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ABSTRACT
Integrated recommendation, which aims at jointly recommending

heterogeneous items from different channels in a main feed, has

been widely applied to various online platforms. Though attractive,

integrated recommendation requires the ranking methods to mi-

grate from conventional user-item models to the new user-channel-

item paradigm in order to better capture users’ preferences on both

item and channel levels. Moreover, practical feed recommendation

systems usually impose exposure constraints on different channels

to ensure user experience. This leads to greater difficulty in the

joint ranking of heterogeneous items. In this paper, we investigate

the integrated recommendation task with exposure constraints

in practical recommender systems. Our contribution is forth-fold.

First, we formulate this task as a binary online linear programming

problem and propose a two-layer framework named Multi-channel

Integrated Recommendation with Exposure Constraints (MIREC) to

obtain the optimal solution. Second, we propose an efficient online

allocation algorithm to determine the optimal exposure assignment

of different channels from a global view of all user requests over

the entire time horizon. We prove that this algorithm reaches the

optimal point under a regret bound of O(
√
𝑇 ) with linear complex-

ity. Third, we propose a series of collaborative models to determine

the optimal layout of heterogeneous items at each user request.

The joint modeling of user interests, cross-channel correlation, and

page context in our models aligns more with the browsing nature of

feed products than existing models. Finally, we conduct extensive

experiments on both offline datasets and online A/B tests to verify

the effectiveness of MIREC. The proposed framework has now been

implemented on the homepage of Taobao to serve the main traffic,

providing service to hundreds of millions of users towards billions

of items every day.
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Figure 1: A snapshot of the IRS in real-world feed products.
Left: the IRS presents heterogeneous items provided bymul-
tiple channels in a row, users slide down to viewmore items.
Right: the detail page is presented after a user clicks an item.
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1 INTRODUCTION
Nowadays, the ever-expanding new breeds of content, e.g., pictures,

live streams, and short videos, drive the recommender system to

drift from the traditional homogeneous form into an integrated

form. Integrated recommender systems (IRSs) aim to simultane-

ously recommend heterogeneous items frommultiple sources/channels

in a row. This integrated form greatly expands users’ choices on

different types of content thereby satisfying users’ diversified prefer-

ences on both item-level and channel-level. Therefore, IRS has nowa-

days been widely deployed in various online platforms such as the

homepage feeds in Kuaishou [23], XiaohongShu [17], Taobao [29],

and AliExpress [13]. In these products, users continuously slide

down to browse and interact with heterogeneous items in a sequen-

tial manner, as shown in Figure 1.

Though attractive, integrated feed recommendation faces more

challenges than conventional recommendation with homogeneous

items. First, real-world applications usually impose upper or lower

exposure guarantees on different channels, such as lower con-

straints for sponsored/new content (e.g., ads and cold-start items) or

upper constraints for individual channels to ensure diversity. These
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constraints lead to greater difficulty in the joint ranking of heteroge-

neous items. Second, heterogeneous items from multiple channels

usually have different features and ranking strategies. Hence, it

is difficult to directly compare items from different channels for

joint ranking. Third, users’ interests on different channels have

a great impact on their behaviors, such that traditional user-item

prediction models need to evolve into user-channel-item predic-

tion models by considering both intra-channel and inter-channel

information and their correlation with user interests. Finally, in

feed products, users tend to review a large number of items in a

row such that the previously viewed items have a great impact on

the users’ behavior towards the next item [17, 23, 29]. Therefore, it

is of vital importance to consider the influence from page context

when determining the item order in the return list.

Although integrated feed recommendation has been widely de-

ployed in practice, there are still few works focusing on the above

challenges systematically. In this paper, we propose a general frame-

work named Multi-channel Integrated Recommendation with Expo-

sure Constraints (MIREC) to deal with the multi-channel integrated

recommendation task under resource constraints in feed products.

MIREC consists of two layers: an allocation-layer which optimizes

the exposure of different channels from a global view over all user

requests, and a ranking-layer which determines the optimal item

layout of a given user request from a local view. These two layers

operate in an iterative manner to make online decisions along with

the arrival of user requests. The main contributions are as follows.

• This work formulates the integrated recommendation task

with exposure constraints as a binary online linear program-

ming problem and proposes a two-layer framework named

MIREC to obtain the optimal solution. We also describe a

practical system architecture for its implementation in in-

dustrial platforms.

• This work proposes an efficient multi-channel allocation

algorithm to obtain the optimal exposure assignment of dif-

ferent channels over a fixed time horizon. The proposed

algorithm is able to reach an optimal solution with linear

complexity w.r.t. the number of constraints. We also prove

that this algorithm admits a regret bound of O(
√
𝑇 ) towards

the global optimal point under certain assumptions.

• This work proposes a series of collaborative models to deter-

mine the optimal layout of heterogeneous items on a page,

with joint modeling of user interests, cross-channel correla-

tion, and page context. This aligns more with the browsing

nature of feed products than existing models.

• This work conducts extensive experiments on both offline

datasets and online A/B tests to verify the superiority of our

proposed method.

MIREC has been implemented on the homepage of Taobao to serve

themain traffic. It brings 3% lift on user clicks, 1.56% lift on purchase,

and 1.42% lift on stay time. It now serves hundreds of millions of

users towards billions of items every day.

2 RELATEDWORK
Re-ranking Methods. The main objective of re-ranking methods

is to consider the mutual influence among a list of items in order

to refine the prediction results produced by point-wise ranking

models. Three prevalent models are commonly adopted in the ex-

isting literature: RNN-based methods, attention-based methods,

and evaluator-generator-based methods. The first two methods

feed an initial ranking list produced by point-wise models (e.g.,

Wide&Deep [10], DIN [39] and SIM [28]) into RNN-based (e.g.,

MiDNN [41], Seq2Slate [4] and DLCM [1]) or attention-based struc-

ture (e.g., PRM [27], PFRN [16], PEAR [20], and Raiss [22]) sequen-

tially and output the encoded vector at each subsequent layer to

model the mutual influences among items. The evaluator-generator-

based methods (e.g., SEG [32] and GRN [11]), use a generator to gen-

erate feasible permutations and use an evaluator to evaluate their

list-wise utility to determine the optimal permutation. However,

most re-ranking methods mainly focus on capturing the mutual

influence among homogeneous items provided by one channel, in-

stead of heterogeneous items provided by multiple channels. More-

over, they only optimize the item order at a single time slot, instead

of considering a cumulative utility over a broad time horizon under

resource constraints.

Online Allocation Methods. The online allocation problem with

resource constraints has been mostly studied in online convex op-

timization [15]. The primal-dual methods [3, 9, 25, 34, 35] avoid

taking expensive projection iterations by penalizing the violation

of constraints through duality. The BwK methods [2, 18] deter-

mines an optimal action from a finite set of possible actions and
then optimize the policy of decision-making according to the ob-

served rewards and costs over a fixed period of time. Several recent

works studied the practical performance of online allocation in

advertising recommendations. For example, PDOA [40] adopts the

primal-dual framework by optimizing the dual prices with online

gradient descent to eliminate the online max-min problem’s regret.

However, it assumes that the utility and cost values can be opti-

mally estimated and only verify the performance through offline

simulations. MSBCB [14] and HCA2E [6] proposed a two-level opti-

mization framework based on BwK methods, where the high-level

determines whether to present ads on the given request while the

low-level searches the optimal position to insert ads. Most related

works on online convex optimization focus on theoretical analy-

sis (e.g., regret bound) instead of real-world applications. Other

related works on advertising mainly consider binary content, i.e.,

ads or non-ads, instead of heterogeneous content. Directly extend-

ing them to deal with multi-channel recommendations in IRSs may

lead to sub-optimal results.

Integrated Recommendation. The integrated recommendation

is a newly emerged but rapidly developing domain driven by prac-

tical problems [24]. Integrated recommendation methods need to

consider both intra-channel and inter-channel features within the

heterogeneous content and provide recommendation results con-

tinuously along with user arrivals. Recently, DHANR [13] proposed

a hierarchical self-attention structure to consider the cross-channel

interactions. HRL-Rec [33] decomposed the integrated re-ranking

problem into two subtasks: source selection and item ranking,

and use hierarchical reinforcement learning to solve the problem.

DEAR [37] proposed to interpolate ads and organic items by deep

Q-networks. Cross-DQN [21] also adopt a reinforcement learning

solution with a cross-channel attention unit. However, many inte-

grated methods only focus on ranking at a single time slot instead



of over a continuous time horizon. The joint consideration of both

integrated ranking and online allocation of limited resources still

remains to be explored.

