as representatives, and

take an ablation study to investigate the effects of the proposed

constraints. Specifically, we consider four cases: without the

tightness and homogeneity constraints, with the tightness or ho-

mogeneity constraint, and with the tightness and homogeneity

constraints. The results are shown in Figure 4.

We can find: When the network is dense (Facebook and Twit-

ter), the effect of the tightness constraint is positive and the

performance of our framework improves. The effect of the ho-

mogeneity constraint is unstable, and a few features further en-

hance the degree of improvement, but as the number of features

increases, the effect of the homogeneity constraint decreases or

even becomes negative. When the network is sparse (Sinanet

and Diabetes), the effect of the tightness constraint is negative

and the performance of our framework generally declines. The

effect of the homogeneity constraint is positive, but also seems

to be controlled as the number of features increases. In sum-

mary, it is indeed useful with two-level constraints than with-

out. However, if only one constraint is considered, due to the

heterogeneity of network topology and node features, the over-

all performance improvement depends on the trade-off between

the density of the topology and the number of node features.

Analysis of found communities. We select two datasets Twit-

ter and Diabetes as representatives, and further explore the

topological density and feature entropy scores for each commu-

nity found with and without two-level constraints. The results

are shown in Figure 5.

We can find: In terms of tightness, larger communities are

more likely to contain more edges and have a larger density

score. Twitter is dense, and the tightness constraint makes it

easier for closely connected nodes to be in the same commu-
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Figure 5: Evaluation of Topological Density and Feature Entropy for Each

Community Found

nity, thus improving the quality of each community. In contrast,

Diabetes is sparse, and the tightness constraint forces weakly

connected nodes to the same community, and the overall perfor-

mance is compromised. In terms of homogeneity, smaller com-

munities tend to exhibit more uniform node features and have

a smaller entropy score. Twitter has too many features, and

the homogeneity constraint considers the differences in each

dimension of node features, thus reducing the quality as the

community scale becomes smaller. On the contrary, Diabetes

has a small number of features and is the relatively smooth

continuous-valued type. The homogeneity constraint guaran-

tees the feature distribution of each community, and the over-

all performance is improved. In summary, by balancing the

proportions of topology tightness and feature homogeneity, our

searched communities are more compact and reasonable, re-

sulting in better performance.

6. Conclusions and Future Work

In this study, we first introduce a novel quality metric based

on the concepts of closed topology and feature triangles, which

not only evaluates the quality of the found communities, but can

also be treated as an optimization objective function. We then

formulate two constraint items from the perspective of node

features and network topology, which alleviate unbalanced

communities and free-rider effect by regulating the topological

tightness and feature homogeneity of each community found.

Finally, combining the proposed metric and constraint items as

the objective function, we develop a local search framework

by optimizing it to achieve community detection in attributed

networks. Experimental results on seven real-world networks

show that the overall performance of our framework consis-

tently outperforms all selected state-of-the-art approaches. In

the future, we will focus on the dynamic evolution of the com-

munity structure and investigate how to design parallel schemes

to make our framework more efficient.
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