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ABSTRACT
Traffic prediction is a typical spatio-temporal data mining task and
has great significance to the public transportation system. Con-
sidering the demand for its grand application, we recognize key
factors for an ideal spatio-temporal prediction method: efficient,
lightweight, and effective. However, the current deep model-based
spatio-temporal prediction solutions generally own intricate archi-
tectures with cumbersome optimization, which can hardly meet
these expectations. To accomplish the above goals, we propose an
intuitive and novel framework, MLPST, a pure multi-layer percep-
tron architecture for traffic prediction. Specifically, we first capture
spatial relationships from both local and global receptive fields.
Then, temporal dependencies in different intervals are comprehen-
sively considered. Through compact and swift MLP processing,
MLPST can well capture the spatial and temporal dependencies
while requiring only linear computational complexity, as well as
model parameters that are more than an order of magnitude lower
than baselines. Extensive experiments validated the superior effec-
tiveness and efficiency of MLPST against advanced baselines, and
among models with optimal accuracy, MLPST achieves the best
time and space efficiency.

CCS CONCEPTS
• Information systems→ Traffic analysis; Spatial-temporal
systems; • Computing methodologies→ Neural networks.
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1 INTRODUCTION
In recent years, urbanization has experienced substantial growth,
leading to an exponential increase in the number of vehicles on the
roads. The availability of accurate traffic prediction information
is crucial for traffic management as it serves as a foundation for
informed decision-making and can help drivers to navigate roads
with reduced congestion and accidents [14, 24, 26, 41, 43]. The ad-
vancements in sensor technologies, mobile devices, and Global Po-
sitioning Systems (GPS) have enabled the collection of a wide range
of Spatio-Temporal (ST) data in urban areas, which in turn, has
facilitated the application of Spatio-Temporal Data Mining (STDM)
in urban life [40, 50–54]. STDM has widely fostered traffic predic-
tion such as traffic flow analysis [3, 8, 56], travel time estimation
[15, 37, 48], and traffic demand prediction [2, 11, 27].

Deep models have gained increasing popularity in recent years
on STDM tasks. Thesemodels are known for their feature extraction
and sequential modeling capacity, which enhances their effective-
ness in extracting meaningful insights from ST data [1, 40]. Spatial
maps are often represented and processed as image-like matrices,
which has led to the widespread application of Convolutional Neu-
ral Networks (CNNs) [4, 18, 23, 33, 38] and Vision Transformers
(ViT) [9, 13, 22, 30], which have been proven to be effective in
capturing spatial features. On the other hand, for time series analy-
sis, Recurrent Neural Networks (RNNs) [6, 7, 28] and self-attention
mechanisms [10, 12, 17, 25] are commonly used to capture temporal
correlations between different time slices.

Although prosperous urbanization has greatly facilitated our
lives, various pressing problems emerge and need to be resolved.
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Figure 1: Framework overview for MLPST.

In consideration of the wide application of urban attribute pre-
diction and the growing enormous quantity of data, we identify
three crucial attributes for an effective spatio-temporal prediction
method. (i) Efficient. Swift training on new attributes and data. (ii)
Lightweight. Easy deployment and service with friendly storage
requirements. (iii) Effective.Well-capture the spatial and tempo-
ral dependency and guarantee precision of prediction. However,
current research can hardly meet the above ideal requirements.
Though achieve promising performance on spatio-temporal predic-
tion, they highly depend on the intricate techniques ensembling
[19, 42], which takes overwhelming computational overhead and
deployment cost [20, 29].

To achieve the above targets, we propose an intuitive and novel
framework, MLPST, which is made up of pure Multi-Layer Percep-
trons (MLP). By using interleaved MLPs across certain dimensions,
we can mix information from different parts of the input data. In
this framework, we model spatial dependencies by patch process-
ing the spatial map and conduct SpatialMixer between patches to
learn global correlation within this spatial map, thus achieving a
global receptive field. Besides, we define temporal dependencies to
be three parts: closeness, period, and trend, so the temporal depen-
dencies from different time intervals can be well modeled by the
TemporalMixer. Benefiting from the simple and efficient MLP, our
MLPST enjoys a rather low computational complexity, i.e., 𝑂 (𝑁 ).
To achieve a fair comparison, we verify the performance of MLPST
on real-world traffic flow datasets through an open-source plat-
form LibCity [39]. Extensive experiments prove the effectiveness
of our framework. Results consistently show its superior perfor-
mance compared to state-of-the-art methods. In a nutshell, the
major contributions of our work can be summarized as follows:

• We propose an all-MLP framework for ST traffic prediction,
MLPST. It consists of SpatialMixer and TemporalMixer, which
are separately responsible for global spatial dependencies and
temporal variations from different spans;

• Our MLPST owns linear computational complexity and remark-
ably reduced parameters compared to existing methods, which
indicates its promising potential for practical application;

• We conduct extensive experiments to demonstrate the effective-
ness of MLPST on two real-world datasets, which shows its su-
periority over existing baseline methods. We also present com-
prehensive analyzes to verify the validity of each component.

2 FRAMEWORK
In this section, we will present an all-MLP architecture, MLPST,
which can solve STDM tasks in an effective way. We will start by
introducing the overall architecture of our model and then elab-
orate on different modules in detail. Finally, we will provide the
optimization process.

