
Towards Efficient Record and Replay: A Case Study in WeChat
Sidong Feng

Monash University
Melbourne, Australia

sidong.feng@monash.edu

Haochuan Lu
Tencent Inc.

Guangzhou, China
hudsonhclu@tencent.com

Ting Xiong
Tencent Inc.

Guangzhou, China
candyxiong@tencent.com

Yuetang Deng
Tencent Inc.

Guangzhou, China
yuetangdeng@tencent.com

Chunyang Chen
Monash University
Melbourne, Australia

chunyang.chen@monash.edu

ABSTRACT
WeChat, awidely-usedmessenger app boasting over 1 billionmonthly
active users, requires effective app quality assurance for its complex
features. Record-and-replay tools are crucial in achieving this goal.
Despite the extensive development of these tools, the impact of
waiting time between replay events has been largely overlooked. On
one hand, a long waiting time for executing replay events on fully-
rendered GUIs slows down the process. On the other hand, a short
waiting time can lead to events executing on partially-rendered
GUIs, negatively affecting replay effectiveness. An optimal waiting
time should strike a balance between effectiveness and efficiency.
We introduce WeReplay, a lightweight image-based approach that
dynamically adjusts inter-event time based on the GUI rendering
state. Given the real-time streaming on the GUI, WeReplay employs
a deep learning model to infer the rendering state and synchronize
with the replaying tool, scheduling the next event when the GUI is
fully rendered. Our evaluation shows that our model achieves 92.1%
precision and 93.3% recall in discerning GUI rendering states in the
WeChat app. Through assessing the performance in replaying 23
common WeChat usage scenarios, WeReplay successfully replays
all scenarios on the same and different devices more efficiently than
the state-of-the-practice baselines.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-
ging.

KEYWORDS
Efficient record and replay, GUI rendering, Machine Learning

ACM Reference Format:
Sidong Feng, Haochuan Lu, Ting Xiong, Yuetang Deng, and Chunyang Chen.
2023. Towards Efficient Record and Replay: A Case Study in WeChat. In
Proceedings of the 31st ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE ’23),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0327-0/23/12. . . $15.00
https://doi.org/10.1145/3611643.3613880

December 3–9, 2023, San Francisco, CA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3611643.3613880

1 INTRODUCTION
WeChat1, with over 1.67 billion monthly active users, is among the
most popular messenger apps in the world, particularly for those
of Chinese origin [10]. In fact, WeChat has now evolved beyond
a simple messaging app, now offering features such as banking,
shopping, gaming, news browsing, and serving as a platform for
third-party app development [31, 64]. As WeChat rapidly expands
its features, effective app quality assurance becomes increasingly
crucial and challenging. Record-and-replay tools have long been a
vital approach, enabling developers to record app usage scenarios
and automate their replay on various devices. Numerous record-
and-replay tools have been developed by both practitioners and
researchers to address this need [2, 7–9, 11, 32, 34, 38, 46, 50, 55, 72].

While these tools perform reliably in many apps, there remains
a significant gap in industrial capability. One often overlooked
aspect is the waiting time between replaying events. Typically,
record-and-replay tools record the time delay between events and
automatically replay them on devices with the same elapsed time.
However, our study of nine WeChat usage scenarios reveals that a
fixed time elapse may not be practical due to twomain reasons. First,
GUI loading for replaying may take longer due to Internet-related
factors, which are common in the WeChat app such as logging
in, sending messages, etc. Second, replaying on older devices may
require more time due to decreased rendering efficiency and lower
processing capability. These issues of executing replay events on
incompletely rendered GUIs impede successful replay on the same
device (with a 45% failure rate) and different devices (with a 63%
failure rate).

To ensure effective replaying, WeChat developers usually manu-
ally set event time delays to a considerably longer waiting time —
about 10 times longer than the recorded duration. However, this
manual setting process can be time-consuming and error-prone
for developers, taking an average of 10 minutes to set up 5 events,
according to the WeChat developers. Moreover, replay becomes
inefficient with idle waiting on fully rendered GUIs, slowing down
the testing process. Due to budget constraints and market pressures
in the industry, development teams often face limited testing time.
Consequently, the more efficient the replay tools, the more devices

1https://www.wechat.com/

ar
X

iv
:2

30
8.

06
65

7v
2

 [
cs

.S
E

]
 2

5
A

ug
 2

02
3

https://doi.org/10.1145/3611643.3613880
https://doi.org/10.1145/3611643.3613880
https://www.wechat.com/

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Feng et al.

Figure 1: Example of record and replay events. Green bars represent event triggers, while red bars represent the inter-event
waiting time. A fixed waiting time captured during the recording may not be sufficient for replaying, as dynamic factors such
as slow internet or delayed rendering can affect the process.

can be tested, increasing the likelihood of discovering bugs and
ultimately improving the quality of the app release.

Towards that target, we draw inspiration frompreviouswork [29]
to accelerate automated app testing with GUI rendering inference.
While the app under testing is mostly ideal, the replay tool has to
wait until the GUI finishes rendering before moving to the next
event. With this in mind, we introduce WeReplay, a lightweight
record-and-replay tool designed to dynamically schedule replay
events by distinguishing between fully rendered and partially ren-
dered GUIs. To record the events to WeChat, we leverage the app
inspector tool WEditor to retrieve the widget information and parse
it to the testing script. To replay the events in the testing script
dynamically, we adopt a deep learning method to model the vi-
sual information from the GUI screenshot for inferring the GUI
state. Specifically, we first develop a tailored method to collect a
large-scale binary GUI dataset fromWeChat, comprising 4,485 fully
rendered and 6,171 partially rendered GUIs. Next, we adopt a small
but efficient Convolutional Neural Network (CNN) based approach
to discern the GUI rendering state. To implement our approach,
ensuring events are sent only when the GUI is fully rendered, we
establish a synchronization framework that streams real-time GUI
screenshots and schedules replay events based on GUI rendering
inference. Notably, one advantage of our approach is its purely
image-based nature, making it easily deployable in other industrial
apps.

To evaluate the accuracy of our approach, we carry out an exper-
iment on the GUI screenshots from the WeChat app. Our approach
outperforms nine state-of-the-art baselines and two ablation base-
lines in predicting GUI rendering states, achieving 92.1% precision,
93.3% recall, and 92.7% F1-score, respectively. We also carry out an
experiment to demonstrate that our tool can accelerate the replay-
ing process without sacrificing effectiveness by replaying 23 usage
scenarios from the WeChat app. Given a recorded usage scenario

from one device, our tool can accurately replay it on both the same
device and different devices in less time, compared to the baselines
and industrial solutions.

The contributions of this paper are as follows:
• We propose WeReplay, a practical record-and-replay tool
designed to adaptively adjust the waiting time between re-
playing events, for speeding up the replaying process.
• We conduct a motivational empirical study to understand
the prevalence of waiting time issues in record-and-replay
for WeChat, which serves as the foundation for our research.
• We perform comprehensive experiments, including an eval-
uation of WeReplay’s performance and its industrial record-
and-replay practice in WeChat, to demonstrate the accuracy,
efficiency, and effectiveness of our tool.

2 MOTIVATIONAL STUDY
Many record-and-replay tools have been developed by both practi-
tioners and researchers to assist developers in easily recording and
replaying complex usage scenarios of apps. To assess the practical-
ity of these record-and-replay tools in industrial apps, we conducted
a pilot study by applying state-of-the-practice tools to the most
popular social media app, WeChat.

2.1 Experimental Setup
We collected an experimental dataset of nine common usage scenar-
ios from WeChat to evaluate whether the record-and-replay tools
can accurately record and replay such scenarios. These scenarios
were identified by WeChat developers and through our hands-on
experiences using the app, with an average of 6.4 events per sce-
nario. An example of a common usage scenario, “opening setting
page in WeChat” is illustrated in Figure 1, including inputting a
username and password to log in to the app and accessing settings
on the personal page.

Towards Efficient Record and Replay: A Case Study in WeChat ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 1: Overview of devices.

Device Resolution Size (inch) OS Version CPU Processor

Xiaomi Mix2S 1080x2160 5.99 9.0 Snapdragon 845
Huawei Nova2S 1080x1920 5.50 8.0 Kirin 659
Vivo Y3 720x1544 6.35 9.0 Helio P35
Google Pixel4a 1080x2340 5.81 11.0 Snapdragon 730G

To record and replay these common usage scenarios, we chose
the state-of-the-practice tool SARA [33] for two reasons. First,
SARA is widget-sensitive, meaning that the recorded events are
based on the attributes of the widget (e.g., resource id). This ap-
proach is more robust for replaying on multiple devices with differ-
ent resolutions and GUIs compared to recording coordinates [70].
Second, SARA’s recording is timing-sensitive, as it automatically
captures the time between events and utilizes this information dur-
ing the replay process. We did not adopt other publicly available
record-and-replay tools (e.g., Robotium [72], Culebra [2], etc.) due
to their impracticality in industrial apps or the requirement for
costly investments [44].

