
DeUEDroid: Detecting Underground Economy Apps Based on
UTG Similarity

Zhuo Chen
hypothesiser.hypo@zju.edu.cn

Zhejiang University
& Ant Group

China

Jie Liu
qingyang.lj@antgroup.com

Ant Group
China

Yubo Hu
yubohu@stu.xidian.edu.cn

Xidian University
China

Lei Wu∗
lei_wu@zju.edu.cn
Zhejiang University

China

Yajin Zhou
yajin_zhou@zju.edu.cn
Zhejiang University

China

Yiling He
yilinghe@zju.edu.cn
Zhejiang University

China

Xianhao Liao
xianhao.lxh@antgroup.com

Ant Group
China

Ke Wang
kaywang.wk@antgroup.com

Ant Group
China

Jinku Li
jkli@xidian.edu.cn
Xidian University

China

Zhan Qin
qinzhan@zju.edu.can
Zhejiang University

China

ABSTRACT
In recent years, the underground economy is proliferating in the
mobile system. These underground economy apps (UEware for
short) make profits from providing non-compliant services, especially
in sensitive areas (e.g., gambling, porn, loan). Unlike traditional
malware, most of them (over 80%) do not have malicious payloads.
Due to their unique characteristics, existing detection approaches
cannot effectively and efficiently mitigate this emerging threat.

To address this problem, we propose a novel approach to ef-
fectively and efficiently detect UEware by considering their UI
transition graphs (UTGs). Based on the proposed approach, we
design and implement a system, named DeUEDroid, to perform
the detection. To evaluate DeUEDroid, we collect 25, 717 apps and
build up the first large-scale ground-truth dataset (1, 700 apps) of
UEware. The evaluation result based on the ground-truth dataset
shows that DeUEDroid can cover new UI features and statically
construct precise UTG. It achieves 98.22% detection F1-score and
98.97% classification accuracy, a significantly better performance
than the traditional approaches. The evaluation result involving
24, 017 apps demonstrates the effectiveness and efficiency of UE-
ware detection in real-world scenarios. Furthermore, the result also
reveals that UEware are prevalent, i.e., 54% apps in the wild and
11% apps in the app stores are UEware. Our work sheds light on
the future work of analyzing and detecting UEware. To engage the
community, we have made our prototype system and the dataset
available online.
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’23, July 17–21, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0221-1/23/07. . . $15.00
https://doi.org/10.1145/3597926.3598051

CCS CONCEPTS
• Security and privacy→ Software security engineering.

KEYWORDS
Underground economy, UI transition graph, Machine learning

ACM Reference Format:
Zhuo Chen, Jie Liu, Yubo Hu, Lei Wu, Yajin Zhou, Yiling He, Xianhao Liao,
KeWang, Jinku Li, and Zhan Qin. 2023. DeUEDroid: Detecting Underground
Economy Apps Based on UTG Similarity. In Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA
’23), July 17–21, 2023, Seattle, WA, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3597926.3598051

1 INTRODUCTION
Mobile apps have been an indispensable part of our daily life, even
in some sensitive areas, such as adult content, financial business [6],
and online gambling. However, due to the huge economic benefits,
apps that serve the underground economy are prevalent in these
areas nowadays [2, 11, 33], and thereby lead to serious damages.
For example, the underground porn apps caused more than $304
million losses in 2020 [1]. Meanwhile, underground gambling apps
made more than $1 billion revenue in Malaysia in 2021 [13].

Unlike traditional malware, these underground apps make prof-
its by providing non-compliant services, especially in sensitive areas
(e.g., gambling, porn, loan). For better understanding, Figure 1 shows
a typical use scenario of a normal 1 loan app and an underground
loan app. Unlike the normal app, the underground app does not
provide UIs related to terms and conditions, including identity verifi-
cation and user (or privacy policy) agreement. Such a phenomenon
is probably because these apps want to avoid supervision and let the
victims make a quick decision without thinking [9]. What’s more,
our investigation shows that most of these underground apps (over
80%) do not have malicious payloads (or serve advertisements).

1In this paper, apps that do not belong to UEware are named as normal apps.

ar
X

iv
:2

20
9.

01
31

7v
2

 [
cs

.C
R

]
 1

8
N

ov
 2

02
4

https://doi.org/10.1145/3597926.3598051
https://doi.org/10.1145/3597926.3598051

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Z. Chen, J. Liu, Y. Hu, L. Wu, Y. Zhou, Y. He, X. Liao, K. Wang, J. Li, Z. Qin

Step 1':
Apply a loan

Step 3':
Fill bank

information

Step 5':
Get the loan

Step 1:
Apply a loan

Face Recognition

User Agreement

Step 3:
Fill bank

information

Step 5:
Get the loan

Step 2:
Verify the identity

Step 4:
Review the loan

Lender Eligibility
Review

Manual Review

Underground Loan App

Normal Loan App

Figure 1: An example of a normal loan app vs. an under-
ground loan app. The underground loan app only provides
a single usury service (Steps 1’,3’,5’) without verifying the
identity (Step 2) and reviewing the loan (Step 4).

In this work, we call these apps underground economy apps (or
UEware for short), and define them as apps that serve the under-
ground economy by providing non-compliant services 2. Obviously,
the concept is orthogonal to that of malware.

The proliferation of UEware has become a widespread issue,
particularly on platforms that lack adequate supervision, such as
social media and third-party app markets. To mitigate this threat,
authoritative agencies and app download platforms proactively
seek effective solutions. However, to our best knowledge, only a
few studies [23, 29, 32, 48, 49] focus on a special sort of UEware
(i.e., gambling scam, loan scam apps), and provide some recom-
mendations to users and authorities. Nonetheless, none of these
works propose feasible approaches which are capable of effectively
detecting UEware. Apart from the effectiveness, efficiency is also
significant due to the huge amount of apps 3 that need to be handled.

Unfortunately, existing dynamic and static approaches that are
used to detect malware cannot be applied to detect UEware. On
one hand, the dynamic approaches are inefficient to perform the
large-scale detection due to the inherent scalability limitation, i.e.,
they have to launch the apps to examine their behaviors [59] and
fetch the screenshots [26], thus consuming huge resources [40].
On the other hand, the static approaches are ineffective to detect
UEware due to its unique characteristics. Specifically, the features
used by those detection approaches can be dived into malicious
payload [27, 42, 60, 68], GUI content [54, 69], and the Manifest in-
formation [28, 38, 53]. However, these features are not feasible to
UEware: 1) most UEware (over 80%) do not have malicious payloads,
which inevitably makes the payload-based approaches ineffective;
and 2) most UEware take countermeasures, which also makes the
content-based approaches ineffective; and 3) the Manifest informa-
tion cannot be used as a unique detection feature, since it is the
basic information and can be arbitrarily customized in Android.
Our approach. In this paper, we propose a novel approach to
efficiently and effectively detect Android UEware by identifying the
non-compliant services they provided. Specifically, an app service
is presented to the users through multiple user interfaces (UIs) in a
specific order, which constitutes the UI transition graph (UTG).

2For a given sensitive service, the regulations may vary in different countries/regions,
e.g., online gambling is prohibited in Saudi Arabia, while it is legal in some states of
the United States [5]. The impact is discussed in Section 9.
3E.g., there were over two million new apps released on GooglePlay in 2021 [12].

Our approach is based on the following two key observations.
First, the UTGs of UEware are different from those of the normal
apps. Even UEware imitate the UI of normal apps, their UTGs vary
greatly. As discussed earlier, UEware do not provide UIs related
to terms and conditions, which will always be provided by normal
apps. Furthermore, UEware are generally implemented to serve
only one purpose (e.g., usury application), while normal apps are
usually served for multiple services (e.g., financial derivatives pur-
chasing and asset evaluation). Second, the UTGs of the same type
of UEware are extremely similar, while the UTGs of different types
of UEware vary from each other. This is because different services
share different UTGs. Based on these observations, we can use UTG
as the key feature to perform the similarity-based detection.
Challenges. However, identifying UEware based on UTG is a
challenging task. First, it is difficult to directly leverage UTG to
perform the UEware detection. Although UTG has widely been
adopted to assist the testing and security vetting in the previous
studies [19, 55, 61], to our best knowledge, it has never been used
as a detection feature. This is due to the fact that UTG is expressed
via a mixture of graph topology and unstructured GUI widget at-
tributes. As a result, their correlations cannot easily be applied as
an effective representation. Second, it is not easy to statically build
a precise UTG. Some new UI features (e.g., WebView, fragment and
navigation) are supported by Android and have been widely used
in recent years. However, (even the latest) tools/systems proposed
by the previous studies [37, 44, 50, 52, 52] cannot cover these new
features. This inevitably leads to the imprecise UTG construction.
This work. In this study, we propose the first UTG based detec-
tion approach by addressing the above two challenges. For the first
challenge, we propose a graph-embedding [31, 58] based method to
represent UTG by properly correlatingmulti-dimensional attributes.
Specifically, the graph topology and the encoded attributes 4 are
aggregated and handled by applying the graph-embedding tech-
nique [31, 58] to generate the UTG representation. For the second
challenge, we propose a taint-based construction method which can
cover new features (i.e., identifying GUI elements and determining
UI transitions) to build up a more precise UTG.

We have implemented a prototype, DeUEDroid, to detect UEware.
DeUEDroid consists of three modules: (i) UTG builder, which is used
to construct the UTG. This module consists of two sub-modules, i.e.,
GUI widget identification and UI transition determination. (ii) UTG
feature extractor, which is responsible for extracting the UTG fea-
ture. (iii) UEware detector. The detector leverages the self-supervised
learning to detect and classify UEware based on UTG similarity.

We build up three datasets to evaluate DeUEDroid. First, we use
15 source-available apps to evaluate the UTG construction accuracy.
The evaluation result suggests that DeUEDroid is effective in UTG
construction, which can accurately identify imprint tokens of Web-
View (over 85% F1-score) and transitions (92.3% F1-score in total).
Specifically, the transitions identified by DeUEDroid achieves a sig-
nificantly better F1-score than the State-Of-The-Art (SOTA) results
(i.e., 35.5% higher than IC3 [50], 67.7% higher than GATOR [52]).
Then, we build up the ground-truth UEware dataset, which is the
first large-scale ground-truth dataset (1, 700 apps) of UEware, to
evaluate the effectiveness of UEware detection and classification.

