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ABSTRACT

We consider a simple setting in neuroevolution where an evolu-

tionary algorithm optimizes the weights and activation functions

of a simple artificial neural network. We then define simple exam-

ple functions to be learned by the network and conduct rigorous

runtime analyses for networks with a single neuron and for a more

advanced structure with several neurons and two layers. Our re-

sults show that the proposed algorithm is generally efficient on two

example problems designed for one neuron and efficient with at

least constant probability on the example problem for a two-layer

network. In particular, the so-called harmonic mutation operator

choosing steps of size 𝑗 with probability proportional to 1/ 𝑗 turns
out as a good choice for the underlying search space. However,

for the case of one neuron, we also identify situations with hard-

to-overcome local optima. Experimental investigations of our neu-

roevolutionary algorithm and a state-of-the-art CMA-ES support

the theoretical findings.

CCS CONCEPTS

• Theory of computation → Theory of randomized search

heuristics.

KEYWORDS

neuroevolution, theory, runtime analysis

ACM Reference Format:

Paul Fischer, Emil Lundt Larsen, and Carsten Witt. 2023. First Steps To-

wards a Runtime Analysis of Neuroevolution. In Proceedings of the 17th

ACM/SIGEVO Conference on Foundations of Genetic Algorithms (FOGA ’23),

August 30–September 1, 2023, Potsdam, Germany. ACM, New York, NY, USA,

12 pages. https://doi.org/10.1145/3594805.3607125

1 INTRODUCTION

The term neuroevolution describes the generation and iterative im-

provement of artificial neural networks (ANNs) by means of evolu-

tionary computation. Neuroevolution is applied in scenarios where

classical techniques like backpropagation for the optimization of

network weights are not available or not satisfactory. Moreover,

neuroevolution allows for the automated optimization of network

∗
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topology, i. e., the number of neurons, layers, and their intercon-

necting structure in the network, which may be a time-consuming

manual task otherwise. Neuroevolution dates back to the late 1980s

[19, 30] but has become increasingly popular in recent years along

with several breakthroughs in the field of artificial intelligence,

most notably, so-called deep neural networks. For a much broader

overview, we refer the reader to the recent surveys [11, 23, 26] on

neuroevolution and the strongly related field of evolutionary neural

architecture search (which focuses on the optimization of neural

network topology rather than the weights belonging to neurons).

Evolutionary algorithms (EAs) are nature-inspired, heuristic opti-

mization techniques applied in virtually all engineering disciplines.

There is huge empirical knowledge on their application, but also

an increasingly solid theory that guides the design and application

of EAs. In particular, theoretical runtime analysis has become an

established branch in the theory of evolutionary computation that

enables such results; see the works [6, 7, 16, 20] for an overview of

classical and recent results. The first results from the early 1990s

considered extremely simplified EAs like the famous (1+1) EA on

the simpleOneMax benchmark function. Such initial analyses have

paved the way toward the analysis of more realistic, population-

based EAs on advanced benchmarks and classical combinatorial

optimization problems. Moreover, runtime analysis has led to the-

oretically grounded advice on parameter choices in EAs and the

development of new, high-performing variants of EAs.

Despite these advancements in the theory of EAs and the huge

empirical success of neuroevolution, we are not aware of any theo-

retical runtime analyses of neuroevolution. The aim of this paper is

to be a starting point for such an analysis. We will suggest a simple

optimization environment in neuroevolution inspired by the simple

evolutionary algorithms mentioned above (e. g., the (1+1) EA) that

evolves the parameters of neurons and suggest optimization prob-

lems dealing with the classification of certain points on the unit

hypersphere. By giving the two halves of the hypersphere opposite

labels and discretizing the setting, we arrive at a simple problem

that could take the role of a kind of OneMax of Neuroevolution.

The first environment we investigate is restricted to the simplest

possible network of one neuron with binary activation function

only, where the evolutionary algorithm evolves the bias of the

activation function and the weights of the inputs in a representation

as a polar angle. We find that the algorithm is generally efficient

on problems in two dimensions where an arc of constant size of

the unit circle has to be classified positively. Afterwards, we will

extend the environment to an arbitrary number of neurons and

two layers and present modifications of the classification problems

on the unit hypersphere that require more than one neuron to

be solved exactly. Moreover, we will present problems with local

optima which are hard to overcome. While analyzing the runtimes,

we compare different mutation operators, more precisely a local

https://doi.org/10.1145/3594805.3607125
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one and the harmonic mutation operator introduced in [2], and

prove exponentially (in the desired resolution of the discretized

search space) smaller bounds for the harmonic mutation in several

cases. Our proposed classification problems may serve as examples

of typical optimization (sub)scenarios in neuroevolution and as a

starting point for the runtime analysis of more advanced scenarios.

This paper is structured as follows. In Section 2, we introduce the

formal background on neural networks and their parametrization as

well as the proposed neuroevolutionary algorithm and benchmark

problems. Section 3 proves the concrete runtime results. Section 4 is

devoted to experimental supplements, before we finish with some

conclusions. Due to space restrictions, details of the experimental

data were omitted. They can be found in a technical report [10].

2 PRELIMINARIES

In this section, we present the foundations of ANNs for classifi-

cation problems that are relevant for our study, define a simple

evolutionary algorithm for neuroevolution, and example problems

that will be used in our theoretical and empirical studies. For a

broader introduction to ANNs and machine learning, see, e. g., [25].

2.1 Artificial Neuron

We are considering artificial neurons with 𝐷 inputs and a binary

threshold activation function, i. e., the output is 0 or 1. Such a

neuron is sometimes called perceptron. It has 𝐷 + 1 parameters,

the input weights 𝑤1, . . . ,𝑤𝐷 and the thresholding value 𝑡 . Let

𝑥 = (𝑥1, . . . , 𝑥𝐷 ) ∈ R𝐷 be the inputs of the neuron. The neuron

outputs 1 if

𝑤1𝑥1 +𝑤2𝑥2 + · · · +𝑤𝐷𝑥𝐷 ≥ 𝑡 (1)

and 0 otherwise. See Figure 1 for an illustration. The equation can

be normalized such that 𝑡 = 1.

A single neuron can be considered as a minimal, one-layer neural

“network”.

𝑥1

𝑥2

.

.

.

𝑥𝐷

∑
𝑤𝑖𝑥𝑖 ≥ 𝑡? output 0 or 1

Figure 1: An artificial neuron

In a geometric interpretation, Equation (1) would mean that

the point (𝑥1, . . . , 𝑥𝐷 ) ∈ R𝐷 is classified 1 if it is above or on the

hyperplane with normal vector (𝑤1, . . . ,𝑤𝐷 ) and bias 𝑡 , assuming

an appropriate orientation of the coordinate system. If 𝐷 = 2, this

hyperplane becomes the line given by equation

𝑦 =
𝑡

𝑤2

− 𝑤1

𝑤2

𝑥 .

Replacing ≥ by ≤ in Equation (1) will classify the points below or

on the line as 1. Although the interpretation of classifying points

as 0 or 1 does not depend on the dimension 𝐷 , we will in this work

mostly study the case 𝐷 = 2 for simplicity.

Networks of artificial neurons (not restricted to perceptrons),

called ANNs, are used to approximate (or even solve exactly) classi-

fication problems in high-dimensional spaces. Formally, a binary

classification problem is a set of points 𝑆 ⊆ R𝐷 and the true clas-

sification of a point 𝑥 ∈ R𝐷 is simply the membership function.

For example, points could be from the space of representations of

pictures, 𝑆 could be the set of pictures containing a cat, and the

classification problem would be to determine whether a given point

𝑥 ∈ 𝑆 ′ ⊆ R𝐷 is a picture containing a cat. Here 𝑆 ′ is an appropri-

ate subset of possible queries. We call the points in 𝑆 positive (the

others negative) and would like to know whether a given point

𝑥 ∈ 𝑆 ′ is positive or not. In this paper, ANNs with a binary out-

put/activation function are used to predict whether 𝑥 is positive

(output 1) or negative (output 0). The aim is to find a topology and

parametrization of the ANN that gives the correct prediction on as

many points from 𝑆 ′ as possible. Usually, the degree to which it is

achieved is measured by the so-called classification error. A classi-

cal iterative technique to set the weights of ANNs to minimize the

classification error is called backpropagation, and the underlying

iterative process is called “training” of the ANN. However, back-

propagation does not straightforwardly work on non-differentiable

output functions like the step function considered here.

In neuro-evolutionary algorithms, here again illustrated by the

perceptron with two input dimensions, the search dynamics to

minimize the classification error usually happens by modifying the

parameters 𝑤1,𝑤2 and 𝑡 of the neuron, which results in moving

the decision line associated with the neuron. In this paper, we

will be dealing with classification problems whose point sets are

subsets of the unit hypersphere. This motivates us to use a different

representation of the decision line corresponding to Hesse normal

form, i. e., by specifying angle 𝜑 of the unit normal vector for the

hyperplane (in two dimensions, a line) and its bias 𝑏 (which then

is its distance from the origin measured in the opposing direction

of that of the normal vector). Then the line and the halfspace into

which the normal vector points are classified as 1. As an additional

advantage, the parameter set consisting of angle and bias consists

only of two values compared to three values𝑤1,𝑤2, 𝑡 in the original

representation. The representations (𝑤1,𝑤2, 𝑡) and (𝜑,𝑏) are easily
convertible into each other.

2.2 ANNs with Two Layers

After having considered the single perceptron, we will extend our

analysis to ANNs with a larger number of neurons and layers. Here

we study a simple structure of a so-called feed-forward network

with two layers, a hidden one and an output layer.

