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ABSTRACT
Sequential recommendation (SR) models are typically trained on

user-item interactions which are affected by the system exposure

bias, leading to the user preference learned from the biased SRmodel

not being fully consistent with the true user preference. Exposure

bias refers to the fact that user interactions are dependent upon

the partial items exposed to the user. Existing debiasing methods

do not make full use of the system exposure data and suffer from

sub-optimal recommendation performance and high variance.

In this paper, we propose to debias sequential recommenders

through Distributionally Robust Optimization (DRO) over system

exposure data. The key idea is to utilize DRO to optimize the worst-

case error over an uncertainty set to safeguard the model against

distributional discrepancy caused by the exposure bias. The main

challenge to apply DRO for exposure debiasing in sequential recom-

mendation lies in how to construct the uncertainty set and avoid

the overestimation of user preference on biased samples. Moreover,

since the test set could also be affected by the exposure bias, how to

evaluate the debiasing effect is also an open question. To this end,

we first introduce an exposure simulator trained upon the system

exposure data to calculate the exposure distribution, which is then

regarded as the nominal distribution to construct the uncertainty set

of DRO. Then, we introduce a penalty to items with high exposure

probability to avoid the overestimation of user preference for bi-

ased samples. Finally, we design a debiased self-normalized inverse
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propensity score (SNIPS) evaluator for evaluating the debiasing ef-

fect on the biased offline test set. We conduct extensive experiments

on two real-world datasets to verify the effectiveness of the pro-

posed methods. Experimental results demonstrate the superior ex-

posure debiasing performance of proposedmethods. Codes and data

are available at https://github.com/nancheng58/DebiasedSR_DRO.
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1 INTRODUCTION
Over the past decade, sequential recommendation (SR) has achieved

great success in the field of recommender systems (RSs) to predict

user future interests from sequential user-item interactions [8, 15,

47, 48]. However, recent research has revealed that RSs face different

intractable bias issues (e.g., popularity bias [49], position bias [5],

selection bias [38] and exposure bias [17, 29, 45]). In particular,

exposure bias occurswhen user interactions are dependent upon the

partial items exposed to the user, also known as the "previous model

bias" [22]. Since the RS model is trained on user-item interaction

data, the previously deployed RS model will dramatically impact

the current one, and the exposed data in the current model is largely

dependent on the previous recommendation policy, resulting in

a biased feedback loop. The RS may inadvertently exacerbate the

bias since the agent is trained using biased interaction data, which

leads to false predictions about user true preference. As shown in
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Figure 1: Illustration of the user preference distribution gap
(a) and our solution through DRO framework (b).

Fig. 1a, the user preference learned from exposure biased data is

not fully consistent with the distribution of true user preference.

Existing methods mainly utilize the inverse propensity score (IPS)

to perform exposure debias [6, 7, 17, 23, 29, 37, 39, 44]. However,

we argue that such kinds of methods do not make full use of system

exposure data [43] and suffer from unbounded high variance [1, 50].

Distributionally Robust Optimization. In this paper, we pro-

pose to leverage Distributionally Robust Optimization (DRO) [26, 28,

31, 32, 46, 52] to perform debiased sequential recommendation. The

motivation to utilize DRO is that DRO aims to optimize the worst-

case error over an uncertainty set to safeguard the model against

potential distributional shifts within the uncertainty set [31], which

naturally fits the needs of debiasing sequential recommendation.

Besides, DRO also provides more stable and robust model training

compared with high variance IPS-based methods. More specifically,

to address the issue of preference discrepancy, the uncertainty set

is required lying around the true user preference distribution. A

reasonable approach to construct the uncertainty set is to intro-

duce the nominal distribution [16, 26, 31] which contains the prior

knowledge regarding the true user preference, as shown in Fig. 1b.

Here, we adopt the system exposure distribution as the nominal

distribution. The insight behind this choice lies in the following

points: 1) system exposure can be viewed as the user preference

from the recommender perspective and lies around the true user

preference; and 2) system exposure contains prior knowledge about

both the recommender exposure mechanism and the true user pref-

erence distribution. Besides, since exposure bias occurs when a

recommender system exposes items that are deemed by the system

as preferred by a user but are not actually liked by the user, there

is an overestimation of user preference on biased samples. Finally,

due to the unavailability of unbiased sequential recommendation

datasets [7], how to evaluate the debiasing effect on the offline

biased test set is also a problem. To this end, this paper aims to

address the following research challenges:

Research challenges. i). How to model the system exposure dis-

tribution as the nominal distribution of DRO? To address this chal-

lenge, we pre-train an exposure simulator by modeling the previous

system behavior data (i.e., exposed items). The task of simulating

system exposure is challenging since the exposure mechanism typ-

ically involves the combination of multiple recommenders. Besides,

service providers frequently prioritize the recommendation of pop-

ular (hot) items, further complicating the process of simulating. To

this end, we model the exposure distribution by the mixture of mul-

tiple recommender models
1
. Remarkably, this paper represents the

first attempt, to the best of our knowledge, to model the exposure

distribution explicitly in the context of sequential recommendation.

ii). How to eliminate the overestimation of user preference on

biased samples? For this challenge, we impose a penalty on items

that the system deems as highly preferred by the user. This penalty

can reduce the influence of such items and enable the system to

make more accurate predictions of user preference. To more ac-

curately identify samples with exposure bias, we penalize items

according to their exposure distribution, applying a larger penalty

to items with high exposure probabilities.

iii). How to evaluate the debiasing effect on the offline biased

test set? For this challenge, we design a self-normalized inverse

propensity score (SNIPS) [30, 34, 45] evaluator to evaluate the de-

biasing effect on the biased test set. The idea of SNIPS is to down-

weight frequently exposed samples and up-weight the rare ones.

Here we treat the exposure probability of each item as the corre-

sponding propensity score. Nevertheless, using the prediction of

the pre-trained exposure simulator as exposure probability may

cause potential data leakage for evaluation. To solve this issue, we

construct an extra exposure simulator based on another unseen

part of the recommender exposure to generate the propensity score.

Experiments. Extensive experiments and analyses on two real-

world datasets demonstrate the effectiveness of the proposed frame-

work. We hope this work can raise more community concern re-

garding improving the recommenders from the system behavior

perspective other than just focusing on debiasing from the user

behavior perspective.

Contributions. To summarize, the main contributions are:

• We propose to use Distributionally Robust Optimization to con-

duct exposure debiasing in sequential recommendation.

• In contrast to only considering debiasing from the user perspec-

tive, we incorporate the system behavior and alleviate the expo-

sure bias from perspectives of both users and systems.

• We design a debiased self-normalized inverse propensity score

(SNIPS) evaluator for evaluating the debiasing sequential recom-

mendation performance in the biased test set.

2 RELATEDWORK
In this section, we provide a literature review regarding sequential

recommendation and exposure debiasing.