4Different attributes will be encoded with different methods, see Section 6.

DeUEDroid: Detecting Underground Economy Apps Based on UTG Similarity ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

The evaluation result shows that DeUEDroid is effective in UEware
detection and classification (with 98.22% detection F1-score and
98.97% classification accuracy). Our system has a significantly better
performance than the traditional approaches. Finally, we perform
a large-scale experiment on 24, 017 apps collected from both app
stores and the wild, to measure the effectiveness and efficiency of
UEware detection in the real world. The evaluation result shows
that UEware are prevalent, i.e., 54% apps in the wild and 11% apps
in the app stores are UEware.
Contributions. We make the following contributions:
• We proposed a novel approach to effectively and efficiently detect
UEware based onUTG similarity, including a novel technique that
can cover new UI features and statically build precise UTG, and
a novel algorithm that can efficiently embed UTG with different
dimension attributes.
• We implemented a prototype named DeUEDroid. The evaluation
results demonstrate the effectiveness and efficiency of the system,
with 98.22% UEware detection F1-score and 98.97% classification
accuracy. And it is capable of performing large-scale detection
to mitigate the real-world threats.
• We found that UEware are prevalent, i.e., 54% apps in the wild
and 11% apps in the app stores are UEware.
• We built up the first large-scale ground-truth UEware dataset
with 1, 700 apps. We have released our system and the dataset
on the github [7] to engage the community.

2 BACKGROUND
2.1 Android User Interface
In an Android app, the activity is the fundamental component for
drawing the GUI with which users can interact with [4]. And since
Android 3.0, fragments can also render the GUI. A GUI consists
of GUI widgets (e.g., button and textView) and layout models (e.g.,
Linearlayout) that describe how to arrange GUI widgets. These
widgets and layout models inherit from the view class, and are
statically recorded in the XML file or added in code. What’s more,
web widgets can launch a local browser to load a web page.

An android app consists of multiple activity/fragment windows
for handling complex business requirements. When some special
conditions are triggered (e.g., click event onclick), the app will tran-
sit from one window to another. Specifically, these GUI transitions
are triggered in multiple ways: (i) triggered by explicitly invoking
activity transition API, e.g., the StartActivity, StartActivityForResult;
(ii) triggered by implicitly invoking conversions, e.g., Android Inter-
Component Communication (ICC); (iii) triggered by invoking hard-
ware event, e.g., BACK ; (iv) triggered by fragment navigation, e.g.,
the NavController manages fragment navigation within a NavHost.
Note that fragment navigation extremely improves the flexibility
of transitions, and has been widely used in recent years [8].

2.2 Modeling of Android User Interface
An android app is presented to the users through multiple runtime-
rendered user interfaces (UIs) in a specific order. However, runtime
rendered visuals cannot be restored in static analysis. To this end,
the UI modeling studies [21, 26, 44] focus on expressing UI through
static analysis in a limited time. However, due to the rapid rev-
olution of Android, there are some new features that cannot be

Buton

ImageView

TextView

Buton

ImageView

Menu Bar

Menu Bar

Menu Bar

Menu Bar

Buton

EditTextView

TextView

TextView

Home Page Personal Page Loan Apply

Transition Event

Activity/Fragment

View Tree
View 1: LinearLayout
id: 2131755497
Variable: pay_ll
Parent: NULL

View 2: TextView
id: 2131755500
text: “rate”
Variable: pay_tv
Parent: View 1

View 3: WebView....

Figure 2: Simplified example of a loan app UTG.

handledwell. In this study, to accommodate the newUI features (e.g.,
fragment, navigation, web widget), we fine-tune the UI transition
graphs (UTG) and propose our definition as follows.

Definition I: A UTG is a directed graph G = (V, E) in a node
attribute space Ω, where:
(1) V is a node set, we consider 4 categories of windows that users

can interact with as a node in a UTG: activities, fragments,
menus, and dialogs. Activities and fragments are often presented
as full-screen windows, while menus and dialogs are short-lived
windows that often require the user to take actions.

(2) Each node is assigned GUI view tree attributes in Ω, including
native widget attributes (e.g., layout hierarchy, widget type,
text), and web widget attributes (i.e., network imprint [22]);

(3) Directed edge set E ⊆ V ×V is a set of transitions between
activity/fragment and 𝜀 is the single edge within the E.
For better understanding, we show a simplified underground

loan app UTG in Figure 2 as an example. It consists of three ac-
tivity/fragment nodes with GUI attributes (view tree), and three
transition events as the directed edges.

3 MOTIVATION
In this section, we first illustrate the limitation of the traditional
detection approaches. As discussed in Section 1, the dynamic ap-
proaches are not feasible to perform large-scale detection, hence
here we only focus on the static approaches. After that, we detail
the feasibility of our approach by demonstrating the validity of the
two key observations.

3.1 Limitation of the Traditional Approaches
Features used by those traditional detection approaches can be cate-
gorized into the following three categories: Malicious Payload, GUI,
and Manifest, as shown in Table 1. However, all of these features
are ineffective to detect UEware due to the following reasons:
• Lack ofmalicious payload.Most UEware do not have any mali-
cious payloads (over 80% through our experiment in Section 8.2.2),
which inevitably leads to the failure of malware detection ap-
proaches (e.g., API flow detection).
• Incomplete & Disguised GUI content. Due to the strict cen-
sorship in sensitive areas, most UEware adopt countermeasures:
(i) hide the sensitive GUI content (e.g., pictures, text) on remote
servers. (ii) disguised as normal apps, such as using similar icons.

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Z. Chen, J. Liu, Y. Hu, L. Wu, Y. Zhou, Y. He, X. Liao, K. Wang, J. Li, Z. Qin

Table 1: The feature selection in previous static detection studies.

Static Detection Approach Studies
Feature Selection

Malicious payload GUI Manifest
Bytecode API Method Activity Native widget Web widget GUI content Dveloper signature Permission

Signature Based

ViewDroid [71], MassVert [20] - - ✔ - ✔ - - - -
DriodMoss [43] ✔ - - - - - - - -
Retriever [53], AndroSimilar [28] - - - - - - - ✔ -
Kirin [27], DroidMat [60] - ✔ - - - - - - ✔

Machine Learning Based

Kim et al. [36] - ✔ ✔ - - - - - ✔

DroidSIFT [70], SIGPID [38], Droid-Sec [15] - ✔ - - - - - - ✔

Tiger [22] - - - - - ✔ - - -
Malena [69], Sun et al. [54] - - - - - - ✔ - -
Mamadroid [46] - ✔ - - - - - - -
Drebin [16] - ✔ - ✔ - - ✔ - ✔

These countermeasures result in the failure of content-based
detection (see Section 8.2.2).
• Ineffective Manifest. The Manifest information cannot be used
as the unique features to detect UEware. Specifically, the per-
missions acquired by UEware are similar to those of normal
apps [29], while the developer signatures can always be arbitrar-
ily customized (in Android).

3.2 Feasibility of Our Approach
To perform an effective large-scale detection, we propose anUEware
detection/classification approach based on the UTG similarity. Our
approach is based on the following two key observations:
• Observation-I: UTGs of UEware are different from those of the
normal apps.
• Observation-II: UTGs of the same UEware type are similar,
while those of different types vary.
For the first observation, we have shown an example of a normal

loan app vs. an underground loan app in Figure 1. What’s more, we
additionally select some other apps 5 for comparison. We point out
that UEware always do not provide UIs related to terms and condi-
tions and are only served for one purpose (e.g., usury application),
which leads to considerable differences in UTG structure. Through
our experiment, we even find that the UTG of UEware is different
from that of normal ones in statistic (i.e., 11 vs. 22 transition events
and 29 vs. 227 widgets, respectively), see details in Section 8.2.

To demonstrate the second observation, we randomly select
another underground financial app (with a different Manifest). Al-
though their runtime screenshots are different, they share a similar
UTG (e.g., home page, loan apply, bank card check). And then, we
randomly select an underground gambling app for comparison. The
gambling app provides many game windows rather than the loan
applications. Due to the different services they provided, the UTGs
of these two types of apps inevitably vary from each other.

4 DESIGN OVERVIEW
Based on the proposed approach, we design a system named DeUE-
Droid to detect and classify UEware. Specifically, DeUEDroid first
statically builds precise UTG for UEware, and then applies a graph-
embedding based method to represent UTG. After that, it leverages
the self-supervised method to detect and classify UEware based
on UTG similarity. Figure 3 shows the architecture of DeUEDroid.

5Due to the page limit, all the details of those examples are shown in https://github.
com/HypoopyH/DeUEDroid.

Training
APKs UI Transition

Determination

GUI Widget
Identification

UTG Builder UTG Feature
Extractor

MaskGAE

Test APKs

UEware Detector

Classifier
Output

...
Gambling Financial

UTG GUI Encoding

UTG
Representation

Figure 3: The design overview of DeUEDroid.

There are three modules, i.e., UTG Builder, UTG Feature Extractor
and UEware Detector, as follows:
• UTG Builder. This module accepts Android APK files as the
input, and outputs the corresponding UTGs. It consists of two sub-
modules:GUI widget identification and UI transition determination.
Specifically, the first sub-module covers both the native widgets
and thewebwidgets; while the second sub-module applies a novel
UTG construction algorithm to accurately capture UI transitions.
• UTG Feature Extractor. Based on these UTGs, this module
combines both UTG topology and GUI attributes together and
outputs the UTG representation (feature). Specifically, it first
leverages multiple encoding methods to handle GUI attributes of
different dimensions. After that, it applies a novel algorithm to
correlate the graph topology and the GUI attributes.
• UEware Detector. Based on the UTG feature, this module lever-
ages the self-supervised learning to train an UEware classifier,
which will be used to perform the detection. Note that the UTG
based approach allows further classifying the apps into different
categories of UEware. Currently, three underground categories,
including gambling, porn and financial, are supported.
In the following, we will detail these three modules in Section 5,

Section 6 and Section 7, respectively.

5 UTG BUILDER
In this section, we describe the design of UTG builder. This module
has two sub-modules: (i) GUI widget identification, and (ii) UI
transition determination.