3 PROBLEM FORMULATION
This section formulates the integrated recommendation task with

exposure constraints as a binary online linear programming prob-

lem. Specifically, we consider a generic IRS setting where user

requests arrive sequentially during a finite time horizon. For each

request, the IRS needs to rank a list of heterogeneous items pro-

vided by multiple channels. The aim is to maximize the overall

utilities (e.g., the sum of clicks and pays) of all channels over the
entire time horizon, subject to multiple resource constraints.

Formally, the request of user 𝑢 triggered at time 𝑡 is described as

𝑒𝑡 = (𝑢, 𝑓 , 𝑔,X𝑡 ), where 𝑓 ∈ R+ is a non-negative utility function,
𝑔 ∈ R+ is a non-negative resource consumption function, and X𝑡 ⊂
R𝑑+ is a compact set denoting all possible item layouts for decision-

making. For each request 𝑒𝑡 , the IRS needs to choose a number of 𝑁

heterogeneous items from a candidate set 𝐼𝑡 and place them into 𝑁

slots to form a complete page and return it to the user. This action

𝒙𝑡 ∈ X𝑡 can be represented as a decision matrix 𝒙𝑡 ∈ [0, 1]𝑁×|𝐼𝑡 |
,

where each entry 𝑥𝑡,𝑛,𝑖 is indexed by a slot 𝑛 and a card index

𝑖 . Once the user finished viewing the current page, a new user

request will be triggered to ask the platform to return to the next

page. Therefore, this decision-making process will be performed

repeatedly. Moreover, in real-world applications, the item layouts

need to satisfy the following constraints:

X𝑡 =
{ ∑

𝑖∈𝐼 𝑡 𝑥𝑡,𝑛,𝑖 = 1, ∀𝑡 ∈ T ,∀𝑛 ∈ N∑
𝑛 𝑥𝑡,𝑛,𝑖 ≤ 1, ∀𝑡 ∈ T ,∀𝑖 ∈ 𝐼 , (1)

where the upper constraint restricts that each slot must be assigned

to one item and the lower constraint restricts that each item can be

assigned to at most one slot.

After executing an action 𝒙𝑡 at request 𝑒𝑡 , the IRS consumes a

resource cost 𝑔(𝒙𝑡 ) and obtains an utility 𝑓 (𝒙𝑡 ). In IRS, the utility

function 𝑓 (𝒙𝑡 ) is defined according to the concerned metrics. For

example, it can be defined as a combination of stay time, adds to

cart, and favorites to encourage user engagement, or defined as a

combination of clicks and purchases to encourage user conversion.

On the other hand, the consumption function 𝑔(𝒙𝑡 ) is defined based
on the concerned resource constraints. For example, the platform

may need to allocate a certain amount of exposure to new channels

in order to support the growth of new content [12]. Meanwhile,

a too large proportion of exposures on one specific channel will

damage the recommendation diversity thereby harming user expe-

rience [6, 26]. In this case, the IRS needs to guarantee both a lower

exposure limit and an upper exposure limit for the heterogeneous

items from different channels.

In this paper, we focus on the exposure constraints in practical

systems which lead to the following optimization problem

P0 : OPT(S) = max

𝒙𝑡 ∈X𝑡

∑︁𝑇

𝑡=1

𝑓 (𝒙𝑡 ) (2)

s.t. 𝐶1 :

∑︁𝑇

𝑡=1

𝑔𝑚 (𝒙𝑡 ) ≤ 𝐺max

𝑚,𝑡ℎ
𝑁 (S),∀𝑚 ∈ M, (3)

𝐶2 :

∑︁𝑇

𝑡=1

𝑔𝑚 (𝒙𝑡 ) ≥ 𝐺min

𝑚,𝑡ℎ
𝑁 (S),∀𝑚 ∈ M, (4)

where 𝑁 (S) denotes the total available exposures to allocate over

the entire time horizon, 𝐺max

𝑚,𝑡ℎ
and 𝐺min

𝑚,𝑡ℎ
denote the proportion of

upper exposure limits and lower exposure limits for each channel

𝑚 ∈ M, respectively, and 𝑔𝑚 (𝒙𝑡 ) denotes the consumed exposures

of cards from channel𝑚 after executing 𝒙𝑡 at request 𝑒𝑡 . Although
this paper mainly focuses on the exposure guarantee, the above

formulation is generally applicable to other problems with different

resource constraints, e.g., the number of coupons to allocate.

4 METHODOLOGY
4.1 Framework Overview
Directly solving problem P0 is challenging. On one hand, the es-

timation accuracy of utility 𝑓 (𝒙𝑡 ) and consumption 𝑔(𝒙𝑡 ) suffer
influence from multi-factors, including the user’s personal inter-

est, the page context, and the cross-correlation between different

channels. On the other hand, the determination of each 𝒙𝑡 needs to
consider the cumulative exposures over the entire time horizon due

to the exposure guarantees. Therefore, the optimization of exposure

allocation must be performed from a global view over the entire

timeline instead of a single time slot.

To this end, we propose the MIREC framework which solves P0

through online primal-dual iterations. Specifically, MIREC consists

of two layers, i.e., the allocation-layer and the ranking-layer, which

correspond to the dual and primal problem of P0, respectively. The

allocation-layer optimizes dual variables to control the cumulative

exposure of different channels on all user requests from a global

view to guarantee the exposure limits. Meanwhile, the ranking-
layer optimizes the item layout under fixed dual variables given by

the allocation-layer, with the aim to maximize the instant utility on

a single user request from a local view. These two layers operate in

an iterative manner along with the arrival of online user requests

to determine the optimal item layout at user requests continuously.

The general workflow of MIREC is shown in Figure. 2.

For the allocation-layer, we propose a simple but efficient Mirror-

descent based Multi-channel Exposure Allocation (ME2A) algo-

rithm to adaptively balance the utility gain and the exposure cost

of presenting heterogeneous items from different channels. The

proposed M2EA algorithm has a closed form solution that can

be computed in linear time and admits a regret bound of O(
√
𝑇 )

towards the global optimal point under certain assumptions.

For the ranking-layer, we propose a personalized cross-channel

ranking (PCR) model and a context-aware reranking (CAR) model

to jointly determine the optimal item layout on a given user re-

quest, with fixed dual parameters given by the allocation-layer. In

particular, PCR gives point-wise estimation of the quality of can-

didate items by joint modeling the influence from user interests,

intra-channel information, and inter-channel correlations. After-

ward, CAR refines the point-wise estimation generated by PCR

into context-aware estimation by making use of both the context

information and the high-level knowledge extracted from PCR.

4.2 Global: Online Exposure Allocation
In this section, we introduce the primal-dual formulation of P0

and propose the ME2A algorithm to obtain the optimal solution for

online systems. The complete algorithm is presented in Algorithm 1.
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Figure 2: An overview of the MIREC framework.

4.2.1 Primal-dual Formulation. The Lagrangian dual function of

problem P0 can be written as

min

𝝁,𝝀
𝐷 (𝝁,𝝀) =

∑︁
𝑡

𝑓 (𝒙𝑡 ) −
∑︁
𝑚

𝜇𝑚

(∑︁
𝑡

𝑔𝑚 (𝒙𝑡 ) −𝐺max

𝑚

)
(5)

+
∑︁
𝑚

𝜆𝑚

(∑︁
𝑡

𝑔𝑚 (𝒙𝑡 ) −𝐺min

𝑚

)
.

Here 𝝁 ≥ 0 and𝝀 ≥ 0 are the introduced dual parameters,𝐺max

𝑚 and

𝐺min

𝑚 are short for 𝐺max

𝑚,𝑡ℎ
𝑁 (S) and 𝐺min

𝑚,𝑡ℎ
𝑁 (S), respectively. Note

that the parameters 𝝁 and 𝝀 are related to the violation of exposure

consumption over the upper bound limit and the lower bound limit,

respectively, which are mutually exclusive. In particular, if one of

them is positive, the other one must be zero; otherwise, both of

them are zero. Hence, it is viable to only introduce one real number
dual variable 𝝁 ∈ R1×𝑀

to replace 𝝁 and 𝝀 in the dual problem,

which simplifies (5) into

min

𝝁
𝐷 (𝝁) =

∑︁
𝑡

𝑓 (𝒙𝑡 ) −
∑︁
𝑚

[𝜇𝑚]+
(∑︁
𝑡

𝑔𝑚 (𝒙𝑡 ) −𝐺max

𝑚

)
(6a)

+
∑︁
𝑚

[−𝜇𝑚]+
(∑︁
𝑡

𝑔𝑚 (𝒙𝑡 ) −𝐺min

𝑚

)
(6b)

=
∑︁
𝑡

(
𝑓 (𝒙𝑡 )−

∑︁
𝑚

𝜇𝑚𝑔𝑚 (𝒙𝑡 )
)
+
∑︁
𝑚

(
[𝜇𝑚]+𝐺max

𝑚 −[−𝜇𝑚]+𝐺min

𝑚

)
,

(6c)

where [𝜇𝑚]+ = max{𝜇𝑚, 0}.

