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ABSTRACT
Re-ranking draws increased attention on both academics and indus-
tries, which rearranges the ranking list by modeling the mutual in-
fluence among items to better meet users’ demands. Many existing
re-rankingmethods directly take the initial ranking list as input, and
generate the optimal permutation through a well-designed context-
wise model, which brings the evaluation-before-reranking problem.
Meanwhile, evaluating all candidate permutations brings unac-
ceptable computational costs in practice. Thus, to better balance
efficiency and effectiveness, online systems usually use a two-stage
architecture which uses some heuristic methods such as beam-
search to generate a suitable amount of candidate permutations
firstly, which are then fed into the evaluation model to get the
optimal permutation. However, existing methods in both stages
can be improved through the following aspects. As for generation
stage, heuristic methods only use point-wise prediction scores and
lack an effective judgment. As for evaluation stage, most existing
context-wise evaluation models only consider the item context and
lack more fine-grained feature context modeling.

This paper presents a novel end-to-end re-ranking framework
named PIER to tackle the above challenges which still follows the
two-stage architecture and contains two mainly modules named
FPSM and OCPM. Inspired by long-time user behavior modeling
methods, we apply SimHash in FPSM to select top-K candidates
from the full permutation based on user’s permutation-level interest

∗Equal contribution. Listing order is random.
†Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-xxxx-x/xx/xx. . . $15.00
https://doi.org/10.1145/xxxxxx.xxxxxx

in an efficient way. Then we design a novel omnidirectional atten-
tion mechanism in OCPM to better capture the context information
in the permutation. Finally, we jointly train these two modules in an
end-to-end way by introducing a comparative learning loss, which
use the predict value of OCPM to guide the FPSM to generate better
permutations. Offline experiment results demonstrate that PIER
outperforms baseline models on both public and industrial datasets,
and we have successfully deployed PIER on Meituan food delivery
platform.
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1 INTRODUCTION
E-commerce applications such as JD.com and Meituan have a large
number of items. To improve the user’s decision-making efficiency,
a slate which contains limited items is usually provided based on
the user’s interest. As shown in figure 1, a slate named Guess You
Like which consists of three items, is displayed to users on Meituan
food delivery platform.

Due to the rapid growth of deep learning techniques, many
well-designed ranking models have been proposed to improve the
recommendation performance, mainly focusing on feature inter-
action (e.g. Wide&Deep [9], DeepFM [14], xDeepFM [16]), user
interest modeling (e.g. DIN [27], DIEN [26], ETA [8]), and so on.
However, most existing ranking methods only model the CTR of
the current item, but ignore the crucial mutual influence among
contextual items. In order to model the influence of the arrange-
ment of displayed items on user behaviors, the re-ranking stage is
introduced to rearrange the initial list from the ranking stage.
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Figure 1: Guess You Like in Meituan.

Existing re-ranking methods can be divided into two categories
[12]. The first category is the step-greedy re-ranking strategy
[3, 12, 13, 29], which sequentially decides the display results of each
position. Such methods only consider the preceding information
but ignore the succeeding information, which is insufficient to ob-
tain the optimal result. Different from the greedy strategy, another
solution is the context-wise re-ranking strategy [1, 6, 11, 20, 25],
which uses a context-wise evaluation model to capture the mu-
tual influence among items and re-predict the CTR of each item.
Methods like PRM [20], directly take the initial ranking list as in-
put, and generates the optimal permutation based on the predict
value given by context-wise model. These one-stage methods suffer
an evaluation-before-reranking problem [25], that is, due to the
order obtained after re-ranking is different from the initial order,
inputting the re-ranked list will result in different prediction re-
sults. In order to resolve evaluation-before-reranking problem, a
straightforward solution is to evaluate every possible permutation,
which is global-optimal but is too complex to meet the strict infer-
ence time constraint in industrial system. Therefore, most existing
re-ranking framework uses a two-stage architecture [11, 25] which
consists of permutation generation and permutation evaluation. To
be specific, they use some heuristic methods such as beam-search
[21] to generate the suitable amount of candidate permutations
firstly and then feed into the evaluation model to get the optimal
permutation.

In order to improve the performance of the re-ranking stage
under the two-stage architecture, on the one hand, the generated
candidate permutations should contain the optimal permutation as
much as possible. On the other hand, the context-wise evaluation
model should predict as accurately as possible. However, existing
methods in both stages can be improved through the following
aspects:
• Generation stage. Some heuristic methods, such as the beam
search algorithm [11], merely use point-wise prediction scores
(i.e. item CTR) to generate candidate permutations, while ignor-
ing the mutual influence between each item and its contexts
in one permutation. In addition, since the generation stage is
independent of the evaluation stage, the evaluation results can-
not guide the generating process. Therefore, the quality of the
generated candidate permutations lacks an effective judgment.