All sub-modules take an Android APK file as the input. The out-
put of GUI widget identification is a set of GUI widgets. Notably, we
collect the layout hierarchy, text, and widget type of native widgets.
And the web widget (e.g., WebView) attributes are represented by

https://github.com/HypoopyH/DeUEDroid
https://github.com/HypoopyH/DeUEDroid

DeUEDroid: Detecting Underground Economy Apps Based on UTG Similarity ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

their network imprints. The output of UI transition determination
is a directed graph representing the transition relationship between
activities/fragments. In the end, the UTG is well constructed as a
directed graph with GUI attributes.

5.1 GUI Widget Identification
In Android, the GUI widgets can be dived into native widgets and
web widgets. Specifically, DeUEDroid proposes different analysis
methods for two types of widgets.
Native Widgets. As mentioned in Section 2, the native widgets
can be statically recorded in the XML file or dynamically added in
code. To the XML widgets, their widget types (e.g., ImageView, But-
ton), the text (e.g., @string/ic_hello), and the layout hierarchy (e.g.,
ConstrainLayout) are well organized in the corresponding XML
files. In addition, the activities/fragments load their corresponding
XML widgets based on the API calls findViewbyID. To the dynami-
cally added widgets, they are dynamically added in code (e.g., new
TextView()), and their attributes are recorded in the code, which
requires taint flow analysis to identify. These widgets are rendered
within the “OnCreate" phase when a activity/fragment is calling up.

There have been several studies [34, 63] to perform native wid-
gets analysis. Considering the efficiency, we build up our system
based on a SOTA lightweight static UI analysis framework, Front-
Matter [37], to figure out the native widgets.
Web Widgets. Nowadays, the hybrid development paradigm is
commonly used [10], which acquires remote resources through
web widgets. Specifically, the WebView starts a local browser and
invokes the web APIs (e.g.,“LoadURL") to load a web page. These
widgets are an important part of UTG, but are not properly analyzed
by native widget analysis studies.

For these web widgets, the essential part is the URL parameter.
However, web URLs are always dynamically concatenated, which
is hard to restore in static analysis [22, 25]. But we have two obser-
vations about web widgets: (i) the URL parameter and its related
tokens are all in string type. (ii) almost always, a parameter-related
token originates from some constant values within the program,
such as constants, and XML resources. To this end, we refer to the
previous studies [22] and generate the network imprint to represent
the web widget attributes.

Here we use an example (see Figure ?? in Appendix A) to present
the imprint generation. First, the program loads activities/frag-
ments, and searches special API calls (e.g., WebView.loadURL()).
Once the sink statement is found in Class Y method B, the sink vari-
able is url. Then the programwill perform backward taint analysis to
check whether any variable affects url. After running, v3 and X.A()
is determined to affect url using java.lang.StringBuilder.append().
And the v3 is considered unrelated to any invariant source within
the app but instantiated from runtime variables, so we discard the
v3. Turn to the X.A(), since it is an inter-procedure call, the pro-
gram additionally loads Class X and sinks the v1. Going further,
the program finds that R.string.baseUrl and v2. At this time, v2 is
determined to be an immediate variable, so the program instanti-
ates v2 with a concrete value and instantiated R.string.baseUrl from
XML file. To sum up, R.string.baseUrl,v2 are instantiated as constant
variables, v3 is instantiated as runtime variable and discarded. In the
end, the program outputs a set of tokens (e.g., [R.string.baseUrl,v2])

Algorithm 1: The UTG Construction Algorithm
Data: 𝑎𝑝𝑘 : the APK file.
Result:𝑈𝑇𝐺 = (𝑁𝑜𝑑𝑒𝑠, 𝐸𝑑𝑔𝑒𝑠) : the UI transition graph for 𝑎𝑝𝑘 .
Function UTG_Construction(apk):

𝑁𝑜𝑑𝑒𝑠 ← {};
𝐸𝑑𝑔𝑒𝑠 ← {};
𝑐𝑔← get_CallGraph(𝑎𝑝𝑘) ;
𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ← get_AllClasses(𝑎𝑝𝑘) ;
for 𝑐𝑙𝑎𝑠𝑠 in 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 do

if is_Fragment(𝑐𝑙𝑎𝑠𝑠) 𝑜𝑟 is_Activity(𝑐𝑙𝑎𝑠𝑠) then
𝑁𝑜𝑑𝑒𝑠 ∪ {𝑐𝑙𝑎𝑠𝑠 };

end
𝑚𝑒𝑡ℎ𝑜𝑑𝑠 ← get_AllMethods(𝑐𝑙𝑎𝑠𝑠) ;
for𝑚𝑒𝑡ℎ𝑜𝑑 in𝑚𝑒𝑡ℎ𝑜𝑑𝑠 do

𝑢𝑛𝑖𝑡𝑠 ← get_AllUnits(𝑚𝑒𝑡ℎ𝑜𝑑, 𝑐𝑔) ;
for 𝑢𝑛𝑖𝑡 in 𝑢𝑛𝑖𝑡𝑠 do

if is_Transition(𝑢𝑛𝑖𝑡) then
𝑐𝑎𝑙𝑙𝑒𝑒𝑠 ∪ get_Callees(𝑢𝑛𝑖𝑡) ;
𝑐𝑎𝑙𝑙𝑒𝑟𝑠 ∪ get_CallerActs(𝑐𝑙𝑎𝑠𝑠, 𝑐𝑔) ;
𝐸𝑑𝑔𝑒𝑠 ∪ {𝑐𝑎𝑙𝑙𝑒𝑟𝑠, 𝑐𝑎𝑙𝑙𝑒𝑒𝑠 };

end
end

end
if has_Navigation(𝑐𝑙𝑎𝑠𝑠) then

𝑐𝑎𝑙𝑙𝑒𝑟 ← get_CallerActs(𝑐𝑙𝑎𝑠𝑠, 𝑐𝑔) ;
𝑐𝑎𝑙𝑙𝑒𝑒𝑠 ← get_NavTargets(𝑐𝑙𝑎𝑠𝑠) ;
𝐸𝑑𝑔𝑒𝑠 ∪ {𝑐𝑎𝑙𝑙𝑒𝑟, 𝑐𝑎𝑙𝑙𝑒𝑒𝑠 };

end
end
return𝑈𝑇𝐺 (𝑁𝑜𝑑𝑒𝑠, 𝐸𝑑𝑔𝑒𝑠) ;

Function get_CallerActs(𝑐𝑙𝑎𝑠𝑠, 𝑐𝑔):
if is_Fragment(𝑐𝑙𝑎𝑠𝑠) then

𝑐𝑎𝑙𝑙𝑒𝑟𝑠 ← {𝑐𝑙𝑎𝑠𝑠, get_ActsWithFragment(𝑐𝑙𝑎𝑠𝑠, 𝑐𝑔) };
else if is_InnerClass(𝑐𝑙𝑎𝑠𝑠) then

𝑐𝑎𝑙𝑙𝑒𝑟𝑠 ← get_OuterActs(𝑐𝑙𝑎𝑠𝑠, 𝑐𝑔) ;
else 𝑐𝑎𝑙𝑙𝑒𝑟𝑠 ← 𝑐𝑙𝑎𝑠𝑠 ;
return {𝑐𝑎𝑙𝑙𝑒𝑟𝑠 };

and removes some common tokens (e.g., github). These tokens are
used as network imprints to identify web widget attributes.

5.2 UI Transition Determination
The GUI widgets and layout modules are rendered on activities/frag-
ments. Andwhen a newwindow is opened, it causes a transition. Ex-
isting studies [18, 21, 44, 50, 64] mainly identify transitions among
activities, but overlook the fragment-related transitions (e.g., the
transitions between fragments and activities) and the navigation-
based transitions (e.g., navigation among fragments). As the latter
two have been widely adopted to develop Android apps in recent
years, the lack of support for them will inevitably lead to imprecise
UTG. To accurately build up the transition events, we propose a new
UTG Construction Algorithm 1. This algorithm can cover the
fragment-related transitions and the navigation-based transitions,
and build a precise UTG.

Specifically, we first initialize Nodes and Edges as empty sets,
which store the activities/fragments and their transition relation-
ships respectively. Thenwe generate the call graph of the givenAPK,
and fetch out all classes defined in the Manifest. Note that, there are
some implicit run and start pairs (e.g., AsyncTask, OnClickListener,
Runnable, and Message) in Android, which need to be bridged to
make the call graph complete.

For each class in the APK, we first determine whether it inherits
from activity or fragment or not. If so, it will be added to the Nodes

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Z. Chen, J. Liu, Y. Hu, L. Wu, Y. Zhou, Y. He, X. Liao, K. Wang, J. Li, Z. Qin

set. Then for all methods in each class, we get all units accord-
ing to the previous call graph. For these units, we will determine
whether they have transition movements. Specifically, for the ex-
plicitly transition and implicitly transition, they have special APIs
(e.g., StartActivity(), or Intent()). By comparing the API signatures,
we can locate their transition units. Besides, the navigation-based
transitions are implemented by special structures (e.g., NavCon-
troller). We can locate the navigation unit by searching the variable
structures. Finally, there are some hardware events (e.g., BACK but-
ton), we monitor whether the activity has overloaded system-level
calls, to implement the transition.

Furthermore, for each transition unit, we first get the targets
(callees) by analyzing the unit arguments based on taint analy-
sis. Due to the difficulty in handling conditional expressions, all
possible target activities/fragments are included. Then we get the
source (callers). Specifically, three different processing methods are
adopted according to the class type.

• If the class is a fragment, the callers are the union of this fragment
and all activities that own this fragment. Because activities can
trigger transitions of fragments they own.
• If the class is an inner class, the callers are the union of the outer
activities/fragments of this inner class.
• If the class is not an inner class nor a fragment, the caller is the
current class itself.

Finally, for callers and callees found by a transition, we traverse all
of them and add all pairs (caller→ callee) to the Edges set.

6 UTG FEATURE EXTRACTOR
In this section, we describe the design of UTG feature extractor.
The overview of this module is shown in Figure 4. For an input
UTG, we first encode the GUI attributes Ω into matrix 𝑋 . And then,
we propose a novel algorithm, MaskGAE, to correlate the graph
topology G and GUI attributes 𝑋 as the UTG representation 𝑍 .