2.1 Sequential Recommendation
Recently, sequential recommendation (SR) has become a hot re-

search topic. Compared with the other task in recommendation

[20, 24], the SR focuses on capturing the item’s chronological cor-

relations. Many sequential recommender methods have been pro-

posed, such as methods based on the Markov Chain [11, 27] and

factorization methods [14]. Over the past few years, plenty of deep

learning-based SR models have emerged, including Recurrent Neu-

ral Networks (RNNs)-based methods [12, 13], Convolutional Neural

1
In this paper, we utilize three recommender models to model the sequential exposure

distribution. We leave the investigation of more advanced exposure simulator as one

of our future works.
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Networks (CNNs)-based methods [47], and attention-based meth-

ods [18, 21]. Besides, Graph Neural Networks (GNNs) also demon-

strated their capability to represent user-item high-order interac-

tions in the SR. Plenty of graph-based SR models have emerged,

such as SR-GNN [41], UGrec [36], and SURGE [2]. Casual inference

[39], reinforcement learning [42], and self-supervised learning [51]

also demonstrated the effectiveness to enhance SR.

In this paper, instead of designing a new recommender model,

we focus on mitigating the impact of exposure bias in the SR. To this

end, we propose a model-agnostic debiasing framework and adopt

two representative models, SASRec and GRU4Rec, as backbone

sequential recommendation models for our experiments.

2.2 Exposure Debiasing in RSs
Exposure bias, also known as "previous model bias" [22], occurs

when user interactions are dependent upon the partial items ex-

posed to the user. As it is not clear whether a lack of interaction

between a user and an item is due to genuine disinterest or simply

a consequence of no exposure, a non-exposed item may actually be

favored by the user but unable to be interacted with. Exposure bias

would mislead both the model’s training and evaluation [3]. The

common approach for debiasing recommender system evaluation is

incorporating the well-known Inverse Propensity Scoring (IPS) [30]

into the ranking evaluation metrics. More specifically, the key idea

of IPS-based evaluation is that items are down-weighted by their

propensity in the evaluation metrics. For instance, [45] proposes

an IPS-based unbiased evaluator to down-weight the commonly

observed interactions, while up-weighting the rare ones. Further-

more, various strategies are being used to mitigate exposure bias

during the training phase. In early works, researchers aim to in-

tegrate a measure of confidence into the unobserved interactions

instead of considering them as irrelevant. For example, [25] utilizes

user activity (e.g., the number of interacted items) to weigh the

negative interactions. [29] argues that early methods can not ad-

dress exposure bias entirely and designed the IPS-based unbiased

estimator in the training phase to perform debiasing. [17] proposes

an exposure-based propensity matrix factorization framework to

counteract the exposure bias.

Recently, there have been some works [7, 39, 44] to remedy bias

in SR. Since the interaction distribution in SR evolves over time, it

is reasonable to assume that exposure propensities also vary over

time [7]. Thus, the traditional IPS does not applicable to SR because

it fails to account for the temporal nature of the problem. To this

end, [39] uses GRU [4] to estimate temporal IPS, and derived an

IPS-based loss function via potential latent confounders in RS. [44]

estimates the propensity scores with two GRUs from the views of

items and users in SR. [7] proposes a temporal IPS-based framework

for debiasing the Cloze task [33] of SR.

While existing methods have explored alleviating the exposure

bias problem, they only rely on user interaction data to estimate the

exposure policies and neglect the system perspective. In this work,

we propose to simulate the exposure mechanism of the real-world

recommendation system by considering both interacted data from

the user perspective and exposure data from the system perspective.

Besides, compared with the high variance IPS, the adopted DRO

framework provides more robust and stable model training. To the

best of our knowledge, our work is the first attempt to utilize DRO

for exposure debiasing in sequential recommendation.

3 NOTATIONS AND PROBLEM FORMULATION
Sequential recommendation. LetU and I denote the user set

and the item set, respectively, where 𝑢 ∈ U denotes a user and

𝑣 ∈ I denotes an item. We use 𝑆𝑢=(𝑣𝑢
1
, 𝑣𝑢

2
, ..., 𝑣𝑢𝑡 ) to denote the

sequence of user 𝑢’s previous interactions (e.g., views, clicks, or

purchases) in the sequence, where 𝑣𝑢
𝑗
is the 𝑗-th item user 𝑢 has

interacted with, 𝑡 is the length of the interaction sequence. SR aims

to predict the next item that the user is likely to interact with at

the (𝑡 + 1)-th step, which can be formulated as the estimation of

𝑃 (𝑣𝑡+1 |𝑆𝑢 ), where 𝑃 denotes the user’s preference score for the

item 𝑣 in the step (𝑡 + 1). The prediction error is measured by the

prevalent Binary Cross Entropy (BCE) [18, 51] loss:

Lrec=−
∑︁
𝑢∈U

∑︁
𝑗∈[2,...,𝑡 ]

[log𝜎
(
𝑃

(
𝑣+𝑗 |𝑆

𝑢
<𝑗

))
+log𝜎

(
1 −𝑃

(
𝑣−𝑗 |𝑆

𝑢
<𝑗

))
], (1)

where 𝑣+
𝑗
and 𝑣−

𝑗
denote the positive sample and negative sample

at the 𝑗-th step, respectively. The 𝑆𝑢
< 𝑗

denotes the sequence of user

𝑢 before 𝑗-th step. 𝜎 denotes the Sigmoid activation function.

System exposure data. Compared with the sparse user inter-

action data, the large volume of exposure data generated by the

recommender receives relatively less research attention. Given an

𝑛-length exposure item sequence 𝐸𝑢 = (𝑒𝑢
1
, 𝑒𝑢
2
, ..., 𝑒𝑢𝑛 ), where 𝑒𝑢𝑗

represents the 𝑗-th item exposed to user 𝑢 and 𝑛 is the length of

exposure sequence. For a user 𝑢, the user interaction data {𝑆𝑢 } is
a subset of {𝐸𝑢 } since the exposure data include both interacted

and non-interacted but exposed items. The exposed items in sys-

tem exposure data are selected by the recommender and thus can

be regarded as a kind of system behavior data. In this paper, we

construct an exposure simulator by modeling the system behavior,

aiming to simulate the system exposure distribution.

Task formulation. The task of this paper is given the user-item

interaction sequence 𝑆𝑢 and the system exposure sequence 𝐸𝑢 ,

eliminating the impact of exposure bias and generating the recom-

mendation list for user 𝑢.

4 METHODOLOGY
In this section, we present the detail of our proposed debiasing

framework. Fig. 2 provides the overview of our methods, which

includes both the user and system perspectives. From the user per-
spective, users observe the exposed items and interact with specific

parts of them, generating biased user-item interaction data. There-

fore, the sequential recommender trained on such biased data would

lead to biased user preference. From the system perspective, we

model the distribution of exposure data by pre-training an expo-

sure simulator to mimic the real-world exposure mechanism. The

exposure simulator aims to provide a system behavior distribution

(i.e., the exposure probability of each item). We then utilize the

system exposure distribution as the nominal distribution of Distri-

butionally Robust Optimization (DRO) to infer the debiased user

preference and generate sequential recommendation. It is impor-

tant to note that the sequential recommender is jointly trained by

user interaction data and the DRO method, the exposure model is
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only pre-trained by system exposure data and its parameters are

fixed in the inference stage.

4.1 Distributionally Robust Optimization
Distributionally Robust Optimization (DRO) [26, 28, 32] has been

widely adopted as a solution to the out-of-distribution (OOD) [31]

generalization problem [40]. The key idea of DRO is to optimize

the worst-case error over an uncertainty set to safeguard the model

against potential distributional shifts within the uncertainty set [31].