• Evaluation stage. Different from the point-wise item prediction,
the evaluation of the permutations needs to use various types
of contextual information to fully model the mutual influence

among items. In addition to the influence of item context, there is
also the fine-grained influence of feature context. These features
form a variety of channels, and users may be interested in the
features of a certain channel. For example, price-sensitive users
will pay more attention to the comparison of price information in
the context, which we call it as multi-feature channel competition
problem.
To resolve the aforementioned issues, we propose a novel end-

to-end re-ranking framework named Permutation-Level Interest-
Based End-to-End Re-ranking (PIER). Our framework still follows
the two-stage paradigmwhich contains two mainly modules named
Fine-grained Permutation Selection Module (FPSM) and Omnidirec-
tional Context-aware Prediction Module (OCPM). Inspired by long-
time user behavior modeling methods [4, 8], we apply SimHash in
FPSM to select top-K candidates from the full permutation based
on user’s permutation-level interest in an efficient way. Then in
OCPM, we design a novel omnidirectional attention and context-
aware predict mechanism to better capture the context information
and predict the list-wise CTR of each item in the permutation. Fi-
nally, we integrate these two modules into one framework and
training in an end-to-end way. We introduce a comparative learn-
ing loss, which use the predict value of OCPM to guide the FPSM
to generate better permutations.

The main contributions of our work are summarized as follows:
• We propose a novel re-ranking framework named PIER, which
integrates generation module and evaluation module into one
model and can be trained in an end-to-end manner.

• We conduct extensive offline experiments on both public dataset
and real-world industrial dataset from Meituan. Experimental
results demonstrate the effectiveness of PIER. It is notable that
PIER has been deployed in Meituan food delivery platform and
has achieved significant improvement under various metrics.

2 RELATEDWORK
An industrial recommender system typically consists of three stages1:
matching [28], ranking [15, 24] and re-ranking [20]. Matching stage
aims to recall thousands of relevant items from the whole item set.
Ranking stage [9, 14, 27] point-wisely predict the click-through rate
(or conversion rate, etc.) of recalled items. Re-ranking stage aims
to find the best (e.g. maximization of the total clicks) permutation
from the initial list given by the ranking model. In this paper, we
mainly focus on re-ranking stage.

Typical re-ranking methods can be divided into two categories.
The first category is the step-greedy re-ranking strategy [3, 12, 13,
29], which sequentially decides the display results of each posi-
tion through recurrent neural network or approximation solution.
Seq2slate [3] utilizes pointer-network andMIRNN utilizes [29] GRU
to determine the item order one-by-one. Similarly, the client-side
short video re-ranking framework of Kuaishou [13] combines a
point-wise prediction model which takes ordered candidates list
as input with beam-search to sequentially generate the final list.
These methods ignore succeeding information, which is insufficient
to obtain the optimal result.

1We do not discuss advertising-related stages (e.g. mix-ranking [7, 18], auctions [17])
in this paper.
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Another category is context-wise re-ranking strategy [1, 6, 11,
20, 25], which uses a context-wise evaluation model to capture
the mutual influence among items and re-predict the CTR/CVR
of each item. Methods such as PRM [20] and DLCM [1] take the
initial ranking list as input, use RNN or self-attention to model
the context-wise signal and output the predict value of each item.
The optimal permutation is sorted according to the predict value.
Such methods bring an evaluation-before-reranking problem [25]
and leads to sub-optimum. Similarly, methods such as EXTR [6]
estimate pCTR of each candidate item on each candidate position,
which are substantially point-wise models and thus limited in ex-
tracting exact context. In order to model the exact context of the
permutation, a straightforward solution is to evaluate every possi-
ble permutation through a well-designed context-wise model. This
is a global-optimal method but is too complex to meet the strict
inference time constraint in industrial system. In order to reduce
the complexity, PRS [11] adopts beam-search to generate few can-
didate permutations firstly, and score each permutation through a
permutation-wise ranking model. Although heuristic methods are
effective, they only use point-wise prediction scores and lack an
effective judgment, which can be improved further.

In our scenario, we still adopt the two-stage architecture and
focus on improving the overall performance by optimizing both
two stages under the online time-consuming constraints.

3 PRELIMINARIES
Typically, an industrial recommender system consists of three con-
secutive stages: matching, ranking and re-ranking [11, 15, 20, 24,
25, 28]. Given a certain user involving his/her input ranking list
C = {𝑎𝑖 }𝑁𝑜

𝑖=1, the final displayed 𝑁𝑑 items to user are formulated as
the displayed list P = {𝑎𝑖 }𝑁𝑑

𝑖=1, where 𝑁𝑑 ≤ 𝑁𝑜 .
If there is no re-ranking stages, the top-𝑁𝑑 items are selected

as G from C for display. Therefore, the task of re-ranking stage
is to learning a re-ranking strategy 𝜋 : C → P∗, which aims to
select and rearrange items from C, and subsequently recommends
a better displayed list P∗, with the aim of improving indicators
such as CTR and GMV.

4 METHODOLOGY
We present the overview structure of PIER (Permutation-level
Interest-based End-to-End Re-ranking) in Figure 2. Specifically,
we take ranking list C = {𝑎𝑖 }𝑁𝑜

𝑖=1 and user’s permutation-level click
behavior sequence B = {𝑏𝑖 }𝑀𝑖=1 as the input of PIER. Then, we
generate candidate permutations G = {𝑝𝑖 }𝑇𝑖=1 on C through full
permutation algorithm2. Next, we use the Fine-grained Permuta-
tion Selection Module (FPSM) to select top-𝐾 permutations from
large number of candidate permutations. Finally, we use the Omni-
directional Context-aware Prediction Module (OCPM) to calculate
scores of each permutation and select the best permutation 𝑝∗ as
the re-ranking list to display.