6.1 GUI Encoding
To properly integrate different dimension attributes, we adopt mul-
tiple encoding approaches. Specifically, for an activity/fragment
node, we first segment the text string and network imprint fromGUI
widgets. To utilize these string-type attributes, we use a pre-trained
Word2Vec [47] model to generate their representations. After that,
we encode the ViewTree, which consists of multiple GUI widgets.
Note that, a GUI widget can be an instance of a system widget class
(e.g., button) or a customized widget class inherited from the view
class. Thus, we regard the widget type as the GUI widget’s "tag",
and use the one-hot model to encode and serialize it. Further, to the
layout hierarchy, we traverse the ViewTree and generate a widget
sequence. Finally, we combine all representations into the vector
𝑥0 of the node. And since a UTG may consist of multiple nodes,
the final GUI matrix 𝑋 is combined by every node representation.
Meanwhile, the transition events and the activity/fragment nodes
have been represented by the UTG topology G.

6.2 MaskGAE
In the underground economy, developers always generate new apps
by modifying parts of the existing apps. To counteract the impact of

code modifications, it requires high robustness of the graph embed-
ding model. To this end, we propose a novel algorithm, MaskGAE,
which adopts the Mask strategy before the UTG embedding. Specif-
ically, the Mask strategy can be viewed as an adversarial attack that
provides a new graph as data augmentation. In this paper, we adopt
Edge-wise random masking, which is defined as:

𝜀𝑚𝑎𝑠𝑘 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝) (1)

where 𝜀 denotes the edge within the E.
After the mask, we follow the success of the graph autoencoder

(GAE) [31], which is designed to reconstruct graph inputs, to cor-
relate the graph topology and GUI attributes. In this study, our
encoder 𝑓𝜃 is 2-layer graph convolutional networks (GCN) [24], a
well-established GNN architecture.

Notably, due to themasking strategy, our loss calculation consists
of two parts: local reconstruction loss 𝐿𝑙𝑜𝑐𝑎𝑙 and global contrastive
loss 𝐿𝑔𝑙𝑜𝑏𝑎𝑙 . For the masked graph, we divide the edges as remain-
ing edges and masked edges. The masked edges are selected as
positive samples, while the disconnected node’s edges are selected
as negative samples. For the embeddings from the decoder, we
calculate their inner product as the probability of the edge existing.

L𝐿𝑜𝑐𝑎𝑙 = −(
1
|𝜀+ |

∑︁
(𝑢,𝑣) ∈𝜀+

logℎ𝑤 (𝑧𝑢 , 𝑧𝑣)

+ 1
|𝜀− |

∑︁
(𝑢′ ,𝑣′) ∈𝜀−

log (1 − ℎ𝑤 (𝑧𝑢′ , 𝑧𝑣′)))
(2)

whereZ is the graph embedding result from the encoder; 𝜀+ is a
set of positive edges while 𝜀− is a set of negative edges sampled
from the graph.

Further, we calculate the distance between the two representa-
tions (𝑍, 𝑍) as the global contrastive loss. Specifically, we normalize
the loss value into the range of [0, 1] to facilitate optimization.

L𝐺𝑙𝑜𝑏𝑎𝑙 =

∑𝑁
𝑖=1 (𝑧𝑖 − �̂�𝑖)2

𝑁
(3)

Finally, we combine the global loss and local loss into the total loss
and use gradient descent to minimize it.

L𝑇𝑜𝑡𝑎𝑙 = L𝐿𝑜𝑐𝑎𝑙 + 𝛼L𝐺𝑙𝑜𝑏𝑎𝑙 (4)
Where 𝛼 denotes a hyperparameter trading off two terms.

7 UEWARE DETECTOR
In this section, we describe the design of UEware detector. The
UEware detector leverages the self-supervised learning, which is
widely adopted in previous studies [30, 58]. In detail, it consists of
two stages: self-supervision training task, and downstream training
task, see Figure 5.

The self-supervised training task also refers to GAE, however,
it is different from the UTG feature extractor. In detail, the self-
supervision training task accepts the APK relation graph H and
the APK feature 𝑋 , and trains the encoder 𝑓𝜓 . Referring to previous
studies [73], the APK relation graph H is an undirected graph,
while the node of the graph is APK, and the edge of the graph is
the overlap Manifest information (i.e., PackageName, AppName,
developer signature) between APKs. Meanwhile, the APK feature
𝑋 is the UTG representation produced by encoder 𝑓𝜃 . And the

DeUEDroid: Detecting Underground Economy Apps Based on UTG Similarity ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

1 0 1

0 1 0

1 0 0

Training
APK

Encoder

Encoder

1 0 1

0 1 0

1 0 0

GCN

1 0 1

0 1 0

1 0 0

GCN

Decoder

Decoder

1 0 1

0 1 0

1 0 1

1 1 0

0 1 1

1 0 1

0 1 0

0 1 1

0 0 0

0 1 1

1 0 1

0 1 0

1 0 1

1 1 0

0 1 1

1 0 1 0 1

0 1 0 1 1

1 0 1 1 1

1 0 1

0 1 0

0 1 1

0 0 0

0 1 1

1 0 1 0 1

0 1 0 1 1

1 0 1 1 1

1 0 1

0 1 0

1 1 0

1 0 1

0 1 0

1 0 0

Global Contrastive Loss

Local Reconstruction Loss

Mask

1 0 1

0 1 0

1 0 0

Word2Vec

Onehot

1 0 1

"Login","Register","Back"...

Text

ViewTree

"wuyu.fxtmets3.cc","main.html",...

Imprint Token

[android.widget.LinearLayout,1]
[android.widget.TextView,2]
[android.widget.ImageView,4]

com.xx.MainActivity->
com.xx.CollectionFragment

Transition Events

com.xx.MainActivity

Figure 4: The design of UTG feature extractor.

Stage2: Downstream Detecting

1 0 1

0 1 0

1 0 0

Training
APKs

Encoder

1 0 1

0 1 0

1 0 1

1 1 0

0 1 1

Embedding
Decoder

Stage1: Self-supervision Graph Embedding

Test
 APKs

1 0 1

0 1 0

1 0 0

Encoder
（freeze param）

1 0 1

0 1 0

1 0 1

1 1 0

0 1 1

Classifier ...

Figure 5: The design of UEware detector.

downstream task uses the encoder 𝑓𝜓 to train the classifier 𝑞𝜓 for
UEware detection.
Classifier: The APK encoder 𝑓𝜓 learned from self-supervision train-
ing is set frozen and directly introduced into the downstream task.
According to this frozen encoder, the downstream task then calcu-
lates theZ. Finally, the classifier 𝑞𝜓 (also called the downstream
decoder) is trained based on the labeled dataset. In this study, we
leverage a linear classifier (i.e., a logistic regression model) and
the labeled information is the app types (i.e., underground gam-
bling, underground porn, underground financial, and normal apps).
Specifically, the detection task decoder parameter is calculated as:

𝜓 = 𝑎𝑟𝑔𝑚𝑖𝑛L𝑠𝑢𝑝 (𝑓𝜃 , 𝑞𝜓 ,H , 𝑦) (5)

whereH is the APK relation graph and y is the label of UEware.
In the end, when input test APKs, the DeUEDroid first combine

the test APKs and training APKs together to construct a new graph
H . And then, the DeUEDroid labels the test APKs through the
encoder 𝑓𝜓 and decoder 𝑞𝜓 .

8 IMPLEMENTATION AND EVALUATION
We have implemented a prototype of DeUEDroid. Specifically, we
leverage Soot [56] and FlowDroid [17] for taint analysis and Front-
matter [37] for GUI analysis. In network imprint analysis, we addi-
tionally adopt Java string analysis techniques [25], and customize
the conditions of instantiate. We deploy DeUEDroid on a server has
16 cores with 2.1GHz CPU, 256GB memory, and 8TB hard drives.

Furthermore, we will evaluate DeUEDroid by answering the
following three research questions:
• RQ1: How effective is DeUEDroid in UTG construction?
• RQ2: How effective is DeUEDroid in UEware detection?
• RQ3: How effective and efficient is DeUEDroid in large-scale
UEware detection?

8.1 Evaluation Setup
For RQ1, we investigate the capability of UTG construction. To
evaluate the capability, we build up the source-available dataset,
consisting of 5 self-developed apps and 10 real-world apps. Specifi-
cally, we developed 5 apps as our ground-truth benchmark, which
covers different transitions (i.e., the transitions between activity -
activity, activity - fragment, fragment - fragment, and navigation-
based transitions). This method is used to accurately understand
the ground truth of transitions and widgets, and it has been widely
adopted by previous studies [21, 39].

In addition, to make our experiments more convincing, we com-
pare the SOTA works (i.e., IC3 [50], Gator [52]) and analyze several
famous open-sourced apps 6. in f-droid [3]. Note that there are
some studies [21, 22] that focus on static transition identification
or imprint generation. However, we cannot compare them since
they do not release the code or dataset.

For RQ2, we evaluate the capability in UEware detection and
classification. As there does not exist any publicly available dataset.
we have to make efforts to build the ground-truth dataset to
perform the evaluation, as follows:
• First, five experienced experts in our team collect wild apps from
social media, forums, and websites. They work independently to
download, install, and launch these apps, including registering
accounts and investigating their usage processes.
• Second, these experts select apps that provide sensitive services
(i.e., Porn, Gambling, Financial in this work) for further analysis.
According to different regulations in special fields (such as asset
review in loan, etc.), they independently check whether the app

6The package names are: org.woheller69.wather, site.leos.setter, ademar.bitac,
de.digisocken.antherrss, net.gsantner.dandelior, com.github.dfa.diaspora_android,
com.chao.app, com.kylecorry.trail_sense, org.woheller69.arity, de...osmplugin (this name
was truncated due to its excessive length).

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Z. Chen, J. Liu, Y. Hu, L. Wu, Y. Zhou, Y. He, X. Liao, K. Wang, J. Li, Z. Qin

Table 2: The dataset for evaluation.