2.2 Record and Replay on Same Device
To understand the practice of record-and-replay in WeChat, we
initially conducted a small pilot study focused on replaying usage
scenarios recorded by SARA on the same device. We utilized a
Xiaomi Mix2S running Android 9.0 as the testing device, which is
widely used in previous studies [71]. In total, we obtained 9 usage
scenarios replays captured using screencast. Two authors manually
examined the states in the video replays to evaluate the correctness
of each replay.

55% of the scenarios were successfully replayed. We manually
examined the failure cases and identified one common cause. The
waiting time between events is dynamically affected by internet
bandwidth. For example, consider a scenario where an app is logged
and recorded in an environment with excellent internet connectiv-
ity, resulting in a shorter waiting time (i.e., 10 seconds in Figure 1).
However, when replaying the scenario in an environment with poor
internet connectivity, the replay fails due to the increased waiting
time required to trigger the next event (i.e., 30 seconds in Figure 1).
WeChat developers further confirmed this phenomenon in record-
ing and replaying industrial apps like WeChat, which frequently
rely on internet connectivity.

2.3 Record and Replay on Different Devices
To evaluate the reproducibility of scenarios across different devices,
we first recorded the scenarios using a Xiaomi Mix2S. We then
replayed the events on three devices to ensure usability for a wide
variety of users in practice. Table 1 provides details of these devices,
covering different resolutions, sizes, operating system versions, and
CPU processors. These devices are widely used in previous studies
for record-and-replay experiments [57, 71]. In total, we obtained
27 replays and manually assessed the reproducibility of each one.

We discovered that 11%, 33%, and 66% of the scenarios were
successfully replayed for the Huawei Nova2S, Vivo Y3, and Google
Pixel4a, respectively. The former two devices replayed fewer sce-
narios than the latter, particularly the Huawei Nova2S, which could

Table 2: A study of waiting time in replaying.

Method 1x wait 2x wait 5x wait 10x wait

Reproducibility 11% 33% 77% 100%
Time 23.2s 49.4s 112.1s 217.5s

only replay 11% of the scenarios. The main reason is that a fixed
amount of waiting time between events recorded on a more ad-
vanced device may not be suitable for replaying on older devices.
This can be attributed to factors such as decreased rendering effi-
ciency and lower processing capability often associated with older
devices. WeChat developers further confirmed that unexpected de-
vice lagging can significantly impact the performance of scenario
replays.

2.4 Industrial Solution & Motivation
WeChat developers confirm the significance of the waiting time
settings for recording and replaying on both the same and different
devices. They also emphasize that setting arbitrary time delays
between events is undesirable, as they are likely to fail due to insuf-
ficient loading time between events. To ensure that the recorded
scenario is 100% replayable on any device, WeChat developers need
to manually set the time delay of events to a relatively long waiting
time, usually 10x longer than the recorded waiting time, as shown
in Table 2. However, this approach raises two practical issues. First,
the manual setting can be time-consuming, taking more than 10
minutes on average for a 5-event scenario, according to WeChat
developers. Second, the replay process is inefficient, frequently
stagnating on fully loaded GUIs and slowing down the replaying
process, i.e., taking over 3.5 minutes on average to replay 5 events.

While the app under testing is mostly ideal, the replaying has
to wait until the GUI finishes rendering before proceeding to the
next event. In this context, it is worth developing an effective and
efficient method to dynamically adjust the waiting time during
replaying. The underlying challenge is to infer GUI rendering states,
differentiating between partially rendered and fully rendered GUIs.
Inspired by the fact that humans can easily classify these GUIs
visually, we propose to identify the GUI rendering states with visual
cognitive techniques.

3 WEREPLAY TOOL
This paper presents a simple but effective approach for adaptively
adjusting the waiting time based on GUI states. Drawing inspiration
from the previous approach, AdaT [29], which aimed to accelerate
automated app testing by categorizing GUI rendering states, we
explore its practical implementation in the industrial app WeChat
and further expand the approach for recording and replaying.

The overview of our tool is shown in Figure 2. In the record-
ing phase, we record all input events, including widget attributes,
actions, and input data, and parse them into the testing script. In
the replaying phase, we synchronously capture the GUI screen-
shots and detect their current state. If the GUI is fully rendered, we
schedule the next replaying events; otherwise, we explicitly wait
for rendering to complete.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Feng et al.

Figure 2: The workflow of our approach.

Figure 3: The testing script recorded by app inspector tool.

3.1 Recording Phase
There are many available tools for recording testing scenario scripts,
either manually [64] or automatically [33, 72]. To ensure the ef-
fectiveness of testing scripts at the industrial level, we manually
record the rich variety of events, including the widget attributes,
actions, and input text. Figure 3 illustrates how a user event is trans-
formed into a script. In detail, we first use the app inspector tool
WEditor [15] to inspect the widget information from the interface,
as shown in Figure 3. Given the widget information, we then parse
it into executable testing scripts using the widely-used automated
app testing framework UIAutomator2 [5]. It is worth noting that
other tools can also be employed for this purpose.

3.2 Replaying Phase
The foundation of our approach is to utilize a lightweight CNN-
based model to classify the WeChat GUI rendering state during
replaying. To achieve this, we first introduce a novel approach for
collecting a large-scale dataset consisting of partially rendered and
fully rendered GUIs in the WeChat app. Using this data, we propose
a CNN-based model to distinguish between WeChat GUI states.

3.2.1 WeChat Data Preparation. The foundation of training deep
learning models is big data. To begin, we first manually annotate
the record-and-replay screencasts from Section 2, while gaining an
understanding of the GUI rendering states in WeChat. Based on
this understanding, we introduce three tailored data augmentation

Figure 4: The pipeline of WeChat data preparation.

techniques, e.g., stitching, blending, and loading injection, to auto-
matically synthesize more data. A pipeline for preparing WeChat
data is illustrated in Figure 4.

Annotating and understanding. We recruited two developers
as annotators through WeChat’s internal slack channel. According
to the pre-study background survey, they have previously labeled
one UI/UX-related dataset (e.g., GUI element bounding box). To en-
sure accurate annotations, the process started with initial training.
First, we asked them to read the previous GUI rendering study [29]
and a document [3] that outlines the GUI rendering process. Second,
we provided an example set of annotated GUIs where the rendering
states have been labeled by authors. This enforces a deeper under-
standing of the GUI rendering states. Third, we asked them to pass
an assessment test, which includes a set of test GUIs. Finally, we
asked them to manually check 23,331 GUIs from 36 record-and-
replay screencasts. During the manual examination process, we
identified three types of GUI states following the Card Sorting [62]
method:

a) Transiting State: As depicted in Figure 5(a), one state is tran-
siting to the next state. The transition between states takes time,
causing GUIs to overlap or merge during the process. This issue

Towards Efficient Record and Replay: A Case Study in WeChat ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

(a) Transiting state (b) Loading state

Figure 5: Examples of partially rendered state.

often occurs in devices with subpar performance and hardware
acceleration defects, resulting in unexpectedly prolonged loading
times. Replaying events in this state may lead to unforeseen errors.

b) Loading State: As illustrated in Figure 5(b), this state displays
an explicit loading indicator in the GUI, such as a spinning wheel,
linear progressing bar, textual hint, etc. It explicitly indicates the
process or rendering is in progress and is often used for secure data
transformations, such as logging into accounts, transferring money,
uploading a file, etc. During the explicitly loading state, the GUI is
non-interactive to replay events.

c) Fully Rendered State: A fully rendered state represents a GUI
rendered completely with all resources loaded and displayed.

Data sampling. For each GUI state group, we observe that many
GUIs are duplicated. This is because the rendering changes rela-
tively slowly between consecutive GUI frames from the screencasts.
To prevent this bias, we propose a paradigm that uses hierarchical
agglomerative clustering (HAC) [52] to sample the GUI frames from
the GUI groups.

The detail of HAC is shown in Algorithm 1. That is, each GUI
frame is initially considered as a single-element cluster (Lines 1-7).
At each step of the algorithm, the two most similar clusters are
merged into a new cluster (Line 10). This procedure is iterated until
all the clusters reach the agglomerative similarity threshold 𝜖 (Lines
12-16).