In FPSM, we propose the time-aware hamming distance calcu-
lated based on SimHash [5, 8, 19]. The top-K permutations are
selected by sorting the distance between user’s permutation-level
click behaviors and candidate permutations. In OCPM, we design

2We set the number of items 𝑁𝑑 in each permutation to 3 for illustration in figures.

a novel omnidirectional attention unit to model the context infor-
mation in each permutation and output the list-wise pCTR of each
item in this permutation. The best permutation is selected based on
the output score, i.e., the sum of list-wise pCTRs. The relationship
between FPSM and OCPM is like the matching and ranking stages
in recommender systems. We combine the two into one framework
to generate the optimal re-ranking list. Next we will detail FPSM
and OCPM separately.

4.1 Fine-grained Permutation Selection Module
For time-consuming considerations, some re-ranking methods uti-
lize heuristic methods such as beam-search [11] to generate can-
didate permutations and use a well-designed prediction model to
select the optimal permutation, but these heuristic methods are
not consistent with the modeling target, leading to suboptimal per-
formance. Inspired by long-term user behavior modeling methods
such as ETA and SDIM [4], we propose FPSM to select top-K can-
didates through SimHash. Here, We use the user’s historical click
behaviors as target and then calculate the distance between it and
all candidate permutations. If the distance is closer, we believe that
the permutation can better match user’s interest thus can bring
greater revenue. In this manner, we can not only reduce the time
complexity, but also can make consistent selection by training the

...

OCPM OCPM ...

FPSM FPSM FPSM...

...

...
user‘s permutation-level

 historical click behaviors

...

ranking list

Sort & Select Top-K Permutations

OCPM

Generate Full Permutations

FPSM

OCPM

Select the Best Permutation

re-ranking displayed list

Figure 2: Overview of our framework PIER. PIER takes rank-
ing list and user’s permutation-level historical click behav-
iors as input, and outputs a re-ranking list to display with
the help of FPSM and OCPM.
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item

item brand
item ID

item price 
postion encoding

user permutation-level click behaviors

...

...

...

...

FPSM

a candidate permutation

...

...

OCPM

...

predicted values a top-K permutationuser permutation-level click behaviors

...

...

OAU

TAU

CPU

Figure 3: The structures of Fine-grained Permutation SelectionModule (FPSM) andOmnidirectional Context-aware Prediction
Module (OCPM). FPSM takes user permutation-level click behaviors and a candidate permutation as input and outputs the
distance score of this permutation. OCPM takes user permutation-level click behaviors and a top-𝐾 permutation selected by
FPSM as input and outputs the predicted list-wise pCTR of each item in this permutation. Best view in color.

FPSM and the prediction model in an end-to-end way. Next, we
will introduce how to select the top-K permutations through FPSM.

As shown in the left part of Figure 3, we first use the bottom
shared embedding layers to extract the embeddings from raw inputs.
For permutation 𝑝𝑘 , we denote the embeddingmatrixM𝑝

𝑘
as follows:

M𝑝

𝑘
=


E𝑝𝑘0;
E𝑝𝑘1;
. . .

E𝑝𝑘
𝑁𝑑 ;


=

[
E𝑝𝑘;0 E𝑝𝑘;1 . . . E𝑝𝑘;𝑁𝑓

]
=


e𝑝𝑘0;0 e𝑝𝑘0;1 . . . e𝑝𝑘0;𝑁𝑓

e𝑝𝑘1;0 e𝑝𝑘1;1 . . . e𝑝𝑘1;𝑁𝑓

. . . . . . . . . . . .

e𝑝𝑘
𝑁𝑑 ;0

e𝑝𝑘
𝑁𝑑 ;1

. . . e𝑝𝑘
𝑁𝑑 ;𝑁𝑓


∈ R𝑁𝑑×𝑁𝑓 ×𝐷 ,

(1)

where 𝑁𝑑 is the number of items in each permutation, 𝑁𝑓 is the
number of feature fields (i.g., ID, category, brand and so on) in each
item, 𝐷 is the dimension of the embedding-transformed feature
field, e𝑝𝑘

𝑖;𝑗 ∈ R
𝐷 is the embedding of the 𝑖-th item’s 𝑗-th feature field

in permutation 𝑝𝑘 , E
𝑝𝑘
𝑖; ∈ R𝑁𝑓 ×𝐷 is the embedding matrix of the

𝑖-th item in permutation 𝑝𝑘 , and E𝑝𝑘;𝑗 ∈ R𝑁𝑑×𝐷 is the embedding
matrix of the 𝑗-th feature field in permutation 𝑝𝑘 . Analogously, the
embedding matrix of the𝑚-th permutations in user’s permutation-
level history click behaviors is formulated asM𝑏𝑚 ∈ R𝑁𝑑×𝑁𝑓 ×𝐷 .