The SR model is typically trained on biased user-item interactions.

It means that the preference generated by the biased recommender

may not align with the true user preference. In this paper, we

employ DRO to alleviate the impact of the distribution discrepancy

between biased user preference and unknown true user preference

in SR. The problem of distribution shifting is even more pronounced

in the context of SR, where users’ preference dynamically change.

DRO replaces the expected risk under the empirical distribution

(i.e., biased interaction distribution) with the worst expected risk

over a set of uncertain distributions:

L𝐷𝑅𝑂 (𝜃 ) = max

ˆD∈Q
E(𝑆𝑢 ,𝑣)∼ ˆDℓ (𝑆

𝑢 , 𝑣 ;𝜃 ), (2)

where 𝜃 refers to the parameters to be optimized and ℓ (𝑆𝑢 , 𝑣 ;𝜃 ) is
the surrogate loss and will be detailed in section 4.3. The DRO loss

function L𝐷𝑅𝑂 takes the maximum over all distributions contained

in a pre-defined uncertainty set Q. L𝐷𝑅𝑂 can be interpreted as an

upper bound estimation of the average loss on the true user pref-

erence distribution if the distribution lies in Q. A viable strategy

is to form the uncertainty set Q by stipulating that the distribu-

tion is within a certain proximity to the nominal distribution 𝑞0,

which is an approximation of the true user preference distribu-

tion and encapsulates important information about user prefer-

ence. To this end, we introduce the distance metric 𝐷 (i.e., the

Kullback–Leibler Divergence) to the DRO loss function in Eq.(2),

so Q = {𝑞 : 𝐷 (𝑞∥𝑞0) ≤ 𝜂}, where 𝜂 is the robust radius to control

the size of Q. We can then reformulate the DRO loss function as:

L
′
𝐷𝑅𝑂 (𝜃 ) = max

𝐷 (𝑞 ∥𝑞0 )≤𝜂
E(𝑆𝑢 ,𝑣)∼𝑞ℓ (𝑆𝑢 , 𝑣 ;𝜃 ), (3)

To address the issue of preference discrepancy, the nominal distribu-

tion is required to lie around the true preference distribution. In this

paper, we adopt system exposure distribution as the nominal distri-

bution. The rationale behind this choice lies in the following points:

1) system exposure can be viewed as the user preference from the

system perspective and lying around the true user preference, and

2) system exposure distribution contains prior knowledge about

the recommender exposure mechanism that can be leveraged to

perform exposure debiasing. Specifically, the exposure probability

for item 𝑣 is denoted as 𝑞0 (𝑆𝑢 , 𝑣).

4.2 Modeling Exposure Distribution
The system exposure distribution can be considered as the system

behavior patterns and reflects the system’s understanding of user

preference. Existing exposure debiasing approaches in [17, 29, 45]

rely solely on observed interaction data to estimate the unobserved

exposuremechanism in implicit feedback recommendation from the

user perspective. However, we argue that these approaches suffer

from sub-optimal performance as they did not introduce the large

volume of exposure data from the system perspective. In contrast

to existing methods, we simulate the exposure mechanism of the

real-world recommender system by considering both interacted

data and exposed but non-interacted data.

Simulating the real-world exposure mechanism is a daunting

task due to two key factors: 1) the real-world exposure mecha-

nism often entails a complex interplay of multiple recommenders,

making it challenging to accurately model the precise exposure of

individual items; 2) recommendation service providers tend to pri-

oritize popular items to increase the traffic, further complicating the

simulation process. To this end, we develop an exposure simulator

that consists the mixture of multiple recommenders. The simulator

comprises a Transformer-based [35] recommendation model (SAS-

Rec [18]), a GRU-based [4] recommendation model (GRU4Rec [13]),

and a popularity-based recommender that boosts popular items.

The three recommenders in the simulator can be replaced by other

recommendation methods. We leave the investigation of a more

advanced exposure mechanism as one of our future works.

4.2.1 Training of the exposure simulator. For the training stage, it

is worth noting that the training of the exposure simulator differs

from that of sequential recommendation, primarily because:

• The input of the exposure simulator in the training stage is the

system exposure data while the input for sequential recommen-

dation is the user interactions.
• The output of the exposure simulator in the training stage is

the system exposure distribution while the output of sequential

recommendation is the predicted user interests.
In the training stage, we use the system exposure data to train the

SASRec model (denoted as Expo-SASRec) and the GRU4Rec model

(denoted as Expo-GRU4Rec), separately. Then the parameters in the

pre-trained Expo-SASRec and Expo-GRU4Rec remain fixed in the

following stages to provide stable exposure simulation. More specif-

ically, the Expo-SASRec model is based on a Transformer decoder

[18]. Expo-GRU4Rec is an RNN-based sequential recommender that

uses GRU to encode users’ interaction sequences, consisting of an

embedding layer, recurrent layers, and fully connected layers.

4.2.2 Exposure distribution inference. It is important to note that,

in the inference stage, the input to the exposure simulator is the user

interaction data rather than system exposure data. The motivation

is that during inference, the system exposure distribution should

depend on which items the user have interacted with. The goal of

such design is to gain insights into user sequential interests from a

system perspective.

Given a user-item interaction sequence 𝑆𝑢=(𝑣𝑢
1
, 𝑣𝑢

2
, ..., 𝑣𝑢𝑡 ), the

hidden state of the Expo-SASRec encoder in the last timestamp

serves as the latent representation of the input sequence: F𝑢
𝑡,1

=

Expo-SASRec(𝑆𝑢 ). F𝑢
𝑡,1

can be viewed as the user’s potential prefer-

ence representation from the system’s (Expo-SASRec) perspective

at the 𝑡-th step. Similarly, we also leverage Expo-GRU4Rec to en-

code user interaction data, The exposure representation through

Expo-GRU4Rec is denoted as: F𝑢
𝑡,2

= Expo-GRU4Rec(𝑆𝑢 ). Addition-
ally, we introduce a popularity-based model to expose more popular

items. We define the popularity score of item 𝑖 as 𝑓𝑖 =
𝑠𝑖

max𝑗 ∈I 𝑠 𝑗
where 𝑠𝑖 denotes that item 𝑖 appears 𝑠𝑖 times in the exposure data.

Finally, we calculate the recommender exposure score for the item
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Figure 2: Framework overview. For the user side, users observe exposed items from previous recommenders, generating biased
interactions. For the system side, exposure data is used to train the exposure simulator and obtain the exposure distribution.
During inference, the biased user preference and the system exposure distribution are fed to the DRO block for debiasing.

𝑣 at the step (𝑡+1) as follows:

𝜇0 (𝑆𝑢 , 𝑣𝑡+1 = 𝑣) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (e⊤𝑣 · F𝑢𝑡,1) + 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (e
⊤
𝑣 · F𝑢𝑡,2)

+ 𝛽 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑓𝑣),
(4)

where e𝑣 is the embedding of item 𝑣 and 𝛽 is a hyperparameter.