The main parameter in this algorithm is the metric used to com-
pute the similarity value of GUI frames. To achieve this, we adopt
the commonly-used perceptual metric, Structural Similarity Index
(SSIM) [67], which produces a per-pixel similarity value related
to the local difference in average value, variance, and correlation
of luminances. The SSIM score ranges between 0 and 1, with a
higher value indicating a strong level of similarity. Considering
the properties of sparseness and distinctness in data sampling, we
empirically set the threshold 𝜖 to 0.9. After automated clustering
and sampling, we obtain a dataset with 4,485 fully rendered GUIs
and 3,159 partially rendered GUIs.

Data augmentation. Training an effective deep learning model
requires a large amount of input data [45]. However, gathering
and labeling relevant GUIs can be both time-consuming and labor-
intensive. Data augmentation techniques, such as cropping, rota-
tion, color space transformations, etc., are commonly employed
to overcome this constraint [60]. The closer the synthetic data

Algorithm 1: Hierarchical Agglomerative Clustering
Input :GUI frames 𝐹 = {𝑓1, 𝑓2, 𝑓3, ..., 𝑓𝑛};

Agglomerative similarity threshold 𝜖 ;
Output :Sampled frames 𝑆
/* Initialize */

1 let 𝑐𝑜𝑚[0..𝑚, 0..𝑛] be new computation table ;
2 initialize 𝑐𝑜𝑚 ← 0 ;
3 for 𝑖 ← 1 to 𝑛 do
4 for 𝑗 ← 1 to 𝑛 do
5 𝑐𝑜𝑚[𝑖] [𝑗] ← 𝑆𝑆𝐼𝑀 (𝑓𝑖 , 𝑓𝑗)
6 end
7 end
8 𝑆 ← [];

/* Iteratively merge the new cluster until reaching threshold

𝜖 */

9 while 𝐹 .𝑙𝑒𝑛𝑔𝑡ℎ > 1 do
10 (𝑓𝑖 , 𝑓𝑗) ← 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑐𝑜𝑚) ;
11 𝐹 .𝑟𝑒𝑚𝑜𝑣𝑒 ({𝑓𝑖 , 𝑓𝑗 }) ;
12 if 𝑐𝑜𝑚[𝑖] [𝑗] ≥ 𝜖 then
13 𝑆.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑓𝑖) ;
14 else
15 𝐹 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑓𝑖 ∪ 𝑓𝑗) ;
16 end

/* Update computation table to new clusters */

17 for 𝑖 ← 1 to 𝐹 .𝑙𝑒𝑛𝑔𝑡ℎ do
18 for 𝑗 ← 1 to 𝐹 .𝑙𝑒𝑛𝑔𝑡ℎ do
19 𝑐𝑜𝑚[𝑖] [𝑗] ← 𝑆𝑆𝐼𝑀 (𝑓𝑖 , 𝑓𝑗)
20 end
21 end
22 end
23 return 𝑆

is to the real one, the better the model’s performance. Therefore,
we develop three novel data augmentation methods based on our
aforementioned understanding of the WeChat GUIs.

a) Stitching: As illustrated in Figure 5(a), one particular transiting
state occurs when one GUI slides to the next. To synthesize this, we
employ image stitching, which combines two GUIs with segmented
states to create a sliding view. Specifically, we randomly crop the
GUIs horizontally, as GUI sliding typically occurs in this direction.
Next, we generate a seamless connection between the two cropped
GUIs, resulting in a synthesized GUI.

b) Blending: As illustrated in Figure 5(a), another transiting state
occurs when one GUI fades out while the next GUI fades in, causing
overlap between the two GUIs. To synthesize this, we employ image
blending, which linearly combines two GUIs in a gradient transi-
tion. Specifically, we utilize a weighted average method, where the
opacity of each GUI is adjusted according to a random transition
curve, to ensure a smooth transition between the GUIs.

c) Loading Injection: As illustrated in Figure 5(b), the loading state
typically displays an explicit loading symbol, such as a spinning
wheel. To synthesize the loading state, we inject the loading symbol
into the GUIs. Additionally, we apply varying intensities of shadow
effects to the GUIs to create a more dynamic loading state.

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Feng et al.

3.2.2 GUI Rendering State Classification. To identify whether a
GUI is fully rendered, allowing the replaying tool to execute the
next event, we adopt an implementation of MobileNetV2 [59]. This
model distills the best practices in convolutional network design
into a simple architecture that offers competitive performance while
maintaining low parameters and mathematical operations to reduce
computational costs and memory overhead. This advanced network
design accelerates image classification, which is the ultimate goal of
this work to efficiently discriminate between GUI rendering states.

Specifically, we adopt a more advanced depthwise separable
convolution, combining one 3 ∗ 3 convolution layer and two 1 ∗ 1
convolution layers to capture essential information from images.
We first use a 1 ∗ 1 pointwise convolution layer to expand the
number of channels in the input feature map. Then, we use a 3 ∗ 3
depthwise convolution layer to filter the input featuremap and a 1∗1
convolution layer to reduce the number of channels of the feature
map. In order to improve the performance and stability between
layers, we borrow the idea of residual connection in ResNet [35]
to help with the flow of gradients. After the convolution layer, we
add Batch Normalization (BN) [39] to standardize the feature map.
Finally, the activation function, Rectified Linear Unit (ReLU), is
added to increase the nonlinear properties of the classifier function
and of the overall network without affecting the features.

For detailed implementation, we fine-tune the model from previ-
ous work [29] using our tailored data to adjust the parameters in
the classification layers for the specific industrial app, WeChat. We
adopt the stride of 2 in the depthwise convolution layer to downsam-
ple the feature map.We use ReLU6 defined as𝑦 =𝑚𝑖𝑛(𝑚𝑎𝑥 (0, 𝑥), 6),
for the first two activation layers because of its robustness in low-
precision computation [36]. A linear transformation (also known
as Linear Bottleneck Layer) [59] is applied to the last activation
layer to prevent ReLU from destroying features. The momentum
in the BN layer is set as 0.1. To make our training more stable, we
adopt Adam as optimizer [42], and binary CrossEntropyLoss as the
loss function [53]. Moreover, to optimize the training model, we
apply an adaptive learning scheduler, with an initial rate of 0.01 and
decay to half after 10 iterations. For data preprocessing, we resize
the GUI screenshots to 768 ∗ 448. We implement our model based
on the PyTorch framework [54]. Note that the hyper-parameter
settings are determined empirically by a small-scale experiment.

3.2.3 Model Deployment. To enable the model to efficiently pro-
vide feedback on the GUI rendering state to the replaying tool,
synchronization between the GUI and the replaying tool is neces-
sary. In detail, we use Android Debug Bridge (adb) [6] to capture
and transmit real-time GUI screenshots. Once the screenshot is
received, we decode it into a PyTorch tensor [54]. This tensor is
then fed into our trained GUI state classification model to infer
the current GUI’s rendering state. If the GUI is fully rendered, we
proceed to replay the new event; otherwise, we explicitly wait for
the next screenshot. To prevent excessive time consumption due to
prolonged resource loading or incorrect model predictions, we set a
maximum waiting threshold. This waiting threshold is empirically
set at 60 seconds based on a small pilot study.

4 EVALUATION
In this section, we describe the procedure we used to evaluate our
approach in terms of its accuracy, effectiveness, and efficiency to
accelerate the record-and-replay process. To achieve our evaluation,
we formulate the following three research questions:
• RQ1: How accurate is our model in classifying WeChat GUI
rendering state?
• RQ2: How effective and efficient is our tool in replaying WeChat
usage scenarios on the same device?
• RQ3: How effective and efficient is our tool in replaying WeChat
usage scenarios on different devices?
For RQ1, we present some general performance of our model in

inferring WeChat GUI states and the comparison with state-of-the-
art baselines. For RQ2, we carry out experiments to check if our
tool can speed up the automated replaying of the usage scenarios
in WeChat on the same device, without sacrificing the effectiveness.
For RQ3, we conduct experiments to evaluate the effectiveness and
efficiency of our tool to replay on different devices with diverse
screen sizes and operating system versions.