Next, we generate the position encoding matrix PE ∈ R𝑁𝑑×𝐷

for each permutation as follows:

PE(𝑖,2𝑑) = sin(𝑖/100002𝑑/𝐷 ),

PE(𝑖,2𝑑+1) = cos(𝑖/100002𝑑/𝐷 ),

PE =


PE(0,0) PE(0,1) . . . PE(0,𝐷)
PE(1,0) PE(1,1) . . . PE(1,𝐷)
. . . . . . . . . . . .

PE(𝑁𝑑 ,0) PE(𝑁𝑑 ,1) . . . PE(𝑁𝑑 ,𝐷)

 ∈ R𝑁𝑑×𝐷 .

(2)

Then, the embedding matrices of each feature field are multiplied
by the position encoding matrix PE respectively and then merged
into corresponding permutation representation h𝑝

𝑘
by average pool-

ing, as follows:

h𝑝
𝑘
=

1
𝑁𝑓

𝑁𝑓∑︁
𝑖=1

Avg-Pool
(
E𝑝𝑘;𝑖 ⊙PE

)
, ∀𝑘 ∈ [𝑁𝑜 ] . (3)

Analogously, the representation of𝑚-th permutation in user’s
permutation-level history click behaviors is formulated as h𝑏𝑚 .
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In our scenario, users are more likely to click the permutations
which are closer to the user’s interest. We use user’s permutation-
level history click behaviors to represent user’s interest and cal-
culate the distance between user’s interest and each candidate
permutation. Specifically, we utilize the random projection schema
(SimHash) [5, 8, 19] to calculate the similarity between the repre-
sentations of user clicked permutations and the representations of
candidate permutations. We first generate𝑀 different hash func-
tions corresponding to 𝑀 user’s permutation-level behaviors. For
each candidate permutation 𝑝𝑘 , we hash its representations h𝑝

𝑘
with 𝑀 different hash functions and calculate the hamming dis-
tance between it and each user’s permutation-level behavior, as
follows:

Sim(𝑝𝑘 , 𝑏𝑚) = Hash𝑚 (h𝑝
𝑘
, h𝑏𝑚), ∀𝑚 ∈ [𝑀],∀𝑘 ∈ [𝑁𝑜 ] . (4)

Meanwhile, the more recent behavior, the more it can reflect
the user’s current interest and will be given a higher weight in
similarity calculation. So we weight these distance according to
the occurrence time of each behavior to obtain the time-aware
hamming distance, as follows:

𝑑𝑘 =

𝑀∑︁
𝑚=1

𝑤𝑚 · Sim(𝑝𝑘 , 𝑏𝑚), ∀𝑘 ∈ [𝑁𝑜 ] . (5)

where𝑤𝑚 is the time-aware weight of𝑚-th behavior.
Finally, we sort candidate permutations based on their distance

scores and select top-𝐾 permutations P𝑡𝑜𝑝−𝐾 = {𝑝𝑡𝑜𝑝
𝑖

}𝐾
𝑖=1 with the

smallest distance scores as the output of FPSM.
Since FPSM shares bottom embedding layers with OCPM and

fixes random vectors for hash function and position encoding, it
dose not have its own independent parameters that need to be
trained. In order to ensure the quality of the selected top-K permu-
tations during training, we propose a contrastive loss to improve
the performance of FPSM. The detail of contrastive loss is discussed
in Section 4.3.2.

4.2 Omnidirectional Context-aware Prediction
Module

For each candidate permutation selected by FPSM, we then use
OCPM to predict the pCTR of each item through three consecutive
unit: Omnidirectional Attention Unit (OAU), Target Attention Unit
(TAU), Context-aware Prediction Unit (CPU). The architecture of
OCPM is shown in the right part of Figure 3 and we will introduce
each unit of OCPM separately.

4.2.1 Omnidirectional Attention Unit (OAU). When showing a per-
mutation to users, on the one hand, they may pay attention to
different displayed information such as price, delivery fee, rating,
etc. On the other hand, the competitive relationship between the
same feature of different items will also affect the user’s behavior.
For instance, placing expensive items ahead cheap items can stimu-
late user’s desire to click on cheap one. From this point of view, in
OCPM, we design an omnidirectional attention unit to effectively
modeling the information of each permutation.

Specifically, OCPM first uses the same bottom shared embedding
layers as FPSM to extract embeddings from raw inputs. Then we use
𝑁𝑓 parameter-independent self-attention layers [22] to calculate

the mutual influence of different items in each field separately and
output corresponding matrix H𝑝𝑘

𝑗
, as follows:

H𝑝𝑘
𝑗

= softmax(
Q𝑝𝑘
𝑗
K𝑝𝑘
𝑗

⊤

√
𝐷

)V𝑝𝑘
𝑗
, ∀𝑗 ∈ [𝑁𝑓 ],∀𝑘 ∈ [𝐾], (6)

where Q𝑝𝑘
𝑗
,K𝑝𝑘

𝑗
,V𝑝𝑘
𝑗

represent query, key, and value for the 𝑗-th
field in the 𝑘-th target permutation, respectively. 𝐷 denotes fea-
ture dimension of each feature. Here, query, key and value are
transformed linearly from E𝑝𝑘;𝑗 , as follows:

Q𝑝𝑘
𝑗
=E𝑝𝑘;𝑗 W

𝑄

𝑗
,K=E𝑝𝑘;𝑗 W

𝐾
𝑗 ,V=E

𝑝𝑘
;𝑗 W

𝑉
𝑗 ,∀𝑗 ∈ [𝑁𝑓 ],∀𝑘 ∈ [𝐾], (7)

where W𝑄

𝑗
,W𝐾

𝑗
,W𝑉

𝑗
∈ R𝐷×𝐷 . Then H𝑝𝑘

𝑗
are input into a Multi-

Layer Perceptrons (MLP) layer to generate representation:

h𝑝𝑘
𝑗

= MLP1
(
H𝑝𝑘
𝑗

)
, ∀𝑗 ∈ [𝑁𝑓 ],∀𝑘 ∈ [𝐾],

Z𝑝𝑘 =

[
h𝑝𝑘1 h𝑝𝑘2 . . . h𝑝𝑘

𝑁𝑓

]
∈ R𝑁𝑓 ×𝐷 , ∀𝑘 ∈ [𝐾],

(8)

After that, an inter-field self-attention layer is introduced to
calculate the mutual influence between different fields in each per-
mutation and output the final representation of the permutation
u𝑝
𝑘
by an MLP layer, as follows:

u𝑝
𝑘
=MLP2

(
H𝑝𝑘
𝑗

)
=MLP2

(
softmax(

Q′
𝑝𝑘
K′
𝑝𝑘

⊤
√
𝐷

)V′
𝑝𝑘

)
,∀𝑘∈[𝐾], (9)

where Q′
𝑝𝑘
,K′

𝑝𝑘 ,V
′
𝑝𝑘 represent query, key, and value for the 𝑘-th

permutation and are transformed linearly from Z𝑝𝑘 , as follows:

Q′
𝑝𝑘

= Z𝑝𝑘W𝑄′
,K′

𝑝𝑘 = Z𝑝𝑘W𝐾 ′
,V′
𝑝𝑘 = Z𝑝𝑘W𝑉 ′

,∀𝑘 ∈ [𝐾] . (10)

Analogously, the final representation of 𝑚-th permutation in
user’s permutation-level history click sequence is formulated as u𝑏𝑚 .
Through these two self-attention layers, we can effectively model
the relationship between different items and different feature fields.

4.2.2 Target Attention Unit (TAU). Zhou et al. [27] have proved
that historical behaviors, which are more relevant to the target,
can provide more information for the model’s predict. We use a
permutation-level target attention unit to model the interactions
between target permutation and each permutation in historical
behaviors, as follows:

w𝑚;𝑘 = u𝑏𝑚 ·MLPAtt
(
u𝑝
𝑘
| |u𝑏𝑚 | | (u𝑝

𝑘
⊙ u𝑏𝑚) | | (u𝑝

𝑘
− u𝑏𝑚)

)
,

w𝑘 = Sum-Pool
(
[w1;𝑘 , . . . ,w𝑀 ;𝑘 ]

)
,∀𝑚 ∈ [𝑀],∀𝑘 ∈ [𝐾] .

(11)

where | | means concatenation. The output representation w𝑘 of
TAU is regarded as the representation of user’s permutation-level
interest on the target permutation and is used as input of next unit.

4.2.3 Context-aware Prediction Unit (CPU). In Context-aware Pre-
diction Unit, we use a parameter-sharing MLP layer to predict the
list-wise pCTR of each item in each permutation. Taking the 𝑘-
th target permutation as an example, the inputs of CPU consist
of four parts: representation of the 𝑘-th target permutation u𝑝

𝑘
,

user’s permutation-level interest on the 𝑘-th target permutation
w𝑘 , the original predicted values (i.e., point-wise pCTRs of each
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item) {𝑣𝑝𝑘
𝑖

}𝑁𝑑

𝑖=1 and embedding matrix of the 𝑘-th target permuta-
tionM𝑝

𝑘
. Then the list-wise pCTR of the 𝑡-th item in the 𝑘-th target

permutation is predicted as follows:

𝑦 (𝑘,𝑡 ) = 𝜎
(
MLP3 (u𝑝𝑘 | |w𝑘 | |{𝑣

𝑝𝑘
𝑖

}𝑁𝑑

𝑖=1 | |M
𝑝

𝑘
)
)
, (12)

where 𝜎 is Sigmoid Function. In PIER, the score of each permutation
is easily obtained by summing the output list-wise pCTR. However,
It should be noticed that by using the framework of PIER, the score
of each permutation can be conveniently adjusted according to
business needs, such as using GMV instead of CTR.

4.3 Model Training
In training stage, We first use the permutation of real exposures to
train the OCPM, then jointly train the two modules by adding a
contrastive learning loss.