Dataset App Type Setup Time Detail Number

Source-available
Dataset

Self-developed July, 2022 Self-developed Apps 5
Real-world 2021-2022 Real-world Apps 10

Total 15

Ground-truth
Dataset

UEware June, 2022
Gambling 310
Porn 441
Financial 97

Normal Apps June, 2022 - 852
Total 1, 700

Large-scale
Dataset

Wild June-July, 2022 Apps from websites 13, 460
Appstore June-July, 2022 Apps from AppStore 10, 557
Total 24, 017

usage processes comply with the required behavior patterns, and
mark the non-compliant apps as UEware.
• Finally, all experts work together to make the final decision by
majority voting. The ground-truth dataset consists of 1, 700 apps,
including 310 gambling apps, 441 porn apps, 97 financial apps,
and 852 normal apps.

We randomly select 70% of them as the training set, 20% as the
validation set, and 10% as the test set.

For RQ3, we conduct a large-scale experiment to evaluate the
performance of DeUEDroid to mitigate real-world threats. For this
goal, we collect a large number of real-world apps and setup the
large-scale dataset. Based on the source of acquisition, we divide
these apps into two categories: AppStore apps and wild apps. The
AppStore apps are collected from formal app markets, such as Mi
Store, 360 Software Manager. In contrast, wild apps are collected
from informal channels, such as social platforms or websites. In to-
tal, the large-scale dataset consists of 24, 017 apps (10, 557 AppStore
apps and 13, 460 wild apps). Based on this dataset, we evaluate the
performance (including the detection rate and the time consump-
tion), and we also analyze the detection results.

In total, we setup three datasets (i.e., source-available dataset,
ground-truth dataset, and large-scale dataset, as shown in Table 2)
to perform the evaluation. Note that all hardened apps that cannot
be analyzed have been removed from our datasets.

8.2 Evaluation Result
8.2.1 For RQ1. App sketch construction has two sub-modules: (i)
GUI widget identification, and (ii) UI transition determination.

First, for the GUI widget identification, DeUEDroid applies Front-
matter [37], a SOTA GUI analysis tool to identify the native widgets.
So here we only evaluate the effectiveness of web widget identifica-
tion, which is implemented by ourselves. And we list our evaluation
result in Table 3. For the self-developed apps, the token number
is clearly identified by our developers. In total, the self-developed
apps have 36 tokens, such as IP host, and domain name. In the
end, DeUEDroid identifies 36 tokens from the self-developed apps,
with 3 false positive and 8 false negative (F1-score is 84.7%). For
real-world apps, we first manually identify the tokens used by their
web widgets. Specifically, we insert logging code (i.e., logging.log())
in the source code after the network API, which does not affect
the app function. Then we run the app to generate the log, and
also inspect the source code to get the final tokens. The F1-score of

Table 3: The evaluation of imprint generation.

Dataset Component Token (#) Identified (F1-score)

Self-Developed App 36 84.7%
Real-World App
⊢# site.leos.setter 21 95.5%
⊢# de.digisocken.anotherrss 40 90.9%
⊢# org.woheller69.weather 43 90.5%
⊢# net.gsantner.dandelior 10 88.9%
⊢# com.github.dfa.diaspora_android 12 80.0%
⊢# com.chao.app 50 83.3%
⊢# de.storchp.opentracks.osmplugin 47 75.0%
⊢# com.kylecorry.trail_sense 9 84.2%
⊢# org.woheller69.arity 19 90%
⊢# ademar.bitac 8 85.7%

Total 295 85.4%

Table 4: The evaluation of UI transition determination. The
boldfaced score denotes the best result.

Dataset Component Transition Identified (F1-score)

Type # Gator IC3 DeUEDroid

Self-Developed App All 62 17.6% 57.4% 97.6%
⊢# App1 Act-Act1 13 26.7% 96.0% 96.3%
⊢# App2 Act-Frag. 13 26.7% 76.2% 92.3%
⊢# App3 Frag.-Frag. 13 0% 0% 100%
⊢# App4 Navigation 12 0% 0% 100%
⊢# App5 All 11 30.8% 62.4% 100%

Real-World App
⊢# site.leos.setter All 5 -2 0% 72.7%
⊢# de.digisocken.anotherrss All 4 42.9% 50% 80.0%
⊢# org.woheller69.weather All 12 - - 91.7%
⊢# net.gsantner.dandelior All 4 50.0% 57.2% 75.0%
⊢# com.github.dfa.diaspora_android All 5 47.0% 50.0% 88.9%
⊢# com.chao.app All 12 - - 96.0%
⊢# de.storchp.opentracks.osmplugin All 10 - 53.3% 90%
⊢# com.kylecorry.trail_sense All 6 33.3% - 83.3%
⊢# org.woheller69.arity All 5 52.8% 88.9% 88.9%
⊢# ademar.bitac All 9 - 66.7% 90%

Total All 134 24.6% 57.0% 92.3%

1 Act. means Activity, and Frag. means Fragment.
2 timed out within the 30 minute time limit.

real-world apps are range from 75.0% to 95.5%, which shows that
our imprint generation has sufficient coverage.

Second, for the UI transition determination, we list our evalua-
tion result in Table 4. Since the three components (i.e., dialog, menu,
activity) have been well studied in previous studies [37, 44, 50], we
mainly focus on the new android development features (i.e., frag-
ment and navigation) in this work. Specifically, these self-developed
apps are designed to be developed by certain transition types. The
App1 to App4 consist of a single transition type (e.g., activity-
fragment) to evaluate the accuracy of different transition types, and
App5 is implemented by all transition types. From the evaluation
results, it can be seen that the accuracy of Gator is low. This is be-
cause Gator does not support advanced SDK and does not account
for fragment-related transitions and navigation-based transitions.
Besides, IC3 can accurately identify the transition between Activity,
but also have no ability to identify the fragment-related transitions.
What’s more, to the real-world apps, the Gator and IC3 are also in-
effective (even the highest F1-score lower than 88.9%) and even can
not get the result within 30 minutes. In contrast, DeUEDroid can
identify all transition types (especially fragment-related transitions).
To real-world apps, DeUEDroid is able to produce results within the
specified time, and also receives high accuracy and even the lowest

DeUEDroid: Detecting Underground Economy Apps Based on UTG Similarity ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

F1-score is more than 72.7%. In total, DeUEDroid achieves high
F1-score in transition identification (92.3%), which has significantly
improvement from 35.5% to 67.7% than previous studies.

We further explain the evaluation results. First, since we take
into account new transition types (i.e., fragment-activity transi-
tion, and navigation-based transitions) besides activity transition,
DeUEDroid can label all kinds of sensitive APIs and perform a
more accurate algorithm to identify the transition pairs. It results
in the high accuracy of UI transition determination, especially the
fragment-related transition pairs. Second, since we set a maximum
taint depth to ensure time efficiency, it leads to some omissions of
transition identification. For example, we show a missing edge in
the real-world app, the missing edge consists of a long call chain
(i.e., onClick() - func1() - func2() - ... - func9() - actionStart() - star-
tActivity()) that beyond our maximum recursion.

Answer RQ1: DeUEDroid is effective in UTG construction
that covers new UI features. Specifically, DeUEDroid can accu-
rately identify imprint tokens (over 85% F1-score) and transi-
tion events (achieves 92.3% F1-score, a far better performance
than the SOTA systems).

8.2.2 For RQ2. To answer RQ2, we evaluate the effectiveness of
our system in UEware detection and classification. Specifically, we
first evaluate the traditional signature-based detection methods
(i.e., malware detection, GUI content detection) on UEware. And
then, we evaluate DeUEDroid and select five SOTA algorithms (i.e.,
LR, GAT [57], GraphSAGE, GCN [24], GAE) as the baseline, and
further compare with other SOTAmachine learning based detection
methods (i.e., Drebin [16], MamaDroid [46]).

First, we evaluate the effectiveness of the signature-based detec-
tion methods. For malware detection methods, we randomly select
200 UEware and upload them to VirusTotal, the largest online mal-
ware detection platform with 63 security vendors, containing the
vast majority of malicious code signatures. However, we find that
only 34 apps have been labeled as malware, while the rest are consid-
ered benign or caused only one vendor warning. This phenomenon
proves that the malware detection methods are inefficient for UEware
detection and have a high false negative rate (over 80%). And then,
we evaluate the GUI content detection methods. After decoding the
APKs, we parse their local figures/texts and perform the manual
review. Apart from the general icons (e.g., button icon, and payment
bank icon), there is almost no sensitive content (e.g., porn picture,
gambling picture) in local APKs (over 95%). To this end, we can only
leverage their icons to perform the detection. Specifically, we use
the seresnext50 network, a widely used network in the previous
image learning studies [45, 51], to encode the icon and perform the
detection. However, the F1-score in UEware detection is only 45.7%.
After manual review, the main reason is that many UEware imitate
the icons of normal ones, resulting in a high false positive rate of
content-based detection. The incomplete & disguised GUI content
results in the failure of the content-based detection methods. The
above evaluations justify our motivation in Section 3.

Second, we evaluate our system capability on the ground-truth
dataset. Our evaluation is based on two metrics: the detection capa-
bility and the classification capability. The detection capability can
be regarded as a binary classification problem. In our dataset, the

Figure 6: The effect of Alpha and mask ratio to DeUEDroid

number of normal apps is roughly equal to the number of UEware.
We use F1-score to measure the detection performance. On the
other hand, the classification capability is a multi-class classifica-
tion problem. Since the distribution of the dataset may not be even,
we use classification accuracy to measure the performance.

Specifically, we use the Manifest information (i.e., permission,
app size, package name, app components), and five SOTA algo-
rithms as the baseline. We closely follow the linear evaluation
scheme as previous studies [58] and report the detection F1-score
and classification accuracy in Table 5.
• First, we compare the evaluation result between UTG (column#5-
6) and baseline (column#3-4). The result shows that the UTG
feature can improve the detection performance of all algorithms,
with outstanding F1-score/accuracy improvement than Manifest
across all algorithms (ranging from 5.68% to 14.19% in UEware
detection and 9.24% to 17.62% in UEware classification). The
outstanding improvement of the comparative experiments shows
the UTG feature is universal for all algorithms and is effective in
UEware detection and category classification.
• Second, we compare the evaluation result of the DeUEDroid algo-
rithm, MaskGAE (line#7) with other SOTA algorithms (line#2-6).
And our algorithm achieves leading performance among all algo-
rithms, which exceeds all the supervised algorithms in UEware
detection and classification, and even exceeds GAE 0.28% and
0.59% in F1-score and classification accuracy. This proves that our
algorithm is effective, can better handle complex unstructured
GUI attributes, and performs well on topological-attribute mixed
information. Further, we show the Alpha and mask ratio effect
of our detection results in Figure 6. From the alpha ratio effect
in Figure 6, we can see that by increasing the alpha ratio from
0.0001 to 100, the accuracy first smoothly improves to 97.15% and
declines then to 95.39%. The gap of ratio influence fluctuates very
little, only around 4.82%. And the same as the masking ratio, the
ratio influence gap is around 0.73%. The ratio effect indicates that
our algorithm is very stable and insensitive to the influence of
hyper-parameters, which can guarantee stable detection results.
In the end, DeUEDroid achieves 98.22% F1-score in UEware

detection and 98.97% accuracy rate in UEware classification. To
demonstrate the effectiveness, we also compare some SOTA ma-
chine learning based detection methods. Specifically, we compare
our approach with two representative works, i.e., Drebin [16] and
MamaDroid [46] 7. Table 6 gives the result. Obviously, our approach

7Drebin and MamaDroid are implemented according to the previous studies [72], and
we will also release the implementation on our github [7].