The hidden layer comprises 𝑁 > 1 neurons, still with binary

output function, which are all connected to the inputs 𝑥1, . . . , 𝑥𝐷 .

The output layer is assumed to compute the Boolean OR of the

outputs of the hidden layer. This structure has been chosen as we

will be dealing mostly with problems that can be described as the

disjoint union of half-spaces of R𝐷 . See Figure 2 for an illustration.

While the hard-wired OR function in the output layer may seem

rather problem-specific, it is actually not difficult to set weights

𝑤1, . . . ,𝑤𝑁 and a threshold 𝑡 that makes the output neuron compute

a Boolean OR of the binary outputs 𝑜1, . . . , 𝑜𝑁 from the hidden layer

(e. g., choose 𝑡 > 0 and all weights at least 𝑡 ). In experiments (see
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Section 4), we placed a neuron in the output layer which mutated

in the same way as the others. This neuron almost always settled to

compute a Boolean function of the outputs of the hidden layer such

that the overall fitness is optimal. The function was not necessarily

an OR, but it would sometimes swap the classifications of the two

sides of a line to make them correct. A full theoretical analysis,

where also the parameters of the output layer are evolved, is subject

for future research.

𝑥1

𝑥2
.
.
.

𝑥𝐷

.

.

.

OR out

hidden layer

𝑁 neurons

output layer

1 neuron

Figure 2: Structure of ANNs with two layers

We remark that from a theoretical perspective, even very small

NNs are challenging and interesting to study. For example, training

networks with binary activation functions is NP-hard already for

3 neurons [1]. In the case of the continuous sigmoidal activation

function, even the training of a single neuron is NP-hard [27].

2.3 Algorithms

Classical frameworks for neuroevolution like NEAT [24] evolve

both the topology and the weights (and, if applicable, the biases) of

the network. This typically leads to a mixed discrete-continuous

search space, which may be hard to analyze. As argued above,

we assume a fixed topology for the network in this first runtime

analysis of neuroevolution but let the evolutionary algorithm evolve

the weights and biases of the neurons.

Setting the weights and biases of neurons in ANNs is usually a

continuous optimization problem. However, rigorous runtime anal-

ysis is much less developed for continuous optimization problems

than for discrete problems. With the idea of defining a OneMax of

Neuroevolution in mind, i. e., the transfer of a discrete optimization

problem, we would like to find a discretization of the setting that

still represents key aspects of the original, continuous setting. Here

we do not find a characterization as pseudo-boolean optimization

problem 𝑓 : {0, 1}𝑛 → R appropriate. One could imagine 𝑛 parallel

neurons and for each of these a binary parameter that corresponds

to activating/not activating the neuron and count the number of

activated neurons; however, this would be essentially the same as

OneMax. The search space {0, 1}𝑛 could also be used to model

non-binary parameters by dividing it into blocks, e. g., of ⌈log 𝑟⌉
bits to represent an integer in {0, . . . , 𝑟 −1}. Again, we do not follow
this choice since small changes like flipping a bit on the genotype

(i. e., representation) level might lead to large changes in the phe-

notype. Alternative mappings like grey codes [22], that avoid these

excessive changes, seem hard to analyze.

In this paper, we will use the state space {0, . . . , 𝑟 }𝑚 , where𝑚

is proportional to the number of neurons and 𝑟 is the resolution

of the discretization of a continuous parameter from a compact

domain; e. g., if the parameter lives on [0, 1], then the discretization

allows for the values [0, 1/𝑟, 2/𝑟, . . . , 1]. Search spaces of the type

{0, . . . , 𝑟 }𝑚 , where usually 𝑟 is small but𝑚 is growing, have been

considered before in runtime analyses, see, e. g., [3, 8, 12, 18].

After having defined the search space, we must agree on the

search operators used in the (neuro)evolutionary algorithm. A clas-

sical search operator in neuroevolution is mutation, which may add

a Gaussian random variable to a weight, choose a weight uniformly

from a compact interval etc. (both of which are valid choices in

NEAT). We suggest mutation operators that change the network

parameter (e. g., a weight or bias of a neuron) by adding ℓ/𝑟 to the

parameter or subtracting ℓ/𝑟 with ℓ drawn from some distribution

discussed below. Since we assume in advance that the parameters

lives on the compact interval like [−𝑎, 𝑎] for some constant 𝑎 (since

bounding the domain is a typical assumption in the optimization

of network parameters), we continue the interval cyclically, i. e.,

formally the result is taken modulo 𝑟 (or modulo 𝑟 + 1). This makes

sense especially for the angle of the hyperplane/line belonging to a

the neuron because of its periodic structure. See more details below.

In principle, the discretized search space {−𝑎,−𝑎 + 2𝑎/𝑟, 𝑎 +
4𝑎/𝑟, . . . , 𝑎 − 2𝑎/𝑟, 𝑎} arising from dividing the intervals [−𝑎, 𝑎]
in 𝑟 equally spaced segments allows the algorithm to find solu-

tions up to an error of 2𝑎/𝑟 in the search space – not necessarily

in the objective space. To obtain arbitrary precision, real-valued

EAs would typically introduce a form of self-adaptation (like a

1/5-rule, cf. [15]), which we ignore in this first study of the runtime

of neuroevolution algorithms. As a possible alternative to our dis-

cretization, one could also try to work with heavy-tailed mutation

operators for compact continuous search spaces, but these are not

easy to analyze from a theoretical runtime perspective, so we only

consider them in the experimental part (Section 4). Moreover, we

do not use more advanced search operators like crossover here.

Finally, we define the fitness function 𝑓 used in the following.

Informally this can be understood as the fraction of correctly clas-

sified points on the unit hypersphere. Formally, we consider points

𝑆𝐷 B {𝑥 ∈ R𝐷 | ∥𝑥 ∥2 = 1} as inputs to the ANN and and a binary

classification problem with labels in {0, 1} on these points. We then

compute

vol(((𝐶𝐷 ∩ 𝐿𝐷 ) ∪ (𝐶𝐷 ∩ 𝐿𝐷 )) ∩ 𝑆𝐷 )
vol(𝑆𝐷 )

,

where𝐶𝐷 is the union of half-spaces above (or on) the hyperplanes

spanned by the 𝑁 neurons, 𝐿𝐷 ⊂ 𝑆𝐷 the set of points classified 1,

𝐴 = R𝐷 \𝐴, and vol(·) denotes the (hyper)volume. As a side note,

this fitness function can also be understood as the quality of the

network with respect to a training set uniformly distributed on 𝑆𝐷 .

Note that this training set would be of infinite size; in future work

one might want to consider a finite-size sample of the set (e. g.,

uniformly), which we think would lead to similar results like in

the present paper but would involve more corner cases and a more

involved analysis.

Based on our discussion, we suggest the so-called (1+1) Neu-

roevolution Algorithm ((1+1) NA), given as Algorithm 1. It main-

tains 𝑁 neurons with two inputs each as explained in Sections 2.1–

2.2, for which biases and angles of normal vectors in polar co-

ordinates are evolved. Recall that the representation with angles
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Algorithm 1: (1+1) NA

𝑡 ← 0; select 𝑥0 uniformly at random from {0, . . . , 𝑟 }2𝑁 .

while termination criterion not met do

Let 𝑦 = (𝜑1, 𝑏1, . . . , 𝜑𝑁 , 𝑏𝑁 ) ← 𝑥𝑡 ;

For all 𝑖 ∈ {1, . . . , 𝑁 }, mutate 𝜑𝑖 and 𝑏𝑖 with probability

1

2𝑁
, independently of each other and other indices;

Mutation chooses 𝜎 ∈ {−1, 1} u. a. r. and ℓ ∼ Harm(𝑟 )
and adds 𝜎ℓ to the selected component; the result is

taken modulo 𝑟 for angle and modulo 𝑟 + 1 for bias;
For 𝑖 ∈ {1, . . . , 𝑁 }, set polar angle 2𝜋𝜑𝑖/𝑟 and bias

2𝑏𝑖/𝑟 − 1 for neuron 𝑖 to evaluate 𝑓 (𝑦);
if 𝑓 (𝑦) ≥ 𝑓 (𝑥𝑡 ) then 𝑥𝑡+1 ← 𝑦;

else 𝑥𝑡+1 = 𝑥𝑡 ;

𝑡 ← 𝑡 + 1;

Notation Interpretation

𝑁 number of neurons

𝐷 input dimension for the ANN

(usually 𝐷 = 2)

𝑟 resolution of angle and bias

[−1, 1] domain of neurons’ bias

[0, 2𝜋) domain of neurons’ angle

{0, . . . , 𝑟 }2𝑁 search space of algorithm

(𝜑1, 𝑏1, 𝜑2, 𝑏2, . . . , 𝜑𝑁 , 𝑏𝑁 ) search point: list of 𝑁 angle/bias-

pairs (𝜑𝑖 , 𝑏𝑖 ), 𝑖 ∈ {1, . . . , 𝑁 }, for
the 𝑁 neurons; 𝜑𝑖 , 𝑏𝑖 ∈ {0, . . . , 𝑟 }

𝑓 : {0, . . . , 𝑟 }2𝑁 → [0, 1] fitness function, returning the

fraction of correctly classified

points on the unit hypersphere

Table 1: Overview of notation in (1+1) NA (and its analyses)

is preferred over Cartesian coordinates because of the spherical

structure of our forthcoming benchmark problems. We also re-

call that the bias of a neuron coincides with the distance of its

line from the origin, assuming a unit length for the normal vector.