4.2.2 Dual Optimization for Exposure Constraints. The dual prob-
lem in (6) can be solved optimally via primal-dual updates. Specif-

ically, given a user request 𝑒𝑡 = (𝑢, 𝑓 , 𝑏,X𝑡 ), we assume that the

utility 𝑓 (𝒙𝑡 ) and cost 𝝁𝑇𝑡 𝑔(𝒙𝑡 ) under different item layout 𝒙𝑡 can
be properly estimated by the models at the ranking layer. As such,

the optimal item layout 𝒙𝑡 under a fixed dual variable 𝝁𝑡 can be

obtained by solving the following primal problem:

P1 : 𝒙̃𝑡 = arg max

𝒙𝑡 ∈X

{
𝑓 (𝒙𝑡 ) − 𝝁𝑇𝑡 𝑔(𝒙𝑡 )

}
. (7)

This is the focus of the ranking-layer to be discussed layer. After the

optimal item layout 𝒙𝑡 at user request 𝑒𝑡 is properly determined, the

next step is to update the dual variable 𝝁𝑡 to adjust the exposure of
different channels in future user requests. Specifically, the remained

exposure resource of different channels after the presentation of 𝒙𝑡
at 𝑒𝑡 is updated by

𝐺max

𝑚,𝑡+1
= 𝐺max

𝑚,𝑡 − 𝑔𝑚 (𝒙𝑡 ),∀𝑚 ∈ M . (8)

The sub-gradient of the dual function in (6) can be obtained via

Danskin’s theorem [5] by

∇𝜇𝑚,𝑡 = −𝑔𝑚 (𝒙𝑡 ) +𝐺max

𝑚,𝑡+1
·1(𝜇𝑚,𝑡 ≥ 0) +𝐺min

𝑚 ·1(𝜇𝑚,𝑡 ≤ 0), (9)

where 1(𝑥 ∈ 𝐴) is an indicator function which equals to one if

𝑥 ∈ 𝐴 otherwise zero. As such, the dual variable 𝝁𝑡 can be updated

based on the mirror-descent method as

𝜇𝑚,𝑡+1 = arg min

𝜇𝑚 ∈R
𝜇𝑚∇𝜇𝑚,𝑡 +

1

𝜂
𝑉ℎ (𝜇𝑚, 𝜇𝑚,𝑡 ), (10)

where𝑉ℎ (𝑥,𝑦) = ℎ(𝑥)ℎ(𝑦)∇ℎ(𝑦)𝑇 (𝑥−𝑦) is the Bregman divergence

based on reference function ℎ(·) and 𝜂 ∈ R is a fixed step-size.

Note that this mirror descent step can be computed in linear time

since (10) admits a closed-form solution. For example, if we use

ℎ(𝝁) = 1

2
∥𝝁∥2

as the reference function, the dual update in (10)

becomes

𝝁𝑡+1 = [𝝁𝑡 − 𝜂∇𝝁𝑡 ]+, (11)

which recovers the online projected gradient descent method. More-

over, in order to guarantee the upper exposure constraints, one

needs to examine the violation of upper limits of each channel

before the determination of 𝒙𝑡 at each user request. If the sum of

exposures of a specific channel exceeds its upper bound, one needs

to remove all candidate items from this channel to forbid allocate

more exposures when determining 𝒙𝑡 . We present the optimality of

this proposed ME2A algorithm and its feasibility to guarantee ex-

posure constraints of different channels as follows. Detailed proofs

are deferred to the appendix.



Algorithm 1 The proposed ME2A algorithm of MIREC

1: Initialization:
2: Initial dual solution 𝜇1, total time periods𝑇 , reference function

ℎ(·) and step-size 𝜂.

3: Iteration:
4: for 𝑡 = 1, 2, · · · ,𝑇 do
5: Receive request 𝑒𝑡 = (𝑢, 𝑓 , 𝑏,X𝑡 ).
6: Update the candidate set 𝐼𝑡 provided by multi-channels.

7: Determine the optimal item list 𝒙𝑡 by solving the primal

problem in (7) at the ranking-layer.

8: Update the remained exposure resource via (8).

9: Obtain the sub-gradient of the dual variable via (9).

10: Update the dual variable based on mirror descent via (11).

11: end for

4.2.3 Optimality. It is viable to prove that Algorithm 1 is asymp-

totically optimal and admits a regret bound scales as O(
√
𝑇 ) when

the user requests arrive from an i.i.d unknown distribution. This

assumption is reasonable when the number of requests is numer-

ous [3, 25, 40]. Specifically, we denote Algorithm 1 as 𝜋 and the

overall utility over all user requests in set S under the running of

𝜋 as 𝑅(𝜋 |S) = ∑𝑇
𝑡=1

𝑓 (𝒙𝑡 ). The regret of model 𝜋 is defined as the

worst-case difference over S between the expected performance of

the global optimal solution and the model 𝜋 :

Regret(𝜋 |S) = sup

{
ES [OPT(S) − 𝑅(𝜋 |S)]

}
, (12)

where OPT(S) denotes the optimal utilities one can obtain under

the request set S. The regret bound can be given as follows.

Theorem 1. Suppose that the requests come from an i.i.d model
with unknown distribution. Then, Regret(𝜋 |S) ≤ 𝐶1+𝐶2𝜂𝑇 +𝐶3

𝜂 with
𝜂 > 0 holds for any 𝑇 ≥ 1. Here 𝐶1, 𝐶2 and 𝐶3 are constant values
depending on the numerical bounds of the utility 𝑓 , the consumption
𝑔, and terms from the dual iterates in Eq. (10).

From Theorem 1, we obtain Regret(𝜋 |S) ≤ 𝑂 (
√
𝑇 ) when using a

step-size 𝜂 ∝ 𝑐/
√
𝑇 with any constant 𝑐 > 0. We defer the proof

and detailed definitions of 𝐶1, 𝐶2, and 𝐶3 into the appendix.

4.2.4 Exposure Feasibility. In Algorithm 1, if the upper exposure

limit of a specific channel is violated, we will forbid the exposure

of any item from this channel when determining the item list 𝒙𝑡 .
Therefore, the exposure can never be overspent. On the other hand,

the lower exposure limits are soft-restricted by adaptively adjusting

the dual variable 𝝁. This may cause exposure underspent. However,

it is viable to prove that the violation of the lower exposure limit

of any channel also admits a convergence rate of 𝑂 (
√
𝑇 ). In other

words, even if the violations on lower exposure limits may occur,

their growth is considerably smaller than 𝑇 .

Proposition 1. Suppose the requests come from an i.i.d model
with unknown distribution. Then, it holds for any 𝑇 ≥ 1 and any

channel 𝑚 ∈ M that 𝐺min

𝑚 − E
[ ∑𝑇

𝑡=1
𝑔𝑚 (𝒙𝑡 )

]
≤ 𝐶4 + 𝐶5

𝜂 , where
𝐶4 and 𝐶5 are constant values depends on the numerical bounds of
utility 𝑓 , consumption 𝑔, and terms from the dual iterates (10).

Proposition 1 states that when using 𝜂 ∝ 𝑐/
√
𝑇 with 𝑐 > 0, the

exposure underspend of any channel is bounded by 𝑂 (
√
𝑇 ). We

defer the proof and definitions of 𝐶4 and 𝐶5 into the appendix.

4.3 Local: Context-Aware Integrated Ranking
Different from the allocation-layer which optimizes an objective

with accumulative utilities over the entire time horizon as defined

in (6), the ranking-layer focus onmaximizing the utilities on a single

time slot. This corresponds to the primal problem given in (7):

P1 : 𝒙̃𝑡 = arg max

𝒙𝑡 ∈X

{
𝑓 (𝒙𝑡 ) − 𝝁𝑇𝑡 𝑔(𝒙𝑡 )

}
.

In other words, the allocation layer adjusts the exposure of items

from different channels by optimizing the dual parameter 𝝁𝑡 from a

global view of all user requests. While the ranking-layer determines

the optimal item list 𝒙𝑡 under a fixed dual variable 𝝁𝑡 from a local

view of a given user request 𝑒𝑡 .