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Z. Chen, J. Liu, Y. Hu, L. Wu, Y. Zhou, Y. He, X. Liao, K. Wang, J. Li, Z. Qin

Table 5: The UEware detection F1-score (%) and UEware category classification accuracy (%) of different features and algorithms.
In each column, the boldfaced score denotes the best result.

Algorithm Manifest UTG
Detection F1-score Classification Accuracy Detection F1-score Classification Accuracy

Supervised

LR 76.81±0.33 79.41±0.92 91.00±0.45 88.65±0.76
GAT 79.40±0.43 82.56±0.33 92.17±0.05 93.64±1.75
GraphSAGE 91.00±0.00 81.18±0.32 97.83±0.12 93.66±1.10
GCN 89.24±0.37 81.89±0.37 96.76±0.24 93.73±1.36

Self-supervised GAE 92.29±0.18 80.76±1.14 97.94±0.07 98.38±0.41
MaskGAE (Ours) 92.54±0.21 82.61±1.52 98.22±0.06 98.97±0.22

Table 6: The comparison with SOTA AI-based malware detec-
tion methods. The results contain the detection F1-score and
classification accuracy.

Method Feature Algorithm Result
F1-score Accuracy

Drebin Manifest & API 1 DNN 84.59% 79.00%
MamdDroid API Markov Chain RF 2 96.94% 98.32%
DeUEDroid UTG MaskGAE 98.22% 98.97%
1 Drebin uses the Manifest feature and some chosen APIs as composite features.
2 Random Forest.

achieves better performance in both binary detection and multi-
class classification tasks.

Specifically, Drebin relies on features such as Manifest and sen-
sitive API, which makes the UEware detection ineffective due to
the essential limitation (see Section 3). While MamaDroid uses the
global call graph to perform the detection. The number of API calls
within the graph grows over time [46], which makes the entire
API graphs of apps become a heavy-weight feature. As a result,
MamaDroid’s model would be extensively disturbed to affect the
time consumption (more than half of the apps in our dataset take
over 10 minutes).

Answer RQ2: DeUEDroid demonstrates effectiveness in UE-
ware detection and classification, achieving a 98.22% detection
F1-score and a 98.97% classification accuracy, outperforming
traditional approaches. Besides, its algorithm surpasses SOTA
algorithms and exhibits insensitivity to hyper-parameters.

8.2.3 For RQ3. We apply DeUEDroid on a large-scale dataset to
evaluate its real-world performance, focusing on detection results,
time efficiency, and UTG measurement.
Large-scale Detection Result. The detection results on the large-
scale dataset are remarkable, as illustrated in Figure 7. First, we
analyze the detection results of wild apps, finding that more than
half (54%) of the wild apps are UEware (9% gambling, 13% porn,
and 32% financial), while the remaining 46% are normals. Next, we
examine the detection results for AppStore apps and surprisingly
discover that 11% of AppStore apps are identified as UEware
(4% gambling, 1% porn, and 6% financial).

To further confirm the detection result, we additionally select de-
tected UEware from the two dataset components for manual review.
In total, we review a total of 400 apps, and 356 apps are consistent
with the manual review results. Since the Out-of-distribution (OOD)

46%

9%
13%

32%

Wild App

Normal App

Gambling

Porn

Financial89%

4%
1%

6%

AppStore App

Figure 7: Detection results on the large-scale dataset.

of the dataset, the accuracy in the large-scale dataset is a bit lower
than the ground-truth dataset. In conclusion, the detection result
shows that DeUEDroid is effective for large-scale UEware detection
tasks. And the UEware are extremely prevalent in the wild and
Appstore. Even though the app stores have performed checks on
their apps, we still find that there are some undetected UEware
(11% of all apps) in AppStore.
Performance. In addition, we evaluate the time consumption of
our system. Overall, each app costs about 213 seconds on average,
ranging from 9 seconds to 2, 347 seconds. We show the average
time consumption of different app sizes in Figure ?? (in Appendix
B). The DeUEDroid time consumption is stable, where the fluctua-
tion of time is only 67s in the range 15M-57M. The performance
results show that DeUEDroid is large-scale resilient. And we further
explain that our time consumption is much less than that of the
dynamic detection method. Through our preliminary experiments,
it takes more than 30 minutes for dynamic execution techniques to
traverse an app. For large-scale UEware detection, our approach is
more lightweight.
Measurement. We make a measurement of the UTG, including
the number of transition pairs, the widgets, and the imprint tokens.

The investigation shows that the UTGs of UEware and normal
apps are significantly different in statistics. Specifically, the UEware
are the detected ones from the large-scale dataset, while the normal
apps are the remaining ones. First, the average transition pairs in
normal apps are twice as many as UEware (22 vs. 11). Second, the
average number of widgets owned by normal apps is much higher
than that of UEware (227 vs. 29). Finally, turning to the network
imprint. The average number of tokens owned by normal apps is
also higher than that of UEware (211 vs. 121). The statistical result
can obviously proves our observation-I in Section 3, that UEware
are always single-purpose and different from normal apps.

DeUEDroid: Detecting Underground Economy Apps Based on UTG Similarity ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

Answer RQ3: DeUEDroid is large-size resilient and effective
in large-scale detection. The result suggests that 54% apps in
the wild and 11% apps in the AppStore are UEware.

9 DISCUSSION
Regional Differences and Commonalities. The specific manifes-
tations of UEware are closely linked to local laws and regulations.
Although different regions/countries may have different regula-
tions, our key observation is that there do exist differences between
the non-compliant apps and the compliant ones (i.e., the normal
apps) in a specific region [23, 32, 48]. This suggests that our detec-
tion approach can be applied to other regions, though our datasets
are collected from Asia. Based on our approach, different regions
can establish their own datasets to accommodate their regulations.
App Sketch Construction. As UTG is built using static analy-
sis, apps may leverage app hardening techniques to disrupt static
analysis. In addition, even though the static analysis considers the
major factors introduced by Android (i.e., multi-threading, lifecycle,
and ICCs), apps may evade our analysis by invoking sensitive APIs
via reflections and native libraries. On the other side, UTG uses net-
work imprints to identify the network features. While the network
imprints are highly malleable, they are still inaccurate compared to
real remote resources. In the future, we plan to incorporate dynamic
analysis to deal with the app hardening techniques and capture real
network remote resources.
Anti Adversary. Our model is trained by the ground-truth UEware
dataset. To avoid our detection, adversaries may download our
dataset and find patterns that are not covered. For example, they can
use specially designed app sketches to mislead our detection model.
Since the dataset is collected manually by our team, the number of
samples is limited which cannot prevent attacks against the dataset.
However, we claim that enterprises can supplement the dataset
by themselves to improve the coverage, thereby improving the
accuracy and avoiding attacks on the model coverage. In addition,
UEware classification categories can also be added according to the
needs of enterprises.

10 RELATEDWORK
AndroidUIAnalysis. There aremany studies focusing onAndroid
UI analysis. Azim et al. [18] presented the activity transition graph
to model the Android UI transition. Liu et al. [44] combine machine
learning and static analysis to complete the transition pairs. Chen et
al. [21] took into account the inner class to complete the transition
pairs. Yang et al. [65, 67] leveraged context-sensitive analysis of
callback methods and developed a client analysis that builds a static
GUI model and window transition graph. PERUIM [41] focused on
the permissions used behind the widgets and connected the widgets
with their handlers. Gator [52, 64, 66] modeled the WTG and the
widget attributes by windows stack. Frontmatter [37] implemented
a lightweight static widget analysis tool, and linked the callback
with buttons. Our app sketch is built upon these static UI analy-
sis techniques, and additionally adds new features (i.e., WebView,
transition about the fragments, and navigation).
Machine-Learning Based Detection Machine learning is widely
used for anomaly detection. Previous studies [15, 36, 38, 70] lever-
aged the feature of API control flow and permissions to perform

malware detection, since the malicious code is different from the be-
nign code. Besides, some studies leveraged anomaly pictures/texts
and code to perform detection. AppIntent [68] used the taint analy-
sis from the UIs to analyze the location that may cause sensitive
data leakage. AsDroid [35] compares the GUI attribution and code
behavior to find out the stealthy behavior against the normal GUI
attribution. IconIntent [63] leverages machine learning to automat-
ically identify sensitive icon behaviors. DeepIntent [62] leverages
machine learning to compare the difference between UI and code
behavior to analyze the misusing icon. SUPOR [34] identified the
privacy input based on the text, figures, and layout by machine
learning. In this study, we refer to the self-supervised algorithm
and propose a novel algorithm to extract the UTG features and
identify the UEware.

11 CONCLUSION
In recent years, the proliferation of UEware has become an emerg-
ing threat. This has seriously impacted the security of the mo-
bile ecosystem and resulted in significant financial losses. In this
paper, we propose a novel UTG based approach to effectively
and efficiently detect UEware. Specifically, it first statically builds
precise UTG for UEware, and then applies a graph-embedding
based method to represent UTG by properly correlating multi-
dimensional attributes. After that, it leverages the self-supervised
learning method to detect and classify UEware based on the UTG
feature similarity. We have implemented a prototype system named
DeUEDroid to perform the evaluation. The evaluation results show
that DeUEDroid is efficient and effective. It can detect UEware more
efficiently than the traditional approaches (with 98.22% detection
F1-score and 98.97% classification accuracy). Furthermore, DeUE-
Droid is large-size resilient and efficient for large-scale detection
in the real world. By using DeUEDroid, we found that UEware are
prevalent, i.e., 54% apps in the wild and 11% apps in the app stores
are UEware. Our system could be used by authoritative agencies
and app download platforms to effectively mitigate this threat while
alleviating the human efforts required.