We calculate the exposure distribution as follows:

𝑞0 (𝑆𝑢 , 𝑣) =
𝜇0 (𝑆𝑢 , 𝑣)∑
𝑖∈I 𝜇0 (𝑆𝑢 , 𝑖)

. (5)

A high exposure probability 𝑞0 (𝑆𝑢 , 𝑣) indicates a significant level of
exposure. In summary, the proposed method of modeling exposure

distribution offers the following advantages:

• Instead of relying on statistical methods to estimate exposure

policy, we choose to explicitly model the exposure distribution

through exposure data. Our methods provide more adaptive mod-

eling of exposure distribution.

• The simulator is based on the mixture of sequential models and

item popularity, which is more effective to capture both sequen-

tial dynamics and popularity effects in the exposure distribution.

4.3 Mitigating Preference Overestimation
From a system perspective, exposure bias occurs when a recom-

mender system exposes items that are deemed by the system as

preferred by a user but are not actually preferred by the user, result-

ing in the failure to expose items that are actually preferred by the

user. Therefore previous system exposure can not accurately obtain

current user preference, i.e., the system assigns a higher score to an

item than the user’s true preference. In other words, the system ex-

posure distribution may overestimate the scores of biased samples

that are not aligned with the user’s true preference. To solve this

issue, we optimize the recommender to mitigate the risk of pref-

erence overestimation and pursue conservative recommendation

under the DRO framework.

Note that minimizing the DRO loss is an intractable min-max

problem. To address this limitation, we utilize the Kullback-Leibler

(KL) Divergence as the metric for measuring distance denoted as

𝐷 in Eq.(3). Through this approach, we can derive a closed-form

expression for Eq.(3) as a single-layer optimization problem as:

L
′′
𝐷𝑅𝑂 (𝜃 ) = logE(𝑆𝑢 ,𝑣)∼𝑞0𝑒

ℓ (𝑆𝑢 ,𝑣;𝜃 ) . (6)

For detailed proof of the reformulation, please refer to Appendix

A.1. The surrogate loss ℓ (𝑆𝑢 , 𝑣 ;𝜃 ) is also called the risk function

of DRO. The risk can be categorized into the following two cases:

1) if (𝑆𝑢 , 𝑣) is a positive sample, it means that the user is possibly

to like the item, and thus the risk is high if the sample receives a

lower prediction score; 2) if (𝑆𝑢 , 𝑣) is a negative sample, a higher

prediction score denotes a higher risk of preference overestimation.

To this end, we define the surrogate loss ℓ (𝑆𝑢 , 𝑣 ;𝜃 ) as follows:

ℓ (𝑆𝑢 , 𝑣 ;𝜃 ) =
{

1 − 𝑦 (𝑆𝑢 , 𝑣 ;𝜃 ), if (𝑆𝑢 , 𝑣) is a positive
𝑦 (𝑆𝑢 , 𝑣 ;𝜃 ), if (𝑆𝑢 , 𝑣) is a negative, (7)

where 𝑦 (𝑆𝑢 , 𝑣 ;𝜃 ) denotes the prediction score of the (𝑆𝑢 , 𝑣) pair in
the DRO block. In our setting, the number of negative samples is

|I | − 1, which encompasses all items apart from positive samples.

We can see optimizing Eq.(6) equals to sample (𝑆𝑢 , 𝑣) from the

nominal exposure distribution 𝑞0, then if the sampled (𝑆𝑢 , 𝑣) pair
is a negative sample, we would decrease its predicted score. Such

the operation can help the model to mitigate the risk of preference

overestimation.

To conclude, optimizing Eq.(6) can enhance the robustness of

the recommender under the dynamic exposure bias, but pursuing

robustness without considering recommendation accuracy may

significantly compromise the system’s performance. To this end, we

jointly consider the recommender robustness in Eq.(6) and accuracy

in Eq.(1), and the final optimization objective can be defined as:

L 𝑗𝑜𝑖𝑛𝑡 = L𝑟𝑒𝑐 + 𝑎L
′′
𝐷𝑅𝑂

= L𝑟𝑒𝑐 + 𝑎
∑︁
𝑢∈U

∑︁
𝑗∈[2,...,𝑡 ]

logE(𝑆𝑢
< 𝑗
,𝑣)∼𝑞0𝑒

ℓ (𝑆𝑢< 𝑗 ,𝑣;𝜃 ) , (8)

where𝑎 is a hyperparameter, 𝑣+ and 𝑣− denote positive and negative

samples, respectively. Note that the 𝑃 in L𝑟𝑒𝑐 and 𝑦 in Eq.(7) are

both predicted preference scores. 𝑃 is calculated from the target

sequential recommender, while 𝑦 is calculated from a model which

has a separate final prediction layer and shares all other parameters

with the target sequential recommender. The joint optimization

objective can be viewed as two tasks: recommendation and exposure
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debiasing. By optimizing the recommender using the joint loss

function, we can approximate the user’s true preference meanwhile

mitigate the exposure bias. It is worth noting that the L 𝑗𝑜𝑖𝑛𝑡 can

serve as a surrogate for any sequential recommendation model,

making this approach model-agnostic.

4.4 The Debiased Evaluator
To evaluate the debiasing effect, we need reliable debiased test

set [7, 29]. However, most existing benchmark test sets are also

affected by the exposure bias [7]. An ideal case is to access complete

observations, i.e., user 𝑢 has the chance to interact with the entire

set of items (i.e., I). Therefore, the ideal recommendation evaluator

calculates the following reward 𝑅
ideal

(𝑍 ) for the predicted item

ranking 𝑍 :

𝑅
ideal

(𝑍 ) = 1

|U|
∑︁
𝑢∈U

1

|I |
∑︁
𝑖∈I

𝑐

(
𝑍𝑢,𝑖

)
, (9)

where 𝑖 ∈ I is an item, and 𝑍𝑢, 𝑖 is the predicted ranking of item

𝑖 (among all the items in I) for user 𝑢. 𝑐 (·) represents any of the

top-𝐾 scoring metrics, such as Recall@𝐾 or NDCG@𝐾 .

However, users have no chance to interact with the entire set

of items, leading to biased observations. To achieve a debiased

evaluation from biased observations, we employ a debiased self-

normalized inverse propensity score (SNIPS). The idea is to down-

weight frequently exposed interactions and up-weight the rare ones

in the test set. The SNIPS evaluator is defined as follows:

𝑅SNIPS (𝑍 |𝜌) =
1∑

𝑢∈U
1

𝜌𝑘𝑣

∑︁
𝑢∈U

𝑐 (𝑍𝑢, 𝑣)
𝜌𝑘𝑣

=
1∑

𝑢∈U
1

𝜌𝑘𝑣

∑︁
𝑢∈U

∑︁
𝑖∈I

𝑐 (𝑍𝑢, 𝑖 )
𝜌𝑘
𝑖

·𝑂𝑢,𝑖 ,
(10)

where 𝜌 is the propensity score of the SNIPS evaluator, 𝑣 is the

target item of each user 𝑢, and 𝑂𝑢,𝑖 is an indicator function to

indicate whether the interaction (𝑢, 𝑖) is observed (𝑂𝑢,𝑖 = 1 if (𝑢, 𝑖)
is observed, and 𝑂𝑢,𝑖 = 0 otherwise). Moreover, we propose the

inclusion of a hyperparameter𝑘 ∈ [0, 1], which enables control over
the level of the propensity score. We prove that given a propensity

assignment 𝜌 , 𝑅SNIPS (𝑍 |𝜌) is a debiased estimator (More details of

proof can be found in Appendix A.2.):

E𝑂[𝑅SNIPS(𝑍 |𝜌)] =
|U| · |I|∑
𝑢∈U

1

𝜌𝑘𝑣

∑︁
𝑢∈U

∑︁
𝑖∈I

1

𝜌1−𝑘
𝑖

· E𝑂 [𝑅
ideal

(𝑍 )] .
(11)

The term
|U | · |I |∑
𝑢∈U

1

𝜌𝑘𝑣

is a coefficient which not affect the unbiasedness

of the evaluator. The evaluator is a conventional biased one when

the parameter 𝑘 is set to 0. When the parameter 𝑘 is set to 1, the

evaluator is completely unbiased, but this comes at the cost of

increased variance of the propensity score, manifesting as noisier

or less precise estimates. In our experiments, 𝑘 is set to 0.1.