2.1 Preliminaries
In this subsection, we first present the task definition and define
the essential notations.
Definition 1 (Traffic Flow). We split the city into 𝐻 ×𝑊 non-
overlapping equal-sized grids based on longitude and latitude. Based
on the traffic flow data in a certain period, we can calculate the
traffic inflow and outflow of all grids. The traffic flow of all grids of
a certain period 𝑖 is called a traffic flow grid map, noted as a matrix
X𝑖 ∈ R𝐻×𝑊 ×𝑑 , where 𝑑 = 2 represents traffic inflow and outflow.
Definition 2 (Patch). A patch is defined as a 𝑃 × 𝑃 sized part of a
grid map X𝑖 . Patches are non-overlapping parts of the original grid
map. Thus, a grid map X𝑖 is partitioned into 𝑁𝑃 = 𝐻𝑊 /𝑃2 patches.
Definition 3 (Spatio-Temporal Traffic Prediction). Given the his-
torical observations {X𝑖 |𝑖 = 1, 2, . . . ,𝑇 }, the goal of spatio-temporal
traffic prediction is to predict the future traffic state X𝑇+1, and 𝑓 (·)
stands for the spatio-temporal prediction model:

X𝑇+1 = 𝑓 ( [X1,X2, . . . ,X𝑇 ]) (1)
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Figure 2: Patch processing.

2.2 Framework Overview
In this subsection, we present an overview of our framework.MLPST
is a novel and efficient framework based on an all-MLP architecture,
which mainly consists of several modules. First, we propose two
MLP-based modules, named SpatialMixer and TemporalMixer, to
capture spatial and temporal dependency, respectively. Besides, we
incorporate a fusion module to fuse the representation of different
temporal dependencies. Finally, we employ an output layer to attain
the prediction of the future traffic state.

We introduce the pipeline as visualized in Figure 1 from top to
bottom. Firstly we recognize the historical data sequence with three
different kinds of temporal dependencies: trend, period, and close-
ness.We address the spatial dependency by feeding SpatialMixer
with the input feature of each time step, and obtain corresponding
feature embeddings in a global view. Then, we incorporate three
TemporalMixers to capture the temporal relationship inside the
three temporal dependencies, respectively. Finally, we aggregate
the output embeddings of different temporal dependencies through
a fusion module. The output layer further maps the fusion result to
a 𝐻 ×𝑊 sized grid map to accomplish the single-step prediction.

2.3 Detailed Modules
2.3.1 Input Layer. As aforementioned, the input layer is comprised
of three fragments on the time axis denoting the observations
from distant history, near history, and recent time. As illustrated in
Figure 1, these fragments are used to model three types of temporal
dependencies: trend, period, and closeness, which are brought up
based on sequencing observations with three kinds of intervals.
Intuitively, the interval for trend series is the largest, which shows
the development of data in a relatively long time, like seasonal
changes. Period stands for the periodic variation of data in a fixed
time period, for instance, traffic flow data often changes in one
day cycle. Closeness means ST data is affected by the situation of
recent time intervals. For example, if there is traffic congestion at 8
a.m., then the volume of vehicles at 9 a.m. is most likely to be high
because of the closeness dependency.

Concretely Speaking, let 𝑙𝑡 , 𝑙𝑝 and 𝑙𝑐 stand for the intervals of
trend, period and closeness dependent sequences with the length of
𝑡 , 𝑝 and 𝑐 . Then the trend dependent sequence can be represented
as a subset of all historical observations [X𝑇−𝑡 ·𝑙𝑡 , . . . ,X𝑇−𝑙𝑡 ]. Like-
wise, the period and closeness dependent sequences can be defined
as [X𝑇−𝑝 ·𝑙𝑝 , . . . ,X𝑇−𝑙𝑝 ], and [X𝑇−𝑐 ·𝑙𝑐 , . . . ,X𝑇−𝑙𝑐 ], where we as-
sert 𝑡 + 𝑝 + 𝑐 = 𝑇 so as to fix the input window. The usual situation
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Figure 3: Visualization of all-MLP MixerLayer.

is that 𝑙𝑡 > 𝑙𝑝 > 𝑙𝑐 . In this paper, we assign the temporal dependen-
cies as follows: set the trend span 𝑙𝑡 to be one week which reveals
the weekly trend; set 𝑙𝑝 to be a one-day period that describes the
daily periodicity; set 𝑙𝑐 to be the unit interval to model the recent
variation of the traffic flow.

2.3.2 SpatialMixer. Modeling the region dependency comprehen-
sively is not trivial, and we explore to tackle from both global and
local perspectives. We propose an all-MLP SpatialMixer to model
the spatial dependency in a linear complexity w.r.t. 𝑁𝑃 . Specifically,
in the SpatialMixer module, the spatial information of the input grid
data is extracted and mixed to a certain-sized embedding E𝑖 . The
dimension of E𝑖 is related to the patch number 𝑁𝑃 and the channel
number 𝐶𝑆 , where channel is defined as the hidden dimension of
SpatialMixer for feature representation. SpatialMixer is comprised
of the following blocks: Patch processing and All-MLP MixerLayers.