DATA AVAILABILITY STATEMENT
The prototype of the proposed DeUEDroid system [14] is available
from the corresponding author upon reasonable request.

ACKNOWLEDGMENTS
We would like to thank all anonymous reviewers for their help-
ful suggestions and comments to improve the paper. This work
was supported by the National Key R&D Program of China (No.
2022YFE0113200), the National Natural Science Foundation of China
(No. U21A20464, 62172360, U21A20467, 62072395, and U20A20178),
and the National Key Research and Development Program of China
(No. 2020AAA0107705). The findings herein reflect the work and
are solely the responsibility of the authors.

REFERENCES
[1] 2021. BBC Report about romance scammer. https://edition.cnn.com/2021/02/21/

us/losses-to-romance-scams-trnd/index.html. Accessed January 1, 2021.
[2] 2021. China Gambling Report. http://english.www.gov.cn/statecouncil/

ministries/202101/06/content_WS5ff570dac6d0f7257694358b.html. Accessed
January 1, 2021.

https://edition.cnn.com/2021/02/21/us/losses-to-romance-scams-trnd/index.html
https://edition.cnn.com/2021/02/21/us/losses-to-romance-scams-trnd/index.html
http://english.www.gov.cn/statecouncil/ministries/202101/06/content_WS5ff570dac6d0f7257694358b.html
http://english.www.gov.cn/statecouncil/ministries/202101/06/content_WS5ff570dac6d0f7257694358b.html

ISSTA ’23, July 17–21, 2023, Seattle, WA, USA Z. Chen, J. Liu, Y. Hu, L. Wu, Y. Zhou, Y. He, X. Liao, K. Wang, J. Li, Z. Qin

[3] 2021. F-droid. https://f-droid.org/. Accessed November, 2021.
[4] 2021. Google Activity. https://developer.android.com/guide/components/

activities/intro-activities. Accessed November 23, 2021.
[5] 2021. USA Gambling. https://www.baltictimes.com/usa_online_gambling_laws_

__legal_states_in_usa_2022/. Accessed November, 2021.
[6] 2022. Apps for economy. https://42matters.com/blog/?p=the-state-of-the-app-

economy-and-app-markets. Accessed June 4, 2022.
[7] 2022. DeUEDroid project website. https://github.com/HypoopyH/DeUEDroid.

Accessed November 20, 2022.
[8] 2022. Fragment Navigation. https://developer.android.com/guide/navigation/

navigation-getting-started. Accessed June 4, 2022.
[9] 2022. Google Play. https://support.google.com/googlepay/answer/10223857?hl=

en. Accessed November 08, 2022.
[10] 2022. Hybrid App Percentage in Appstore. https://venturebeat.com/2020/11/23/

why-74-of-the-top-50-retail-apps-are-hybrid-apps-not-native-apps/. Accessed
August 8, 2022.

[11] 2022. India loan scam. https://www.bbc.com/news/business-61564038. Accessed
June 4, 2022.

[12] 2022. State of Mobile in 2022. https://www.data.ai/en/go/state-of-mobile-2022.
Accessed June 8, 2022.

[13] 2022. US Scam App Report. https://www.straitstimes.com/asia/se-asia/malaysia-
govt-loses-s1bil-revenue-a-year-from-illegal-gaming-syndicates. Accessed
June 6, 2022.

[14] 2023. DeUEDroid System. https://zenodo.org/record/7962231. https://doi.org/10.
5281/zenodo.7962231 Accessed May 08, 2023.

[15] Faraz Ahmed, Haider Hameed, M Zubair Shafiq, and Muddassar Farooq. 2009.
Using spatio-temporal information in API calls with machine learning algorithms
for malware detection. In Proceedings of the 2nd ACM Workshop on Security and
Artificial Intelligence. 55–62.

[16] Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,
and CERT Siemens. 2014. Drebin: Effective and explainable detection of android
malware in your pocket.. In Ndss, Vol. 14. 23–26.

[17] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[18] Tanzirul Azim and Iulian Neamtiu. 2013. Targeted and depth-first exploration
for systematic testing of android apps. In Proceedings of the 2013 ACM SIGPLAN
international conference on Object oriented programming systems languages &
applications. 641–660.

[19] Farnaz Behrang and Alessandro Orso. 2019. Test migration between mobile apps
with similar functionality. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 54–65.

[20] Kai Chen, PengWang, Yeonjoon Lee, XiaoFengWang, Nan Zhang, Heqing Huang,
Wei Zou, and Peng Liu. 2015. Finding Unknown Malice in 10 Seconds: Mass
Vetting for New Threats at the {Google-Play} Scale. In 24th USENIX Security
Symposium (USENIX Security 15). 659–674.

[21] Sen Chen, Lingling Fan, Chunyang Chen, Ting Su, Wenhe Li, Yang Liu, and Lihua
Xu. 2019. Storydroid: Automated generation of storyboard for Android apps.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, 596–607.

[22] Yi Chen, Wei You, Yeonjoon Lee, Kai Chen, XiaoFeng Wang, and Wei Zou. 2017.
Mass discovery of android traffic imprints through instantiated partial execution.
In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security. 815–828.

[23] Zhuo Chen, Lei Wu, Jing Cheng, Yubo Hu, Yajin Zhou, Zhushou Tang, Yexuan
Chen, Jinku Li, and Kui Ren. 2021. Lifting The Grey Curtain: A First Look at the
Ecosystem of CULPRITWARE. arXiv preprint arXiv:2106.05756 (2021).

[24] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks. In Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining. 257–266.

[25] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. 2003.
Precise Analysis of String Expressions. In Proc. 10th International Static Analysis
Symposium (SAS) (LNCS, Vol. 2694). Springer-Verlag, 1–18. Available from
http://www.brics.dk/JSA/.

[26] Feng Dong, Haoyu Wang, Li Li, Yao Guo, Tegawendé F Bissyandé, Tianming Liu,
Guoai Xu, and Jacques Klein. 2018. Frauddroid: Automated ad fraud detection
for android apps. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 257–268.

[27] William Enck, Machigar Ongtang, and Patrick McDaniel. 2009. On lightweight
mobile phone application certification. In Proceedings of the 16th ACM conference
on Computer and communications security. 235–245.

[28] Parvez Faruki, Vijay Laxmi, Ammar Bharmal, Manoj Singh Gaur, and Vijay
Ganmoor. 2015. AndroSimilar: Robust signature for detecting variants of Android
malware. Journal of Information Security and Applications 22 (2015), 66–80.

[29] Yuhao Gao, Haoyu Wang, Li Li, Xiapu Luo, Guoai Xu, and Xuanzhe Liu. 2021.
Demystifying illegal mobile gambling apps. In Proceedings of the Web Conference

2021. 1447–1458.
[30] Kaveh Hassani and Amir Hosein Khasahmadi. 2020. Contrastive multi-view rep-

resentation learning on graphs. In International Conference on Machine Learning.
PMLR, 4116–4126.

[31] Geoffrey E Hinton and Richard Zemel. 1993. Autoencoders, minimum description
length and Helmholtz free energy. Advances in neural information processing
systems 6 (1993).

[32] Geng Hong, Zhemin Yang, Sen Yang, Xiaojing Liaoy, Xiaolin Du, Min Yang,
and Haixin Duan. 2022. Analyzing Ground-Truth Data of Mobile Gambling
Scams. In 2022 IEEE Symposium on Security and Privacy (SP). 2176–2193. https:
//doi.org/10.1109/SP46214.2022.9833665

[33] Yangyu Hu, HaoyuWang, Yajin Zhou, Yao Guo, Li Li, Bingxuan Luo, and Fangren
Xu. 2019. Dating with scambots: Understanding the ecosystem of fraudulent
dating applications. IEEE Transactions on Dependable and Secure Computing
(2019).

[34] Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu
Zhang, and Guofei Jiang. 2015. {SUPOR}: Precise and scalable sensitive user
input detection for android apps. In 24th USENIX Security Symposium (USENIX
Security 15). 977–992.

[35] Jianjun Huang, Xiangyu Zhang, Lin Tan, Peng Wang, and Bin Liang. 2014. As-
droid: Detecting stealthy behaviors in android applications by user interface
and program behavior contradiction. In Proceedings of the 36th International
Conference on Software Engineering. 1036–1046.

[36] TaeGuen Kim, BooJoong Kang, Mina Rho, Sakir Sezer, and Eul Gyu Im. 2018. A
multimodal deep learning method for android malware detection using various
features. IEEE Transactions on Information Forensics and Security 14, 3 (2018),
773–788.

[37] Konstantin Kuznetsov, Chen Fu, Song Gao, David N Jansen, Lijun Zhang, and
Andreas Zeller. 2021. What do all these Buttons do? Statically Mining Android
User Interfaces at Scale. arXiv preprint arXiv:2105.03144 (2021).

[38] Jin Li, Lichao Sun, Qiben Yan, Zhiqiang Li, Witawas Srisa-An, and Heng Ye.
2018. Significant permission identification for machine-learning-based android
malware detection. IEEE Transactions on Industrial Informatics 14, 7 (2018), 3216–
3225.

[39] Li Li, Alexandre Bartel, Jacques Klein, Yves Le Traon, Steven Arzt, Siegfried
Rasthofer, Eric Bodden, Damien Octeau, and Patrick Mcdaniel. 2014. I know what
leaked in your pocket: uncovering privacy leaks on Android Apps with Static
Taint Analysis. arXiv preprint arXiv:1404.7431 (2014).

[40] Li Li, Tegawendé F Bissyandé, and Jacques Klein. 2017. Simidroid: Identifying and
explaining similarities in android apps. In 2017 IEEE Trustcom/BigDataSE/ICESS.
IEEE, 136–143.

[41] Yuanchun Li, Yao Guo, and Xiangqun Chen. 2016. Peruim: Understanding mobile
application privacy with permission-ui mapping. In Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing. 682–693.