The key challenge in computing 𝑅𝑆𝑁𝐼𝑃𝑆 (𝑍 ) is to predict the

propensity score 𝜌 . Here we treat the exposure probability of each

item as the corresponding propensity score since we aim to evaluate

the exposure debiasing performance using the SNIPS evaluator. Nev-

ertheless, using the prediction of the pre-trained exposure model

(as detailed in section 4.2) as exposure probability may cause train-

ing data leakage. More concretely, if the exposure model is trained

by all the system exposure data, the testing user interaction data

would be leaked because all the test data is contained in exposure

data. To solve this issue, we construct an extra evaluation expo-

sure simulator based on another unseen part of system exposure to

predict the exposure probability in the testing phase.

5 EXPERIMENTS
In this section, we conduct experiments to demonstrate the effec-

tiveness of the proposed debiasing framework. We aim to answer

the following research questions:

RQ1 How does our proposed debiasing framework perform com-

pared to existing debiasing methods?

RQ2 How does the construction of the exposure simulator affect

debiasing performance?

RQ3 Howdoes the penalty term in theDRO loss affect the debiasing

performance?

5.1 Dataset Description
We choose two real-world datasets: ZhihuRec

2
[10] and Tenrec

3
[48]

to conduct the experiments. Both datasets contain user interaction

data (e.g., clicks) and system exposure data (e.g., impressions). All

items in the sequence are arranged chronologically based on their

timestamp. More details can be found in Appendix B.

5.2 Evaluation Protocols
We employ the debiased self-normalized inverse propensity score

(SNIPS) [30, 34, 45] evaluator as detailed in section 4.4 to gauge the

effectiveness of debiasing. We adopt Recall and NDCG as the 𝑐 (·)
function metrics to evaluate the ranking performance. We report

the results with varying values of𝐾 ∈ {5, 10, 20} for both metrics. To

prevent information leakage, it is crucial to avoid any overlap in the

system exposure data used for constructing the exposure simulator

and the evaluation simulator. We split the system exposure data into

two parts: with 70% being used to construct the exposure simulator

and the remaining 30% for constructing the evaluation simulator.

We adopt cross-validation to evaluate the performance of the

models (including the target recommender, exposure simulator, and

evaluation simulator). For all models, we choose 80% users’ data for

training, 10% users’ data for validation, and the rest 10% users’ data

for test. Such user-based data split can effectively avoid potential

information leakage.

5.3 Implementation Detail
Backbone models. The proposed method is model-agnostic, we

adopt the following representative sequential recommender models

as backbone models for our experiments:

• GRU4Rec [13] is an RNN-based sequential recommender, which

leverages GRU [4] to encode users’ interaction sequences.

• SASRec [18] leverages a Transformer decoder to generate se-

quential recommendation.

2
https://github.com/THUIR/ZhihuRec-Dataset

3
https://github.com/yuangh-x/2022-NIPS-Tenrec

https://github.com/THUIR/ZhihuRec-Dataset
https://github.com/yuangh-x/2022-NIPS-Tenrec
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See Appendix C for hyperparameter settings of backbone models.

Baselines. We compare the exposure debiasing performance of

our method with the following state-of-the-art debiasing methods:

• IPS [30, 53]: IPS was first developed by [30] to eliminate popular-

ity bias by re-weighing each interaction according to propensity

score.

• IPS-C [1, 50]: IPS-C adds a max-clipping operation on the IPS

value to reduce the variance of IPS.

• RelMF [29]: The method aims to use an effective unbiased esti-

mator to correct the matching score between items and users.

Note that the propensity scores in the original paper are solely

estimated by the user interaction data and fail to account for the

temporal nature of the problem. To solve this issue and adapt these

methods to exposure debiasing in SR, we define propensity scores

𝑝 (𝑣 |𝑆𝑢 ) = 𝑞0 (𝑆𝑢 , 𝑣), where 𝑞0 is the system exposure distribution

as detailed in subsection 4.2. Following [50], the clipping severity in

IPS-C is set to the median exposure probability of all the items. Be-

sides, we also include the normal training of GRU4Rec and SASRec

without applying any debiasing methods for comparison purposes.

5.4 Overall Debiasing Performance (RQ1)
Table 1 shows the overall debiasing performance. We observe that

the DRO method outperforms both vanilla backbone models and

debiasing baselines on two datasets in most cases. These findings

suggest that DRO is able to effectively mitigate the risk of overesti-

mating biased samples and conduct exposure debiasing. Note that

the data is partitioned by the user, with no overlap between the

users in the training and test sets. In other words, user preference

in the training and test data could have shifted in the sequential

recommendation scenario. If the recommender overly relies on the

preference learned from training users, it may raise the overesti-

mation issue of the test users’ preference and result in sub-optimal

performance. Compared with other methods, the proposed DRO

framework compels the model to be less reliant on the training data

distribution and to make more conservative predictions through the

surrogate loss, resulting in better recommendation performance.

Exposure bias can amplify popularity bias, resulting in relevant

but unpopular items being overlooked and not recommended [3, 9].

Therefore, we also conduct experiments to see whether the pro-

posed framework generates more diverse recommendation. We use

SASRec as the backbonemodel. The coveragemetric: Coverage@𝐾 =
|∪𝑢∈ test 𝑙𝑖𝑠𝑡@𝐾 (𝑢 ) |

| I | , where 𝑙𝑖𝑠𝑡@𝐾 (𝑢) is the top-𝐾 recommendation

list for user 𝑢, is used to measure the recommendation diversity.

As shown in Fig. 3, the reported results indicate that the proposed

method can significantly help to alleviate popularity bias. We can

see that the DRO, IPS, and IPS-C methods outperform the vanilla

backbone model (SASRec) on both datasets. Specifically, the IPS

method achieves the best performance. However, as reported in

Table 1, the accuracy of the IPS method cannot achieve satisfying

results. Compared with vanilla SASRec, the DRO method achieves

better coverage performance, because the recommender trained

by DRO tends to make a conservative recommendation regarding

biased samples. More concretely, the DRO method tends to miti-

gate the risk of continuously recommending high-exposed items.

It indicates that alleviating exposure bias could potentially reduce
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Figure 3: Popularity debiasing effect with different methods.

popularity bias as well. It should be noted that the exposure simu-

lator includes the use of a popularity-based recommender to boost

popular items, which may also contribute to the success of these

methods in alleviating popularity bias.