There are two common characteristics that are strongly related

to the estimation of 𝑓 (𝒙𝑡 ) and 𝑔(𝒙𝑡 ) in the integrated recommen-

dation. First, users’ preference on different channels has a great

impact on the utility (e.g., prefer to click or not) and exposure (e.g.,

prefer to view or not) estimations. Therefore, it is of vital impor-

tance to consider both intra-channel and inter-channel correlations

with reference to user interests during the estimation. Second, in

feed products, users tend to review a large number of items in a

row such that the previously viewed items have a great impact on

users’ behavior towards the next item. Therefore, it is necessary to

consider page context when determining the item order.

Therefore, we propose two models to deal with the above two

challenges, respectively. First, we propose PCR model to deal with

the joint modeling of user interests and inter/intra-channel cor-

relation. It gives a point-wise estimation of the utility/exposure

value of presenting each candidate item. Second, we propose CAR

model to refine the point-wise estimation from PCR into context-

aware estimation by considering both context information and the

high-level knowledge obtained from PCR. It is also responsible for

selecting optimal items from a set of candidate items to generate

the final return list. In real-world systems, for each user request,

we only need to run PCR once to get the point-wise scores, and

then run CAR multiple times to generate the return list. Next, we

mainly focus on the estimation of 𝑓 (𝑥), the estimation of 𝑔(𝑥) can
be performed in a similar way by changing the learning goals.

4.3.1 Personalized Cross-Channel Ranking Model. PCR takes four

types of features as input, i.e., the user profile feature𝑋𝑢 , the user be-

havior sequences 𝑋𝑏 , the candidate items provided by each channel

𝑋𝑙 , and the item-level features of target item 𝑋𝑖 . As shown in Fig-

ure 2, We use an embedding layer to transform these features into

dense embedding vectors, denoted as 𝐸𝑢 , 𝐸𝑏 , 𝐸𝑙 and 𝐸𝑖 , respectively.

These embedding vectors are then fed into three components, i.e.,

the intra-channel encoding layer, interest-aware evolution layer,

and inter-channel encoding layer in order, which are described

below.

Intra-Channel Encoding layer. This layer aims at extracting the

mutual influence of item pairs and other extra information within

the channel. We adopt the well-known multi-head attention [31]

as the basic learning unit for intra-channel encoding. This is due



to that the self-attention mechanism is able to directly capture

the mutual influences between any two items, and is robust to far

distance within the sequence. Formally, the formulation of this

attention-based encoding can be written as

𝑉𝑚
𝑙

= [ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, ..., ℎ𝑒𝑎𝑑ℎ]𝑊𝑂 , (13a)

ℎ𝑒𝑎𝑑𝑖 = Softmax

(
(𝐸𝑏𝑊𝑄 ) (𝐸𝑏𝑊𝐾 )𝑇√︁

𝑑ℎ/ℎ

)
(𝐸𝑏𝑊𝑉 ) , (13b)

where𝑊𝑂 ∈ R𝑑ℎ×𝑑ℎ denotes the learnable parameters for each

head with 𝑑ℎ being the length of projected embedding vector after

attention,𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 ∈ R𝑑×𝑑ℎ/ℎ are the vectors of query, key and

value with 𝑑 being the length of original embedding vector and ℎ

being the number of heads, 𝑉𝑚
𝑙

represents the encoded candidate

items of each channel𝑚 ∈ M.

Interest-Aware EvolutionLayer. Existingworks such as PRM [27]

and DHANR [13] directly apply the self-attention mechanism to

model the inter-dependencies among items and channels without

considering user’s recent behavior. However, the interests hidden

in user’s behavior items usually have a great impact on the predic-

tion accuracy in recommendation tasks [7, 28, 38, 39]. The recently

proposed PEAR [20] firstly models the dependency between the

candidate item list and the user’s historical behaviors based on a

transformer-like structure, which, however, suffers from two limi-

tations. First, directly mixing the raw item-level features from user

behavior items may introduce redundant or noisy information to

degrade the learning performance. Second, each user may exhibit

multiple interest points, such that it is beneficial to reinforce the

interest related to the target item before feature-crossing to avoid

drifting. Therefore, we first reinforce the interest vector according

to the correlation between behavior items and the target item as

𝑉𝑈 = 𝑓 (𝐸𝑏 ;𝐸𝑖 ) =
∑︁𝐵

𝑖=1

𝐴(𝑏𝑖 , 𝐸𝑖 )𝑏𝑖 =
∑︁𝐵

𝑖=1

𝑤𝑖𝑏𝑖 , (14)

where 𝐵 is the length of behavior sequence, 𝑏𝑖 is the behavior

item,𝑉𝑈 denotes the user representation feature with respect to 𝐸𝑖 ,

and 𝐴(·) is a feed-forward network whose output is the activation

weight𝑤𝑖 . Then, we make use of this reinforced interest vector to

extract useful information from the candidate items of different

channels. Formally, for each channel𝑚, given𝑉𝑚
𝑙

and𝑉𝑈 as inputs,

we use scaled dot-product attention formulated as follows:

𝐻 𝑖𝑠 = Softmax

(
(𝑉𝑚
𝑙
𝑊𝑞) [𝑉𝑈𝑊𝑘1

,𝑉𝑚
𝑙
𝑊𝑘2

]𝑇√︁
𝑑ℎ

)
[𝑉𝑈𝑊𝑣1,𝑉

𝑚
𝑙
𝑊𝑣2],

(15)

where𝑊𝑘1
,𝑊𝑣1 ∈ R𝑑×𝑑ℎ and𝑊𝑘2

,𝑊𝑞,𝑊𝑣2 ∈ R𝑑ℎ×𝑑ℎ are all learn-

able parameters, [·] denotes the concatenation operation. After the

above operations, we successfully merged the information from the

candidate item lists and the user’s historical behaviors into a series

of evolved embedding vectors for further processing.

Inter-Channel Encoding Layer. Previous layers mainly extract

intra-channel correlations. We now focus on the modeling of inter-

channel correlation. First, we feed the embedding vector of each

channel and the target item embedding into the MLP layer with

softmax function to obtain the importance weights on each channel

that is related to the target item:

𝑊𝐶𝐻 = Softmax(MLP[𝐻𝑚𝑠 , 𝐸𝑖 ]), (16)

where𝑊𝐶𝐻 ∈ R1×𝑚
is the importance weights, and 𝐻𝑚𝑠 denotes

the concatenation of all channels’ output from the Interest-Aware

Evolution Layer. Second, we perform multi-head self-attention on

the evolved embedding vector 𝐻𝑚𝑠 of each channel 𝑚 ∈ M to

obtain the mixed embedding 𝐻̃𝑚𝑠 which contains rich inter-channel

information. Then, we perform the weighted sum on the mixed em-

bedding of all channels based on𝑊𝐶𝐻 to get the final representation

of multi-channel modeling:

𝑉𝐿 =𝑊𝐶𝐻 · [𝐻̃𝑚𝑠 ]𝑇 ,𝑚 ∈ M, (17)

where [𝐻̃𝑚𝑠 ] represents the concatenation of the mixed embeddings

of all channels.

Finally, we concatenate all vectors as input and feed it into the

MLP layers with a sigmoid function to predict the utility of present-

ing a given target item to a given target user as

𝑌𝑃𝐶𝑅 = Sigmoid(Concat(𝐸𝑢 , 𝐸𝑖 ,𝑉𝐿)) (18)

4.3.2 Context-Aware Refinement Model. In this section, we propose
the CAR model to refine the point-wise utility scores estimated by

PCR into context-aware utility scores. Given a candidate item set

𝐼𝑐𝑎𝑛𝑑 with size 𝑁 , the aim of CAR is to optimally choose 𝐾 items

from 𝐼𝑐𝑎𝑛𝑑 and allocate them to the 𝐾 slots in a page based on the

learning results from PCR.

We maintain two types of context information in CAR, i.e., the

context of previous items and the context of remaining candidate

items. Specifically, when selecting the 𝑘-th item in a page, we rep-

resent the context of previously presented 𝑘 − 1 items ℎ𝑝𝑟𝑒 by

mean-pooling over their embeddings. Meanwhile, we represent

the context of all candidate items ℎ𝑐𝑎𝑛 by mean-pooling over the

embeddings of all remained candidates. These two context vectors

are updated and repeated along with the item selection process.

Furthermore, we perform a series of embedding crossing operations

between the target item embedding 𝑒𝑖 and the context embeddings

to model the influence from page context. In specific, the operations

in the context of previous items can be formulated as follows:

𝐻𝑝𝑡 = Concat(ℎ𝑝𝑟𝑒 ⊕ 𝑒𝑖 , ℎ𝑝𝑟𝑒 ⊗ 𝑒𝑖 , ℎ𝑝𝑟𝑒 ⊖ 𝑒𝑖 ), (19)

where ⊕, ⊗, and ⊖ denote the addition, subtraction, and dot product

between embedding vectors, respectively. The same goes for 𝐻𝑐𝑡
by replacing ℎ𝑝𝑟𝑒 in (19) with the context of candidate items ℎ𝑐𝑎𝑛 .

