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Abstract—In this paper, we designed a Convolutional Neural 
Network (CNN) for Sub-Nyquist modulation recognition and 
compare the performance Long Short-Term Memory (LSTM) 
network and Convolutional Long Short-term Deep Neural 
Network (CLDNN) respectively. Unlike conventional 
modulation recognition task that operates with Nyquist 
sampled rate, the network architectures for Sub-Nyquist 
modulation recognition were specifically designed with a 
certain number of neurons, layers, and other hyperparameters 
to effectively extract key features from Sub-Nyquist sampled 
signals and process larger volumes of data. The simulation 
results demonstrate that the CNN network has the best 
recognition accuracy of 98.01% on the GBsense dataset, 
followed by the CLDNN of 96.81% and LSTM of 87.51% 
respectively. 

Keywords- Sub-Nyquist Modulation Recognition, 
Convolutional Neural Network, Deep learning 

I.  INTRODUCTION  
As 6G wireless communication technology is further 

upgraded and expanded, higher data rates and spectrum 
efficiency with lower latency will be required. In order to 
improve spectrum efficiency, dynamic intelligent spectrum 
sharing techniques are used to enable users to make full use 
of the spectrum resources. Modulation recognition plays an 
essential role in spectrum resource analysis and 
management, primarily implemented at the receiver to 
classification the modulation of signals emitted from 
multiple sources. As a result, the transmitter needs to select 
adaptive coding and modulation scheme based on channel 
state. With the development of artificial intelligence (AI) 
techniques, deep learning (DL) method is gradually being 
applied to the task of modulation recognition, known as 
Automatic Modulation Recognition (AMR), which is 
considered to be a potentially intelligent spectrum 
management technique [1], [2]. 

Traditional methods of modulation recognition mainly 
include statistical pattern recognition based on feature 
extraction and maximum likelihood hypothesis testing based 
on decision theory, which require a large amount of a priori 
knowledge of channel parameters and have poor 
applicability. Recently, many studies have focused on how to 
use deep learning methods for the task of classifying 
modulation signals [3].  In [4], convolutional neural network 
is studied to extract features of radio signals for modulation 
classification, with significant performance improvements 

against feature-based methods. In [5], a new structure is 
proposed to combine the LSTM module and CNN module 
and takes into account the temporal characteristics of the 
signal The results show an effective improvement in 
recognition accuracy. The results shows that the CNN 
module can reduce the size of high-dimensional complex 
signal data into low-dimensional feature vectors to remove 
redundant information, and the LSTM module can be used to 
learn the temporal characteristics in low-dimensional data.  
The authors in [6] compare the performance of a variety of 
popular deep learning networks, including CNN, Residual 
Network (ResNet[7]), Densely Connected 
Network(DenseNet[8]), and Convolutional Long Short-term 
Deep Neural Network (CLDNN) in terms of signal 
recognition accuracy, the CLDNN achieving the best 
performance. The results of these studies show that there are 
great advantages in using networks applied in the image field 
and in speech recognition to identify the modulation of 
wireless signals. 

However, the modulation signal data studied previous 
were obtained based on Nyquist sampling rule. Nowadays, 
broadband wireless systems need to transmit wideband 
signals to increase data rates, which means that high 
sampling rate Analog-to-Digital Converter (ADC) is 
required, leading a significant challenge for power 
consumption, and computation overhead [9]. In order to 
relieve the sampling burden of hardware, Compressive 
Sensing (CS), a new sampling theory that can only recover 
signals from samples with a sub-Nyquist rate, was recently 
introduced [10]-[12]. With the natural sparsity of the 
broadband signal spectrum, the sub-Nyquist sampling rate 
can be lower than the Nyquist sampling rate and the original 
redundant information in the signal can be filtered out [13]. 
To enhance broadband spectrum sensing performance, deep 
learning has attracted much attention. Motivated by this, in 
this paper, we present end to end DL-based frameworks for 
Sub-Nyquist modulation recognition. Because of high order 
modulation type and multiple sampling channel, it is a 
challenge for designing and training neural network.  