The algorithm has a global search operator using the harmonic

distribution Harm(𝑟 ) on {1, . . . , 𝑟 } for the magnitude of change ℓ ;

more precisely, Prob(ℓ = 𝑖) = 1/(𝑖𝐻𝑟 ) for 𝑖 ∈ {1, . . . , 𝑟 }, where
𝐻𝑟 =

∑𝑟
𝑖=1 1/𝑖 . This operator was used before in [2, 3, 13] for simi-

lar search spaces. Table 1 summarizes the parameters and settings

of the (1+1) NA.

We note that the independent choices for the mutated compo-

nents allow void steps where nothing is mutated. We ignore this

here for the sake of simplicity; from an algorithm-engineering

perspective, one would simply redraw the mutation if it does not

change anything [4, 21].

Variants of (1+1) NA. We shall also define and analyze the fol-

lowing natural simplifications of the above (1+1) NA:

• The local (1+1) NA only changes its components by ±1, i. e.,
ℓ = 1 is fixed instead of being drawn from a Harmonic

distribution. This operator is called unit mutation in [3].

• The (1+1) NA without bias fixes 𝑏𝑖 = 0 for {1, . . . , 𝑁 } and
maintains search points (𝜑1, . . . , 𝜑𝑁 ) consisting of 𝑁 angles

only, which are subject to the same type of mutation as the

original (1+1) NA.

Further variants of the algorithm may be investigated in the fu-

ture, e. g., different choices for the mutation and other probabilistic

elements. In particular, the self-adjusting mutation from [3] is a

rather relevant alternative to the simple mutations considered here.

Optimization time. A common convention in runtime analysis

in discrete search spaces is to define the optimization time (syn-

onymously, runtime) as the number of fitness function evaluations

until a solution having optimal fitness value has been sampled. We

adapt this to our discretized search space by still counting fitness

evaluations, but saying that the function has been optimized if the

current search point 𝑥 = (𝜑1, 𝑏1, . . . , 𝜑𝑁 , 𝑏𝑁 ) deviates by an abso-

lute value of less than 1 in the representation of angles and biases,

i. e.,

𝑁
max

𝑖=1
{|𝜑𝑖 − 𝜑∗𝑖 |, |𝑏𝑖 − 𝑏

∗
𝑖 |} < 1

for an optimal (fractional) solution (𝜑∗
1
, 𝑏∗

1
, . . . , 𝜑∗

𝑁
, 𝑏∗

𝑁
), where the

absolute values are with wrap-around in the respective intervals.

This corresponds to an 𝑂 (1/𝑟 )-error in terms of the actual value

of bias or angle. Typically, the expected value of the stochastic

optimization time is bounded. Since each element of the search

space has a probability of at least (1/(𝑟𝐻𝑟 ))2𝑁 of being hit by

mutation, we obtain the following bound, similar to the worst-case

bound for the (1+1) EA on pseudo-boolean problems [9].

Lemma 2.1. The expected optimization time of the (1+1) NA on an

arbitrary problem is at most 𝑂 ((𝑟 log 𝑟 + 𝑟 )2𝑁 ).

Even if 𝑁 = 𝑐 for a constant 𝑐 , we do not consider the general

runtime bound𝑂 ((𝑟 log 𝑟 +𝑟 )2𝑐 ) as particularly efficient. In fact, for

simple problems bounds being polylogarithmic in 𝑟 like (log 𝑟 )𝑂 (1)
can be obtained, as shown and discussed below.

Finally, we remark that the set of optimal solutions for a given

optimization problem may depend on the number of allowed neu-

rons and whether bias is allowed or not. We will consider examples

where with only one neuron, not all points of the underlying clas-

sification problem can be classified correctly, while this is possible

with at least two neurons.

2.4 Problems

In this section, we define several benchmark problems that shall

illustrate how the (1+1) NA makes progress towards a correct clas-

sification with one or several neurons. Also, the section serves to

point out typical situations in the optimization that can make the

algorithm stuck in a local optimum. As argued above, we identify

problems with the points in 𝑆𝐷 ⊆ R𝐷 classified positively, i. e., as 1.

All problems are defined for arbitrary 𝐷 ≥ 2; however, for the sake

of simplicity most analyses will be restricted to 𝐷 = 2.

The following problem can be thought of as a kind of OneMax

for the (1+1) NA without bias. However, there are limits to this

analogy since the fitness landscape for the (1+1) NA (see Section 3)

is more uniform than the for the classical (1+1) EA on OneMax.
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Definition 2.2. The problem Half consists of all points with

non-negative 𝑥𝐷 -dimension on the unit hypersphere, i. e.,

Half = {𝑥 ∈ R𝐷 | ∥𝑥 ∥2 = 1 and 𝑥𝐷 ≥ 0}

= {𝑥 ∈ R𝐷 | ∥𝑥 ∥2 = 1 and𝜓𝐷−1 ∈ [0, 𝜋]},
where 𝜓𝐷−1 is the polar spherical angle between 𝑥 and the unit

hypersphere on the first 𝐷 − 1 dimensions.

Obviously, setting the angle of a single neuron to 𝜋/2 and its

bias to 0 is optimal here. See Figure 3 for sketch of Half and the

following two problems with 𝐷 = 2.

Figure 3: Illustration of Half,Quarter and TwoQuarters

(from left to right). The thick red areas constitute the target

points that should be classified positively. Hyperplanes at

optimal positions are shown in blue. The arrow points to

the positively classified halfspace. The fitnesses are 1, 1, and

3/4, respectively.

Similarly, we define Quarter. It can still be solved optimally

(according to our definition above) with the special case of 1 neuron

if the bias is allowed to vary. The global optimum is at angle 𝜋/4
and bias

√
2/2.

Definition 2.3. The problem Quarter consists of all points with

non-negative 𝑥𝐷−1 and 𝑥𝐷 -dimension on the unit hypersphere, i. e.,

Quarter = {𝑥 ∈ R𝐷 | ∥𝑥 ∥2 = 1 and (𝑥𝐷−1, 𝑥𝐷 ) ≥ (0, 0)}

= {𝑥 ∈ R𝐷 | ∥𝑥 ∥2 = 1 and𝜓𝐷−1 ∈ [0, 𝜋/2]},

The next problem requires at least two linear classifiers, i. e., two

neurons, and a neuron (possibly hard-wired) joining the results of

those two to be solved exactly. With only one neuron, at least 1/4
of the circle will be classified incorrectly.

Definition 2.4. The problem TwoQuarters consists of all points

with either both non-negative or both positive 𝑥𝐷−1 and 𝑥𝐷 -dimen-

sion on the unit hypersphere, i. e.,

TwoQuarters = {𝑥 ∈ R𝐷 | ∥𝑥 ∥2 = 1 and 𝑥𝐷−1𝑥𝐷 ≥ 0}

= {𝑥 ∈ R𝐷 | ∥𝑥 ∥2 = 1 and𝜓𝐷−1 ∈ [0, 𝜋/2] ∪ [𝜋, 3𝜋/2]},

Finally, we define the problem that has hard-to-overcome local

optima in the fitness landscape given by the local (1+1) NA. See

more details in the following section. It is most convenient to define

the problem by means of polar coordinates.

Definition 2.5. The problem LocalOpt consists of all points on

the unit hypersphere with polar angle𝜓𝐷−1 between 0 and 60, 120

and 180, or 240 and 330 degrees, i. e.,

LocalOpt = {𝑥 ∈ R𝐷 | ∥𝑥 ∥2 = 1

and𝜓𝐷−1 ∈ [0, 𝜋/3] ∪ [2𝜋/3, 𝜋] ∪ [4𝜋/3, 11𝜋/6]}

Figure 4: Examples for LocalOpt. The colors are as in fig-

ure 3. One optimal solution is shown at the left having a

fitness of 3/4 (there are two more). The solution at right is

locally optimal with a fitness of 2/3.

Figure 4 shows examples of a globally optimal solution and one

in a local optimum, assuming 𝐷 = 2.

To conclude this section and to prepare the forthcoming analyses,

we define a problem class that all above problems belong to.

Definition 2.6. A classification problem 𝑆 ⊆ R𝐷 is called union of

(generalized) arcs if there are two constants 𝑛∗ ∈ N, 𝑎∗ ∈ R≥0 such
that 𝑆 is the disjoint union of 𝑛∗ hyperspherical caps𝐶1, . . . ,𝐶𝑛∗ of

the unit hypersphere, where each cap 𝐶𝑖 , 𝑖 = 1, . . . , 𝑛∗, is given by

𝐶𝑖 = {𝑥 ∈ R𝐷 | ∥𝑥 ∥2 = 1 and𝜓𝐷−1 ∈ [𝛼𝑖 , 𝛽𝑖 ]}

for 𝛼𝑖 , 𝛽𝑖 ∈ R with 𝛽𝑖 − 𝛼𝑖 ≥ 𝑎∗, i. e., is defined on a interval of

constant size with respect to the polar angle𝜓𝐷−1.

Since we mostly will work with 𝐷 = 2, we prefer the term union

of arcs instead of the generalized “union of hyperspherical caps” or

similar in the following. Obviously, from the problem definitions it

immediately follows that the problems defined above are all union

of arc problems.

3 RUNTIME ANALYSIS

In this section, we conduct rigorous runtime analyses of the (1+1) NA

with harmonic and local mutation on the example problems defined

in Section 2.4. We exclusively consider the case 𝐷 = 2 here, which

justifies the use of the terms for 2 dimensions like “unit circle”,

“line” etc. instead of the general “unit hypersphere (surface)”, “hy-

perplane” etc. Extensions of the analyses to larger dimensions seem

promising, but would require inputs of higher dimensionality for

the neurons and would introduce additional complexity.

We start our analysis with the simplest of the problems, which

can be solved optimally (in the sense defined above) with 1 neuron

even if the bias is fixed at 0.