To conclude, the proposed DRO can effectively alleviate both ex-

posure and popularity bias, and meanwhile generate more accurate

recommendation compared with existing IPS-based methods.

5.5 Effect of the Exposure Simulator (RQ2)
In this subsection, we conduct experiments to verify the impact

of the exposure simulator on the Tenrec dataset. We first examine

how the mixture of recommenders affects the modeling of exposure

data. It is important to accurately simulate the exposure distribu-

tion since DRO relies on the system exposure distribution to con-

struct the uncertainty set. Besides, the performance of IPS-based

methods is also reliant on the propensity, which is the exposure

probability in our setting. Table 2 shows the simulator performance

comparison. Notably, “Expo-M” denotes the exposure simulator

that combines Expo-SASRec, Expo-GRU4Rec, and popularity-based

recommenders as detailed in subsection 4.2. “Expo-G” is short for

Expo-GRU4Rec and “Expo-S” is short for Expo-SASRec. We can see

that the ”Expo-M" simulator outperforms the other single model

simulators, indicating its superior ability to accurately model the

exposure distribution.

Table 3 shows the debiasing performance comparison between

IPS-C and the proposed DRO method with different exposure simu-

lators.We can see that the debiasing performancewith the “Expo-M”

simulator achieves better performance than vanilla SASRec and

that with the “Expo-S” simulator. It indicates the “Expo-M” simula-

tor has remarkable ability to model exposure distribution and thus

provides better debiasing performance. Moreover, the performance

of the IPS-C method with the “Expo-S” simulator is inferior to that

of the vanilla SASRec recommender. It shows that establishing a

good exposure simulator for the propensity score is indispensable

for IPS-based methods.

5.6 Hyperparameter Study (RQ3)
In this subsection, we conduct experiments to demonstrate the im-

pact of the different weights of the DRO loss. We use SASRec as the

backbone recommendation model. Results on the GRU4Rec show

the same trend. As discussed in subsection 4.3, the recommender

trained by joint optimization objective (as detailed in Eq.(8)) with
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Table 1: Comaprison of debiased recommendation performance. Boldface denotes the highest score. “None”
denotes the normal training. “DRO” denotes our method.

Datasets Backbone Method Recall@5 NDCG@5 Recall@10 NDCG@10 Recall@20 NDCG@20

ZhihuRec

GRU4Rec

None 0.0094 0.0072 0.0114 0.0079 0.0231 0.0108

IPS 0.0083 0.0070 0.0137 0.0087 0.0244 0.0113
IPS-C 0.0083 0.0057 0.0114 0.0067 0.0189 0.0085

RelMF 0.0032 0.0021 0.0106 0.0046 0.0201 0.0069

DRO 0.0103 0.0076 0.0146 0.0090 0.0200 0.0104

SASRec

None 0.0119 0.0089 0.0162 0.0104 0.0241 0.0123

IPS 0.0109 0.0079 0.0210 0.0112 0.0450 0.0171

IPS-C 0.0151 0.0097 0.0174 0.0104 0.0261 0.0126

RelMF 0.0095 0.0074 0.0138 0.0088 0.0257 0.0116

DRO 0.0220 0.0131 0.0322 0.0162 0.0498 0.0205

Tenrec

GRU4Rec

None 0.0335 0.0218 0.0524 0.0280 0.0735 0.0333

IPS 0.0320 0.0210 0.0513 0.0273 0.0706 0.0322

IPS-C 0.0381 0.0244 0.0533 0.0293 0.0802 0.0361
RelMF 0.0382 0.0251 0.0523 0.0296 0.0767 0.0357

DRO 0.0336 0.0225 0.0536 0.0290 0.0748 0.0343

SASRec

None 0.0337 0.0216 0.0638 0.0313 0.1044 0.0414

IPS 0.0365 0.0223 0.0647 0.0314 0.1041 0.0414

IPS-C 0.0410 0.0266 0.0735 0.0370 0.1143 0.0473

RelMF 0.0363 0.0238 0.0499 0.0282 0.0752 0.0346

DRO 0.0517 0.0335 0.0902 0.0457 0.1439 0.0592

Table 2: Performance of exposure simulator. Boldface denotes
the highest score. “R” and “N” are short for Recall and NDCG.
“Expo-M” denotes the exposure simulator based onmixture of rec-
ommenders. “Expo-G” and “Expo-S” are short for Expo-GRU4Rec
and Expo-SASRec, respectively.

Simulator R@5 N@5 R@10 N@10 R@20 N@20

Expo-G 0.0320 0.0210 0.0513 0.0273 0.0706 0.0322

Expo-S 0.0335 0.0218 0.0524 0.0280 0.0735 0.0333

Expo-M 0.0381 0.0244 0.0533 0.0293 0.0802 0.0361

Table 3: Debiasing performance𝑤.𝑟 .𝑡 different exposure simula-
tors. Boldface denotes the highest score. “R” and “N” are short
for Recall and NDCG. “Expo-M” denotes the exposure simula-
tor based on mixture of multiple recommenders. “Expo-S” is
short for Expo-SASRec.

Simulator Method R@5 N@5 R@10 N@10 R@20 N@20

– SASRec 0.033 0.021 0.063 0.031 0.104 0.041

Expo-S

IPS-C 0.027 0.017 0.047 0.024 0.079 0.032

DRO 0.044 0.028 0.082 0.041 0.129 0.052

Expo-M

IPS-C 0.041 0.026 0.073 0.037 0.114 0.047

DRO 0.052 0.032 0.088 0.044 0.141 0.057

the suitable value of 𝑎 may approximate the user’s true preference

meanwhile mitigate the exposure bias. If 𝑎 → 0, the optimization

objective is reduced to the recommender loss, the recommender

is solely trained on biased user interactions and is likely to over-

estimate the user preference over biased samples. If 𝑎 → ∞, the

recommender would have excessive attention to perform debiasing

and lose recommendation accuracy. Fig. 4 shows the performance
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Figure 4: Effect of the weight of the DRO loss. The dash line
denotes the performance of SASRec.

of DRO with different 𝑎 tuned in the range of [0.01, 0.1, 1, 10, 100,

1000] on both datasets.
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As shown in Fig. 4a and 4b, we can observe the performance of

DRO with 𝑎 in [0.01, 0.1, 1,10] outperforms the SASRec on the Ten-

rec dataset. The results show that DRO with suitable 𝑎 can perform

exposure debiasing and better obtain user preference compared

with the backbone model SASRec. Regarding the DRO with 𝑎 in

[100, 1000], the recommendation performance drops dramatically.

The reason is that the recommender neglects user personalization

when it over-focuses on debiasing. The results on ZhihuRec are

basically the same as those in Tenrec. Different from the Tenrec, the

performance of DRO with 𝑎 = 0.01 is comparable with the SASRec

on the ZhihuRec dataset.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we have investigated the task of exposure debiasing in

sequential recommendation. We have proposed to adopt Distribu-

tionally Robust Optimization (DRO) to perform exposure debiasing

in SR. More specifically, we have introduced an exposure simula-

tor trained upon the system exposure data to calculate exposure

distribution, which is then regarded as the nominal distribution to

construct the uncertainty set of DRO. Besides, we have introduced

the penalty to items with high exposure probability to avoid the

overestimation issue for the preference scores of biased samples.