II. METHODOLOGY 

A. Fundamental of CNN and LSTM 
A convolutional neural network mainly comprises of an 

input layer, convolutional layers, activation layers, and fully 
connected layers. The input layer is used to obtain the input 
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information, including original data and data pre-processed 
by other algorithms into the convolutional neural network. 
For modulation signals, each frame of the sampling signal is 
treated as a greyscale image with a channel of 1. The number 
of sample points and sampling channels are treated as the 
length and width. The convolutional layer consists of several 
convolutional kernels with different size, and the 
convolutional operation is mainly designed to extract high-
dimensional features of the data. For any input data xi (or 
outputs of previous layers), the output of convolutional layer 
is the sum of dot product as follows: 
 Netout = ∑wixi (1) 

Where wi represents weights parameters of convolutional 
kernel. During the training of the network each convolutional 
kernel learns different parameters through the back-
propagation algorithm [14] so that different detailed features 
of the data can be extracted. By adding a scalar bias b, the 
output of a convolutional layer is: 
 hbias = Netout + b (2) 

The results of the calculations for each layer of the 
network are then used as input to the activation function f as 
follows: 
 gacti = f(hbias) (3) 

The activation function introduces a non-linear element 
to the network, thus enhancing the expressive performance 
of the neural network. Commonly used activation functions 
include sigmoid, tanh and ReLU. Since ReLU function can 
perform gradient descent and back propagation more 
efficiently, avoiding the gradient explosion and gradient 
disappearance problems, and simplifying the computation 
process making it the most popular activation function in 
practice.  

The fully-connected layer acts as a classifier for the 
convolutional neural network, mapping the geographically 
distributed features of the data learned in the convolutional 
layer to each class of modulation signal. 

The LSTM units are components of recurrent neural 
networks (RNNs) that are commonly referred to as LSTM 
networks. Each LSTM unit is composed of an input gate, an 
output gate, and a forget gate, which regulate the flow of 
information in and out of the cell that stores values over time 
intervals. LSTM networks are particularly effective in 
processing, classifying, and predicting time series data, as 
such data may contain significant temporal dependencies and 
patterns.  

In this study, the CNN network is utilized to extract 
spatial features from various modulation signals, while the 
LSTM network is employed to examine the hidden features 
among temporal signals. By combining the strengths of both 
networks, more information can be obtained and the 
classification accuracy can be enhanced. 

B. Designing Network Architecture 
For CNN, the hyper parameters of dropout rate, number 

of kernels per layer and the network depth is optimized to get 
the best accuracy result. The CNN architecture comprises 
five convolutional layers for feature extraction and three 
fully connected layers for signal classification. The 
convolutional kernel size gradually decreases from large to 

small, allowing for a larger receptive field to capture more 
comprehensive feature information from the data as 
illustrated in TABLE Ⅰ. This approach yields better results as 
more information is obtained from the data.  

TABLE  Ⅰ 

CONFIGURATION OF NETWORK ARCHITECTURE 

Network Layer 
Description and Configuration 

Kernel Size Number of Units 

CNN 

Conv1 11×11 324 

Conv2 5×5 256 

Conv3 3×3 256 

Conv4 3×3 128 

Conv5 3×3 96 

 LSTM Units 

LSTM 

LSTM1 128 

LSTM2 64 

LSTM3 32 

 Fully Connected Units 

Fully 
Connected 

Dense1 256 

Dense2 128 

Dense3 13 

 
The convolutional layer in this paper includes a zero-

padding operation, which preserves the boundary 
information of the input signal data. Without padding, the 
convolution kernel would only manipulate the edge 
information of the input data once, while the intermediate 
sequence would be scanned multiple times, resulting in loss 
of information about the boundary features of the signal. 