4.1 RQ1: Performance of WeChat GUI State
Classification

4.1.1 Experimental Setup. To answer RQ1, we first evaluated the
ability of our model MobileNetV2 (in Section 3.2.2) to accurately
differentiate between fully rendered GUIs and partially rendered
GUIs. To accomplish the evaluation, we followed the procedure to
generate the dataset outlined in Section 3.2.1. We collected 23,331
GUI screencasts and annotated 9,119 partially rendered GUIs and
14,212 fully rendered GUIs. Due to the presence of duplicates in
the dataset, we employed a clustering algorithm to eliminate these
redundancies, resulting in 3,159 partially rendered GUIs and 4,485
fully rendered GUIs. Next, we used tailored data augmentation
methods to synthesize 3,012 partially rendered GUIs. In total, we
obtained 6,171 partially rendered GUIs and 4,485 fully rendered
GUIs as our experimental dataset. Regarding our training-testing
data split, we split this 10k GUIs in the ratio of 8:1:1 for the training,
validation, and testing sets, respectively. The resulting split has 8k
GUIs in the training dataset, 1k GUIs in the validation dataset, and
1k GUIs in the testing dataset. The model was trained in an NVIDIA
GeForce RTX 2080Ti GPU (16G memory) with 20 epochs for about
2 hours.

4.1.2 Metrics. Since we formulated our problem as an image clas-
sification task, we adopted three widely-used metrics i.e., precision,
recall, and F1-score, to evaluate the accuracy of the model inference.
Precision is the proportion of GUIs that are correctly predicted as
fully rendered among all GUIs predicted as fully rendered.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#𝐺𝑈 𝐼𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑓 𝑢𝑙𝑙𝑦 𝑟𝑒𝑛𝑑𝑒𝑟𝑒𝑑

#𝐴𝑙𝑙 𝐺𝑈 𝐼𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑓 𝑢𝑙𝑙𝑦 𝑟𝑒𝑛𝑑𝑒𝑟𝑒𝑑

Recall is the proportion of GUIs that are correctly predicted as
fully rendered among all fully rendered GUIs.

𝑟𝑒𝑐𝑎𝑙𝑙 =
#𝐺𝑈 𝐼𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑎𝑠 𝑓 𝑢𝑙𝑙𝑦 𝑟𝑒𝑛𝑑𝑒𝑟𝑒𝑑

#𝐴𝑙𝑙 𝑓 𝑢𝑙𝑙𝑦 𝑟𝑒𝑛𝑑𝑒𝑟𝑒𝑑 𝐺𝑈 𝐼𝑠

Towards Efficient Record and Replay: A Case Study in WeChat ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 3: Performance comparison with baselines

Methods Precision Recall F1-score
SIFT+SVM 0.706 0.751 0.727
SIFT+KNN 0.592 0.639 0.614
SIFT+RF 0.678 0.670 0.673
SURF+SVM 0.634 0.625 0.629
SURF+KNN 0.577 0.601 0.588
SURF+RF 0.606 0.659 0.631
ORB+SVM 0.659 0.699 0.678
ORB+KNN 0.596 0.616 0.605
ORB+RF 0.636 0.667 0.651
AdaT 0.859 0.852 0.855
WeReplay w/o aug 0.893 0.906 0.899
WeReplay 0.921 0.933 0.927

F1-score (F-score or F-measure) is the harmonic mean of precision
and recall, which combine both of the two metrics above.

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

For all metrics, a higher value represents better performance.

4.1.3 Baselines. We set up 9 state-of-the-art baseline methods, that
are widely used in image classification tasks as the baselines to com-
pare with our model. They first extract visual features from the GUI
screenshots and then employ a machine learner for the classifica-
tion. In detail, we adopted three types of feature extraction methods
used in machine learning, e.g., Scale-invariant feature transform
(SIFT) [51], Speed up robot features (SURF) [17], and Oriented fast
and rotated brief (ORB) [58]. With these features, we applied three
commonly-used machine learning classifiers, e.g., Support Vector
Machine (SVM) [43], K-Nearest Neighbor (KNN) [41], and Random
Forests (RF) [18], for classifying the GUI rendering state. The com-
bination of three types of image features and three classification
learning algorithms generated a total of 9 baselines.

In addition, we also added 2 ablation studies as our baselines to
demonstrate the advantage of our model. First, we experimented
with the off-the-shelf pre-trained model AdaT [29] to see its gen-
eral performance in WeChat GUIs. It uses a convolutional neural
network MobileNetV2 to extract the visual features and trains on
79k GUIs from the 9.7k Google app to classify the fully rendered
and partially rendered states. Second, we investigated the contri-
bution of our data augmentation methods in Section 3.2.1, namely
WeReplay w/o aug, to see the performance of our model trained
without 3,012 (40%) additional data.

4.1.4 Result. Table 3 illustrates the performance of our approach
in classifying the fully rendered GUIs and partially rendered GUIs
in the industrial app WeChat. Our approach significantly outper-
forms other baselines, achieving a 28.7%, 30.8%, and 29.8% increase
in recall, precision, and F1-score, respectively, compared to the
best machine learning baseline (SIFT+SVM). We observe that deep
learning-based methods perform much better than machine learn-
ing methods, primarily because machine learning lacks feature
introspection, which is crucial as GUI rendering state features vary.

Compared to the pre-trained deep learning baseline AdaT, our
model further improves recall, precision, and F1-score by 8.1%, 6.2%,

(a) (b) (c) (d)

Figure 6: Examples of bad cases in GUI state prediction.

and 7.2%, respectively. This suggests that fine-tuning a pre-trained
model enables it to better recognize specific features, such as the
distinct GUI characteristic in the industrial app WeChat. Conse-
quently, this enhances the model’s ability to classify GUI states
more accurately. Additionally, we observe that applying tailored
data augmentation methods further improves our model’s perfor-
mance, increasing recall, precision, and F1-score by 2.7%, 2.8%, and
2.8%, respectively. This indicates that with more training data, the
model’s GUI rendering classification capability improves. In the
future, we plan to collect more diversified GUIs from the WeChat
app to enhance the model’s performance.

Albeit the good performance of our model, we still make incor-
rect predictions for some GUI screenshots. We manually examined
these inaccuracies and identified two common causes. First, within
the industrial app WeChat, GUIs may contain dynamic assets such
as videos and gifs, as seen in the gif message in Figure 6(a) and the
advertisement in Figure 6(b). In these cases, although the GUIs are
fully rendered, they may be misclassified as partially rendered GUIs
due to animation loading. Second, some representative features of
loading in WeChat are too small and inconspicuous to be recog-
nized, even by human eyes, for example, the tiny circular progress
bar embedded in the image in Figure 6(c) and embedded in the
background in Figure 6(d).

4.2 RQ2: Performance of Recording and
Replaying on Same Device

4.2.1 Experimental Setup. To answer RQ2, we evaluated the ability
of our tool to effectively and efficiently record and replay usage
scenarios on the same device. Throughout our three months study,
we had access toWeChat developers and periodically asked them for
the scenarios on their hands-on experiences using the app. In total,
we gathered 23 fundamental usage scenarios in the WeChat app as
our experimental dataset. On average, each scenario contained 5.3
events, covering various WeChat functionalities such as messaging,
games, shopping, etc. Note that we did not use the usage scenarios
collected in Section 2 for this evaluation, as they were utilized
for model training and could potentially result in a data leakage
problem [40].

We recorded and replayed the usage scenarios on Xiaomi Mix2S
running Android version 9.0. The device was allocated with 8 ded-
icated CPU cores, 6GiB of RAM, and discrete graphics cards for

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Feng et al.

minimal mutual influences caused by disk I/O bottlenecks and CPU-
intensive graphical rendering.

4.2.2 Metrics. To measure the performance of our approach, we
employed reproducibility as the evaluation metric, i.e., whether the
method can successfully replay the usage scenarios. The higher
the reproducibility score, the better the approach can replicate the
events to reproduce the scenarios. Since the ultimate goal is to speed
up the replaying process, we also measured the time for replaying.
For the replaying time, a lower time cost represents faster replaying
of the recorded scenarios.

4.2.3 Baselines. We set up twomethods as our baseline to compare
with our approach. First, we adopted the state-of-the-art method
SARA [33]. Specifically, SARA employs a heuristic technique to
record the waiting time elapsed between events. Second, we fol-
lowed the practical solution in WeChat, as discussed in Section 2,
extending the waiting time by 10 times to create an industrial base-
line, referred to as 10x wait. Note that we did not evaluate other
publicly available tools like Espresso [8] and Culebra [2], as they
are not sensitive to waiting time, e.g., setting arbitrary inter-event
time, which prevents effective evaluation on industrial apps.