Patch Processing. SpatialMixer starts with the patch processing
step shown in Figure 2, including patch division and per-patch fully
connection. Specifically, we first partition the 𝐻 ×𝑊 grid map into
non-overlapping 𝑃 × 𝑃 sized patches. Each patch contains 𝑃2 grids,
so the flattened tensor belongs to R1×𝑃

2
. Assume the number of

feature channels here is 𝐶𝑆 , then we map the sequence of patches
from R1×𝑃

2
to R1×𝐶𝑆 through per-patch fully connection. Every

patch is mapped to a token, and all tokens are concatenated to be a
two-dimension input matrix with the size of 𝑁𝑃 ×𝐶𝑆 .

All-MLP MixerLayer . We propose to capture the global cor-
relations via an all-MLP MixerLayer [34]. We denote the output
of patch processing as V, which serves as the input matrix for
MixerLayers. As demonstrated in Figure 3, MixerLayer performs
LayerNorm, Token-mixing MLP, LayerNorm, and Channel-mixing
MLP successively. The Token-mixing MLP is fomulated as:

U = V𝑇 +W2𝜎
(
W1 LayerNorm(V𝑇 ) + b1

)
+ b2 (2)

where 𝜎 is a GELU activation, W1,W2, b1, and b2 are learnable
weight matrices and bias.

Token-mixing MLP is an MLP block that takes columns of matrix
V as input, i.e., the rows of the transposed matrix V𝑇 as Figure 4
illustrated. The MLP block maps V𝑇 ∈ R𝐶𝑆×𝑁𝑃 to U ∈ R𝐶𝑆×𝑁𝑃 .

The output of Token-mixing MLP U𝑇 is fed to Channel-mixing
MLP. As shown in Equation (3), Channel-mixing MLP maps U𝑇 ∈
R𝑁𝑃 ×𝐶𝑆 to Y ∈ R𝑁𝑃 ×𝐶𝑆 , which is the output of the MixerLayer.

Y = U𝑇 +W4𝜎
(
W3 LayerNorm(U𝑇 ) + b3

)
+ b4 (3)

whereW3,W4, b3, and b4 are the learnable MLP parameters.
The fully-connected operations within Token-mixing MLPs and

Channel-mixing MLPs enable the interaction between different
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Figure 4: Illustration of Token-mixing MLP architecture.

spatial locations, i.e., tokens, and channels. To conclude, MixerLayer
maps V𝑇 ∈ R𝐶𝑆×𝑁𝑃 to Y ∈ R𝐶𝑆×𝑁𝑃 , which means the dimension
of the input tensor does not change in MixerLayer. But at the same
time, cross-location and per-location information can be captured
with the composition of the Token-mixing and Channel-mixing.
It is noteworthy that since tokens come from different locations
on the original spatial map, then communication between tokens
realizes the global mixing of spatial information, which effectively
helps the feature extraction of spatial dependency. Besides, since𝐶𝑆
is selected independently of 𝑁𝑃 , the complexity of this part should
be 𝑂 (𝑁𝑃 ), unlike 𝑂 (𝑁 2

𝑃
) of self-attention mechanisms.

After the processing of 𝑁 MixerLayers, for the convenience of
following computation and interpretation, we formulate the output
tensor to E𝑖 ∈ R1×𝑁𝑃𝐶𝑆 as the final output of SpatialMixer for
time span 𝑖 . Equation (4) represents the feature mapping process of
SpatialMixer, where E𝑖 denotes its output.

E𝑖 = SpatialMixer(X𝑖 ),∀𝑖 = 1, 2, ...,𝑇 (4)

2.3.3 TemporalMixer. The time complexity is an inherent issue of
temporal data mining, such as 𝑂 (𝑇 · 𝑑2) of RNN and 𝑂 (𝑇 2 · 𝑑) of
self-attention, where 𝑇 represents the number of input time steps
and 𝑑 is the embedding size. Therefore, we propose to model the
temporal dependencies via TemporalMixer consisting of a series of
MixerLayers, and possesses a reduced complexity of 𝑂 (𝑇 · 𝑑).

As mentioned before, we adopted three kinds of representations
to model different temporal dependencies from the global view, i.e.,
trend, period, closeness. The embeddings E𝑖 obtained by SpatialMixer
of the same temporal dependency are concatenated as the input of
a TemporalMixer. Take the trend dependent sequence as example,
number of tokens is the sequence length 𝑡 , and the concatenated
input matrix for the TemporalMixer is E𝑡 ∈ R𝑡×𝑁𝑃𝐶𝑆 , as shown in
Equation (5). Note that the internal architecture of TemporalMixer
is identical with that of SpatialMixer, visualized in Figure 4. Assume
that the number of channels for TemporalMixer is 𝐶𝑇 , which is
the hidden dimension for its All-MLP MixerLayer. Then through
Token-mixing and Channel-mixing, information in different parts
of E𝑡 interact with each other, i.e., the trend dependency of certain
locations can be captured.

E𝑡 = Concat(E𝑖 ),∀𝑖 = 1, 2, . . . , 𝑡 (5)

Similarly, dimension of input tensor does not change through Tem-
poralMixer. In other word, an All-MLP MixerLayer is utilized to
capture temporal dependencies, which maps E𝑡 ∈ R𝑡×𝑁𝑃𝐶𝑆 to
Ê𝑡 ∈ R𝑡×𝑁𝑃𝐶𝑆 as expressed by Equation (6). The complexity here

is linear with respect to the number of tokens, which is 𝑂 (𝑡 · 𝑑𝑇 ),
where 𝑑𝑇 = 𝑁𝑃𝐶𝑆 is the embedding size for each time step.