[42] Bin Liu, Suman Nath, Ramesh Govindan, and Jie Liu. 2014. {DECAF}: Detect-
ing and characterizing ad fraud in mobile apps. In 11th USENIX symposium on
networked systems design and implementation (NSDI 14). 57–70.

[43] Chao Liu, Chen Chen, Jiawei Han, and Philip S Yu. 2006. GPLAG: detection of
software plagiarism by program dependence graph analysis. In Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining. 872–881.

[44] Changlin Liu, Hanlin Wang, Tianming Liu, Diandian Gu, Yun Ma, Haoyu Wang,
and Xusheng Xiao. 2022. ProMal: precise window transition graphs for android
via synergy of program analysis and machine learning. In Proceedings of the 44th
International Conference on Software Engineering. 1755–1767.

[45] Amirreza Mahbod, Gerald Schaefer, Chunliang Wang, Georg Dorffner, Rupert
Ecker, and Isabella Ellinger. 2020. Transfer learning using a multi-scale and
multi-network ensemble for skin lesion classification. Computer methods and
programs in biomedicine 193 (2020), 105475.

[46] Enrico Mariconti, Lucky Onwuzurike, Panagiotis Andriotis, Emiliano De Cristo-
faro, Gordon Ross, and Gianluca Stringhini. 2016. Mamadroid: Detecting an-
droid malware by building markov chains of behavioral models. arXiv preprint
arXiv:1612.04433 (2016).

[47] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[48] Collins W Munyendo, Yasemin Acar, and Adam J Aviv. 2022. “Desperate Times
Call for Desperate Measures”: User Concerns with Mobile Loan Apps in Kenya.
In 2022 IEEE Symposium on Security and Privacy (SP). IEEE Computer Society,
1521–1521.

[49] Nicole L Muscanell, Rosanna E Guadagno, and Shannon Murphy. 2014. Weapons
of influence misused: A social influence analysis of why people fall prey to
internet scams. Social and Personality Psychology Compass 8, 7 (2014), 388–396.

[50] Damien Octeau, Daniel Luchaup, Matthew Dering, Somesh Jha, and Patrick
McDaniel. 2015. Composite constant propagation: Application to android inter-
component communication analysis. In 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, Vol. 1. IEEE, 77–88.

https://f-droid.org/
https://developer.android.com/guide/components/activities/intro-activities
https://developer.android.com/guide/components/activities/intro-activities
https://www.baltictimes.com/usa_online_gambling_laws___legal_states_in_usa_2022/
https://www.baltictimes.com/usa_online_gambling_laws___legal_states_in_usa_2022/
https://42matters.com/blog/?p=the-state-of-the-app-economy-and-app-markets
https://42matters.com/blog/?p=the-state-of-the-app-economy-and-app-markets
https://github.com/HypoopyH/DeUEDroid
https://developer.android.com/guide/navigation/navigation-getting-started
https://developer.android.com/guide/navigation/navigation-getting-started
https://support.google.com/googlepay/answer/10223857?hl=en
https://support.google.com/googlepay/answer/10223857?hl=en
https://venturebeat.com/2020/11/23/why-74-of-the-top-50-retail-apps-are-hybrid-apps-not-native-apps/
https://venturebeat.com/2020/11/23/why-74-of-the-top-50-retail-apps-are-hybrid-apps-not-native-apps/
https://www.bbc.com/news/business-61564038
https://www.data.ai/en/go/state-of-mobile-2022
https://www.straitstimes.com/asia/se-asia/malaysia-govt-loses-s1bil-revenue-a-year-from-illegal-gaming-syndicates
https://www.straitstimes.com/asia/se-asia/malaysia-govt-loses-s1bil-revenue-a-year-from-illegal-gaming-syndicates
https://zenodo.org/record/7962231
https://doi.org/10.5281/zenodo.7962231
https://doi.org/10.5281/zenodo.7962231
https://doi.org/10.1109/SP46214.2022.9833665
https://doi.org/10.1109/SP46214.2022.9833665

DeUEDroid: Detecting Underground Economy Apps Based on UTG Similarity ISSTA ’23, July 17–21, 2023, Seattle, WA, USA

[51] Sanghyuk Park, Minchul Shin, Sungho Ham, Seungkwon Choe, and Yoohoon
Kang. 2019. Study on fashion image retrieval methods for efficient fashion visual
search. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops. 0–0.

[52] Atanas Rountev and Dacong Yan. 2014. Static reference analysis for GUI objects
in Android software. In Proceedings of Annual IEEE/ACM International Symposium
on Code Generation and Optimization. 143–153.

[53] Silvia Sebastian and Juan Caballero. 2020. Towards attribution in mobile markets:
Identifying developer account polymorphism. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security. 771–785.

[54] Mingshen Sun, Mengmeng Li, and John CS Lui. 2015. DroidEagle: Seamless de-
tection of visually similar Android apps. In Proceedings of the 8th ACM Conference
on Security & Privacy in Wireless and Mobile Networks. 1–12.

[55] Yutian Tang, Yulei Sui, Haoyu Wang, Xiapu Luo, Hao Zhou, and Zhou Xu. 2020.
All your app links are belong to us: understanding the threats of instant apps
based attacks. In Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
914–926.

[56] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pominville,
and Vijay Sundaresan. 2000. Optimizing Java bytecode using the Soot framework:
Is it feasible?. In International conference on compiler construction. Springer, 18–34.

[57] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[58] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2019. Deep Graph Infomax. ICLR (Poster) 2, 3 (2019), 4.

[59] Michelle Y Wong and David Lie. 2016. Intellidroid: a targeted input generator for
the dynamic analysis of android malware.. In NDSS, Vol. 16. 21–24.

[60] Dong-Jie Wu, Ching-Hao Mao, Te-En Wei, Hahn-Ming Lee, and Kuo-Ping Wu.
2012. DroidMat: Android Malware Detection through Manifest and API Calls
Tracing. 2012 Seventh Asia Joint Conference on Information Security (2012), 62–69.

[61] Haowei Wu, Yan Wang, and Atanas Rountev. 2018. Sentinel: generating GUI
tests for Android sensor leaks. In 2018 IEEE/ACM 13th International Workshop on
Automation of Software Test (AST). IEEE, 27–33.

[62] Shengqu Xi, Shao Yang, Xusheng Xiao, Yuan Yao, Yayuan Xiong, Fengyuan
Xu, Haoyu Wang, Peng Gao, Zhuotao Liu, Feng Xu, et al. 2019. DeepIntent:
Deep icon-behavior learning for detecting intention-behavior discrepancy in
mobile apps. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 2421–2436.

[63] Xusheng Xiao, Xiaoyin Wang, Zhihao Cao, Hanlin Wang, and Peng Gao. 2019.
Iconintent: automatic identification of sensitive ui widgets based on icon clas-
sification for android apps. In 2019 IEEE/ACM 41st International Conference on

Software Engineering (ICSE). IEEE, 257–268.
[64] Shengqian Yang, Haowei Wu, Hailong Zhang, Yan Wang, Chandrasekar Swami-

nathan, Dacong Yan, and Atanas Rountev. 2018. Static window transition graphs
for Android. Automated Software Engineering 25, 4 (2018), 833–873.

[65] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. 2015.
Static Control-Flow Analysis of User-Driven Callbacks in Android Applications.
In International Conference on Software Engineering. 89–99.

[66] Shengqian Yang, Dacong Yan, Haowei Wu, Yan Wang, and Atanas Rountev. 2015.
Static control-flow analysis of user-driven callbacks in Android applications. In
2015 IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1.
IEEE, 89–99.

[67] Shengqian Yang, Hailong Zhang, HaoweiWu, YanWang, Dacong Yan, and Atanas
Rountev. 2015. Static Window Transition Graphs for Android. In IEEE/ACM
International Conference on Automated Software Engineering. 658–668.

[68] Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X Sean Wang.
2013. Appintent: Analyzing sensitive data transmission in android for privacy
leakage detection. In Proceedings of the 2013 ACM SIGSAC conference on Computer
& communications security. 1043–1054.

[69] Kan Yuan, Di Tang, Xiaojing Liao, XiaoFengWang, Xuan Feng, Yi Chen, Menghan
Sun, Haoran Lu, and Kehuan Zhang. 2019. Stealthy porn: Understanding real-
world adversarial images for illicit online promotion. In 2019 IEEE Symposium on
Security and Privacy (SP). IEEE, 952–966.

[70] Zhenlong Yuan, Yongqiang Lu, Zhaoguo Wang, and Yibo Xue. 2014. Droid-sec:
deep learning in android malware detection. In Proceedings of the 2014 ACM
conference on SIGCOMM. 371–372.

[71] Fangfang Zhang, Heqing Huang, Sencun Zhu, Dinghao Wu, and Peng Liu. 2014.
ViewDroid: Towards obfuscation-resilient mobile application repackaging detec-
tion. In Proceedings of the 2014 ACM conference on Security and privacy in wireless
& mobile networks. 25–36.

[72] Xiaohan Zhang, Yuan Zhang, Ming Zhong, Daizong Ding, Yinzhi Cao, Yukun
Zhang, Mi Zhang, and Min Yang. 2020. Enhancing state-of-the-art classifiers
with API semantics to detect evolved android malware. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security. 757–770.

[73] Yutao Zhang, Fanjin Zhang, Peiran Yao, and Jie Tang. 2018. Name Disambiguation
in AMiner: Clustering, Maintenance, and Human in the Loop.. In Proceedings of
the 24th ACM SIGKDD international conference on knowledge discovery & data
mining. 1002–1011.

Received 2023-02-16; accepted 2023-05-03

	Abstract
	1 Introduction
	2 Background
	2.1 Android User Interface
	2.2 Modeling of Android User Interface

	3 Motivation
	3.1 Limitation of the Traditional Approaches
	3.2 Feasibility of Our Approach

	4 Design Overview
	5 UTG Builder
	5.1 GUI Widget Identification
	5.2 UI Transition Determination

	6 UTG Feature Extractor
	6.1 GUI Encoding
	6.2 MaskGAE

	7 UEware Detector
	8 Implementation and Evaluation
	8.1 Evaluation Setup
	8.2 Evaluation Result

	9 Discussion
	10 Related Work
	11 Conclusion
	Acknowledgments
	References