4.2.4 Result. Table 4 shows detailed results of the time and repro-
ducibility for each usage scenario. On average, our tool WeReplay
takes 18.45 seconds to reproduce all the scenarios. We observe that,
on one hand, SARA, with a short fixed waiting time, can only replay
39.1% of the scenarios. The failure cases are due to dynamic Internet
loading, i.e., resources taking longer to load than the recorded wait-
ing time. On the other hand, the industrial solution of extending
the waiting time by 10 times significantly slows down the replay-
ing process, taking an average of 152.99 seconds per scenario. In
contrast, our tool can replay all scenarios (100%) in less time (18.45
seconds), achieving 60.9% more successful reproductions compared
to SARA, while saving 88% more time than 10x wait with the same
reproduction rate. As a result, WeReplay can expedite the replay-
ing process without sacrificing reproducibility, saving a significant
amount of time in long-term industrial testing involving hundreds
or thousands of events.

4.3 RQ3: Performance of Recording and
Replaying on Different Devices

4.3.1 Experimental Setup. To answer RQ3, we evaluated the ability
of our tool to effectively and efficiently record and replay events
on different devices. In detail, we used the Xiaomi Mix2S to record
the 23 fundamental usage scenarios in the WeChat app outlined in
Section 4.2.1. To replay these usage scenarios, we employed three
different devices, including Huawei Nova2S, Vivo Y3, and Google
Pixel4a. Details of the device information can be seen in Table 1,
covering diverse screen resolutions, sizes, operating systems, and
processors.

4.3.2 Metrics. To measure the performance of our tool, we em-
ployed two evaluation metrics, i.e., reproducibility (replay success)
and time (replay time).

4.3.3 Baselines. We adopted the state-of-the-art SARA [33] and
industrial solution 10x wait in Section 2 as the baselines to compare
with our tool.

Table 4: Performance comparison of replaying on the same
device. “R” denotes scenario reproducibility. “T” denotes the
time to replay in seconds.

Scenario Events
SARA 10x wait WeReplay
R T R T R T

Open Moments 3 ✓ 15.62 ✓ 149.13 ✓ 12.39
Open GameCenter 4 ✓ 23.16 ✓ 229.61 ✓ 22.21
Open Channels 4 ✓ 22.01 ✓ 224.33 ✓ 20.67
Open e-Wallet 4 ✗ 10.20 ✓ 96.45 ✓ 18.96
Open Pay QRCode 4 ✗ 10.92 ✓ 101.17 ✓ 13.32
Open Collections 4 ✓ 10.13 ✓ 98.36 ✓ 9.36
Search Info 6 ✗ 16.24 ✓ 161.74 ✓ 36.07
Search Game 6 ✗ 56.96 ✓ 553.21 ✓ 40.12
Search New Friend 6 ✗ 12.81 ✓ 113.25 ✓ 20.37
Delete Friend 5 ✓ 21.89 ✓ 203.93 ✓ 14.20
Enter Shopping 4 ✓ 16.35 ✓ 159.01 ✓ 12.32
Recommend Friend 6 ✗ 9.51 ✓ 90.43 ✓ 12.07
Change Username 8 ✗ 13.92 ✓ 133.86 ✓ 15.57
Subscribe Stickers 5 ✗ 9.11 ✓ 89.70 ✓ 23.94
Search Stickers 8 ✗ 15.72 ✓ 155.71 ✓ 30.88
Change Profile Photo 6 ✓ 23.82 ✓ 219.95 ✓ 24.63
Video Call 5 ✗ 6.52 ✓ 64.49 ✓ 10.07
Audio Call 5 ✗ 6.21 ✓ 56.62 ✓ 9.22
Unfollow Official Account 7 ✗ 12.42 ✓ 117.37 ✓ 23.63
Group Chat 6 ✗ 10.26 ✓ 99.67 ✓ 14.19
Send Message 5 ✓ 15.03 ✓ 143.44 ✓ 12.21
Send Stickers 5 ✓ 11.79 ✓ 112.88 ✓ 11.84
Send Picture 7 ✗ 15.07 ✓ 144.46 ✓ 16.19

Average 5.35 39.1% 15.89 100% 152.99 100% 18.45

4.3.4 Result. Table 5 presents the detailed results of the replaying
performance across the three devices. Our tool WeReplay, success-
fully replays all (100%) of the scenarios in a shorter time, with a
median of 19.55 seconds. In contrast, the baseline SARA only re-
plays 21.7%, 34.8%, and 47.8% of the scenarios for Huawei Nova2S,
Vivo Y3, and Google Pixel4a, respectively. The failure scenarios are
due to the delayed rendering process for the devices, indicating that
more time is needed for rendering. The industrial solution can also
replay all of the scenarios, but it takes much longer, with an average
of 157.41 seconds, making it 10 times slower than our tool. This
is because it indiscriminately extends the waiting time between
events by 10 times, while most of this time is spent idly waiting.
In contrast, our tool WeReplay utilizes a deep learning model to
identify the GUI rendering state, dynamically scheduling events if
the GUI is fully rendered, or explicitly waiting otherwise, achieving
efficiency without compromising replay capability.

5 DISCUSSION
We had discussed the limitations of our tool in misclassifying the
WeChat GUI rendering state due to dynamic assets (Section 4.1.4).
In this section, we discuss the industrial implication and threats to
validity of our tool.

Towards Efficient Record and Replay: A Case Study in WeChat ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 5: Performance comparison of replaying on the different devices. “R” denotes scenario reproducibility. “T” denotes the
time to replay in seconds.

Scenario
Huawei Nova2S Vivo Y3 Google Pixel4a

SARA 10x wait WeReplay SARA 10x wait WeReplay SARA 10x wait WeReplay

R T R T R T R T R T R T R T R T R T
Open Moments ✓ 18.77 ✓ 150.14 ✓ 18.99 ✓ 16.81 ✓ 147.63 ✓ 13.79 ✓ 16.31 ✓ 145.56 ✓ 12.73
Open GameCenter ✗ 27.96 ✓ 241.14 ✓ 25.58 ✗ 25.72 ✓ 237.77 ✓ 24.91 ✓ 16.12 ✓ 235.52 ✓ 22.37
Open Channels ✓ 28.64 ✓ 243.01 ✓ 24.64 ✓ 24.73 ✓ 231.12 ✓ 20.97 ✓ 24.97 ✓ 232.44 ✓ 18.65
Open e-Wallet ✗ 13.94 ✓ 104.91 ✓ 16.36 ✗ 12.65 ✓ 103.49 ✓ 16.33 ✗ 11.48 ✓ 101.76 ✓ 13.95
Open Pay QRCode ✗ 13.01 ✓ 107.99 ✓ 21.23 ✗ 11.97 ✓ 107.89 ✓ 18.08 ✗ 11.50 ✓ 104.97 ✓ 16.17
Open Collections ✗ 12.75 ✓ 108.76 ✓ 15.52 ✓ 11.03 ✓ 104.99 ✓ 10.19 ✓ 10.93 ✓ 103.65 ✓ 8.89
Search Info ✗ 20.46 ✓ 169.02 ✓ 40.96 ✗ 18.15 ✓ 168.63 ✓ 34.66 ✗ 17.31 ✓ 163.47 ✓ 20.86
Search Game ✗ 67.78 ✓ 564.98 ✓ 51.03 ✗ 61.51 ✓ 559.98 ✓ 44.69 ✗ 18.79 ✓ 555.72 ✓ 29.90
Search New Friend ✗ 16.77 ✓ 122.56 ✓ 20.24 ✗ 13.22 ✓ 118.75 ✓ 18.09 ✓ 14.79 ✓ 114.02 ✓ 13.98
Delete Friend ✓ 23.75 ✓ 215.97 ✓ 19.52 ✓ 22.19 ✓ 210.60 ✓ 16.38 ✓ 20.01 ✓ 203.19 ✓ 15.11
Enter Shopping ✓ 19.33 ✓ 164.98 ✓ 14.07 ✓ 17.59 ✓ 164.34 ✓ 11.77 ✓ 18.89 ✓ 162.06 ✓ 11.15
Recommend Friend ✗ 12.65 ✓ 95.09 ✓ 16.94 ✗ 11.21 ✓ 93.68 ✓ 12.96 ✗ 10.46 ✓ 92.18 ✓ 10.78
Change Username ✗ 15.89 ✓ 141.40 ✓ 17.50 ✓ 15.92 ✓ 136.04 ✓ 15.12 ✓ 14.80 ✓ 135.88 ✓ 13.51
Subscribe Stickers ✗ 14.75 ✓ 91.57 ✓ 31.44 ✗ 10.14 ✓ 89.94 ✓ 26.01 ✗ 9.14 ✓ 89.07 ✓ 26.91
Search Stickers ✗ 17.88 ✓ 163.18 ✓ 35.78 ✗ 17.04 ✓ 150.61 ✓ 32.06 ✗ 16.50 ✓ 148.82 ✓ 30.85
Change Profile Photo ✗ 29.76 ✓ 228.95 ✓ 27.90 ✗ 26.55 ✓ 223.74 ✓ 24.49 ✗ 25.05 ✓ 220.99 ✓ 21.66
Video Call ✗ 8.93 ✓ 71.93 ✓ 20.74 ✗ 7.22 ✓ 68.62 ✓ 10.98 ✗ 6.52 ✓ 67.02 ✓ 7.60
Audio Call ✗ 9.11 ✓ 62.07 ✓ 16.77 ✗ 7.23 ✓ 60.49 ✓ 9.69 ✓ 6.93 ✓ 55.48 ✓ 7.72
Unfollow Official Account ✗ 17.36 ✓ 126.75 ✓ 25.04 ✗ 14.12 ✓ 120.88 ✓ 23.04 ✗ 13.57 ✓ 112.27 ✓ 19.20
Group Chat ✗ 12.88 ✓ 102.97 ✓ 17.86 ✗ 11.25 ✓ 100.47 ✓ 17.53 ✗ 11.67 ✓ 99.68 ✓ 15.96
Send Message ✓ 19.02 ✓ 144.98 ✓ 17.72 ✓ 15.31 ✓ 144.44 ✓ 12.64 ✓ 14.54 ✓ 142.52 ✓ 12.64
Send Stickers ✗ 14.41 ✓ 120.74 ✓ 16.83 ✓ 13.01 ✓ 119.78 ✓ 11.81 ✓ 12.59 ✓ 117.04 ✓ 11.32
Send Picture ✗ 17.79 ✓ 151.35 ✓ 17.93 ✗ 15.19 ✓ 148.74 ✓ 15.89 ✗ 15.07 ✓ 142.28 ✓ 15.63