Ê𝑡 = TemporalMixer(E𝑡 ) (6)

Likewise, the same operations can be applied on the view of
period and closeness dependencies, thus obtaining Ê𝑝 and Ê𝑐 . The
overall complexity of three parts is 𝑂 (𝑇 · 𝑑𝑇 ) when 𝑡 + 𝑝 + 𝑐 = 𝑇 .

2.3.4 Fusion. In the Fusion module, we take the last time step of
Ê𝑡 , Ê𝑝 and Ê𝑐 as mixing results of the three temporal dependencies.
They are aggregated by assigning three corresponding learnable
weights to different parts. Fusion module can be formulated by :

Ê = W𝑡 ◦ Ê𝑡 [t] +W𝑝 ◦ Ê𝑝 [p] +W𝑐 ◦ Ê𝑐 [c] (7)

where ◦ means dot product, [·] denotes the index of the time di-
mension, and W𝑡 ,W𝑝 ,W𝑐 are the learnable parameters that adjust
the impact of trend, period, closeness.

2.3.5 Output Layer. Output Layer is composed of a conventional
MLP to map the embedding obtained by TemporalMixer to the
size of the input grid, i.e., Output Layer maps Ê to X̂𝑇+1 ∈ R𝐻×𝑊 ,
which achieves the single-step prediction and finishes the whole
predictive learning pipeline.

X̂𝑇+1 = W𝑜 ◦ Ê + b𝑜 (8)

whereW𝑜 and b𝑜 are the weight and bias of output layer.

2.4 Optimization
In this section, we detail our loss function that is used for training.
The loss function can be defined as:

𝐿 (𝜃 ) =
( 𝑀∑︁
𝑖=1

|X̂𝑇+1 − X𝑇+1 |𝑞
)1/𝑞 (9)

where 𝜃 stands for the learnable parameters, and𝑀 is the number
of data records. 𝑞 indicates the regularization norm of loss function,
such as 𝑞 = 1 of Mean Average Error (MAE) and 𝑞 = 2 of Root
Mean Square Error (RMSE).

2.4.1 Framework Complexity. Since MLPST is an all-MLP architec-
ture, the computational complexity of each individual module can
be denoted as matrix multiplications.

SpatialMixer SpatialMixer starts feature extraction from patch
processing with an output matrix V ∈ R𝑁𝑃 ×𝐶𝑆 , and V serves as the
input of all-MLP MixerLayers. Then the computational complexity
of this MLP architecture can be denoted as several matrix multi-
plications, i.e., 𝑖 × ℎ + ℎ × 𝑜 , where 𝑖 is the number of input units,
ℎ is the number of hidden units, 𝑜 is the number of output units.
As mentioned in the Framework section, MixerLayer consists of
Token-mixing MLPs and Channel-mixing MLPs. The hidden unit of
these MLPs is an expansion ratio that is independent of input units
and output units, and the input units number equals the output
units. So for Token-mixing MLPs, the complexity is 𝑂 (𝑁𝑃 ) with
𝑁𝑃 being the number of input units. Likewise, the complexity for
Channel-mixing is 𝑂 (𝐶𝑆 ). Note that 𝐶𝑆 is chosen independent of
the number of input tokens 𝑁𝑃 , therefore, the complexity for a
MixerLayer is 𝑂 (𝑁𝑃 ).

TemporalMixer Structure ofMixerLayerswithin TemporalMixer
is identical with that of SpatialMixer. Similarly, for TemporalMixers
that process different temporal dependencies, we can obtain each
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Figure 5: Traffic flow prediction.

of their complexity. As for trend dependency, the input matrix is
E𝑡 ∈ R𝑡×𝑑𝑇 . The number of input units for Token-mixing MLPs
is the input sequence length 𝑡 , so the complexity is 𝑂 (𝑡) accord-
ingly. Likewise, we have 𝑂 (𝑑𝑇 ) for Channel-mixing MLPs. So the
complexity of trend-dependent TemporalMixer is 𝑂 (𝑡 · 𝑑𝑇 ). Simi-
larly, we can get𝑂 (𝑝 · 𝑑𝑇 ) for period dependency and𝑂 (𝑐 · 𝑑𝑇 ) for
closeness dependency. The add-up result of three parts should be
𝑂 (𝑇 · 𝑑𝑇 ) when we assert 𝑡 + 𝑝 + 𝑐 = 𝑇 .

Based on the above deduction, the overall computational com-
plexity for MLPST is 𝑂 (𝑁𝑃 ·𝑇 · 𝑑𝑇 ).

2.5 Inference
We present the detailed inference procedure and a toy example for
traffic flow prediction in an example. Specifically, we aim to make
the single-step prediction with twelve input time steps of the traffic
flow grid map {X𝑖 |𝑖 = 1, 2, . . . , 12}, X𝑖 ∈ R𝐻×𝑊 ×2, denoting the
gridmap size𝐻×𝑊 and the feature dimension 2whichmeans inflow
and outflow respectively. Furthermore, we divide [X1,X2, . . . ,X12]
into [[X1,X2], [X3,X4], [X5, . . . ,X12]], which denotes three types
of temporal dependent sequences [[𝑡𝑟𝑒𝑛𝑑], [𝑝𝑒𝑟𝑖𝑜𝑑], [𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠]].
The learning process is performed by Token-mixing MLPs and
Channel-mixing MLPs as pre-defined in Equation (10) and (11):