Additionally, we also perform embedding-crossing between the

context embeddings and the high-level knowledge 𝑉𝐿 from PCR to

obtain another two vectors, i.e., 𝐻 𝑣𝑐𝑡 and 𝐻
𝑣
𝑝𝑟𝑒 .

Finally, for each candidate item 𝑖 ∈ 𝐼𝑐𝑎𝑛𝑑 , we predict the context-
aware utility score by feeding these embedding vectors along with

the point-wise utility score𝑌𝑃𝐶𝑅 from PCR and user profile features

𝐸𝑢 into one MLP layer as

𝐻
all
=Concat(𝐻𝑝𝑡 , 𝐻𝑐𝑡 , 𝐻 𝑣𝑐𝑡 , 𝐻 𝑣𝑝𝑟𝑒 , ℎ𝑝𝑟𝑒 , ℎ𝑐𝑎𝑛, 𝐸𝑢 , 𝑌𝑃𝐶𝑅), (20a)

𝑌𝐶𝐴𝑅 =𝜎 (MLP(𝐻
all
)), (20b)

where 𝜎 represents the sigmoid activation function. After scoring

all candidate items, we choose the item with the highest score as

the optimal item for slot 𝑘 , and update the context vectors and the

remained candidate items accordingly. This process will be repeated

𝐾 times to generate a return item list of length 𝐾 . Note that the

above operations in CAR only involve linear computations, such

that this item selection process is cost-efficient in online systems.
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Figure 3: Online system architecture.

Both PCR and CAR can be trained with the commonly used cross-

entropy loss as in other ranking models, the learning objective can

be given as

𝐽 =
∑︁

𝑒𝑡 ∈D

(
𝑦
𝑒𝑡
𝑢,𝑖

log𝑦
𝑒𝑡
𝑢,𝑖

+ (1 − 𝑦𝑒𝑡
𝑢,𝑖

) log(1 − 𝑦𝑒𝑡
𝑢,𝑖

)
)
, (21)

where D denotes the training dataset, 𝑦
𝑒𝑡
𝑢,𝑖

is the real user-item

recommendation label (equals 1 or 0) between user 𝑢 and item 𝑖 at

request 𝑒𝑡 , and 𝑦
𝑒𝑡
𝑢,𝑖

is the predicted label given by 𝑌𝑃𝐶𝑅 or 𝑌𝐶𝐴𝑅 .

In our experiments, when predicting the utility function 𝑓 with

user clicks, 𝑦
𝑒𝑡
𝑢,𝑖

refers to the click label; when predicting the cost

function 𝑔 with exposure constraints, 𝑦
𝑒𝑡
𝑢,𝑖

refers to the exposure

label between user 𝑢 and item 𝑖 at request 𝑒𝑡 , i.e., whether user 𝑢

has seen item 𝑖 at request 𝑒𝑡 . One can readily change the learning

objective according to actual demands.

4.4 Online Implementation
In this section, we introduce the online implementation of our pro-

posedMIRECmodel in the homepage feed of Taobao. The presented

system architecture is able to handle 120, 000 QPS at traffic peak

and respond within 20 milliseconds in general. It now serves the

main traffic of Taobao to provide services to hundreds of millions

of users towards billions of items in Taobao every day.

Figure. 3 gives a general architecture to implement our proposed

MIREC model in real-world IRS. Each time a user request is trig-

gered from the device, the upstream RS of each channel will run its

own recommendation models to determine the top items to return.

The Integrated Recommendation Controller uses the top items from

all channels as the candidates. It retrieves user/item features from

a feature center in real-time and ranks candidate items by solving

based on our proposed LCPR and PCR model. Meanwhile, the dual

variable 𝜇 is estimated by an Exposure Controller. This module

monitors the completeness of exposure guarantees based on the

real-time exposures collected from user logs and updates the dual

variable to adjust the exposures on different channels periodically.

5 EXPERIMENTAL RESULTS
This section conducts extensive experiments on both offline datasets

and real-world applications with the goal of answering the follow-

ing research questions:

Q1: Does our proposed PCR and CAR outperform other baseline

models in integrated ranking tasks?

Q2: Does our proposed MIREC framework outperform other meth-

ods in integrated recommendation tasks with exposure constraints?

Q3: How does MIREC perform in real-world applications?

5.1 Experimental Setup
5.1.1 Datasets. We use one public dataset namedMicroVideo-1.7M

and one industrial dataset named Taobao for experiments. The

public available MicroVideo-1.7M dataset
1
released by [8] contains

12, 737, 619 interactions that 10, 986 users have made on 1, 704, 880

micro-videos. This dataset provides rich user behavior data and

timestamps to evaluate the performance on both interest modeling

and context-aware reranking. The Taobao dataset is an industrial

private dataset that contains users’ behaviors and feedback logs

from multiple channels in the homepage feed of Taobao Mobile

App. It is one of the largest feed scenarios for online merchandise

in China. The feed provides items in form of the streams, videos,

pictures, etc, from various channels. Users can slide to view more

items in a row. This dataset contains about ten billion interactions

that one hundred million of users have made on sixty million items.

We also conduct online A/B tests on the platform Taobao to examine

the performance of MIREC in real-world applications.

5.1.2 Comparing Methods. We compare MIREC with two main-

streams of baselines. The first steam of baselines are the methods

for ranking tasks with different goals on user interest modeling (i.e.,

DIN and DIEN), re-ranking (i.e., DLCM, PRM, and PEAR), or multi-

channel recommendation (i.e., STAR and DHANR). Specifically,

DIN [39] is a widely used benchmark for sequential user data mod-

eling in point-wise CTR predictions, which models short behavior

sequences with target attention. DIEN [39] combines GRUs and

attention to capture temporal interests from users’ historical behav-

iors with respect to the target item.DLCM [1] uses gated recurrent

units (GRU) to sequentially encode the top-ranked items with their

feature vectors. PRM [27]: directly optimizes the whole recom-

mendation list by employing a Transformer structure to efficiently

encode the information of all items in the list. PEAR [20] not only

captures feature-level and item-level interactions but also models

item contexts from both the candidate list and the historical clicked

item list. STAR [30] trains a unified model to serve all channels

simultaneously, which consists of shared centered parameters and

channel-specific parameters. DHANR [13] proposes a hierarchical

self-attention structure to consider cross-channel interactions.

The second stream of baselines is the online allocation methods

which have been successfully applied in industrial applications for

online resource allocation. Fixed is the fixed-positions strategy,

where the positions of recommended items and ads are manually

pre-determined for every request. 𝛽-WPO: is based on the Whole-

Page Optimization (WPO) [36]. WPO ranks recommended and

ad candidates jointly according to the predefined ranking scores.

Similar to [6], we introduce an adjustable variable 𝛽 to control

the proportion of different channels on each request to satisfy

the resource constraint. In general, 𝛽-WPO can be regarded as

a heuristic list merging algorithm. Each list from one channel is

assigned a priority weight. The algorithm merges the top items

of each list based on both their ranking scores and the priority

1
https://github.com/Ocxs/THACIL

https://github.com/Ocxs/THACIL


Table 1: Comparison of ranking performance (bold: best; un-
derline: runner-up).

Dataset Method AUC Logloss NDCG@20 NDCG@30

MicroVideo
3

DIN 0.6831 0.5922 0.5403 0.6535

DIEN 0.6842 0.5909 0.5408 0.6537

DLCM 0.6872 0.5898 0.5582 0.6698

PRM 0.6979 0.5872 0.5591 0.6708

PEAR 0.7021 0.5821 0.5632 0.6745

Ours 0.7084 0.5787 0.5667 0.6826

Taobao

DIN 0.7681 0.4982 0.5203 0.6481

DIEN 0.7692 0.4971 0.5202 0.6479

DLCM 0.7699 0.4965 0.5209 0.6482

PRM 0.7722 0.4941 0.5211 0.6489

PEAR 0.7748 0.4919 0.5232 0.6511

STAR 0.7738 0.4931 0.5219 0.6492

DHANR 0.7753 0.4923 0.5243 0.6513

Ours 0.7791 0.4899 0.5275 0.6545

weights into a final return list. HCA2E [6]: proposed a two-level

optimization framework based on BwK methods. The high-level

determines whether to present ads on the page while the low-level

searches the optimal position to insert ads heuristically.