Furthermore, to enhance the stability and performance of 
the convolutional neural network, a batch normalization 
layer is inserted after the convolutional layer and prior to the 
activation function. This layer normalizes the output of the 
convolutional layer by utilizing the mean and standard 
deviation of small batches of data. As a result, the 
intermediate outputs of the neural network are consistently 
adjusted, which increases the overall stability of the network 
at each layer.   

In the case of LSTM, the modulation signal data can be 
regarded as a one-dimensional sequence, which is fed as 
input to the network. The optimal number of hidden neurons 
is determined for each layer in the network. To achieve the 
best classification performance, three LSTM layers are 
designed and the fully connected layer parameters are set to 
the same values as those used in the CNN model. This 
allows for a comprehensive optimization of the network's 
architecture and ultimately leads to improved performance in 
classification tasks. 

Finally, for CLDNN, five convolutional layers followed 
by one LSTM layer with 80 computing units and three fully 



 

 

connected are chosen. Different number of memory cells in 
the LSTM layer are tested and this configuration can give out 
the best performance compares to other layer settings. 
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A. Introduction to the Dataset 
We use the GBsense datasets are composed of sub-

Nyquist-rate time-domain samples on GHz bandwidth 
baseband signals as the input data of our research [15], [16]. 
Data can be accessed in [17]. This dataset contains 13 types 
of modulations given an assumption of ideal noise-free 
conditions. The dataset has 156,000 1024-length frames of 
modulation signal, where 80% for training and the remainder 
for testing. For the testing set, the categorization accuracy is 
presented. Each signal frame in the dataset is organized as 
the two-dimensional array with the size of 16 × 1024, where 
the eight In-phase and Quadrature (I/Q) channels modulation 
signal are sampled with 1024 elements. 

B. Simulation results and Analysis 
As network training options, parameters are randomly 

initialized 100 epochs using the Adam optimizer. As signal 
recognition can be seen as a multi-classification problem, a 
cross-entropy function was chosen for the loss function. The 
performance is measured on a system equipped by AMD 
Ryzen 9 5900HX CPU, 32 GB RAM, and NVIDIA GeForce 
RTX 3080 GPU. 

 
Figure 1.    Accuracy of classification with different network 

In the simulation experiments, the CNN network has the 
highest recognition accuracy of 98.01%, followed by the 
CLDNN 96.81% and the LSTM 87.51% respectively as 

shown in Figure 1. It is worth noting that the recognition 
accuracy of the CLDNN network is higher than that of the 
CNN until 20th epoch, then the accuracy is consistently 
lower than that of the CNN by around 1%. Although the 
CLDNN network can capture both spatial and temporal 
features of the signal, its performance does not exceed that of 
the CNN. The LSTM network performs the lowest accuracy, 
indicating that the spatial features of the signal are more 
important and focusing on the temporal features alone does 
not yield high recognition rates. 

In addition, we investigate the effect of batch size on 
model performance. The best recognition accuracy can be 
achieved with a batch size of 32 for both CNN and CLDNN 
networks, and 64 for LSTM networks. This is due to the fact 
that too large or too small batch size can cause the network 
to easily converge to some bad local optimal points.  

Figure 2 plots the confusion matrix to demonstrate the 
accuracy of different classes of modulation signal, where the 
horizontal coordinate is the type of modulation signal 
predicted by the trained network and the vertical coordinate 
is the actual class of the signal. As shown in Figure 2(a) and 
2(b), the confusion matrices for CNN and CLDNN networks 
exhibit a clear diagonal line, indicating a high level of 
recognition accuracy. 

 
Figure 2(a).  Confusion matrix of CN 

  



 

 

Figure 2(b).  Confusion matrix of CLDNN 

Figure 2(c).  Confusion matrix of LSTM 

Figure 2(c) shows that the LSTM network exhibits 
significant recognition errors for QAM256 and QAM128 
modulation schemes. These errors are primarily due to the 
relatively small differences in amplitude and phase between 
symbols modulated using higher-order QAM. In scenarios 
with high levels of interference or noise, the recognition 
process becomes more challenging. 