U = V𝑇 +W2𝜎
(
W1 LayerNorm(V𝑇 )

)
(10)

Y = U𝑇 +W4𝜎
(
W3 LayerNorm(U𝑇 )

)
(11)

where 𝑉𝑇 is a input matrix for MixerLayers. For SpatialMixer, we
assume that W𝑆

1 ,W
𝑆
2 ,W

𝑆
3 ,W

𝑆
4 are the well learned weights. For

TemporalMixer, we assume thatW𝑡
1,W

𝑡
2,W

𝑡
3,W

𝑡
4 are the learned

weights for trend dependency, and similarly we have W𝑝

1 ,W
𝑝

2 ,W
𝑝

3 ,
W𝑝

4 and W𝑐
1,W

𝑐
2,W

𝑐
3,W

𝑐
4 for period dependency and closeness

dependency respectively. At last, the traffic flow feature embedding
of next time slot can be predicted as:

Ê = W𝑡 ◦ Ê𝑡 [t] +W𝑝 ◦ Ê𝑝 [p] +W𝑐 ◦ Ê𝑐 [c] (12)

whereW𝑡 ,W𝑝 ,W𝑐 are another three learned weights for adjusting
different temporal dependencies. Figure 5 represents how we make
predictions with the given learned weights using Equation (10) and
Equation (11). Finally, the output layer maps Ê to the original input
size to accomplish the single-step prediction.

3 EXPERIMENT
In this section, we conduct extensive experiments on two real-world
datasets to evaluate the effectiveness of MLPST.

3.1 Experimental Setting
3.1.1 Datasets. We conduct experiments on two real-world datasets
from the New York City OpenData1, i.e., NYCBike and NYCTaxi,
which contain records of taxi and bike orders in New York City.

NYCBike: The NYCBike dataset contains bicycle trajectories
collected from the NYC CitiBike system. The transaction records
between July 1st, 2016, and August 31st, 2016 are selected. The
following information is contained: bike pick-up station, bike drop-
off station, bike pick-up time, bike drop-off time, and trip duration.

NYCTaxi: The NYCTaxi dataset contains tracks of different
types of cabs collected by GPS for New York City from 2009 to 2020.
We pick data from January 1st, 2015, to March 31st, 2015. It provides
properties including start and arrival time, geological information
of start and end points, and trip distance.

3.1.2 EvaluationMetrics. To evaluate the effectiveness of our frame-
work on traffic flow prediction, we adopt some commonly used
value-based metrics, including Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Coefficient of Determination (𝑅2).

3.1.3 Implementation. We implement MLPST based on a public
library, LibCity [39], which contains several of the most represen-
tative traffic flow prediction models.

For the SpatialMixer part, (a) Per-patch Fully Connection: first,
we divide the city region into 10 × 20 disjoint grids of equal size.
Then we set the patch size 𝑃 × 𝑃 to be 2 × 2. According to the
input data size, the number of channels𝐶𝑆 is set to 20, which is the
mapped dimension size of per-patch FC. (b) MixerLayer : we set the
initial depth of MixerLayer to 8. As mentioned before, the number
of patches 𝑁𝑃 can be expressed as 𝐻𝑊 /𝑃2 = 50, and the number of
channels𝐶𝑆 is known to be 20. The hidden parameter expansion is
set to be 8, which is the number of hidden units in MLPs that are
used in Token-Mixing and Channel-Mixing.

For the TemporalMixer part, (a) Input layer setting: it is made up
of 𝑁 MixerLayers, where the mixer depth 𝑁 is 8, and the number
of channels for TemporalMixer 𝐶𝑇 is set to 20. We divide the input
twelve time steps data into closeness, period, and trend. The initial
values are 8, 2, and 2, respectively.

For other settings, (a) Optimization: MLPST is implemented with
Pytorch. The training process uses the Adam optimizer with the
learning rate of 1×10−3 and batch size of 64.We use cross-validation
and early stop strategy. We utilize both MAE and RMSE error in
our objective function, i.e., 𝑞 = 1, 2. (b) We use Ray tune to optimize
hyperparameters for our model. Most of the experiments for the
baseline are performed with the released code in LibCity. To make
the baseline results comparable, we adjust the number of input steps
and do parameter tuning for all baselines to maintain uniformity.
Each baseline model is trained five times to obtain an average result.

3.1.4 Baseline. We compare the proposed MLPST with the follow-
ing state-of-the-art baseline models:

1https://opendata.cityofnewyork.us/
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Table 1: Overall performance comparison of all methods on two datasets.

Datasets NYC Bike NYC Taxi
Metrics MAE ↓ RMSE ↓ R2 ↑ MAE ↓ RMSE ↓ R2 ↑Methods

Parameters(K)

AutoEncoder 5.57 8.27 0.687 22.45 65.77 0.626 4.89 × 102
ResLSTM 3.44 10.72 0.472 19.74 59.86 0.715 1.74 × 104
Conv-GCN 5.19 7.71 0.728 11.80 20.58 0.966 3.48 × 103

Multi-STGCnet 1.41 4.95 0.885 9.31 42.13 0.844 1.81 × 104
ST-ResNet 1.23 3.37 0.946 8.60 63.80 0.631 1.80 × 103
FC-RNN 5.72 7.99 0.707 8.13 18.08 0.971 0.69 × 102
Seq2Seq 4.93 6.83 0.786 7.78 17.74 0.972 2.43 × 102
ACFM 1.26 3.25 0.950 5.37 11.58 0.987 3.39 × 102
MTGNN 1.72 5.28 0.876 7.25 19.95 0.965 4.40 × 102

MLPST 1.20* 3.17* 0.954* 4.76* 11.60 0.988* 0.60×102
“*” indicates MLPST’s statistically significant improvements (i.e., two-sided t-test with 𝑝 < 0.05) over the best baseline.