5.1.3 Metrics. For offline experiments, we use user clicks to mea-

sure the utility function 𝑓 . For online experiments, we consider a

joint measurement of user click, purchase, and stay-time for utility

function 𝑓 . For all experiments, we use the exposure of items to

measure cost function 𝑔. In this case, we compare the performance

of integrated ranking in offline evaluation using the widely used

Area Under ROC (AUC) and normalized discounted cumulative

gain (nDCG) [19]. Remark that nDCG@K refers to the performance

of top-k recommended items in the return list. The online perfor-

mance is evaluated by CLICK, Click-Through-Rate (CTR), Gross

Merchandise Volume (GMV), and Stay Time. Here, CLICK refers to

the total number of clicked items. CTR is defined as CLICK/PV with

PV denoting the total number of impressed items. CTR measures

users’ willingness to click and is therefore a widely used metric in

practical applications. GMV is a term used in online retailing to

indicate a total sales monetary-value for merchandise sold over a

certain period of time. Stay Time denotes the time period of users’

average stay time in the product, averaged on all users.

5.1.4 Reproducibility. Our source codes have been made public to

ensure reproducibility
2
. In all experiments, we use the validation

set to tune the hyper-parameters to generate the best performance

for different methods. The learning rate is searched from 10
−4

to

10
−2
. The L2 regularization term is searched from 10

−4
to 1. All

models use Adam as the optimizer.

5.2 Offline Evaluation
5.2.1 Q1: Performance on Integrated Ranking. We first compare the

performance with the first stream of baselines on item ranking. The

results are shown in Table 1, which leads to the following findings.

2
https://github.com/anonymousauthor7/MIREC

3
Note that MicroVideo is a public dataset with a single channel, such that we omit the

comparison with STAR and DHANR which are proposed for multi-channel modeling.

We will release the multi-channel dataset collected in Taobao for future research.

Table 2: Ablation study of the ranking components.

AUC Logloss NDCG@20 NDCG@30

PCR
∗

0.7758 0.4933 0.5222 0.6511

PCR
†

0.7761 0.4932 0.5246 0.6513

PCR w/o IntraCE 0.7763 0.4928 0.5247 0.6516

PCR w/o InterCE 0.7756 0.4935 0.5239 0.6509

PCR 0.7778 0.4913 0.5262 0.6531

PCR+CAR (propsed) 0.7791 0.4899 0.5275 0.6545

First, the re-ranking methods perform generally better than the

point-wise user interest methods, indicating that modeling mutual

influence among the input ranking list is of vital importance for

the ranking. Therefore, it is essential to consider the influence from

page context in feed recommendations. Second, the multi-channel

methods perform better than the reranking methods, which verifies

that exploiting the distinction and mutual influence among differ-

ent channels has a great impact on integrated recommendations.

Besides, we also notice that DHANR performs better than STAR,

which may be due to that DHANR considers both the correlation

among different channels and the influence from the candidate list.

Finally, our proposed MIREC model achieves superior performance

than other competitors on all datasets, verifying the effectiveness of

joint modeling the cross-channel information, user interest, context

information, and candidate list.

5.2.2 Ablation Study. The results in Table. 2 investigates the impact

of each component of MIREC on item quality estimation. Specifi-

cally, PCR
∗
replaces the attention mechanism for user behaviors in

the Merged-Sequence Evolution layer with a self-attention mech-

anism which is in accordance with PEAR [20]. PCR outperforms

PCR
∗
indicates that the tailored attention mechanism in PCR can fil-

ter out noisy or redundant information from historical behaviors to

benefit the subsequent modeling of bi-sequence interaction. PCR
†

removes the scaled dot-product attention mechanism (i.e. there is

no explicit interaction between initial lists and user behaviors) and

achieved a worse performance. This demonstrates the necessity

of this direct modeling between sequences, directly guiding the

reordering of the initial lists. PCR w/o IntraCE removes the Intra-

Channel Encoding module, i.e., directly feeding the embeddings

of the initial item lists into subsequent layers for learning. The

result shows that PCR achieves superior performance than PCR

w/o IntraCE, verifying that it is of vital importance to model the

mutual information inside each channel for final prediction. PCR

w/o InterCE removes the Inter-Channel Encoding, which also leads

to worse performance. It verifies that without considering the rela-

tionship and distinction between different channels will degrade

the model performance considerably. Moreover, the joint learning

of PCR and CAR performs better than only using PCR. This verifies

that the modeling of page-wise context information can improve

prediction accuracy effectively.

5.2.3 Q2: Performance with Exposure Constraints. To the best of

our knowledge, there does not exist publicly available datasets

which has rich user logs and multi-channel features to examine the

joint performance of integrated recommendation and exposure allo-

cation. Therefore, we only perform experiments on Taobao dataset,

https://github.com/anonymousauthor7/MIREC


Table 3: Joint performance of allocation and ranking (bold:
best; dagger: baseline).

Exp. Settings Method

Exposure completeness

CTR CTR Lift

CH1 CH2 CH3 CH4

Setting-1

Fixed 0.44% 1.35% 0.20% 0.50% 5.54%
†

-

WPO 0.15% 0.15% 0.13% 0.30% 6.09% +9.93%

HCA2E 0.24% 0.95% 0.33% 0.10% 6.34% +14.44%

Ours 0.02% 0.65% 0.67% 0.20% 6.56%∗ +18.41%∗

Setting-2

Fixed 0.10% 0.53% 0.10% 0.20% 5.91%
†

-

WPO 0.16% 0.27% 1.40% 0.20% 6.28% +6.26%

HCA2E 0.19% 0.53% 0.30% 0.40% 6.53% +10.49%

Ours 0.17% 0.53% 0.40% 0.20% 6.76%∗ +14.38%∗

Table 4: Results of online A/B tests.

CLICK CTR GMV Stay Time

Ours vs Fixed +4.02% +2.15% +1.98% +2.01%

Ours vs Baseline +3.00% +1.75% +1.56% +1.42%

using the complete platform logs. In this experiment, we assume

that the IRS needs to allocate exposures to satisfy the exposure

guarantees of four distinct channels. The aim is to maximize the

overall user-click utility of all channels. The compared fixed, WPO,

and HCA2E methods all use point-wise scores to be consistent with

their original proposals. For HCA2E, we use their proposed heuris-

tic search method to determine the final order of the item list. The

results are shown in Table 3, which are averaged on multiple runs to

give a fair comparison. The simulated time horizon is one complete

day with more than one billion user requests from real productive

environment. We evaluate the performance using two different

sets of lower bounds: 1) Channel 1=55%, Channel 2 = 20%, Chan-

nel 3 = 15%, Channel 4 = 10%; 2) Channel 1=70%, Channel 2 = 15%,

Channel 3 = 10%, Channel 4 = 5%. The parameters of all comparing

methods are carefully tuned to satisfy the exposure constraints.

The completeness in Table 3 shows that all methods can control the

violation of constraints to a low-level. HCA2E and our proposed

MIREC perform slightly better than the fixed method and the WPO

method. Noticeably, our proposed method outperforms other com-

paring methods considerably in terms of CTR enhancement, which

verifies that the joint use of the allocation and estimation algorithm

can bring a remarkable improvement in practical environments.

5.3 Online Evaluation
MIREC has been fully deployed in the homepage feed of Taobao

named Guess-you-like to serve the main traffic. Guess-you-like is

one of the largest merchandise feed recommendation platform in

China, which serves more than hundreds of millions of users toward

billions of items every day. We deploy MIREC at the integrated

recommendation stage in Guess-you-like platform, which takes

hundreds of candidate items provided by multiple channels as input

and outputs the final item list to return to the user. The online

performance is compared against our previous baseline which is

similar as a combination of 𝛽-WPO and HCA2E. In particular, the

baseline uses a point-wise model for item quality estimation and

uses a PID-based feedback control to automatically adjust parameter

𝛽 to guarantee the exposures for different channels. For each user
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Figure 4: Online Performance Analysis.

request, the baseline also runs an MDP-based search method to

determine the optimal card layout based on the estimated scores,

which is similar as the heuristic search method in HCA2E.

The overall performance in Table 4 is averaged over two con-

secutive weeks. The results show that compared with the base-

line method, MIREC brings an improvement of 3.00% for CLICK,

1.75% for CTR, 1.56% for GMV, and 1.42% for stay time. Compared

with the fixed method, MIREC brings an improvement of 3.00%

for CLICK, 1.75% for CTR, 1.56% for GMV, and 1.42% for stay time.

These improvements indicate that our framework is able to increase

user’s willingness to stay and interact with the recommended items

in practical applications. It is noteworthy that 1% improvement

on CLICK in Guess-you-like brings millions of clicks every day.