4.3.1 Pre-training of OCPM. In order to accurately evaluate the
selected top-K permutations, we first pre-train the OCPM using the
samples collected from online log. The inputs are the permutations
which are real displayed and the labels are whether the items in
each displayed permutation are clicked. Then the loss of the OCPM
is calculated as follows:

𝐿𝑜𝑠𝑠1 =
𝑁𝑑∑︁
𝑡=1

(
− 𝑦 (𝑖,𝑡 ) log(𝑦 (𝑘,𝑡 ) )−(1−𝑦 (𝑖,𝑡 ) ) log(1 − 𝑦 (𝑖,𝑡 ) )

)
, (13)

where subscript 𝑖 is the index of samples and 𝑡 is the index of
displayed items.

4.3.2 Joint training of PIER. In the joint training phase, since we
use fix random vector as ’hash function’ and ’position encoding’,
and the embeddings are shared between FPSM and OCPM, FPSM
does not need to update gradients. When the embedding is updated,
the hash signature is updated correspondingly. So how to improve
the quality of the selected top-K permutations during the training
process. Here, we propose a contrastive loss to ensure this goal.
The main idea is that the difference between the average pCTR of
the selected top-K permutations and the average pCTR of any K
permutations in unselected permutations is as large as possible.
Therefore, the final loss in the joint training phase is:

𝐿𝑜𝑠𝑠2 = −
𝐾∑︁

𝑘=1,𝑘′∉[𝐾 ]

( 1
𝑁𝑑

𝑁𝑑∑︁
𝑡=1

𝑦 (𝑘,𝑡 ) −
1
𝑁𝑑

𝑁𝑑∑︁
𝑡=1

𝑦 (𝑘′,𝑡 )
)2
, (14)

where subscript 𝑖 is the index of samples and 𝑡 is the index of
displayed items.

Finally, we sample a batch of samples B from the dataset and
update PIER using gradient back-propagation w.r.t. the loss:

𝐿(𝐵) = 1
|B|

∑︁
B

(
𝐿𝑜𝑠𝑠1 + 𝛼 · 𝐿𝑜𝑠𝑠2

)
, (15)

where 𝛼 is the coefficient to balance the two losses.

5 EXPERIMENTS
In this section, we conducted extensive offline experiments and
online A/B test to evaluate the effectiveness of our framework3.
For offline experiments, we will first compare OCPM with existing
3The code is publicly accessible at https://github.com/Lemonace/PIER_code.

baselines and analyze the role of different designs in it. Given the
same prediction model, we will next compare the performance of
our FPSMwith other generative method. Finally, we will verify how
different hyper-parameter settings (e.g., K,𝛼) affect the performance
of our framework. For online experiments, we will compare our
framework with the existing strategy deployed on the Meituan
platform using an online A/B test.

5.1 Experimental Settings
5.1.1 Dataset. In order to verify the effectiveness of our frame-
work, we conduct sufficient experiments on both public dataset and
industrial dataset. For public dataset, we choose Avito dataset. For
industrial dataset, we use real-world data collected from Meituan
food delivery platform. Table 1 gives a brief introduction of the
datasets.
• Avito. The public Avito dataset contains user search logs and
metadata from avito.ru, which contains more then 36M ads, 1.3M
users and 53M search requests. The full features include user search
information(e.g., userid, searchid, and search date) and ad infor-
mation(e.g., adid, categoryid, title and so on). Each search id corre-
sponds to a search page with multiple ads. For each user, We rank
his search pages in increasing order based on the search date, and
use the first T-1 search pages as the behavior pages, and the ads in
the T-th search page as the target ads to be predicted. Here we use
the data from 20150428 to 20150514 as the training set and the data
from 20150515 to 20150520 as the testing set to avoid data leakage.
•Meituan. The industrial Meituan dataset is collected on Meituan
food delivery platform during April 2022, which contains user in-
formation(e.g., userid, gender, age), ad information(e.g., adid, cate-
goryid, brandid and so on). According to the date of data collection,
we divide the dataset into training and test sets with the proportion
of 8:2.

5.1.2 Evaluation Metrics. For offline experiments, we use differ-
ent metrics for different modules. Specifically, we use the widely
adopted AUC metric to evaluate the effectiveness of the predic-
tion module and use the following metrics to evaluate the whole
framework:
• HR(Hit Ratio)@1 [2]. For each data, HR is 1 only when the
top-K permutations selected by generative methods contains the
best permutation.

• Cost. Cost means the overall time-consuming for different re-
ranking frameworks.
For online experiments, we compare our proposed framework

with existing method through CTR, GMV and inference time.

5.1.3 Hyperparameters. The hidden layer sizes of MLP1, MLP2,
MLP3 are (128, 64, 32), (60, 32, 20), and (50, 20), respectively. the
learning rate is 10−3, the optimizer is Adam and the batch size is
1,024. The 𝛼 is 0.1, the embedding size is 8 and the length of user

Table 1: Statistics of the datasets.

Dataset #Requests #Users #Ads
Avito 53,562,269 1,324,103 23,562,269

Meituan 230,525,531 3,201,922 98,525,531

https://github.com/Lemonace/PIER_code
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Table 2: The experimental results about AUC and Logloss on
two datasets.