Theorem 3.1. The expected optimization time of the (1+1) NA

with harmonic mutation, 𝑁 = 1 and without bias on Half for 𝐷 = 2

is 𝑂 (log2 𝑟 ). For the local (1+1) NA it is 𝑂 (𝑟 ).

To prove this and the following theorems, it is crucial to under-

stand how the (1+1) NA can make progress towards solutions of

higher fitness. To this end, we give the following definition and

characterization of local optima.

Definition 3.2. Let 𝑥𝑡 = (𝜑1, 𝑏1, . . . , 𝜑𝑁 , 𝑏𝑁 ) be a search point of

the (1+1) NA. We call 𝑥𝑡 a local optimum if there is no 𝑥 ′ of strictly
larger fitness value that differs from 𝑥𝑡 in exactly one component 𝑐
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and furthermore by either +1 or −1 in that component (modulo 𝑟 if

𝑐 denotes an angle and modulo 𝑟 + 1 if 𝑐 denotes a bias).

Lemma 3.3. Consider the (1+1) NA with 𝑁 = 1 on a unit-of-arcs

problem according to Definition 2.6. Assume for the current search

point 𝑥𝑡 that not both intersecting points of the unit circle and the

neuron’s line are at a boundary of a positive or negative arc. If at least

one of the two following conditions hold, then 𝑥𝑡 is not locally optimal:

(1) none of the intersecting points is at a boundary and the smallest

distance between the endpoints of a positive arc and the intersecting

points is at least 2/𝑟 ; (2) one intersecting point is at a boundary and

there is a negative arc of length at least 2𝜋/𝑟 incident on the other

intersecting point.

The lemma still applies to the case 𝑁 > 1 if all lines belonging

to the 𝑁 neurons classify disjoint areas of [0, 1]2 positively, have

constant distance from each other, and 𝑟 is at least a sufficiently large

constant.

Proof. We recall that the unit circle is composed of a constant

number of arcs of constant size, where each arc is either classified

completely positively or completely negatively.

We consider the two cases stated in the lemma. If none of the

intersecting points is at a boundary, then it is sufficient to change

the bias component of the current search point by ±1, moving

the line either closer to a positive arc (if it is above the line) or

further away (if below). This reduces the length of the wrongly

classified region and does not move the line into a different arc by

the assumptions of distance at least 2/𝑟 .
If only one intersecting point is at a boundary, then, by the

assumption on the negative arc length of at least 2𝜋/𝑟 , changing
the angle of the line is possible without decreasing the fitness. More

precisely, we change the angle such that the intersecting point,

which previously was at a boundary, now lies within a negative arc.

If the angle changes by 𝛿 , this increases the negative length above

the line by 𝛿 (since we are dealing with a unit circle). However,

the other intersecting point moves by the same amount closer to a

positive arc. See Figure 5 for an illustration.

The conclusions above are still valid for larger 𝑁 if moving or

rotating a line preserves disjointness of the 𝑁 arcs classified posi-

tively by the neurons. If 𝑟 is bounded from below by a sufficiently

large constant, this holds since we assume at least constant distance

between the 𝑁 lines (measured within the unit circle). □

With the above tools at hand, we can prove the first theorem.

Proof of Theorem 3.1. By definition, the optimal angle for the

problem is 𝜋/2, resulting in the halfspace {𝑥 ∈ R2 | 𝑥2 ≥ 0} being
classified positively. (Here we use that the bias is fixed at 0.) We

consider the local (1+1) NA first and use a classical fitness-level ar-

gument [28] for the underlying unimodal fitness landscape to bound

the time until the current angle of the (1+1) NA has reached 𝜋/2, cor-
responding to 𝜑𝑡 = 𝑟/4 in the search space (note that with our defi-

nition of optimization time, any angle 𝜑𝑡 ∈ (𝑟/4− 1, 𝑟/4 + 1) would
be considered as optimal). Let 𝜉𝑡 = min{|𝑟/4 − 𝜑𝑡 |, 5𝑟/4 − 1 − 𝜑𝑡 },
i. e., the smallest distance of 𝜑𝑡 from its optimum 𝑟/4 in the repre-

sentation with wrap-around, where 0 is a neighbor of 𝑟 − 1.
If 𝜉𝑡 = 𝑖 > 0 (corresponding, e. g., to an angle 2𝜋𝑖/𝑟 + 𝜋/2), then

incrementing or decrementing 𝜑𝑡 by 1 (modulo 𝑟 ) will improve

fitness since such a step increases the length of the intersection of

the arc above the neuron’s line (with normal vector of angle 𝜑𝑡 )

and the points in Half. Whether increasing or decreasing (or both)

improves fitness depends on whether 𝜑𝑡 < 3𝑟/4. The local (1+1) NA
chooses the improving direction for the angle with probability at

least 1/2 and reduces 𝜉𝑡 by 1 with probability at least 1/2. Alto-
gether, the probability of improving is at least 1/4. Since at most

𝑟/2 improvements are sufficient, the total expected optimization

time is at most (𝑟/2) · 4 = 𝑂 (𝑟 ).
For the standard (1+1) NA with Harmonic mutation, we use

multiplicative drift analysis [5], inspired by the analysis of the

Harmonic mutation on a generalized OneMax function from [3].

Let 𝜉𝑡 = 𝑖 . Then all decreasing steps of sizes 1, . . . , 𝑖 are accepted.

The probability of a decreasing step of size 𝑗 ≤ 𝑖 is 1/(2 𝑗𝐻𝑟 ), where
the factor 2 accounts for the choice of direction. Hence, the expected

distance decrease is at least

∑𝑖
𝑗=1

1

2𝑗𝐻𝑟
· 𝑗 = 𝑖

2𝐻𝑟
; in other words,

the drift is bounded from below by 𝑖𝛿 with 𝛿 = 1/(2𝐻𝑟 ). By the

multiplicative drift theorem [5], the expected hitting time of 0 is

𝑂 ((ln𝜑0 + 1)/𝛿) = 𝑂 (ln2 𝑟 ). □

We remark that the optimization problem underlying Theo-

rem 3.1 corresponds to the generalized OneMax on {0, . . . , 𝑟 }𝑛
for 𝑛 = 1 as considered in [3]. Hence, it seems straightforward

to transfer their results for an advanced self-adjusting mutation

to the scenario of Theorem 3.1. However, this is not obvious for

the following problems, so we stick to the more simple local and

harmonic mutation operators for the rest of this paper.

We proceed now to the problem Quarter, which cannot be

solved optimally with one neuron if the bias stays fixed at 0. We

show that allowing varying bias leads to polynomial in 𝑟 expected

optimization time for the local mutation and even to polylogarith-

mic times in special cases for the Harmonic mutation. We remark

that the positive arc length of 𝜋/2 has been chosen for simplicity.

The analyses also hold for a larger class of problems where the

length of the positive arc is some constant value in the interval

(0, 𝜋).

Theorem 3.4. Let 𝑟 = 8𝑘 for an integer 𝑘 , let𝑁 = 1 and allow vari-

able bias. Consider the (1+1) NA with local and harmonic mutation

on the problem Quarter. Then:

(1) The expected optimization time of the local (1+1) NA is 𝑂 (𝑟2).
(2) With at least constant probability, the optimization time of the

local (1+1) NA is 𝑂 (𝑟 ).
(3) With harmonic mutation, the expected optimization time is

𝑂 (log3 𝑟 ).

We will need the following characterization of fitness, assuming

that there is piece of positive length above the line.

Lemma 3.5. Let 𝑥𝑡 = (𝑏𝑡 , 𝜑𝑡 ) be the current search point of the

(1+1) NA with 𝑁 = 1 on Quarter and assume that there is piece of

positive length on the unit circle above the neuron’s line. Let 𝑑
(𝑡 )
𝑏

=

(2𝑏𝑡/𝑟 − 1) −
√
2/2 and 𝑑

(𝑡 )
𝜑 = |2𝜋𝜑𝑡/𝑟 − 𝜋/4| be the difference

of current bias and absolute difference of angle, respectively, from

their optimal values and let 𝜂𝑡 = 2 arccos(2𝑏𝑡/𝑟 − 1) − 𝜋/2 be the
difference of the length of the arc above the line from its optimum
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value. If 𝑑
(𝑡 )
𝑏
≥ −
√
2/2, then it holds for the current fitness value that

𝑓 (𝑥𝑡 ) = 1 − |𝜂𝑡 | −max{0, 𝑑 (𝑡 )𝜑 − |𝜂𝑡 |/2}.

Proof. By simple trigonometry, the length of the arc above the

line is 2 arccos(2𝑏𝑡/𝑟 − 1). We distinguish two cases according

to 𝑑
(𝑡 )
𝑏

. If 𝑑
(𝑡 )
𝑏
≤ 0, which means that the whole positive arc of

Quarter has room to be lie completely above the line, a total length

of least 𝜂𝑡 = 2 arccos(2𝑏𝑡/𝑟 − 1) − 𝜋/2 ≥ 0 of that arc is negative

and therefore wrongly classified. However, if 𝑑
(𝑡 )
𝜑 > 𝜂𝑡/2, then the

positive arc of Quarter intersects the line and an additional arc

of length 𝑑
(𝑡 )
𝜑 − 𝜂𝑡/2 lies below the line and is wrongly classified.

This gives the formula

1 − 𝑓 (𝑥𝑡 ) = 𝜂𝑡 +max{0, 𝑑 (𝑡 )𝜑 − 𝜂𝑡/2}.