Average 21.7% 19.72 100% 160.62 100% 23.07 34.8% 17.38 100% 157.46 100% 19.17 47.8% 14.69 100% 154.16 100% 16.41

5.1 Industrial Implication
Although many state-of-the-art automated recording tools exist [16,
33, 72], we chose manual recording for usage scenarios in the in-
dustrial app WeChat due to two practical lessons learned. First,
automated recording of widgets in hybrid apps like WeChat (apps
built with a combination of native and web technologies) presents
steering challenges, as some widgets are rendered by WebView
as HTMLElements, which cannot be found in the view hierarchy.
Second, games in WeChat’s mini-programs [49] are often devel-
oped with game engines (e.g., Unity [14]), making it impossible
to automatically record the widget. To ensure the effectiveness of
recording usage scenarios in the WeChat app, we generate them
manually by inspecting the widget in the inspector tool WEditor.
In the future, we plan to conduct a comprehensive empirical study
of the cases where the widgets cannot be automatically recorded
and will attempt to develop an engineering effort to address this
issue.

Another industrial implication involves supporting record and re-
play for different platforms, such as iOS. The results in Section 4.2.4
and Section 4.3.4 demonstrate strong performance in recording and
replaying on Android devices. Although we focus on the Android
platform in this study for brevity, our approach could be extended
to other platforms. As the GUI rendering process in iOS exhibits
minimal differences compared to Android, our approach could be
adapted to it with a reasonable amount of engineering effort.

5.2 Threats to Validity
Threats to internal validity may arise from the manual labeling of
the training and testing dataset for the GUI rendering classification
model. To mitigate any potential subjectivity or errors, we provided
the annotators with a training session and a qualifying test before
labeling. We instructed them to independently annotate without
any discussion, and we reached a consensus on the finalized dataset.
Although there may still be some noise in the data, training a deep
learning-based model with a sufficient amount of high-quality data
can tolerate a small amount of noise [45, 63].

In our experiments evaluating our tool, threats to external va-
lidity may arise from the representativeness of industrial usage
scenarios depicted in our experimental set. To mitigate this threat,
we conducted experiments on 23 real-world usage scenarios pro-
vided by WeChat developers. While performing additional exper-
iments with more scenarios would be ideal, our experimental set
of scenarios represents a reasonably fundamental set of tests with
different functionalities, illustrating the relative performance of our
tool. Another potential confounding factor concerns the represen-
tativeness of the record-and-replay devices used in the evaluation.
To mitigate this threat, we employed four devices with different
resolutions, sizes, operating systems, and processors, as outlined in
Section 2. These devices are practically used as testing devices in
WeChat and widely studied in previous studies [57, 71]. One more
potential threat concerns the generalizability of our approach to
other industrial apps. In this study, we focus on the WeChat app,

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Feng et al.

using WeChat GUIs to train the GUI rendering classification model
to help speed up the record and replay process in practice. Our
approach relies only on GUI screenshots, which should be easily
adapted to other industrial apps with customized datasets.

6 RELATEDWORK
The main quality of our study is the utilization of the GUI rendering
state to accelerate the record-and-replay process in the industrial
app WeChat. Therefore, we review the related work in two main
areas: 1) record and replay for industrial apps, and 2) efficiency
support for testing.

6.1 Record and Replay for Industrial Apps
The primary goal of record-and-replay tools is to record an app’s
execution to facilitate automatic replay. RERAN [32] is one of the
earliest record-and-replay tools that use the Linux kernel. Specifi-
cally, it captures low-level events with the ADB command getevent
by reading logs in /dev/input/event* files and uses the command
sendevent to replay events. However, the low-level events recorded
are tightly coupled to the hardware, making it difficult to recon-
struct high-level gestures for replay, such as zoom, pinch-in, etc.
MobiPlay [56] introduces a client-server architecture, involving a
client app running on a mobile device and a target app running
on the server to record events. It requires a custom OS to record
and replay, which may lead to incompatibilities between the OS
and the device, thereby violating industry constraints. Monkeyrun-
ner [11], a desktop tool developed by Google Inc., provides an API
for writing Python programs to record and replay keystroke co-
ordinates on Android devices. Subsequent tools like Mosaic [34],
HiroMacro [9], VALERA [38], and RepetiTouch [13] capture events
in a similar manner. Nevertheless, the underlying recording and
replaying based on pixel coordinates are often prone to failure due
to minor GUI changes across diverse devices.

Consequently, several researchers [24, 30] have developedwidget-
sensitive record-and-replay tools. For example, Robotium [72] is de-
rived from the Selenium web browser automation tool and records
events only if GUIs are controlled by the app’smain process.Whereas,
many industrial apps may use different processes to avoid compat-
ibility issues on various platforms. One example of how WeChat
uses other processes to create GUI widgets is through its mini-
programs, which are embedded frameworks within the WeChat
app. Ranorex [12] is a commercial test automation tool that sup-
ports recording events based on widgets through app instrumenta-
tion. However, instrumentation requires sophisticated accessibility
or GUI automation APIs [22, 23] and continuous updates in sync
with the app and different operating systems [47, 65], making it
incompatible with industrial apps. The official Android Studio IDE
introduces Espresso [8], which leverages source code analysis to
record events based on widgets by attaching a debugger to the app,
but it still requires developers to manually set the time delay of
events, which can be troublesome and error-prone.

Guo et al. [33] introduce a practical record-and-replay tool SARA,
that satisfies the industry requirements for widget-sensitive and
time-sensitive recording and replaying. Specifically, it proposes a
self-replay mechanism to record user event information while cap-
turing timestamps to infer the waiting time between replay events.

However, a fixed waiting time may not accurately replay events
according to our analysis (less than 55% for the same device and
37% for different devices) in Section 2. First, the waiting time can be
indeterminate, depending on the internet, which is frequently used
in industrial apps like WeChat. Second, for cross-device replaying,
the waiting time can be significantly dependent on the performance
of the devices, with lower-performing devices typically requiring
more waiting time. In contrast, our tool does not record a fixed
waiting time but leverages a novel deep learning-based model to
infer GUI rendering state, dynamically adjusting the waiting time to
schedule events on fully rendered GUIs. The empirical evaluations
of record and replay in the WeChat app confirm the practicality of
our tool.

6.2 Efficiency Support for Testing
Many works have attempted to improve infrastructure support
for efficient mobile testing. Hu et al. [37] propose AppDoctor,
which instruments target apps using event handler invocations
to quickly identify potential sequences of error-triggering GUIs.
Song et al. [61] enhance the efficiency of AppDoctor by leverag-
ing direct invocations. Wang et al. [66] propose an Android tool,
Toller, that injects into the testing device to efficiently access GUI
layout and execute events. In contrast to these infrastructure sup-
port methods, our goal is to accelerate record and replay by using
adaptive waiting times, i.e., scheduling testing events for efficiency
improvement.