Model Avito Meituan
AUC LogLoss AUC LogLoss

DNN 0.6876 0.0483 0.6538 0.1917
DCN 0.6896 0.0483 0.6550 0.1916
PRM 0.7131 0.0481 0.6718 0.1899
EXTR 0.7114 0.0481 0.6704 0.1901

Edge-Rerank 0.7163 0.0479 0.6694 0.1909
OCPM 0.7320 0.0471 0.6822 0.1891

behavior sequence is 5. For Avito dataset, the length of ranking list
and re-ranking list are both 5, thus the length of full permutation is
120 and K is set to 10. For Metuan dataset page, we select 3 items
from the initial ranking list which contains 10 items, thus the length
of full permutation is 720 and K is set to 100.

5.2 Offline Experiments For OCPM
5.2.1 Baselines. We compare OCPM with both point-wise and list-
wise representative methods as baselines. We select DNN, DCN
as point-wise baselines and PRM, EXTR and Edge-Rerank from
Kuaishou as list-wise baselines. A brief introduction of these meth-
ods are as follows:
• DNN [10]. DNN is a basic deep learning method for CTR predic-
tion, which applies MLP for high-order feature interaction.

• DCN [23]. DCN explicitly applies feature crossing at each layer,
requires no manual feature engineering, and adds negligible extra
complexity to the DNN model.

• PRM [20]. PRM adjusts an initial list by appling the self-attention
mechanism to capture the mutual influence between items.

• EXTR [6]. EXternality TRansformer regards target ad with all
slots as query and external items as key&value to model exter-
nalities in all exposure situations.

• Edge-Rerank [13]. Edge-Rerank combines an on-device ranking
model and an adaptive beam search method to generate context-
aware re-ranking result.

5.2.2 Performance Comparison. Table 2 summarizes the results of
offline experiments. All experiments were repeated 5 times and the
averaged results are reported. We have the following observations
from the experimental results: i) All re-ranking listwise model (e.g.
PRM, EXTR) makes great improvements over point-wise model (e.g.
DNN, DCN) by modeling the mutual influence among contextual
items, which verifies the impact of context on user clicks behavior.
ii) Compare with transformer-based model(e.g. PRM, ETXR), Edge-
Rerank also improve the CTR prediction because of they use the
history sequence and previous item information. iii) Our proposed
OCPM brings 0.0189/0.0104 absolute AUC on Avito/Metuan dataset
gains over the state-of-the-art independent baseline which is a
significant improvement in industrial recommendation system.

5.2.3 Ablation Study. To explore the effectiveness of different mod-
ules in OCPM, we conduct ablation studies on Avito and Meituan
dataset. All experiments were repeated 5 times and the averaged
AUC is reported:

Table 3: Result of ablation experiment on different parts in
re-ranking model.

Model Avito Meituan
AUC LogLoss AUC LogLoss

OCPM 0.7320 0.0483 0.6822 0.1917
- OAU 0.7198 0.0483 0.6774 0.1916
- TAU 0.7263 0.0481 0.6786 0.1899

• OCPM (-OAU) blocks the omnidirectional attention module. OAU
aims to capture item context and feature context information,
which could model the competitive relationship between the
same attribute of different item. As shown in Table 3, AUC de-
creases by 0.0112/0.0048, suggesting that extracting context infor-
mation is crucial and the proposed OAU meets this requirement.

• OCPM (-TAU) does not use the target attention unit. TAU aims to
compute the interactions of target permutation and each permu-
tation in historical behavior. As shown in Table 3, AUC decreases
by 0.0057/0.0036 on Avito/Metuan dataset, suggesting that our
TAU are capable to capture user history page-level interest.

5.3 Offline Experiments For PIER
5.3.1 Baselines. We compare our whole framework which com-
bines FPSM and OCPM with some heuristic generative methods as
baselines. All these methods use a fixed OCPM but the candidate
permutations are generated in different ways. A brief introduction
of these methods is as follows:
• Random & OCPM. We randomly select K permutations as can-
didates.

• PRS(Beam Search & OCPM) [11]. We use the beam search
method to generate K candidate permutations based on the cu-
mulative CTR.

• Full Permutation & OCPM. We directly feed all candidate per-
mutations into the prediction model and select K permutations
based on average CTR. This can be seen as the upper bound of
our framework.

5.3.2 Performance Comparison. Table 4 summarizes the results
of offline experiments and we have the following observations: i)
Intuitively, PIER achieves great improvements over random and
beam-search methods on finding the best permutation on both
public dataset and industrial dataset with a small increase in time
complexity. One reasonable explanation is that FPSM can select
better permutations through the guidance of contrastive loss. ii)
We still have much room for improvement compared with the full
permutationmethod on finding the best permutation, but we greatly
reduce the time cost of the whole framework.

5.3.3 Ablation Study. To verify the impact of different units (i.e.,
time-aware weighting, contrastive loss), we study two ablated vari-
ants of PIER framework:
• PIER (-time-awareweighting) does not use the time-awareweight
on each behavior and treat them as equally important.

• PIER (-contrastive Loss) removes the contrastive loss for improv-
ing the quality of the selected top-K permutations, i.e., 𝛼 = 0.
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Table 4: HR and Cost of different methods.