If 𝑑
(𝑡 )
𝑏

> 0, then 𝜂𝑡 < 0 and at least one endpoint of the positive

arc of Quarter is below the line. Moreover, positive arcs of total

length at least −𝜂𝑡 = 𝜋/2 − 2 arccos(2𝑏𝑡/𝑟 − 1) are below the line

and wrongly classified, where we use that the bias is non-negative

due to the assumption 𝑑
(𝑡 )
𝑏
≥ −
√
2/2. Together with the additional

negative arc above the line in the case 𝑑
(𝑡 )
𝜑 > |𝜂𝑡 |/2, we obtain

1 − 𝑓 (𝑥𝑡 ) = −𝜂𝑡 +max{0, 𝑑 (𝑡 )𝜑 + 𝜂𝑡/2},
and the lemma follows. □

We shall show the statements of the Theorem 3.4 separately and

start with the simpler case of local mutation analyzed in the first

two statements. The second statement considers an initialization

where there is a clear gradient towards on optimal solution. The

first statement considers general initialization, which may result in

a longer random-walk behavior with the line of the neuron being

tangent on the unit circle.

For all parts of Theorem 3.4, we will frequently use the following

helper lemma. Often the line ℓ considered in the lemma corresponds

to an optimal placement of the neuron’s line.

Lemma 3.6. Let ℓ be a line passing through the unit circle and

𝑝 be a point on the unit circle. Let 𝑑ℓ be the distance of ℓ from the

origin and let 𝑑𝑝 be the distance between the origin and the line that

is parallel to ℓ and passes through 𝑝 . Assume that both 𝑑ℓ and 𝑑𝑝 less

than 1.

Suppose that 𝑝 is rotated by an angle of 𝜌 on the circle such that it

moves either closer to or further away from ℓ during the whole rotation

and does not change side w. r. t. ℓ . Then there are constants 0 < 𝑐1 < 𝑐2
such that 𝑑𝑝 reduces by at least 𝑐1𝜌 and at most 𝑐2𝜌 . Similarly, if ℓ is

moved closer to 𝑝 by an amount of 𝛿 > 0, then the arc between ℓ and 𝑝

decreases by at least 𝑐3𝛿 and at most 𝑐4𝛿 for constants 0 < 𝑐3 < 𝑐4.

Proof. The distance 𝑑𝑝 is given by the sine of the angle 𝛼 be-

tween ℓ and the line passing through the center point and 𝑝 . Now,

since moving the point decreases the angle by a constant, the first

claim follows by noting that sine is monotone increasing in the

considered ranges and that its derivative is constant as soon as

the angle has moved away from ±𝜋/2. The second claim follows

analogously with a linear approximation of the arcsine. □

We now give the proofs of the second statement and afterwards

of the first statement of Theorem 3.4.

Proof of 2nd statement of Theorem 3.4. This statement con-

siders beneficial initializations of angle and biases. If the set Quar-

ter (an arc of length 𝜋/2) intersects or lies completely above the

line of the neuron in the initial solution, then fitness is improved

by rotating the line to increase the arc length above the line or

increasing the bias (or both). We consider the event of an initial

bias in (0, 0.5] (i. e., 𝑏0 ∈ [𝑟/2 + 1, 3𝑟/4] in the initialization) and

an initial angle strictly in between 𝑎 B arcsin(0.5) and 𝜋/2 − 𝑎
(roughly corresponding to 𝜑0 ∈ (0.0833𝑟, 0.1667𝑟 )), which has con-

stant probability. Simple geometry then shows that theQuarter

arc is completely above the line of the neuron. This implies that the

points inQuarter and the region below the line, which comprise

more than half of the circle because of the positive bias, are cor-

rectly classified. Hence, the fitness of such a search point is strictly

larger than 3/4. It is not possible to achieve such a fitness without

having theQuarter arc partially or fully above the neuron’s line,

so this property will be maintained during the run.

To analyze fitness improvements, we consider two types of steps:

(1) increasing the bias, i. e., moving the line closer to the positive

arc of Quarter without moving any of its points below the

line,

(2) changing the angle such that the arc of Quarter appears

more centered above the line of the neuron; formally, the

absolute difference between angle and 𝜋/4, i. e., the quan-
tity 𝑑

(𝑡 )
𝜑 from Lemma 3.5 decreases. This may be necessary

to allow a further increase in bias and fitness. Figure 5 de-

picts a situation where a type-2 step has to be applied before

further improvements.

The characterization of Lemma 3.3 shows that type-1 steps or

type-2 steps are available before the line has found its optimal

position (up to the allowed tolerance ±𝑂 (1/𝑟 )). Moreover, type-1

steps strictly improve fitness (unless the bias component of the

search point has reached the optimum value ±1). As long as type-1

steps are available (i. e., can improve fitness), there is a probability

of at least Ω(1) of not changing the angle and mutating the bias

in the desired direction (increasing it by 2/𝑟 ). By Lemma 3.5, this

increases the fitness since 𝜂𝑡 decreases. This fitness improvement is

at least Ω(1/𝑟 ) since the length of wrongly classified region above

the line decreases linearly with the increase of bias by Lemma 3.6.

Here we exploit the bias considered here is at least 0 and at most√
2/2 + 1/𝑟 , which is by a constant away from 1, i. e., the radius of

the unit circle.

When a type-1 step is not possible, a type-2 stepmay decrease the

quantity 𝑑
(𝑡 )
𝜑 . Such steps do never decrease fitness and are accepted,

however, they do not necessarily increase fitness if Quarter is

already completely above the line. If neither type-1 nor type-2 steps

are available, both angle and bias are within an additive distance

of less than 1 from the optimum in the representation. This holds

since we assume that 𝑟 is a multiple of 8, so the optimum angle of

𝜋/4 can be represented as 𝑟/8 in the search point. Hence, when

the angle takes precisely its optimum value, the bias may decrease

to its optimum

√
2/2 within the error 𝑂 (1/𝑟 ) introduced by the

discretization. This is the desired state that we analyze the algorithm

to reach.
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If a type-2 step is available that increases fitness, then we are

in the situation 𝑑
(𝑡 )
𝜑 ≥ 𝜂𝑡/2 of Lemma 3.5 and the fitness improve-

ment is at least 1/𝑟 (using again that 𝑟 is a multiple of 8, so 𝑑
(𝑡 )
𝜑

cannot take values strictly in between 0 and 1/𝑟 ). Finally, we have
to analyze fitness progress in the situation that only type-2 steps are

available that do not decrease fitness since 𝑑
(𝑡 )
𝜑 ≤ 𝜂𝑡/2. A type-2

step may decrease 𝑑
(𝑡 )
𝜑 and thereby increase the distance of closest

endpoint of the positiveQuarter arc from the neuron’s line. If this

distance increases by at least 1/𝑟 , a type-1 step becomes available.

Hence, using again Lemma 3.6 and noting that old and new bias

are bounded by a constant less than 1 and at least 0, rotating the

angle by at least 𝑐/𝑟 for a sufficiently large constant 𝑐 increases the

distance of the closest endpoint of theQuarter arc from the line of

the neuron by at least 2/𝑟 . Thus, 𝑐 consecutive steps rotating in one

direction are sufficient, which happens with constant probability at

least (1/4)𝑐 . Altogether, there is a constant probability of changing

the angle by at least 𝑐/𝑟 in the desired direction and afterwards

increasing the bias by 2/𝑟 , i. e., a sequence of type-2 steps and a

type-1 step. Hence, as long the algorithm is not yet within the al-

lowed distance of the optimal bias, there is a constant probability

of improving fitness by Ω(1/𝑟 ). Altogether, in expected 𝑂 (𝑟 ) steps
the (1+1) NA has reached the desired state. □

Proof of 1st statement of Theorem 3.4. Again, we use the

ideas from Lemma 3.3. Hence, there is always a constant probability

of increasing the fitness unless either the global optimum has been

reached (in the sense of an error of 𝑂 (1/𝑟 ) as described above) or

the bias has reached its maximum value 1. If a part of Quarter

is above the line, then fitness increases by moving a larger part

above the line without moving too many of the negative points

below it. If, however,Quarter is completely below the line, then

fitness increases by decreasing the length of the arc above the

line (consisting of negative points only). Hence, an increase of

bias increases fitness in this situation, up to the point where it

reaches 1 and, up to an intersection of volume 0, the whole unit

circle is below the line. Such a state corresponds to a fitness of

3/4. Decreasing the bias is not accepted in this situation unless it

moves parts of the positiveQuarter arc above the neuron’s line. As

soon as this happens, fitness increases above 3/4 and an optimum

is bound in expected time 𝑂 (𝑟 ) by decreasing bias and rotating

the line until reaching bias

√
2/2 ± 𝑂 (1/𝑟 ) and angle 𝜋/4, using

the same arguments as in the analysis of the first statement. Also,

again using the same arguments, in expected time 𝑂 (𝑟 ) the bias
reaches 1 if the optimum is not found before. Hence, we only have

to analyze the time, starting from a bias of 1, until the angle enters

the interval (0, 𝜋/4). In this situation there is a constant probability

of decreasing the bias (without changing the angle).

To complete the proof, we consider the random walk of the angle

while the bias is 1. Formally, let𝑋𝑡 be the representation of the angle

at time 𝑡 ≥ 0 (i. e., as an integer in {0, . . . , 𝑟 − 1}), where time 0

corresponds to the first point in time with bias 1. We consider

the first hitting time 𝑇 B min{𝑡 ≥ 0 | 𝑋𝑡 ∈ [0, 𝑟/4], assuming

𝑋0 ∈ (𝑟/4, 𝑟 − 1]. If the bias does not change, the random walk

takes independently in each step a uniform decision to increase or

decrease the angle, and the absolute change is independently drawn

from the same distribution. Hence, we have E[𝑋𝑡+1 | 𝑋𝑡 ] ≤ 𝑋𝑡 , i. e.,

a supermartingale, where the inequality stems that the mutation is

taken modulo 𝑟 . We pessimistically assume the case of a martingale.