IV. CONCLUSIONS 
This paper investigates the effectiveness of three 

different neural network models CNN, LSTM, and CLDNN 
in accurately identifying sub-Nyquist modulation signals. 
Our study focuses on identifying optimal training parameters 
that prevent overfitting, resulting in improved network 
performance. As for future work, introducing noise into the 

dataset will enable us to simulate a more realistic 
propagation environment. This, in turn, will allow for the 
development of more robust neural network architectures 
that can better handle signal interference. 
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	I.  Introduction
	However, the modulation signal data studied previous were obtained based on Nyquist sampling rule. Nowadays, broadband wireless systems need to transmit wideband signals to increase data rates, which means that high sampling rate Analog-to-Digital Converter (ADC) is required, leading a significant challenge for power consumption, and computation overhead [9]. In order to relieve the sampling burden of hardware, Compressive Sensing (CS), a new sampling theory that can only recover signals from samples with a sub-Nyquist rate, was recently introduced [10]-[12]. With the natural sparsity of the broadband signal spectrum, the sub-Nyquist sampling rate can be lower than the Nyquist sampling rate and the original redundant information in the signal can be filtered out [13]. To enhance broadband spectrum sensing performance, deep learning has attracted much attention. Motivated by this, in this paper, we present end to end DL-based frameworks for Sub-Nyquist modulation recognition. Because of high order modulation type and multiple sampling channel, it is a challenge for designing and training neural network. 
	As 6G wireless communication technology is further upgraded and expanded, higher data rates and spectrum efficiency with lower latency will be required. In order to improve spectrum efficiency, dynamic intelligent spectrum sharing techniques are used to enable users to make full use of the spectrum resources. Modulation recognition plays an essential role in spectrum resource analysis and management, primarily implemented at the receiver to classification the modulation of signals emitted from multiple sources. As a result, the transmitter needs to select adaptive coding and modulation scheme based on channel state. With the development of artificial intelligence (AI) techniques, deep learning (DL) method is gradually being applied to the task of modulation recognition, known as Automatic Modulation Recognition (AMR), which is considered to be a potentially intelligent spectrum management technique [1], [2].
	Traditional methods of modulation recognition mainly include statistical pattern recognition based on feature extraction and maximum likelihood hypothesis testing based on decision theory, which require a large amount of a priori knowledge of channel parameters and have poor applicability. Recently, many studies have focused on how to use deep learning methods for the task of classifying modulation signals [3].  In [4], convolutional neural network is studied to extract features of radio signals for modulation classification, with significant performance improvements against feature-based methods. In [5], a new structure is proposed to combine the LSTM module and CNN module and takes into account the temporal characteristics of the signal The results show an effective improvement in recognition accuracy. The results shows that the CNN module can reduce the size of high-dimensional complex signal data into low-dimensional feature vectors to remove redundant information, and the LSTM module can be used to learn the temporal characteristics in low-dimensional data.  The authors in [6] compare the performance of a variety of popular deep learning networks, including CNN, Residual Network (ResNet[7]), Densely Connected Network(DenseNet[8]), and Convolutional Long Short-term Deep Neural Network (CLDNN) in terms of signal recognition accuracy, the CLDNN achieving the best performance. The results of these studies show that there are great advantages in using networks applied in the image field and in speech recognition to identify the modulation of wireless signals.
	II. Methodology
	A. Fundamental of CNN and LSTM
	B. Designing Network Architecture