Adaptive waiting time is a common practice for efficient record
and replay on the web. Selenium [4] introduces a feature called Ex-
plicit Wait, which instructs the testing driver to wait for a specified
amount of time until the presence of widgets. Similar to Selenium,
many tools incorporate this feature for mobile testing, such as Ap-
pium [1], UIAutomator [5], etc. Specifically, these tools verify the
presence of widgets by fetching the view hierarchy of the GUI.
However, subsequent studies [48] find that the fetched GUI views
may be out of sync, leading to events on misaligned or invalid
objects. While some studies [19–21, 25–28, 68, 69] conduct UI mod-
eling based on view hierarchy, they only check the validity of the
GUI view hierarchy, not resource loading, which limits the effec-
tiveness of replaying. In contrast, we leverage the GUI as a whole
with visual information to dynamically adjust the waiting time and
schedule events when the GUI is fully rendered, which is analogous
to human viewing and interaction. Following the line of previous
work [29], we integrate the GUI rendering classification model into
the industrial app WeChat, offering insight into its potential for
recording and replaying usage scenarios.

7 CONCLUSION
Record-and-replay is essential for ensuring quality assurance in the
industrial app, WeChat. Despite the numerous record-and-replay
tools available, the waiting time between replaying events is often
overlooked. A short waiting time may hinder the effectiveness of
replaying, while a long waiting time may reduce efficiency. To ad-
dress this, we propose a practical record-and-replay tool WeReplay,
that employs a lightweight image-based approach to adaptively ad-
just the waiting time based on GUI rendering inference. Given the
real-time streaming on GUI, WeReplay uses a deep learning model

Towards Efficient Record and Replay: A Case Study in WeChat ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

to infer the rendering state and adjust event scheduling, replaying
events when the GUI is fully rendered. Experiments demonstrate
the performance of our approach in improving the efficiency and
effectiveness of recording and replaying within the WeChat app.

In the future, we plan to continue improving WeReplay’s per-
formance by collecting more GUI data from the WeChat app to
enhance the accuracy of our model. While WeReplay’s motivation
stems from WeChat, its adoption is not limited to this app, as it
relies solely on GUI screenshots, which are easily obtainable in
industrial apps. We plan to explore its potential usage in other
industrial apps and systematically evaluate its performance.

REFERENCES
[1] 2022. Appium. http://appium.io/.
[2] 2022. Culebra. https://github.com/dtmilano/AndroidViewClient/wiki/culebra.
[3] 2022. Rendering - Android Developers. https://developer.android.com/topic/

performance/rendering.
[4] 2022. Selenium. https://www.selenium.dev/.
[5] 2022. UI Automator. https://developer.android.com/training/testing/other-

components/ui-automator.
[6] 2023. Android Debug Bridge (adb). https://developer.android.com/studio/

command-line/adb.
[7] 2023. appetizer-toolkit. https://github.com/appetizerio/appetizer-toolkit.
[8] 2023. Espresso Test Recorder. https://developer.android.com/studio/test/espresso-

test-recorder.html.
[9] 2023. HiroMacro Auto-Touch Macro. https://play.google.com/store/apps/details?

id=com.prohiro.macro.
[10] 2023. How Many People Use WeChat? User Statistics & Trends (May 2023).

https://www.bankmycell.com/blog/number-of-wechat-users/.
[11] 2023. monkeyrunner. https://developer.android.com/studio/test/monkeyrunner.
[12] 2023. Ranorex. http://www.ranorex.com/mobile-automation-testing.html.
[13] 2023. RepetiTouch Free. https://play.google.com/store/apps/details?id=com.

cygery.repetitouch.free.
[14] 2023. Unity Technologies. https://unity.com/.
[15] 2023. WEditor. https://github.com/alibaba/web-editor.
[16] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung

Ta, and Atif M Memon. 2014. MobiGUITAR: Automated model-based testing of
mobile apps. IEEE software 32, 5 (2014), 53–59.

[17] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. 2006. Surf: Speeded up robust
features. In European conference on computer vision. Springer, 404–417.

[18] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[19] Chunyang Chen, Sidong Feng, Zhengyang Liu, Zhenchang Xing, and Shengdong

Zhao. 2020. From lost to found: Discover missing ui design semantics through
recovering missing tags. Proceedings of the ACM on Human-Computer Interaction
4, CSCW2 (2020), 1–22.

[20] Chunyang Chen, Sidong Feng, Zhenchang Xing, Linda Liu, Shengdong Zhao, and
Jinshui Wang. 2019. Gallery dc: Design search and knowledge discovery through
auto-created gui component gallery. Proceedings of the ACM on Human-Computer
Interaction 3, CSCW (2019), 1–22.

[21] Jieshan Chen, Jiamou Sun, Sidong Feng, Zhenchang Xing, Qinghua Lu, Xiwei
Xu, and Chunyang Chen. 2023. Unveiling the Tricks: Automated Detection of
Dark Patterns in Mobile Applications. arXiv preprint arXiv:2308.05898 (2023).

[22] Sidong Feng and Chunyang Chen. 2022. GIFdroid: an automated light-weight tool
for replaying visual bug reports. In Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: Companion Proceedings. 95–99.

[23] Sidong Feng and Chunyang Chen. 2022. GIFdroid: Automated Replay of Visual
Bug Reports for Android Apps. In 2022 IEEE/ACM 44th International Conference
on Software Engineering (ICSE). IEEE, 1045–1057.

[24] Sidong Feng and Chunyang Chen. 2023. Prompting Is All You Need: Automated
Android Bug Replay with Large LanguageModels. arXiv preprint arXiv:2306.01987
(2023).

[25] Sidong Feng, Chunyang Chen, and Zhenchang Xing. 2022. Gallery DC: Auto-
created GUI component gallery for design search and knowledge discovery. In
Proceedings of the ACM/IEEE 44th International Conference on Software Engineering:
Companion Proceedings. 80–84.

[26] Sidong Feng, Chunyang Chen, and Zhenchang Xing. 2023. Video2Action: Re-
ducing Human Interactions in Action Annotation of App Tutorial Videos. arXiv
preprint arXiv:2308.03252 (2023).

[27] Sidong Feng, Minmin Jiang, Tingting Zhou, Yankun Zhen, and Chunyang Chen.
2022. Auto-Icon+: An Automated End-to-End Code Generation Tool for Icon
Designs in UI Development. ACM Transactions on Interactive Intelligent Systems
12, 4 (2022), 1–26.

[28] Sidong Feng, SuyuMa, Jinzhong Yu, Chunyang Chen, Tingting Zhou, and Yankun
Zhen. 2021. Auto-icon: An automated code generation tool for icon designs
assisting in ui development. In 26th International Conference on Intelligent User
Interfaces. 59–69.

[29] Sidong Feng, Mulong Xie, and Chunyang Chen. 2023. Efficiency matters: Speed-
ing up automated testing with gui rendering inference. In 2023 IEEE/ACM 45th
International Conference on Software Engineering (ICSE). IEEE, 906–918.

[30] Sidong Feng, Mulong Xie, Yinxing Xue, and Chunyang Chen. 2023. Read It,
Don’t Watch It: Captioning Bug Recordings Automatically. In 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE). IEEE, 2349–2361.

[31] Cuiyun Gao, Wujie Zheng, Yuetang Deng, David Lo, Jichuan Zeng, Michael R
Lyu, and Irwin King. 2019. Emerging app issue identification from user feedback:
Experience onwechat. In 2019 IEEE/ACM 41st International Conference on Software
Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 279–288.

[32] Lorenzo Gomez, Iulian Neamtiu, Tanzirul Azim, and Todd Millstein. 2013. Reran:
Timing-and touch-sensitive record and replay for android. In 2013 35th Interna-
tional Conference on Software Engineering (ICSE). IEEE, 72–81.

[33] Jiaqi Guo, Shuyue Li, Jian-Guang Lou, Zijiang Yang, and Ting Liu. 2019. Sara:
self-replay augmented record and replay for Android in industrial cases. In
Proceedings of the 28th acm sigsoft international symposium on software testing
and analysis. 90–100.