• AutoEncoder [16]: it uses an encoder to learn the embedding
vector from the data and then uses a decoder to predict future
traffic conditions.

• ResLSTM [45]: it is a deep learning architecture merging the
residual network, graph convolutional network, and long short-
term memory to predict urban rail short-term passenger flow.

• Conv-GCN [46]: it combines a multi-graph convolutional net-
work to address multiple spatio-temporal variations (i.e., recent,
daily, and weekly) separately. Then it uses a 3D convolutional
neural network to integrate the inflow and outflow information
deeply.

• Multi-STGCnet [44]: it contains three long short-term memory-
based modules as temporal components and three spatial matri-
ces as spatial components for extracting spatial associations of
target sites.

• ST-ResNet [47]: it uses a residual neural network framework to
model temporal closeness, period, and trend properties of crowd
traffic, which is widely used in grid-based traffic prediction tasks.

• FC-RNN [39]: a swift deep learning model consisting of a fully
connected layer and recurrent neural network for spatio-temporal
prediction.

• Seq2Seq [31]: it is an encoder-decoder architecture based on
gated cyclic units to predict the traffic state.

• ACFM [21]: Attention Crowd FlowMachine (ACFM) is capable of
inferring the evolution of crowd flows by learning dynamic repre-
sentations of data with temporal variation through an attention
mechanism.

• MTGNN [42]: MTGNN solves multivariate time series prediction
based on graph neural networks.

3.2 Overall Performance
Table 1 shows the overall performance of MLPST and the baseline
models on the datasets NYCBike and NYCTaxi.
• As observed, the results of AutoEncoder on both datasets indicate
that simply compressing and reconstructing the input data cannot
extract useful features.

• In contrast, complex deep learning models such as ResLSTM,
Conv-GCN, andMulti-STGCnet get better results. However, there
are differences in their performance results on the two datasets.

These three models employ GCN to model the spatial depen-
dencies between target stations. It shows that capturing the spa-
tial dependencies within the whole network is essential. Both
ResLSTM and Multi-STGCnet use LSTM to learn temporal corre-
lations. So extracting features in the temporal dimension allows
for better short-term passenger flow prediction. From both spa-
tial and temporal perspectives, we use modules composed of
MLP-Mixer architectures in our framework MLPST, instead of
complex deep learning structures like the three methods above. It
is noteworthy that we obtain better results with our framework.

• ST-ResNet and Conv-GCN use different methods to model tem-
poral closeness, period, and trend. ST-ResNet designs residual
convolution units for each division and aggregates them dynam-
ically. In our model, we similarly divide time steps into temporal
closeness, period, and trend, but we apply MLP-mixer to each one
and then fuse them by learnable weights. A reasonable division
of input time steps improves traffic flow prediction accuracy.

• FC-RNN and Seq2seq process sequence data and learn temporal
information. ACFM achieves spatial weight prediction using two
ConvLSTMs units, where one LSTM learns an effective spatial-
temporal feature representation.

• Our MLPST achieves consistently leading performance across all
the metrics, which proves its advancing capability in modeling
spatial and temporal dependencies. In addition to the superior
prediction performance of MLPST, another advantage over the
baseline is the relatively simple model structure and the small
number of parameters. By sharing parameters between different
layers, our MLPST owns the lowest amount of trainable param-
eters, i.e., 0.60 × 102, which is lower by more than one order of
magnitude than baseline methods.

To summarize, the above overall experimental performance demon-
strates the effectiveness and efficiency of MLPST against represen-
tative baselines, which validates its superiority in spatio-temporal
prediction tasks. MLPST uses a simple all-MLP structure for traf-
fic flow prediction in both the spatial and temporal dimensions.
Moreover, we divide time steps in the temporal dimension. MLPST
accomplishes complex tasks with a simple structure and performs
well beyond the baseline.
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Table 2: Efficiency study of MLPST.

Dataset NYCTaxi NYCBike
Methods MAE Train (s) Infer (ms) MAE Train (s) Infer (ms)

AutoEncoder 22.45 1,573 47 5.57 1,443 62
ResLSTM 19.74 1,483 1,992 3.44 1,167 1,932
Conv-GCN 11.80 297 160 5.19 157 150

Multi-STGCnet 9.31 943 588 1.41 591 380
ST-ResNet 8.60 4,208 1,613 1.23 6,845 1,781
FC-RNN 8.13 31 71 5.72 28 76
Seq2Seq 7.78 36 61 4.93 42 66
ACFM 5.37 4,775 2,319 1.26 5,843 2,891
MLPST 4.76 132 38 1.20 93 39

Infer time is averaged for one batch (batch size = 64)

3.3 Efficiency Analysis
In the context of swift urbanization, spatio-temporal model capacity,
efficiency, and lightweight all play profound roles. This section sur-
veys the efficiency of ST methods on the two datasets. To achieve a
fair comparison, we conduct all experiments on one NVIDIAMX330
GPU. We follow the original settings for the baseline methods.