Clearly, since the change has constant variance and uniform random

sign, the variance satisfies Var[𝑋𝑡+1 | 𝑋𝑡 ] ≥ 𝑐 for a constant 𝑐 >

0. Hence, by the upper bound for martingale drift (Corollary 26

in [17]), we have E[𝑇 ] = 𝑂 (𝑟2). By Markov’s inequality, 𝑇 = 𝑂 (𝑟2)
with constant probability, and with altogether constant probability

after 𝑂 (𝑟2) steps the bias decreases to less than 1.

Finally, the total expected runtime is𝑂 (𝑟2) by a standard restart

argument. Formally, we can consider independent phases of length

𝑂 (𝑟2) and constant success probability. The expected number of

such phases is 𝑂 (1). □

rotate

Figure 5: The line can be rotated without changing fitness.

To complete the analysis, we still have to analyze the standard

(1+1) NA with the global, harmonic mutation. While several ideas

from the case with local mutation will reappear, the analysis is

more complex and requires a careful study of the decomposition of

the fitness value from Lemma 3.5, along with more advanced drift

arguments. We will need the following helper statement.

Lemma 3.7. Let 𝑋 denote the random outcome of the harmonic

mutation operator with parameter 𝑟 . Let 𝑎, 𝑏, where 𝑎 < 𝑏, be two

positive integers. Then Prob(𝑎 < 𝑋 ≤ 𝑏) ≥ (ln(𝑏/𝑎) − 1/𝑎)/𝐻𝑟

Proof of Lemma 3.7. We compute

Prob(𝑎 < 𝑋 ≤ 𝑏) =
𝑏∑

𝑗=𝑎+1

1

𝑗𝐻𝑟
=

1

𝐻𝑟
(𝐻𝑏 − 𝐻𝑎)

≥
ln(𝑏) − ln(𝑎) − 1

𝑎

𝐻𝑟
=

ln(𝑏/𝑎) − 1

𝑎

𝐻𝑟
,

where we bounded the Harmonic sums by integrals using upper

and lower sums. □

Lemma 3.7 is often used for the case that 𝑏 − 𝑎 = Ω(𝑟 ), which
gives a probability of Ω(1/ln 𝑟 ) of hitting the interval (𝑎, 𝑏]. We

can now give the analysis of the harmonic mutation onQuarter.

Proof of 3rd statement of Theorem 3.4. First, let us assume

that we already have a fitness of at least 3/4 to explain the main idea.

At the end of the proof, we will deal with a general initialization.

In the following, we study the effect of the global, harmonic

mutation in the analysis of the fitness improvements and progress

of the line towards its optimal state at bias 𝑏∗ B
√
2/2 and an-

gle 𝜋/4. Note that the line might change globally in one step, from

a state with bias less than 𝑏∗ and the whole positive arc and some

negative parts above it to a state with bias greater than 𝑏∗ and a

strict subset of the positive arc and no negative points above it.

However, the assumption of fitness strictly larger than 3/4 gives us
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two invariants: (1) the bias must be non-negative (otherwise, more

than 1/4 of the negative parts would be above the line and classified
incorrectly) and (2) that there will always be some positive (sub)arc

of Quarter above the line (as already exploited in the proof of the

2nd statement).

To analyze fitness improvements, we are in the same mindset as

in the proof of the first two parts and distinguish between changes

of angle and changes of bias. Changes of angle are beneficial if the

bias is less than 𝑏∗ and the positive arc is partly below the line. Let 𝜉

be length of positive arc part below the arc. Then rotating the line

by 𝜉 immediately improves fitness by 𝜉 . Changes of bias become

relevant if both end points of the positive arc are on the same side of

the line. Then fitness improves by changing bias, either by bringing

more positive points (if bias is decreased) or fewer negative points

(if bias is increased) above or on the line.

With this rough strategy in mind, we shall study the fitness

distance 𝑔𝑡 = 1 − 𝑓 (𝑥𝑡 ) ≥ 0 over time and conduct a multiplica-

tive drift analysis. To this end, we express 𝑔𝑡 as a sum of two

(approximately) linear functions and distinguish between differ-

ent cases and subcases. In the notation of Lemma 3.5, we consider

the case 𝑑
(𝑡 )
𝑏

< 0 first, which means that the whole positive arc

of Quarter has room to lie completely above the line. Recalling

the lemma, we have the following characterization of the fitness

distance: 𝑔𝑡 = 𝜂𝑡 +max{0, 𝑑 (𝑡 )𝜑 − 𝜂𝑡/2}.
We want to show the multiplicative drift E[𝑔𝑡 − 𝑔𝑡+1 | 𝑔𝑡 ] ≥

𝛿𝑔𝑡 for some 𝛿 = Θ(1/ln2 𝑟 ). Here we distinguish between two

subcases. If max{0, 𝑑 (𝑡 )𝜑 − 𝜂𝑡/2} > 𝜂𝑡/2 (i. e., 𝑑
(𝑡 )
𝜑 > 𝜂𝑡 ), then, as

explained in Lemma 3.5, the two endpoints of the positive arc are on

different sides of the line and we analyze steps keeping the bias but

moving the angle closer to 𝜋/4. Any change of angle by an amount

𝜉 ∈ Δ∗ B [0, 𝑑 (𝑡 )𝜑 − 𝜂𝑡/2] is accepted (assuming that the bias is

not mutated in the same step) and decreases 𝑔𝑡 by 𝜉 . Changes of

larger amounts (up to 𝑑
(𝑡 )
𝜑 ) are also accepted, as we shall exploit in

a special case below, but do not lead to an additional improvement

of the second component of 𝑔𝑡 .

In our discretized representation, the changes of angle in the

set Δ∗ correspond to steps of size 𝑗 of the angle component in

the search point for 𝑗 = 1, . . . , ⌊(𝑟/(2𝜋)) (𝑑 (𝑡 )𝜑 − 𝜂𝑡/2)⌋. If 𝑑 (𝑡 )𝜑 −
𝜂𝑡/2 < 2𝜋/𝑟 , the previous floor function is 0, but then already

a step of size 1 in the search space, changing angle in the right

direction and not changing bias, reduces the 𝑑
(𝑡 )
𝜑 -value sufficiently

to have 𝑑
(𝑡+1)
𝜑 < 𝜂𝑡+1/2 and therefore 0 contribution of the second

component of 𝑔𝑡 . Otherwise, i. e., if 𝑑
(𝑡 )
𝜑 − 𝜂𝑡/2 ≥ 𝑟/(2𝜋), then

⌊(𝑟/(2𝜋)) (𝑑 (𝑡 )𝜑 − 𝜂𝑡/2)⌋ ≥ (𝑟/(4𝜋)) (𝑑
(𝑡 )
𝜑 − 𝜂𝑡/2) and the expected

progress in the potential space through the steps of size 𝑗 is at least

⌊ (𝑟/(2𝜋 )) (𝑑 (𝑡 )𝜑 −𝜂𝑡 /2) ⌋∑
𝑗=1

1

𝑗𝐻𝑟
· 𝑗 ≥

(𝑟/(4𝜋)) (𝑑 (𝑡 )𝜑 − 𝜂𝑡/2)
𝐻𝑟

,

so along with the probability of not mutating bias, which is 1 −
1/(2𝑁 ) = 1/2, we have

E[𝑔𝑡 − 𝑔𝑡+1 | 𝑔𝑡 ] ≥
(𝑑 (𝑡 )𝜑 − 𝜂𝑡/2)

8𝐻𝑟
≥ 𝑔𝑡

24𝐻𝑟

using that 𝑔𝑡 ≤ 3(𝑑 (𝑡 )𝜑 − 𝜂𝑡/2) by assumption (following from the

representation of 𝑔𝑡 and the condition for the present case). Hence,

we even have 𝛿 ≥ 1/(24 ln 𝑟 + 24) in this case.

In the other subcase, i. e., if max{0, 𝑑 (𝑡 )𝜑 − 𝜂𝑡/2} ≤ 𝜂𝑡/2, we
consider fitness improvements made by bringing the angle closer to

its optimum 𝜋/4 and an increase of bias that becomes possible as a

consequence of the new angle. More precisely, the step should result

in −𝑑 (𝑡+1)
𝑏

∈ [|𝑑 (𝑡 )
𝑏
/2|, |𝑑 (𝑡 )

𝑏
|] and 𝑑 (𝑡+1)𝜑 ≤ 𝑑 ′ − 𝜋/4, where 𝑑 ′ B

arccos(𝑏∗+𝑑 (𝑡 )
𝑏
/2) , which means that the endpoints of the positive

arc cannot lie below the line after the considered improvement of

bias. We analyze the probability of the desired change of angle

first. Note that any (𝑟/2𝜋)𝜑𝑡+1 ∈ [𝜋/2 − 𝑑 ′, 𝑑 ′] fulfills the desired
change. We bound the length of the interval and obtain, using

arccos(𝑏∗) = 𝜋/4 and a Taylor approximation for the arccos, that

𝑑 ′ − (𝜋/2−𝑑 ′) = 2𝑑 ′ −𝜋/2 = 2 arccos(𝑏∗ +𝑑 (𝑡 )
𝑏
/2) −𝜋/2 ≥ 𝑐 |𝑑 (𝑡 )

𝑏
|

for a constant 𝑐 > 0. Hence, the target interval for the angle has

length at least (𝑟/(2𝜋))𝑐 |𝑑 (𝑡 )
𝑏
| in the search point representation.