[34] MatthewHalpern, Yuhao Zhu, Ramesh Peri, and Vijay Janapa Reddi. 2015. Mosaic:
cross-platform user-interaction record and replay for the fragmented android
ecosystem. In 2015 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 215–224.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[36] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[37] Gang Hu, Xinhao Yuan, Yang Tang, and Junfeng Yang. 2014. Efficiently, effectively
detecting mobile app bugs with appdoctor. In Proceedings of the Ninth European
Conference on Computer Systems. 1–15.

[38] Yongjian Hu, Tanzirul Azim, and Iulian Neamtiu. 2015. Versatile yet lightweight
record-and-replay for android. In Proceedings of the 2015 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications. 349–366.

[39] Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International conference
on machine learning. PMLR, 448–456.

[40] Shachar Kaufman, Saharon Rosset, Claudia Perlich, and Ori Stitelman. 2012.
Leakage in data mining: Formulation, detection, and avoidance. ACMTransactions
on Knowledge Discovery from Data (TKDD) 6, 4 (2012), 1–21.

[41] James M Keller, Michael R Gray, and James A Givens. 1985. A fuzzy k-nearest
neighbor algorithm. IEEE transactions on systems, man, and cybernetics 4 (1985),
580–585.

[42] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[43] Sotiris B Kotsiantis, Ioannis Zaharakis, P Pintelas, et al. 2007. Supervised machine
learning: A review of classification techniques. Emerging artificial intelligence
applications in computer engineering 160, 1 (2007), 3–24.

[44] Wing Lam, Zhengkai Wu, Dengfeng Li, Wenyu Wang, Haibing Zheng, Hui Luo,
Peng Yan, Yuetang Deng, and Tao Xie. 2017. Record and replay for android: Are
we there yet in industrial cases?. In Proceedings of the 2017 11th joint meeting on
foundations of software engineering. 854–859.

[45] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. nature
521, 7553 (2015), 436–444.

[46] Cong Li, Yanyan Jiang, and Chang Xu. 2022. Cross-device record and replay for
Android apps. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 395–407.

[47] Li Li, Tegawendé F Bissyandé, Haoyu Wang, and Jacques Klein. 2018. Cid:
Automating the detection of api-related compatibility issues in android apps.
In Proceedings of the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 153–163.

[48] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. 2020. Mapping
natural language instructions to mobile UI action sequences. arXiv preprint
arXiv:2005.03776 (2020).

[49] Yi Liu, Jinhui Xie, Jianbo Yang, Shiyu Guo, Yuetang Deng, Shuqing Li, Yechang
Wu, and Yepang Liu. 2020. Industry practice of javascript dynamic analysis
on wechat mini-programs. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering. 1189–1193.

[50] Zhenyue Long, Guoquan Wu, Xiaojiang Chen, Wei Chen, and Jun Wei. 2020.
WebRR: self-replay enhanced robust record/replay for web application testing.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 1498–
1508.

http://appium.io/
https://github.com/dtmilano/AndroidViewClient/wiki/culebra
https://developer.android.com/topic/performance/rendering
https://developer.android.com/topic/performance/rendering
https://www.selenium.dev/
https://developer.android.com/training/testing/other-components/ui-automator
https://developer.android.com/training/testing/other-components/ui-automator
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://github.com/appetizerio/appetizer-toolkit
https://developer.android.com/studio/test/espresso-test-recorder.html
https://developer.android.com/studio/test/espresso-test-recorder.html
https://play.google.com/store/apps/details?id=com.prohiro.macro
https://play.google.com/store/apps/details?id=com.prohiro.macro
https://www.bankmycell.com/blog/number-of-wechat-users/
https://developer.android.com/studio/test/monkeyrunner
http://www.ranorex.com/mobile-automation-testing.html
https://play.google.com/store/apps/details?id=com.cygery.repetitouch.free
https://play.google.com/store/apps/details?id=com.cygery.repetitouch.free
https://unity.com/
https://github.com/alibaba/web-editor

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Feng et al.

[51] David G Lowe. 2004. Distinctive image features from scale-invariant keypoints.
International journal of computer vision 60, 2 (2004), 91–110.

[52] Daniel Müllner. 2011. Modern hierarchical, agglomerative clustering algorithms.
arXiv preprint arXiv:1109.2378 (2011).

[53] Kevin P Murphy. 2012. Machine learning: a probabilistic perspective. MIT press.
[54] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[55] Ju Qian, Zhengyu Shang, Shuoyan Yan, Yan Wang, and Lin Chen. 2020. Roscript:
a visual script driven truly non-intrusive robotic testing system for touch screen
applications. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. 297–308.

[56] Zhengrui Qin, Yutao Tang, Ed Novak, and Qun Li. 2016. Mobiplay: A remote
execution based record-and-replay tool for mobile applications. In Proceedings of
the 38th International Conference on Software Engineering. 571–582.

[57] Alan Romano, Zihe Song, Sampath Grandhi, Wei Yang, and Weihang Wang. 2021.
An empirical analysis of UI-based flaky tests. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 1585–1597.

[58] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An
efficient alternative to SIFT or SURF. In 2011 International conference on computer
vision. Ieee, 2564–2571.

[59] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[60] Connor Shorten and Taghi M Khoshgoftaar. 2019. A survey on image data
augmentation for deep learning. Journal of big data 6, 1 (2019), 1–48.

[61] Wei Song, Xiangxing Qian, and Jeff Huang. 2017. EHBDroid: Beyond GUI testing
for Android applications. In 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 27–37.

[62] Donna Spencer. 2009. Card sorting: Designing usable categories. Rosenfeld Media.
[63] Sainbayar Sukhbaatar, Joan Bruna, Manohar Paluri, Lubomir Bourdev, and Rob

Fergus. 2014. Training convolutional networks with noisy labels. arXiv preprint
arXiv:1406.2080 (2014).

[64] Tao Wang, Qingxin Xu, Xiaoning Chang, Wensheng Dou, Jiaxin Zhu, Jinhui Xie,
Yuetang Deng, Jianbo Yang, Jiaheng Yang, JunWei, et al. 2022. Characterizing and
detecting bugs in WeChat mini-programs. In Proceedings of the 44th International
Conference on Software Engineering. 363–375.

[65] Wei Wang and Michael W Godfrey. 2013. Detecting api usage obstacles: A study
of ios and android developer questions. In 2013 10thWorking Conference onMining
Software Repositories (MSR). IEEE, 61–64.

[66] Wenyu Wang, Wing Lam, and Tao Xie. 2021. An infrastructure approach to
improving effectiveness of Android UI testing tools. In Proceedings of the 30th
ACM SIGSOFT International Symposium on Software Testing and Analysis. 165–
176.

[67] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE transactions
on image processing 13, 4 (2004), 600–612.

[68] Mulong Xie, Sidong Feng, Zhenchang Xing, Jieshan Chen, and Chunyang Chen.
2020. UIED: a hybrid tool for GUI element detection. In Proceedings of the 28th
ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 1655–1659.

[69] Mulong Xie, Zhenchang Xing, Sidong Feng, Xiwei Xu, Liming Zhu, and Chunyang
Chen. 2022. Psychologically-inspired, unsupervised inference of perceptual
groups of GUI widgets from GUI images. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 332–343.

[70] Jiwei Yan, Linjie Pan, Yaqi Li, Jun Yan, and Jian Zhang. 2018. Land: A user-
friendly and customizable test generation tool for android apps. In Proceedings of
the 27th ACM SIGSOFT International Symposium on Software Testing and Analysis.
360–363.

[71] Shengcheng Yu, Chunrong Fang, Yexiao Yun, and Yang Feng. 2021. Layout
and image recognition driving cross-platform automated mobile testing. In 2021
IEEE/ACM 43rd International Conference on Software Engineering (ICSE). IEEE,
1561–1571.

[72] Hrushikesh Zadgaonkar. 2013. Robotium automated testing for android. Packt
Publishing.

Received 2023-05-18; accepted 2023-07-31

	Abstract
	1 Introduction
	2 MOTIVATIONAL Study
	2.1 Experimental Setup
	2.2 Record and Replay on Same Device
	2.3 Record and Replay on Different Devices
	2.4 Industrial Solution & Motivation

	3 WeReplay Tool
	3.1 Recording Phase
	3.2 Replaying Phase

	4 Evaluation
	4.1 RQ1: Performance of WeChat GUI State Classification
	4.2 RQ2: Performance of Recording and Replaying on Same Device
	4.3 RQ3: Performance of Recording and Replaying on Different Devices

	5 Discussion
	5.1 Industrial Implication
	5.2 Threats to Validity

	6 Related Work
	6.1 Record and Replay for Industrial Apps
	6.2 Efficiency Support for Testing

	7 Conclusion
	References