Table 2 shows the comparison results. For results on NYCTaxi,
we observe that AutoEncoder, FC-RNN, and Seq2Seq obtain poor
results for all three models despite their short training time and
inference time due to their simple structures. The best-performing
baseline ST-ResNet requires a significant amount of training time
to improve its accuracy. Meanwhile, our MLPST achieves better
results than ST-ResNet with only about 3% of the training time.
On NYCBike, we can observe that FC-RNN and Seq2Seq have very
short training time and inference time because of their relatively
simple structures, but these two models obtain inferior results to
our MLPST. The best-performing baseline ACFM takes a lot of
time on training and inference to improve its accuracy. We achieve
superior results than ACFM, with only about 1% of the training
time and the inference time.

The advanced performance, as well as training and inference
efficiency of MLPST, can be ascribed to its simple structure and
the incorporation of MLP-Mixer in both spatial and temporal di-
mensions. Therefore, MLPST obtains a better balance between time
efficiency and performance.

3.4 Ablation Study
In this subsection, we will examine the effectiveness of each com-
ponent of the model’s architecture. MLPST mainly consists of two
key components, i.e., the SpatialMixer and the TemporalMixer. We
remove our model’s SpatialMixer and TemporalMixer architectures,
respectively. Then we obtain two variants of the original frame-
work, i.e., MLP-AT and MLP-SA. By comparing the performance of
adjusted models above with MLPST, we can acquire insight into the
effectiveness of these two modules. In the following experiments,
we implement these two variants of MLPST on the NYCtaxi dataset:

• MLP-AT: We remove the SpatialMixer, and keep the Tempo-
ralMixer unchanged for temporal feature learning.

• MLP-SA: We remove the TemporalMixer, and keep the Spa-
tialMixer unchanged for spatial feature learning.

As shown in Figure 6, the MAE obtained by MLP-AT is 7.17.
Model performance decreases by about 50% compared to MLPST,
indicating that using the MLP-Mixer architecture in the spatial
dimension effectively captures the spatial correlation between dif-
ferent grids. MLP-SA worsens the model performance with the
MAE increased by 3.43 because of removing TemporalMixer. We
observe that the model’s prediction accuracy decreases sharply
when the TemporalMixer is replaced. This result indicates that the
MLP-Mixer architecture used by MLPST in the temporal dimension
effectively captures valuable regions at each time step. Based on
the experiments, it is obvious that each part of MLPST contributes
as expected to the model.

3.5 Temporal Dependency Study
In this section, we analyze the time step division in detail for the
temporal dependency study to learn the influence of our MLPST
on temporal dependency capture.

On the input side, we take a set of twelve time steps as input and
output the predicted value of one time step. We select the critical
time steps for modeling by dividing the twelve time steps into three
groups: closeness, period, and trend. We fix the other parameters
and make different adjustments to the division of the input data.
For ease of representation, we use (closeness, period, trend) as a
triplet. As shown in Figure 7, there are six groups of input data
from a to f, which are (12, 0, 0), (10, 2, 0), (10, 0, 2), (8, 2, 2), (8, 4, 0),
and (8, 0, 4). It does not make sense if the period is one or the trend
is one because we need to do Token-mixing and Channel-mixing
between embeddings in our model.

From Figure 7, We can see that the input (10, 2, 0) gives slightly
lower results compared to the input (12, 0, 0), and obtains the best
result, which proves that the introduction of period benefits the
model with the temporal dependency capture. However, because the
results for input (8, 4, 0) dropped, it also indicates that introducing
too long a period may not be useful or may be difficult to capture
the information in it. The results for input (10, 0, 2) are worse than
those for input (12, 0, 0) and (10, 2, 0). Finally, the results of input
(8, 2, 2) and (8, 0, 4) do not work well, suggesting that the key
closeness is still more helpful, which is in line with our perception
of prediction in the spatial-temporal domain.
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Figure 6: Results of ablation study on NYCTaxi dataset.

3.6 Hyper-parameters Analysis
Hyper-parameters in MLPST essentially influence the performance.
This subsection will test the impact of the number of MixerLayer
𝑁 , the number of channel in SpatialMixer 𝐶𝑆 and the number of
channel in TemporalMixer 𝐶𝑇 .

As we can see from Figure 8 (a), the number of MixerLayer 𝑁
affects the results and time efficiency of the whole experiment.
We find that the model performs the worst when 𝑁 = 3. When
𝑁 < 6, our model is relatively effective in terms of training time
and exhibits outstanding performance. It proves MLPST’s superior
efficiency and efficacy in capturing spatio-temporal dependencies.
When 𝑁 > 3, We find the results fluctuate but get better as the
𝑁 continues to increase. The possible reason is that the architec-
ture with deep MixerLayer often has an advantage in capturing
global spatial-temporal dependencies. Overall, as the MixerLayer
𝑁 increases, the model performance gets worse and then better.

For the number of channels in SpatialMixer 𝐶𝑆 and Tempo-
ralMixer 𝐶𝑇 , we set them with equal values, i.e., 𝐶𝑆 = 𝐶𝑇 = 𝐶 .
From Figure 8 (b), the model performs best when 𝐶 = 32.