Without loss of generality, this bound is an integer by choosing 𝑐

appropriately. Moreover, since we assume for the current angle

that 𝑑
(𝑡 )
𝜑 < 𝜂𝑡 = 2(arccos(𝑏∗ + 𝑑 (𝑡 )

𝑏
) − 𝜋/4) ≤ 𝑐 ′ |𝑑 (𝑡 )

𝑏
| for another

constant 𝑐 ′ > 𝑐 , the maximum change of the angle over the target

interval is bounded from above by (𝑟/(2𝜋))𝑐 ′ |𝑑 (𝑡 )
𝑏
|, again in the

search point representation. Again, the bound may be assumed

as an integer. Together, the probability of changing the angle as

desired is at least

(𝑟/(2𝜋 ))𝑐′ |𝑑 (𝑡 )
𝑏
|∑

𝑗=(𝑟/(2𝜋 )) (𝑐′−𝑐) |𝑑 (𝑡 )
𝑏
|

1

𝑗𝐻𝑟
= Ω(1/𝐻𝑟 )

using Lemma 3.7, which even holds if 𝑑
(𝑡 )
𝑏

depends on 𝑟 . Assuming

the desired change of angle, the expected decrease in bias is at least

⌊ (𝑟/2) (𝑑 (𝑡 )
𝑏
/2) ⌋∑

𝑗=1

1

𝑗𝐻𝑟
· 2 𝑗
𝑟
≥
|𝑑 (𝑡 )
𝑏
|

2𝐻𝑟
,

using similar arguments as above to analyze the rounding effects.

(If ⌊(𝑟/2) (𝑑 (𝑡 )
𝑏
/2)⌋ = 0, then a step of size 1 in the search space

suffices.)

Combining with the probability of changing the angle as de-

sired, the unconditional drift is Ω( |𝑑 (𝑡 )
𝑏
|/ln2 𝑟 ). Finally, we note that

|𝑑 (𝑡 )
𝑏
| = 𝑏∗ − cos(arccos(2𝑏𝑡/𝑟 − 1)) = 𝑏∗ − cos(𝜂𝑡/2 + 𝜋/4), so us-

ing cos(𝜋/4) = 𝑏∗ and a Taylor expansion, we have |𝑑 (𝑡 )
𝑏
| = Ω(𝜂𝑡 ).

Altogether, since 𝑔𝑡 ≤ (3/2)𝜂𝑡 in the present subcase, we have

E[𝑔𝑡 − 𝑔𝑡+1 | 𝑔𝑡 ] = Ω(𝑔𝑡/ln2 𝑟 ) .

We still have to deal with the case 𝑑
(𝑡 )
𝑏

> 0, i. e., the bias is

greater than its optimum value so that at least one end point of the

positive arc of Quarter is below the line. Accordingly, the formula

for 𝑔𝑡 derived from Lemma 3.5 reads

𝑔𝑡 = −𝜂𝑡 +max{0, 𝑑 (𝑡 )𝜑 + 𝜂𝑡/2}.
The analysis proceeds as before, except for some flipped signs. More

precisely, the subcase that𝑑
(𝑡 )
𝜑 +𝜂𝑡/2 > |𝜂𝑡 |/2 is handled in the same

way and we obtain a drift of Ω(𝑔𝑡/ln2 𝑟 ). In the complementary
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subcase 𝑑
(𝑡 )
𝜑 + 𝜂𝑡/2 ≤ |𝜂𝑡 |/2, we consider mutations of angle that

allow a decrease of bias to a value in [𝑏∗ + 𝑑 (𝑡 )
𝑏
/2, 𝑏∗ + 𝑑 (𝑡 )

𝑏
]. Also

this probability is bounded in the same way as above. Finally, such

a decrease of bias changes the absolute 𝜂𝑡 -value as described above,

and we obtain the same asymptotic drift bound for the 𝑔𝑡 -value.

Altogether, having established a multiplicative drift for 𝑔𝑡 with

𝛿 = Ω(1/ln2 𝑟 ) in all cases, the bound𝑂 (log3 𝑟 ) on the optimization

time follow from the multiplicative drift theorem and 𝑥min = 1/𝑟 ,
noting that the smallest possible fitness distance is Θ(1/𝑟 ).

We still have to consider an arbitrary initialization. As soon as

the fitness is strictly larger than 3/4, we are in the setting from

above and have an expected optimization time 𝑂 (log3 𝑟 ). Hence, it
suffices to analyze the expected time until reaching fitness larger

than 3/4. For this it is sufficient to mutate the current bias to a

value in (0, 0.5] and an the angle to a value strictly in between

𝑎 B arcsin(0.5) and 𝜋/2−𝑎, reusing the analyses for the beneficial
initialization from the proof of the 2nd property. Now, the target

intervals for bias and angle both have a length of Ω(𝑟 ) with respect

to our search space representation. Hence, again using Lemma 3.7,

such a mutation has probability Ω(1/log2 𝑟 ) and the expected time

to reach fitness larger than 3/4 is therefore 𝑂 (log2 𝑟 ), which is a

lower-order term. □

We now turn to the case of more than one neuron, which is

necessary to achieve the best possible fitness 1 on the problem

TwoQuarters. As mentioned above, with only 1 neuron, the fitness

cannot exceed 3/4.

Theorem 3.8. Let 𝑟 = 8𝑘 for an integer 𝑘 . With at least constant

probability, the optimization time of the standard (1+1) NA and the

local (1+1) NA with 𝑁 = 2 on the problem TwoQuarters is𝑂 (log3 𝑟 )
and 𝑂 (𝑟 ), respectively.

For 𝑁 = 1, the same bounds on the optimization time as in as

Theorem 3.4 apply.

Proof. The second paragraph follows in the same way as Theo-

rem 3.4. The only difference is that there are two global optima for

the location of the line. Again, if fitness improvements are found

by increasing the bias and moving the line towards the boundary

of the unit circle, then we analyze the time to arrive at a beneficial

angle that allows fitness improvements by lowering the bias again.

We now turn to the first paragraph of the theorem, again using

similar arguments as in the proof of Theorem 3.4. The difference

is now that there are two lines that the algorithm can move and

rotate. The global optimum is taken when the angles are 𝜋/4 and
5𝜋/4 and both biases are

√
2/2. We will consider an initialization

where the two lines are initialized in the two “basins of attraction”

belonging to this optimal setting. Moreover, the distance of the

lines (measured within the circle) will be at least constant to allow

an application of Lemma 3.3.

Let (𝜑1, 𝑏1) and (𝜑2, 𝑏2) be the initial angles and biases of the

two neurons. We consider the joint event that 2𝑟𝑏1 − 1 ∈ [0.6, 0.65],
2𝑟𝑏2−1 ∈ [−0.6,−0.65], 2𝜋𝑟𝜑1 ∈ [𝜋/4−𝛼∗, 𝜋/4+𝛼∗] and 2𝜋𝑟𝜑2 ∈
[5𝜋/4 − 𝛼∗, 5𝜋/4 + 𝛼∗] for 𝛼∗ = arccos(0.6) − 𝜋/4 = 0.141897 . . . .

This event happens with constant probability. Then, by simple

trigonometry, the positive arc of TwoQuarters in the first quad-

rant lies above the line of the first neuron and the arc in the third

quadrant above the line of the second neuron. Moreover the choice

of bias leaves strictly less than a quarter of the points above either

line wrongly classified. Altogether, this initialization gives a total

fitness of more than 3/4. This has the following implications on

the future placement of the two lines. To achieve at least the same

fitness with a different placement of the lines, at least a part of each

of the two positive arcs of Quarter must lie above a line, and each

line must have a positive part above it. Otherwise, a positive arc of

length 𝜋/2 would lie below both lines and the fitness could not be

greater than 3/4. Hence, one line cannot move completely above

the other. Moreover, with the assumed fitness, it is impossible to

reach placements such that the lines intersect each other within the

unit circle. If such an intersection happened, since both lines have

positive arc pieces above them, the angle between the lines, taken

in the area above them, would be at least 𝜋 . Then also a negative

part of the unit circle of length at least 𝜋/2 would lie above a line,

contradicting the fitness strictly larger than 3/4.
We now complete the proof re-using the analyses from Theo-

rem 3.4 under the beneficial initialization. We consider the local

(1+1) NA first. Then there is for each hyperplane an event or a se-

quence of constant many events of constant probability that brings

the positive arc in the respective quadrant (1st or 3rd) closer to the

line, i. e., decreases the total length of wrongly classified arcs above

the line without making the length of wrongly classified points

below the hyperplane bigger. This holds until each bias deviates

by at less than 2/𝑟 from its optimum

√
2/2. The expected time to

reach this state (still assuming the beneficial initialization) is 𝑂 (𝑟 ),
and along with Markov’s inequality the joint probability of finding

the global optimum in 𝑂 (𝑟 ) steps is at least constant.
For the standard (1+1) NA with harmonic mutation, express the

fitness distance as a generalization of the expression in Lemma 3.5,

where we consider the quantities 𝑑
(𝑡 )
𝑏

and 𝑑
(𝑡 )
𝜑 separately for the

two lines and add up the wrongly classified parts in the style of

𝜂𝑡 + max{0, 𝑑 (𝑡 )𝜑 − 𝜂𝑡/2} for both lines, noting that the lines do

not intersect each other. Then we conduct the analysis from the

proof of Theorem 3.4 (conditioning on that a step only changes the

parameter of one neuron) and obtain an expected time of𝑂 (log3 𝑟 )
until the fitness distance has reached its minimum (±1 in the search

point representation).We arrive at the claimed bound𝑂 (log3 𝑟 ). □

The constant success probability implies that multi-start variants

of the algorithm are highly efficient. See, e. g., [29] for definitions

and analyses of multi-start schemes. However, without restarts it

is not clear whether there is a general finite bound for the local

(1+1) NA and a bound for the harmonic (1+1) NA that is better than

𝑂 ((𝑟 log 𝑟 )𝑐 ) for a constant 𝑐 < 1 (see also the worst case bound

from Lemma 2.1). The problem is that the two lines of the neurons

may intersect in such a way that exactly one positive quadrant

of TwoQuarters is classified positively. This situation essentially

“tilts” and locks the lines from moving, except for a random walk

of the intersecting point. See the left-hand side of Figure 6 for an

illustration. Also, one line could be lying completely above the

other one and therefore be irrelevant for fitness evaluation. This

irrelevant line can freely perform a random walk about the relevant

one, i. e., in contrast to the analysis of Theorem 3.4 (part 1), the

random walk would not be limited to configurations with bias 1.