Figure. 4 shows a detailed comparison of the exposure allocation

results of a specific channel, where the items from this channel

have a generally lower CTR than others. Each line in Figure. 4(a)

represents the robustness of long-term exposure guarantee of this

channel within two consecutive weeks. It is clear that compared

with the baseline, our proposed MIREC is more robust to alleviate

daily exposure fluctuations. The distribution of exposures on differ-

ent positions in the feed is given in Figure. 4(b). The result shows

that our proposed framework tends to put lower-quality items back-

ward to increase the overall utilities of all channels. Consequently,

as shown in Figure. 4(c), the averaged CTR of all channels on each

position can be improved remarkably. This verifies that MIREC is

superior in optimizing the item layout from a global perspective.

6 CONCLUSION
In this paper, we consider the integrated recommendation task

with exposure constraints. In particular, we propose a two-layer

framework named MIREC, where the allocation-layer optimizes the

exposure of different channels, while the ranking-layer determines

the optimal item layout on each page. Extensive experiments veri-

fied the effectiveness of our proposed framework. MIREC has been

implemented on the homepage feed in Taobao to serve hundreds

of millions of users towards billions of items every day.
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A PROOF OF REGRET BOUND
Our proof shares the same spirit as that of Theorem 1 in [3, 25].

The difference is that [3] does not consider a lower resource limit

while [25] develops proof with an additional learnable parameter

within 𝑓 (𝒙𝑡 ) and 𝑔(𝒙𝑡 ). Therefore, we here develop a separate

proof that is consistent with our formulation. We directly refer

to a few propositions in [3, 25] as preliminaries for simplicity. It

is noteworthy that developing new proof of the online revenue

maximization problem is not the main focus of this paper.

Recall that the integrated recommendation problem is

P0 : OPT(S) = max

𝒙𝑡 ∈X

∑︁𝑇

𝑡=1

𝑓 (𝒙𝑡 ) (22)

s.t. 𝐶1 :

∑︁𝑇

𝑡=1

𝑔𝑚 (𝒙𝑡 ) ≤ 𝐺max

𝑚,𝑡ℎ
𝑁 (S),∀𝑚 ∈ M, (23)

𝐶2 :

∑︁𝑇

𝑡=1

𝑔𝑚 (𝒙𝑡 ) ≥ 𝐺min

𝑚,𝑡ℎ
𝑁 (S),∀𝑚 ∈ M . (24)

Since 𝑁 (S) denotes the sum exposures over the entire time hori-

zon from 𝑡 = 1 to 𝑇 , we can replace the the upper exposure limit

𝐺max

𝑚,𝑡ℎ
𝑁 (S) and lower exposure limit 𝐺min

𝑚,𝑡ℎ
𝑁 (S) with 𝑇𝐺𝑚 and

𝛼𝑇𝐺𝑚 for simplicity, respectively, where 𝐺𝑚, 𝛼 ∈ [0, 1] are con-
stants. As such, problem P0 can be reformulated as

P1 : OPT(S) = max

𝒙𝑡 ∈X

∑︁𝑇

𝑡=1

𝑓 (𝒙𝑡 ) (25)

s.t. 𝛼𝑇𝐺𝑚 ≤
∑︁𝑇

𝑡=1

𝑔𝑚 (𝒙𝑡 ) ≤ 𝑇𝐺𝑚,∀𝑚 ∈ M . (26)

Before our analysis, we define constants
¯𝑓 , 𝑔 > 0,𝐺 > 0 and𝐺 >

0 such that sup𝒙∈X 𝑓 (𝒙) ≤ ¯𝑓 , sup𝒙∈X 𝑔(𝒙) ≤ 𝑔,𝐺 := min𝑚∈M 𝐺𝑚
and 𝐺 := max𝑚∈M 𝐺𝑚 . Also, 𝜃 refers to the strongly-convexity

parameter of the reference function ℎ(·).
First, we bound the dual iterates as follows.

Assumption A.1. There exists a constant 𝐶ℎ > 0 such that the
dual iterates 𝜇𝑡 satisfy E[| |∇ℎ(𝜇𝑡 ) | |∞] ≤ 𝐶ℎ,∀𝑡 ∈ [𝑇 ].

Remark 1. Note that, when choosing the reference functionℎ(𝜆) :=
1

2
∥𝜆∥2, Assumption A.1 can be omited according to Proposition 3

in [25].

Denote the online Algorithm 1 as 𝜋 which makes a real-time

decision 𝒙𝑡 at time 𝑡 . Define the stopping time 𝜏𝜋 ≤ 𝑇 as the

minimum between 𝑇 and the smallest time 𝑡 such that there exists

𝑚 ∈ M with

∑𝜏𝜋
𝑡=1

𝑔𝑚 (𝒙𝑡 ) + 𝑔 > 𝑇𝐺𝑘 . In other words, 𝜏𝜋 refers to

the first time the violation of one resource constraint happens. We

bound the averaged gap between 𝑇 and 𝜏𝜋 as follows.

Proposition 2. Suppose that Assumption A.1 holds, using a con-
stant step-size 𝜂 > 0 in Algorithm 1 yields

E [𝑇 − 𝜏𝜋 ] ≤
𝑔

𝐺
+ 𝐶ℎ + ∥∇ℎ(𝜆1)∥∞

𝜂𝐺
. (27)

Proof. According to Step. 9 in Algorithm 1 we have

∇𝜇𝑘,𝑡 = −𝑔𝑘 (𝒙𝑡 ) +𝐺𝑘 (1(𝝁𝑘 ≥ 0) + 𝛼𝑘1(𝝁𝑘 < 0)) ,
≤ −𝑔𝑘 (𝒙𝑡 ) +𝐺𝑘 , ∀𝑘 ∈ [𝑚] . (28)

Assume that the stopping time 𝜏𝜋 is activated due to the violation

of constraint on 𝑘-th channel, we have

𝜏𝜋∑︁
𝑡=1

∇𝜇𝑘,𝑡 ≤𝐺𝑘𝜏𝜋 −
𝜏𝜋∑︁
𝑡=1

𝑔𝑘 (𝒙𝑡 ) ≤ 𝐺𝑘𝜏𝜋 −𝑇𝐺𝑘 + 𝑔, (29)

which leads to

𝑇 − 𝜏𝜋 ≤ 1

𝐺𝑘

(
𝑔 −

𝜏𝜋∑︁
𝑡=1

∇𝜇𝑘,𝑡

)
. (30)

According to Proposition 6 in [25], the gradients of mirror de-

scent satisfy ∇ℎ𝑘 (𝜇𝑡+1

𝑘
) ≥ ∇ℎ𝑘 (𝜇𝑡𝑘 ) − 𝜂∇𝜇

𝑡
𝑘,𝑡
,∀𝑡 ≤ 𝜏𝜋 , such that

−∑𝜏𝜋
𝑡=1

∇𝜇𝑘,𝑡 ≤ 1

𝜂

(
∇ℎ𝑘 (𝜇𝜏𝜋+1

𝑘
) − ∇ℎ𝑘 (𝜇1

𝑘
)
)
. Combing with the in-

equality in (30), we obtain

E [𝑇 − 𝜏𝜋 ] ≤
𝑔

𝐺𝑘
+ E

[
∇ℎ𝑘 (𝜇𝜏𝜋+1

𝑘
) − ∇ℎ𝑘 (𝜇1

𝑘
)

𝜂𝐺𝑘

]
(31)

≤ 𝑔

𝐺
+ 𝐶ℎ + ∥∇ℎ(𝜆1)∥∞

𝜂𝐺
, (32)

as required. ■
Let us denote the random variable𝛾𝑡 to be the type of the request

at period 𝑡 , which can determine the sample of the request.

Proposition 3. Using a constant step-size rule 𝜂 > 0 for 𝑡 > 1 in
Algorithm 1, it holds

E

[
𝜏𝜋𝐷 (𝝁𝜏𝜋 )−

𝜏𝜋∑︁
𝑡=1

𝑓 (𝒙𝑡 )
]
≤2(𝑔2 +𝐺2)

𝜃
𝜂E[𝜏𝜋 ] +

1

𝜂
𝑉ℎ (𝝁, 𝝁1), (33)

where 𝝁𝜏𝜋 =

∑𝜏𝜋
𝑡=1

𝝁𝑡

𝜏𝜋
.