	A convolutional neural network mainly comprises of an input layer, convolutional layers, activation layers, and fully connected layers. The input layer is used to obtain the input information, including original data and data pre-processed by other algorithms into the convolutional neural network. For modulation signals, each frame of the sampling signal is treated as a greyscale image with a channel of 1. The number of sample points and sampling channels are treated as the length and width. The convolutional layer consists of several convolutional kernels with different size, and the convolutional operation is mainly designed to extract high-dimensional features of the data. For any input data xi (or outputs of previous layers), the output of convolutional layer is the sum of dot product as follows:
	TABLE  Ⅰ
	CONFIGURATION OF NETWORK ARCHITECTURE
	Description and Configuration
	Layer
	Network
	Number of Units
	Kernel Size
	324
	11×11
	Conv1
	 Netout = ∑wixi (1)
	Where wi represents weights parameters of convolutional kernel. During the training of the network each convolutional kernel learns different parameters through the back-propagation algorithm [14] so that different detailed features of the data can be extracted. By adding a scalar bias b, the output of a convolutional layer is:
	256
	5×5
	Conv2
	256
	3×3
	Conv3
	CNN
	128
	3×3
	Conv4
	96
	3×3
	Conv5
	LSTM Units
	 hbias = Netout + b (2)
	The results of the calculations for each layer of the network are then used as input to the activation function f as follows:
	128
	LSTM1
	64
	LSTM2
	LSTM
	 gacti = f(hbias) (3)
	32
	LSTM3
	The activation function introduces a non-linear element to the network, thus enhancing the expressive performance of the neural network. Commonly used activation functions include sigmoid, tanh and ReLU. Since ReLU function can perform gradient descent and back propagation more efficiently, avoiding the gradient explosion and gradient disappearance problems, and simplifying the computation process making it the most popular activation function in practice. 
	Fully Connected Units
	256
	Dense1
	Fully Connected
	128
	Dense2
	13
	Dense3
	The convolutional layer in this paper includes a zero-padding operation, which preserves the boundary information of the input signal data. Without padding, the convolution kernel would only manipulate the edge information of the input data once, while the intermediate sequence would be scanned multiple times, resulting in loss of information about the boundary features of the signal.
	The fully-connected layer acts as a classifier for the convolutional neural network, mapping the geographically distributed features of the data learned in the convolutional layer to each class of modulation signal.
	The LSTM units are components of recurrent neural networks (RNNs) that are commonly referred to as LSTM networks. Each LSTM unit is composed of an input gate, an output gate, and a forget gate, which regulate the flow of information in and out of the cell that stores values over time intervals. LSTM networks are particularly effective in processing, classifying, and predicting time series data, as such data may contain significant temporal dependencies and patterns. 
	Furthermore, to enhance the stability and performance of the convolutional neural network, a batch normalization layer is inserted after the convolutional layer and prior to the activation function. This layer normalizes the output of the convolutional layer by utilizing the mean and standard deviation of small batches of data. As a result, the intermediate outputs of the neural network are consistently adjusted, which increases the overall stability of the network at each layer.  
	In this study, the CNN network is utilized to extract spatial features from various modulation signals, while the LSTM network is employed to examine the hidden features among temporal signals. By combining the strengths of both networks, more information can be obtained and the classification accuracy can be enhanced.
	In the case of LSTM, the modulation signal data can be regarded as a one-dimensional sequence, which is fed as input to the network. The optimal number of hidden neurons is determined for each layer in the network. To achieve the best classification performance, three LSTM layers are designed and the fully connected layer parameters are set to the same values as those used in the CNN model. This allows for a comprehensive optimization of the network's architecture and ultimately leads to improved performance in classification tasks.
	For CNN, the hyper parameters of dropout rate, number of kernels per layer and the network depth is optimized to get the best accuracy result. The CNN architecture comprises five convolutional layers for feature extraction and three fully connected layers for signal classification. The convolutional kernel size gradually decreases from large to small, allowing for a larger receptive field to capture more comprehensive feature information from the data as illustrated in TABLE Ⅰ. This approach yields better results as more information is obtained from the data. 
	Finally, for CLDNN, five convolutional layers followed by one LSTM layer with 80 computing units and three fully connected are chosen. Different number of memory cells in the LSTM layer are tested and this configuration can give out the best performance compares to other layer settings.
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