In Figure 8 (c), we illustrate the performance of our MLPST
with different patch sizes. As aforementioned, we patch process
the input spatio-temporal feature matrix and then process it with
SpatialMixer and TemporalMixer. From the results, we can observe
that the best performance emerges when the patch size is 2. Given
the input grid matrix with shape of 10 × 20, it means 50 patches to
be handled in parallel. MLPST addresses the correlations among
the 50 patches. As the patch size rises to 5 and 10, it means the
input matrix is divided into 4 and 2 patches, respectively. Due to the
sparse common information among the few patches, MLPST gets
worse results. What’s more, we also test MLPST when the patch
size is 1, i.e., each grid serves as a patch and the input matrix is
represented by 10 × 20 patches. It is not inconceivable that MLPST
gets lower performance with patch size of 2, because the patch is
utilized to describe local spatial dependency, and taking each grid
as a unit eliminates this locality.

4 RELATEDWORK
MLP-BasedModel. Since the emergence of CNN [18] and ViT [36],
they have been the most popular methods for computation vision.
Later on, MLP-Mixer [34] is proposed as an all-MLP framework for
vision. ZHAO et al. [55] argue that MLP-Mixer can achieve strong
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Figure 7: Impact of time step on NYCTaxi dataset.

performancewith small-sizedmodels, but it can exhibit serious over-
fitting when the size of the model increases. MLP-Mixer has been
followed by various modified frameworks for better performance
or lower complexity. ResMLP [35] is another similar structure by
Facebook consisting of Residual MLPs without normalization-based
statistics. CycleMLP [5] proposed the idea of Cycle Fully-Connected
Layers to enlarge the receptive fields for dense prediction tasks.
gMLP [34] proposed to use MLPs with gating and sMLP [32] made
adjustments on Token-mixing with sparse interaction, weight shar-
ing and depth-wise convolution.

Unlike theMLP-Mixermethods in the related area, spatio-temporal
data mining demands capturing both spatial and temporal relations.
In this paper, we propose a novel and effective MLP-based archi-
tecture to comprehensively model the global spatial information
and the temporal patterns with multiple intervals. To the best of
the authors’ knowledgement, MLPST is the first effort to address
spatio-temporal prediction with an all-MLP framework.
Spatio-temporal Data Mining. Most existing models for STDM
tasks often adopt methods like encoders, CNN, graph convolutional
networks (GCN), long short-term memory (LSTM), attention mech-
anisms, etc. Seq2Seq [31] and AutoEncoder [16] are designed based
on an encoder-decoder architecture for spatio-temporal prediction.
STResNet [47] is a CNN-based system designed for citywide ST
prediction, and he proposed to make full use of temporal properties
like closeness, period, and trend. ResLSTM [45] and Multi-STGCnet
[44] both adopt GCN for spatial feature extraction and LSTM for
temporal dependency modeling. Conv-GCN [46] also uses GCN
to learn spatial correlation, but a 3D CNN is applied in temporal
feature mining. T-GCN [49] is a deep neural network method for
traffic prediction, named temporal graph convolutional network,
which combines GCN and GRU for spatial-temporal feature captur-
ing. ACFM [21] stands for the attention crowd flow machine that
can infer crowd flow and learn the dynamic representation of data
through the attention mechanism.

Spatio-temporal dataminingmethods aim to address the complex
spatio-temporal dependency, which leads to the highly-complicated
architecture and computational complexity. In this paper, we prove



MLPST: MLP is All You Need for Spatio-Temporal Prediction CIKM ’23, October 21–25, 2023, Birmingham, United Kingdom

1 2 3 4 5
number of Mixerlayer

4.0

4.9

5.8

6.7

M
A

E

(a) Impact of Mixerlayer

10.0

11.2

12.4

13.6

14.8

R
M

SE

MAE
RMSE

32 64 128
Embedding size

4.0

4.5

5.0

5.5

6.0

M
A

E

(b) Impact of embedding size

11.4

11.9

12.4

12.9

R
M

SE

MAE
RMSE

1 2 5 10
Patch size

4.0

4.9

5.8

6.7

M
A

E

(c) Impact of patch size

11.0

11.7

12.4

13.1

13.8

14.5

R
M

SE

MAE
RMSE

Figure 8: Impact of Hyper-parameters on NYCTaxi dataset.

that MLP-based architecture is enough for spatio-temporal char-
acteristic capture without mechanisms with high complexity. Our
effective SpatialMixer and TemporalMixer can effectively model
spatial and temporal dependency. It achieves state-of-the-art per-
formance while attaining remarkable time and space efficiency.

5 CONCLUSION
In this paper, we propose a novel framework for solving STDM
tasks, MLPST, which is an all-MLP architecture that is simple yet ef-
fective. To be specific, MLPST uses SpatialMixer and TemporalMixer
targeting spatial and temporal view respectively for feature extrac-
tion. On the one hand, SpatialMixer integrates interleaved MLPs
on different spatial locations to model spatial dependency with
global receptive. On the other hand, TemporalMixer captures the
temporal correlations from multiple time intervals, which com-
prehensively considers temporal dependencies of different spans.
We demonstrate the effectiveness of our framework by testing its
performances on two real-world traffic flow datasets. The results
show the superiority of our proposed framework against baselines,
where MLPST attains optimal accuracy with the best efficiency.
Furthermore, MLPST is promising to be used in multiple types of
STDM tasks in daily urban life, such as air quality prediction, urban
energy consumption forecasting, etc.
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