Proof. According to the definition of ∇𝝁𝑡 and the subgradient in-

equality, we have

(∇𝝁𝑡 )𝑇 (𝝁𝑡 − 𝝁) ≥ 𝐷 (𝝁𝑡 ) − 𝐷 (𝝁)

≥ 𝐷 (𝝁𝑡 ) − ©­«E𝛾𝑡 [𝜑 (𝝁)] +
∑︁
𝑘∈[𝐾 ]

𝐺𝑘 ( [𝝁𝑘 ]+ − 𝛼𝑘 [−𝝁𝑘 ]+)
ª®¬ , (34)

where 𝜑 (𝝁) = 𝑓 ∗ (𝝁) − 𝝁𝑇𝑔(𝒙𝑡 ). Considering that 𝒙𝑡 is an optimal

solution of 𝜑 (𝝁𝑡 ) not of 𝜑 (𝝁), we have 𝑓 (𝒙𝑡 ) − 𝝁𝑇𝑔(𝒙𝑡 ) ≤ 𝜑 (𝝁).
Then, by taking 𝝁 = [0, 0, . . . , 0], and summing from one to 𝜏𝜋 , we

obtain

𝜏𝜋∑︁
𝑡=1

(∇𝝁𝑡 )𝑇 (𝝁𝑡 − 0) ≥
𝜏𝜋∑︁
𝑡=1

𝐷 (𝝁𝑡 ) −
𝜏𝜋∑︁
𝑡=1

E𝛾𝑡 [𝑓 (𝒙𝑡 )]

≥𝜏𝜋𝐷 (𝝁𝜏𝜋 ) −
𝜏𝜋∑︁
𝑡=1

E𝛾𝑡 [𝑓 (𝒙𝑡 ))], (35)

where 𝝁𝜏𝜋 =

∑𝜏𝜋
𝑡=1

𝝁𝑡

𝜏𝜋
and the inequality is based on the fact that the

dual function is convex. In this paper, we adopt 𝜃 -strongly convex

function as the relation function ℎ(·) in mirror descents. According

to Step. 2 of Proposition 8 in [25], we have

E

[
𝜏𝜋∑︁
𝑡=1

(∇𝝁𝑡 )𝑇 (𝝁𝑡 − 𝝁)
]
≤ 2(𝑔2 +𝐺2)

𝜃
𝜂E[𝜏𝐴] +

𝑉ℎ (𝜆, 𝜆1)
𝜂

. (36)

Combining (36) with (35), we get

E

[
𝜏𝜋𝐷 (𝝁𝜏𝜋 )−

𝜏𝜋∑︁
𝑡=1

E𝛾𝑡 [𝑓 (𝒙𝑡 )]
]
≤ 2(𝑔2 +𝐺2)

𝜃
𝜂E[𝜏𝜋 ] +

1

𝜂
𝑉ℎ (𝝁, 𝝁1) .

(37)



According to Step. 3 of Proposition 8 in [25], we have

E

[
𝜏𝜋∑︁
𝑡=1

E𝛾𝑡 [𝑓 (𝒙𝑡 )]
]
= E

[
𝜏𝜋∑︁
𝑡=1

𝑓 (𝒙𝑡 )
]
. (38)

Combining (37) and (38), we complete the proof of Proposition 3.■
Before providing more details on the proof of regret bound, we

introduce a new benchmark of problem P0 as in [25] due to that

problem P0 may be infeasible due the presence of both lower and

upper exposure constraints. Specifically, we define

F(𝒙𝑡 , 𝜆) = (1 − 𝜆) 𝑓 (𝒙𝑡 ) + 𝜆ES [𝑓 (𝒙𝑡 )]
G(𝒙𝑡 , 𝜆) = (1 − 𝜆)𝑔(𝒙𝑡 ) + 𝜆ES [𝑔(𝒙𝑡 )],

where 𝜆 ∈ [0, 1] is the interpolation parameter. We define

OPT(S, 𝜆) = ES𝑇

[
max

𝒙𝑡 ,𝑡 ∈[𝑇 ]

∑𝑇
𝑡=1

𝐹 (𝒙𝑡 , 𝜆)

s.t. 𝑇𝛼 ⊙ 𝐺 ≤ ∑𝑇
𝑡=1

𝐺 (𝒙𝑡 , 𝜆) ≤ 𝑇𝐺

]
where S𝑇 := S × · · · × S is a product distribution of length𝑇 . Now

we give the definition of the new benchmark as

OPT(S) := max

𝜆∈[0,1]
OPT(S, 𝜆) . (39)

This benchmark is an interpolate value between the expected opti-

mal value of problemP0 and a deterministic problemwhich replaces

the varying utility values 𝑓 (𝒙𝑡 ) and cost values 𝑔(𝒙𝑡 ) with their

expected values. For this benchmark, we have

ES [OPT(S)] = 𝜏𝜋

𝑇
ES [OPT(S)] + 𝑇 − 𝜏𝜋

𝑇
ES [OPT(S)]

≤ 𝜏𝜋 𝐷̄ (𝝁𝜏𝜋 |S) + (𝑇 − 𝜏𝜋 ) ¯𝑓 ,

(40)

where the inequality uses the fact that OPT(S) ≤ 𝐷 (𝝁 |S) accord-
ing to Proposition 1 in [25]and that OPT(S) ≤ 𝑇 ¯𝑓 . Combining all

findings together, we have

Regret (𝜋 |S) = ES [OPT(S) − 𝑅(𝜋 |S)] (41a)

≤ ES

[
𝜏𝜋 𝐷̄ (𝝁𝜏𝜋 |S) + (𝑇 − 𝜏𝜋 ) ¯𝑓 −

𝜏𝜋∑︁
𝑡=1

𝑓 (𝒙𝑡 )
]

(41b)

= ES

[
𝜏𝜋 𝐷̄ (𝝁𝜏𝜋 |S) −

𝜏𝜋∑︁
𝑡=1

𝑓 (𝒙𝑡 )
]
+ ES [𝑇 − 𝜏𝜋 ] ¯𝑓 (41c)

≤ 2(𝑔2 +𝐺2)
𝜃

𝜂E[𝜏𝜋 ] +
1

𝜂
𝑉ℎ (𝝁, 𝝁1) + 𝑔

𝐺
+ 𝐶ℎ + ∥∇ℎ(𝜆1)∥∞

𝜂𝐺
,

(41d)

where the first inequality is from (40) and the second inequality is

from Proposition 2 and Proposition 3. Therefore, the constants in

Theorem 1 are 𝐶1 =
𝑔

𝐺
, 𝐶2 =

2(𝐶2+ ¯𝑏2)
𝜃

𝜂, and 𝐶3 = 𝑉ℎ (𝝁, 𝝁1) + 𝑔

𝐺
+

𝐶ℎ+∥∇ℎ (𝜆1) ∥∞
𝐺

, respectively. Moreover, recall Remark 1, we choose

ℎ(𝜆) := 1

2
∥𝜆∥2

and dual iterates are bounded. Hence, we complete

the proof of Theorem 1. ■

B PROOF OF COST FEASIBILITY
Proposition 1 shows that a solution obtained using Algorithm 1

can not overspend, but may underspend. Based on the definition of

subgradient ∇𝜇𝑡
𝑘
, we have

∇ℎ𝑘 (𝜇1)−∇ℎ𝑘 (𝜇𝜏𝜋+1)
𝜂

=

𝜏𝐴∑︁
𝑡=1

(𝐺𝑘 (1(𝜇𝑘 ≥ 0)+𝛼𝑘1(𝜇𝑘 <0))−𝑔𝑘 (𝒙𝑡 ))

(42)

Now, given that 1(𝜇 ≥ 0) + 𝛼𝑘1(𝜇 < 0) ≥ 𝛼𝑘 for any 𝜇 ∈ R and

that 𝜏𝜋 ≤ 𝑇 by definition, we have

𝜏𝐴∑︁
𝑡=1

𝐺𝑘 (1(𝜇𝑘 ≥ 0)+𝛼𝑘1(𝜇𝑘 <0)) + (𝑇 −𝜏𝐴)𝛼𝑘𝑏𝑘 ≥𝑇𝛼𝑘𝑏𝑘 . (43)

Combining (42) and (43) and taking expectation, we get

𝑇𝛼𝑘𝐺𝑘 − E[
𝜏𝜋∑︁
𝑡=1

𝑔𝑘 (𝒙𝑡 )] (44a)

≤ ∇ℎ𝑘 (𝜇1) − E[∇ℎ𝑘 (𝜇𝜏𝜋+1)]
𝜂

+ E[𝑇 − 𝜏𝐴]𝛼𝑘𝑏𝑘 (44b)

≤
(
∥∇ℎ(𝜆1)∥∞ +𝐶ℎ

𝜂

)
𝐺 + 𝛼𝑘𝑏𝑘

𝐺
+ 𝛼𝑘𝑏𝑘𝑔

𝐺
, (44c)

where the second inequality comes from Proposition 2.
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