See the right-hand side of Figure 6.
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Figure 6: Left: two lines are tilted and impede further

progress. Right: one line lies completely above the other and

does not contribute to fitness.

As a next step, one could consider generalized definitions of

TwoQuarters to problems with 𝑘 equally spaced positive arcs

of identical size. It is not difficult to see that these would require

𝑁 = 𝑘 neurons to achieve fitness 1. Moreover, a generalization of

Theorem 3.8 seems plausible, with a probability of at least 𝑐−𝑘 for

a constant 𝑐 for optimizing the problem efficiently. In any case, it

would be interesting to consider this problem in an analysis where

both 𝑟 and 𝑁 are asymptotically growing.

Finally, we turn to the problem LocalOpt, which possesses a

local optimum that is hard to escape and causes infinite expected

optimization time for the local (1+1) NA. However, for the standard

(1+1) NA with harmonic mutation, it is not difficult.

Theorem 3.9. With at least constant probability, the local (1+1) NA

with 𝑁 = 1 on the problem LocalOpt reaches a local optimum of

fitness at most 2/3 and cannot make improvements from there.

However, the expected optimization time of the (1+1) NA with

harmonic mutation is 𝑂 (log3 𝑟 ).

Proof. We consider an initialization where

• the line belonging to the neuron intersects the two nega-

tive arcs of the unit circle with polar angle in the interval

[𝜋/3, 2𝜋/3] and [11𝜋/6, 2𝜋] and
• the positive area of LocalOpt corresponding to angles in

the interval [0, 𝜋/3] is completely below the line.

This corresponds to a location shown in the right-hand side of

Figure 4 up to shifts of the hyperplane within the negative area

mentioned above. The fitness of such an initial search point is

between 5/12 and 2/3. A sufficient condition for this initialization is

a bias within [− cos(18𝜋/48),− cos(19𝜋/48)] and an angle within

[7/12𝜋 − 𝑎, 7/12𝜋 + 𝑎], where 𝑎 = 𝜋/48. Since the considered

initialization specifies intervals of length Ω(𝑟 ) for both angle and

radius, its probability is at least a constant.

To improve the fitness to above 2/3 it is necessary to change the

angle of the line in one step by at least 𝜋/6, which is impossible

with the ±1 mutation of the (1+1) NA.

For the harmonic mutation, we analyze the event of a mutation

leading to fitness strictly larger than 2/3. For this it is sufficient

to mutate the bias to an interval of sufficiently small but constant

size around 0 and the angle to an interval of sufficiently small

constant size around 11𝜋/6. By Lemma 3.7, the expected time for

this to happen is 𝑂 (log2 𝑟 ). Afterwards, we can express the fitness

distance in a way analogous to the proof of the first statement of

Theorem 3.4), except for that there is always a negative arc of length

𝜋/6 above the line that is classified wrongly. The expected time

to reach optimal bias and angle (up to the error ±1 in the search

point representation) is 𝑂 (log3 𝑟 ) by the same multiplicative drift

analysis as in the proof of Theorem 3.4. □

Theorem 3.9 does not exclude that multi-start variants of the

local (1+1) NA are efficient; in fact we think that with at least

constant probability, it finds the global optimum of fitness 3/4 in
polynomial time.

4 EXPERIMENTS

We ran the (1+1) NAwith local and hybridmutation on the problems

Half, Quarter and LocalOpt with 𝑁 = 1 and on TwoQuarters

with 𝑁 = 2, each 100 times. We canceled the runs after stagnation

phases without fitness improvement of length 100𝑟 log 𝑟 , where

the latter choice was inspired by the lower bound 1/(𝑟𝐻𝑟 ) of the
harmonic mutation operator hitting an arbitrary state. Finally, for

Quarterwith𝑁 = 2we considered not only the ANN from Figure 2

with hard-wired OR in the output layer (which was the network

assumed in Theorem 3.8), but also tried a variant of the ANN where

the parameters of the final neuron were evolved in the same way

as the first two neurons.

Experiments for 𝐷 = 2 and 𝑟 growing between 120 and 1200

supplement the theoretical running time bounds from Section 3

nicely. In particular, the high standard deviation for TwoQuarters

show that the polylogarithmic running time in case of beneficial

initialization is not always the case and that the pathological con-

figurations shown in Figure 6 are hard to overcome. However, with

the timeouts specified above the hybrid mutation was generally

efficient on all problems, while the local mutation struggled es-

pecially on LocalOpt and TwoQuarters. Detailed tables of all

experimental data are given in [10].

We also ran CMA-ES, a state-of-the-art evolutionary algorithm

for continuous spaces [14], on our benchmark problems, still fixing

𝐷 = 2. To achieve a fair comparison with the (1+1) NA, we use

essentially the same representation with polar angle and bias on the

intervals [0, 2𝜋] and [−1, 1], respectively, enforced in CMA-ES by

bounding the components of its real-valued vectors. Experiments

were performed using the cma 3.3.0 Python package, initialized

with a standard deviation of 1, expected starting solution in the

origin and default stopping criterion. OnHalf andQuarter, CMA-

ES performed generally well and found the optimum almost always

within 2% of optimality and even more frequently within 5%; in

very rare cases on Quarter, the algorithm was stuck more than

50% from the optimum. The picture was similar on LocalOpt,

which was solved to optimality (up to 2% tolerance) in almost all

cases. The unsuccessful runs were usually stuck at fitness about 2/3,
corresponding to a local optimum.

On TwoQuarters with a hard-wired OR in the output layer

(as shown in Figure 2), CMA-ES frequently missed the optimum

and was stuck at fitness 3/4; the success rate was only about 33.3 %.

Again, we also tried the variant of the ANN where the parameters

of the final neuron were evolved as well. Here only a success rate

of 1.8 % was observed.

The experiments on TwoQuarterswhere the (1+1) NA with hy-

brid mutation had a higher success rate than CMA-ESmay be biased

by the default stopping criterion in CMA-ES. A longer stagnation

phase may enable it to find the global optimummore frequently. We
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also experimented with a Cartesian representation for the neurons’

weights in the CMA-ES, but did not observe improvements.

Additional experiments showed that the approach taken in this

paper is successful also in higher-dimensional settings. The hyper-

planes (neurons) are still represented by a normal vector in spherical

coordinates (angles) and a bias. The angles and the bias are changed

with fixed step width. Two-layer networks were used, where the

single neuron in the output layer computed a Boolean function. The

test were run on point sets. A simple example is a set of eight points

located at the corners of a cube. Four non-neighboring corners are

being labeled “1” and the others “0”. In most cases, the network was

able to reach a perfect classification efficiently.

We also have experimentally investigated using a continuous,

heavy-tailed distribution to mutate angle and bias instead of the

discrete harmonic distribution. The experiments do not show a

qualitative difference, i. e., optimal solutions are found with similar

frequency. However, the number of steps to reach the optimum

varies depending on the chosen distribution (shifted Pareto, expo-

nential, Cauchy) and the setting of the parameters for the distri-

bution. We found parameter settings which gave a performance

similar to the one when using the discrete, harmonic distribution

but did not achieve a significant performance gain over the har-

monic distribution. This clearly is a field for further investigation,

both theoretical and experimental.

5 CONCLUSIONS

We have proposed an algorithmic framework for the runtime anal-

ysis of problems in neuroevolution. The framework comprises a

simple evolutionary algorithm called (1+1) NA for the optimization

of parameters of neurons, more precisely weights and biases, and

a scalable network structure with two layers (hidden and output)

as search space for optimization problems. We also have proposed

simple benchmarks based on labeled points on the unit hyperspere

and used them to illustrate typical behavior and challenges for the

search trajectory of the (1+1) NA. We have identified problems with

local optima and compared two types of mutation operators, where

the so-called harmonic mutation often gives exponentially better

runtime bounds. Experimental supplements show that the proven

runtime bounds and performance difference are pronounced in

practice already for small problem sizes.

In this first study of the runtime of neuroevolutionary algorithms,

we have only scratched the surface of the rich structure arising

already from very simple problems. So far we are working with

fixed structures for the artificial neural networks, while state-of-the-

art neuroevolutionary algorithms would also evolve the networks’

topology. Moreover, the present runtime analyses are limited to

the case of 2 dimensions, while the general problem definitions call

for an analysis in higher dimensions. Furthermore, more advanced

classification problems could be considered. We see also room for

improvement in the search operators. For example, in some cases,

self-adaptation of the mutation strength may lead to a runtime of

𝑂 (log(1/𝜖)) to achieve an 𝜖-approximation of the optimum. We

leave all these considerations as subjects for future research.
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