Model Avito Meituan
HR Cost (ms) HR Cost (ms)

Random & OCPM 0.09 10.8 0.13 70.5
PRS (Beam-Search & OCPM) 0.62 16.8 0.72 78.7
Full Permutation & OCPM 1.00 100.5 1.00 430.5
PIER (FPSM & OCPM) 0.78 17.5 0.84 85.3
- time-aware weighting 0.74 17.3 0.70 84.8
- contrastive loss 0.52 17.5 0.61 85.1

Since removing a certain unit requires re-training the entire
framework, we try to ensure the AUC of OCPM are as close as
possible to guarantee the comparability of the ablation experiment.
Judging from the experimental results, we have the following find-
ings: i) The performance gap between w/ and w/o time-aware
weighting on distance calculation has little impact on public dataset
but the performance on industrial dataset is affected to some ex-
tent. This indicates that in the Meituan scenario, users’ interests
remain consistent in a short period of time. ii) The decline in the
performance without contrastive loss is obvious on both dataset.
This indicates that the auxiliary loss enables FPSM to select better
permutations.

Table 5: Result of ablation experiment on different parts in
PIER

Settings Avito Meituan
AUC HR Cost (ms) AUC HR Cost (ms)

𝛼 = 0 0.7337 0.52 17.5 0.6833 0.57 85.1
𝛼 = 0.01 0.7336 0.63 17.4 0.6831 0.62 85.3
𝛼 = 0.05 0.7329 0.71 17.6 0.6828 0.71 85.3
𝛼 = 0.1 0.7320 0.78 17.5 0.6822 0.84 85.2
𝛼 = 0.3 0.7108 0.81 17.4 0.6674 0.88 85.4
𝛼 = 0.5 0.6927 0.88 17.6 0.6425 0.91 85.3
𝐾 = 5 0.7325 0.63 13.8 - - -
𝐾 = 10 0.7320 0.71 17.5 - - -
𝐾 = 20 0.7318 0.82 25.2 - - -
𝐾 = 50 0.7299 0.93 46.9 0.6827 0.78 49.2
𝐾 = 100 - - - 0.6822 0.84 85.3
𝐾 = 200 - - - 0.6813 0.92 157.3
𝐾 = 300 - - - 0.6799 0.95 223.3

5.4 Hyperparameter Analysis
We analyze the sensitivity of two hyperparameters: 𝛼 , 𝐾 . Specif-
ically, 𝛼 is the weight of the contrastive loss and 𝐾 is number of
permutations selected by FPSM. The result is shown in table 5,
showing the same trend on public dataset and industrial dataset
and we have the following findings :

i) As 𝛼 increases within a certain range, the AUC of OCPM
maintains a relatively good level, while HR is improved. When

Table 6: The experimental results from Online A/B testing.

Model CTR GMV Cost(ms) Time-out

Base Ranking Model 0% 0% 0 0.0%
PRM 1.21% 0.92% 6.1 0.0%
Beam-Search & Evaluator 3.17% 2.54% 10.5 0.052%
Full Permutation & Evaluator - - 52.4 64.39%
PIER 5.46% 5.83% 11.1 0.061%

𝛼 exceeds a certain level, the influence of the contrastive loss on
OCPM increases, and the AUC begins to decline, resulting in a
decrease in the confidence of the HR indicator.

ii) Changing 𝐾 mainly affects HR and average cost of the frame-
work. Increasing 𝐾 within a certain range can quickly improve the
HR performance. When it exceeds a certain range, HR increases
slowly. Meanwhile, the average cost increases with the increase of
𝐾 . Therefore, the value of 𝐾 should be set reasonably to balance
the effect and efficiency in practice.

5.5 Online Results
We compare PIER with other models (e.g. base ranking model, PRM
and so on) and all deployed on Meituan food delivery platform
through online A/B test. Specifically, we conduct online A/B test
with 1% of whole production traffic from April 09, 2022 to April
25, 2022 (one week). As a result, we find that PIER gets CTR and
GMV increase by 5.46% and 5.83% respectively. Besides, we focus
on time costs, which is an important indicator, determine whether
it can be applied to a large scale of industrial scenarios. As show
in Tabel 6, Full-Permutation could not deploy because of time-out
ratio increase by 64.39%. Compared with beam-search, PIER has
improved CTR by 2.29% and GMV by 2.31% while the time-out
ratio effect increases little, which is acceptable to the system. Now,
PIER has been deployed online and serves the main traffic, and
contributes to significant business growth.

6 CONCLUSIONS
This paper presents a novel end-to-end re-ranking framework
named PIER which contains two mainly modules named FPSM
and OCPM. Inspired by long-time user behavior modeling methods,
we apply SimHash in FPSM to select top-K candidates from the full
permutation. For better capturing the context information in the
permutation, we design a novel omnidirectional attention mecha-
nism in OCPM. Finally, we jointly train these two modules in an
end-to-end way by introducing a comparative learning loss to guide
the FPSM to generate better permutations. Both offline experiment
and online A/B test show that PIER significantly outperformed
other existing re-ranking baselines, and we have deployed PIER on
Meituan food delivery platform.
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