Furthermore, we have designed a debiased self-normalized inverse

propensity score (SNIPS) evaluator for evaluating the debiasing

sequential recommendation performance in the biased test set. Ex-

tensive experiments and analysis on two real-world datasets have

demonstrated the effectiveness of the proposed framework.

In future work, we plan to design more advanced exposure simu-

lators to better model the system exposure distribution. In the real-

world recommendation scenario, items are exposed page-by-page.

To this end, developing exposure simulators to model page-wise

exposure data would be a potential research direction. Additionally,

the system exposure data is also highly affected by other kinds of

biases (e.g., the popularity bias). Exploring the relationship between

exposure bias and other biases would also be an interesting research

direction. We hope this work can raise more community concern

to conduct recommendation debiasing from a more wide range of

perspectives, other than just focusing on the user interaction data.
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Appendix A PROOF OF THEOREMS
A.1 Proof 1
Proof. In this proof, we follow the deviation from [16]. Set 𝐷

as KL-divergence, minimizing the Eq. (3) can be formulated as:

min

𝜃
max

𝑞
E(𝑆𝑢 ,𝑣)∼𝑞ℓ (𝑆𝑢 , 𝑣, 𝜃 )

subject to 𝐷𝐾𝐿 (𝑞∥𝑞0) ≤ 𝜂.
(12)

Note that 𝑞0 is the nominal distribution. Assume that the distri-

butions 𝑞 and 𝑞0 have densities denoted by 𝑝 (𝑆𝑢 , 𝑣) and 𝑝0 (𝑆𝑢 , 𝑣),
respectively.

Let the Radon-Nikodym derivative 𝐿(𝑆𝑢 , 𝑣) = 𝑝 (𝑆𝑢 , 𝑣)/𝑝0 (𝑆𝑢 , 𝑣),
and by applying the change-of-measure technique, we obtain:

𝐷𝐾𝐿 (𝑞∥𝑞0) =
∫

𝑝 (𝑆𝑢 , 𝑣)
𝑝0 (𝑆𝑢 , 𝑣)

log

𝑝 (𝑆𝑢 , 𝑣)
𝑝0 (𝑆𝑢 , 𝑣)

𝑝0 (𝑆𝑢 , 𝑣)d𝑠d𝑣

=

∫
𝐿(𝑆𝑢 , 𝑣) log𝐿(𝑆𝑢 , 𝑣)𝑝0 (𝑆𝑢 , 𝑣)d𝑠d𝑣

= E(𝑆𝑢 ,𝑣)∼𝑞0 [𝐿(𝑆
𝑢 , 𝑣) log𝐿(𝑆𝑢 , 𝑣)] .

(13)

Similarly,

E(𝑆𝑢 ,𝑣)∼𝑞ℓ (𝑆𝑢 , 𝑣, 𝜃 ) = E(𝑆𝑢 ,𝑣)∼𝑞0 [ℓ (𝑆
𝑢 , 𝑣, 𝜃 )𝐿(𝑆𝑢 , 𝑣)] . (14)

Then, the inner maximization problem in Eq.(12) can be reformu-

lated as

max

𝐿
E(𝑆𝑢 ,𝑣)∼𝑞0 [ℓ (𝑆

𝑢 , 𝑣, 𝜃 )𝐿(𝑆𝑢 , 𝑣)]

subject to E(𝑆𝑢 ,𝑣)∼𝑞0 [𝐿 log𝐿] ≤ 𝜂.
(15)

To formulate the dual problem of Eq.(15), we formulate the La-

grangian functional is

𝑙 (𝛼, 𝐿) = E(𝑆𝑢 ,𝑣)∼𝑞0 [ℓ (𝑆
𝑢 , 𝑣, 𝜃 )𝐿]−𝛼 (E(𝑆𝑢 ,𝑣)∼𝑞0 [𝐿 log𝐿]−𝜂) (16)

Then, Eq.(15) is equivalent to

max

𝐿
min

𝛼≥0
𝑙 (𝛼, 𝐿) . (17)

Interchanging the order of the maximum and minimum operators,

we obtain the Lagrangian dual of Eq.(17), which is represented as

min

𝛼≥0
max

𝐿
𝑙 (𝛼, 𝐿) . (18)

The strong duality for Eq.(17) and Eq.(18) have proved in [16]. It is

easy to see the E(𝑆𝑢 ,𝑣)∼𝑞0 [𝐿] = 1. Omitting the term 𝛼𝜂, the inner

maximization problem in Eq.(18) can be expressed as

max

𝐿
E(𝑆𝑢 ,𝑣)∼𝑞0 [ℓ (𝑆

𝑢 , 𝑣, 𝜃 )𝐿 − 𝛼𝐿 log𝐿])

subject to E(𝑆𝑢 ,𝑣)∼𝑞0 [𝐿] = 1.
(19)

Define the functionals of Eq.(19)

J (𝐿) = E(𝑆𝑢 ,𝑣)∼𝑞0 [ℓ (𝑆
𝑢 , 𝑣, 𝜃 )𝐿 − 𝛼𝐿 log𝐿])

J𝑐 (𝐿) = E(𝑆𝑢 ,𝑣)∼𝑞0 [𝐿] − 1.
(20)

Let 𝐷J (𝐿(𝑆𝑢 , 𝑣)) denote the derivative of J (𝐿(𝑆𝑢 , 𝑣)), and for

any feasible direction 𝑉 (𝑆𝑢 , 𝑣) at 𝐿(𝑆𝑢 , 𝑣), we have:
𝐷J (𝐿(𝑆𝑢 , 𝑣))𝑉 (𝑆𝑢 , 𝑣)

= lim

𝑡→0

J (𝐿(𝑆𝑢 , 𝑣) + 𝑡𝑉 (𝑆𝑢 , 𝑣)) − J (𝐿(𝑆𝑢 , 𝑣))
𝑡

= lim

𝑡→0

E(𝑆𝑢 ,𝑣)∼𝑞0 [ℓ (𝑆𝑢 , 𝑣, 𝜃 ) (𝐿 + 𝑡𝑉 ) − 𝛼 (𝐿 + 𝑡𝑉 ) log(𝐿 + 𝑡𝑉 )]
𝑡

− lim

𝑡→0

E(𝑆𝑢 ,𝑣)∼𝑞0 [ℓ (𝑆𝑢 , 𝑣, 𝜃 )𝐿 − 𝛼𝐿 log𝐿]
𝑡

= E(𝑆𝑢 ,𝑣)∼𝑞0 [ℓ (𝑆
𝑢 , 𝑣, 𝜃 )𝑉 ]

−𝛼 lim

𝑡→0

E(𝑆𝑢 ,𝑣)∼𝑞0

[
(𝐿 + 𝑡𝑉 ) log(𝐿 + 𝑡𝑉 ) − 𝐿 log𝐿

𝑡

]
. (21)

Using the monotone convergence theorem, we can rearrange the

operators in Eq.(21):

𝐷J (𝐿(𝑆𝑢 , 𝑣))𝑉 (𝑆𝑢 , 𝑣)
= E(𝑆𝑢 ,𝑣)∼𝑞0 [ℓ (𝑆

𝑢 , 𝑣, 𝜃 )𝑉 ]

− 𝛼E(𝑆𝑢 ,𝑣)∼𝑞0 lim𝑡→0

[
(𝐿 + 𝑡𝑉 ) log(𝐿 + 𝑡𝑉 ) − 𝐿 log𝐿

𝑡

]
= E(𝑆𝑢 ,𝑣)∼𝑞0 [(ℓ (𝑆

𝑢 , 𝑣, 𝜃 ) − 𝛼 (log𝐿 + 1))𝑉 ] . (22)

Similarly, we have:

𝐷J𝑐 (𝐿(𝑆𝑢 , 𝑣))𝑉 = E(𝑆𝑢 ,𝑣)∼𝑞0 [𝑉 ] . (23)

We construct Lagrangian functional associated with Eq.(16) as fol-

lows:

𝑌 (𝐿, 𝜆) = E(𝑆𝑢 ,𝑣)∼𝑞0 [ℓ (𝑆
𝑢 , 𝑣, 𝜃 )𝐿 − 𝛼𝐿 log𝐿] + 𝜆(E(𝑆𝑢 ,𝑣)∼𝑞0 [𝐿] − 1)

= E(𝑆𝑢 ,𝑣)∼𝑞0 [ℓ (𝑆
𝑢 , 𝑣, 𝜃 )𝐿 − 𝛼𝐿 log𝐿 + 𝜆𝐿] − 𝜆.

(24)

Similarly, it is also straightforward to obtain that

𝐷𝑌 (𝑆𝑢 , 𝑣)𝑉 = E(𝑆𝑢 ,𝑣)∼𝑞0 [(ℓ (𝑆
𝑢 , 𝑣, 𝜃 ) − 𝛼 (log𝐿 + 1) + 𝜆)𝑉 ] . (25)

To acquire an optimal solution 𝐿∗ (𝑆𝑢 , 𝑣), let 𝐷𝑌 (𝐿(𝑆𝑢 , 𝑣)) = 0 for

the all feasible direction 𝑉 (𝑆𝑢 , 𝑣):
ℓ (𝑆𝑢 , 𝑣, 𝜃 ) − 𝛼 (log𝐿 + 1) + 𝜆 = 0. (26)

Solving the equation, we get

𝐿∗ (𝑠, 𝑣, 𝜆) = 𝑒ℓ (𝑆
𝑢 ,𝑣,𝜃 )/𝛼+(𝜆−𝛼 )/𝛼 . (27)

From Eq.(19) and Eq.(20) we have E(𝑆𝑢 ,𝑣)∼𝑞0 [𝐿∗] = 1 and J𝑐 (𝐿∗) =
0, then we can obtain 𝜆∗ = −𝛼E(𝑆𝑢 ,𝑣)∼𝑞0 [𝑒ℓ (𝑆

𝑢 ,𝑣,𝜃 )/𝛼 ] + 𝛼 . There-
fore,

𝐿∗ (𝑆𝑢 , 𝑣) = 𝐿∗ (𝑠, 𝑣, 𝜆∗) = 𝑒ℓ (𝑆
𝑢 ,𝑣,𝜃 )/𝛼

E(𝑆𝑢 ,𝑣)∼𝑞0 [𝑒ℓ (𝑆
𝑢 ,𝑣,𝜃 )/𝛼 ]

(28)

Put 𝐿∗ (𝑆𝑢 , 𝑣) into Eq.(16), we obtain the close from of Eq.(15):

𝑙∗ (𝛼, 𝐿) = 𝛼E(𝑆𝑢 ,𝑣)∼𝑞0 [𝑒
ℓ (𝑆𝑢 ,𝑣,𝜃 )/𝛼 ] + 𝛼𝜂 (29)

Finally, the 𝛼 = 1 in our setting and omitting constant terms, we

can obtain:

L
′′
𝐷𝑅𝑂 (𝜃 ) = E(𝑆𝑢 ,𝑣)∼𝑞0 [𝑒

ℓ (𝑆𝑢 ,𝑣,𝜃 ) ], (30)

which completes the proof. □
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Table 4: Dataset statistics.

Dataset ZhihuRec Tenrec

#users 7,862 31,722

#items 9,223 24,653

#impressions 771,550 1,738,116

#clicks 214,853 912,812

A.2 Proof 2
Proof. In this proof, we follow [45] to prove the following SNIPS

evaluator is a debiased evaluator.

E𝑂 [𝑅SNIPS (𝑍 |𝜌)] =
1∑

𝑢∈U
1

𝜌𝑘𝑣

∑︁
𝑢∈U

∑︁
𝑖∈I

𝑐 (𝑍𝑢, 𝑖 )
𝜌𝑘
𝑖

· E𝑂 [𝑂𝑢,𝑖 ]

=
1∑

𝑢∈U
1

𝜌𝑘𝑣

∑︁
𝑢∈U

∑︁
𝑖∈I

𝑐 (𝑍𝑢, 𝑖 )
𝜌𝑘
𝑖

· 𝜌𝑖

=
1∑

𝑢∈U
1

𝜌𝑘𝑣

∑︁
𝑢∈U

∑︁
𝑖∈I

𝑐 (𝑍𝑢, 𝑖 )
𝜌1−𝑘
𝑖

=
|U| · |I|∑
𝑢∈U

1

𝜌𝑘𝑣

∑︁
𝑢∈U

∑︁
𝑖∈I

1

𝜌1−𝑘
𝑖

· E𝑂 [𝑅
ideal

(𝑍 )] .

(31)

□

Appendix B STATISTICS OF DATASETS
In this work, we conduct experiments on two datasets, Zhihu [10]

and Tenrec [48]. Table 4 summarizes the statistics of the two datasets.

ZhihuRec. This dataset is obtained from Zhihu, a knowledge-

sharing platform. The original data includes question information,

answer information, and user profiles. Our focus is on the scenario

of answer recommendation, where a slate of answers (i.e., the items

in our setting) is presented to the user during the recommender’s

serving period. The dataset contains the show time and click time

of all answers, with a value of 0 for non-clicked answers. In total,

the dataset contains 771,550 impressions and 214,853 user clicks,

covering 9,223 items from 7,862 users.

Tenrec. This is a large-scale dataset and is collected from two feeds,

namely articles and videos, on Tenrec’s recommendation platforms.

Our primary focus for this study is on the video recommendation

scenario. The data we used comprises 1,738,116 recommended im-

pressions for 31,722 users, covering 24,653 videos and a total of

912,812 user clicks.

Appendix C REPRODUCIBILITY
Hyperparameter settings. For each user interaction, we preserve

the last 50 click items as the historical interaction sequence to avoid

too long sequences.We pad the sequencewith an additional padding

item if the sequence length is less than 50. For the system exposure,

we preserve the last 200 exposed items and pad the sequence with

an additional padding item if the sequence length is less than 200.

For a fair comparison, the item embedding size is set to 64 across

all models. We train all models with the Adam optimizer[19]. The

learning rate is tuned to 0.005. For SASRec, the number of heads

in self-attention is set to 2, with a total of 64 hidden neurons. For

GRU4Rec, the number of layers in GRU is set to 1. The size of

hidden layers in the feedforward network is also set to 64 for two

backbone models. The 𝛽 in Eq.(4) to boost popular items is set to

0.3. Each experiment is conducted 3 times and the average result is

reported.
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