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ABSTRACT
To address the big data challenges, multi-party collaborative train-

ing, such as distributed learning and federated learning, has recently

attracted attention. However, traditional multi-party collaborative

training algorithms were mainly designed for balanced data mining

tasks and are intended to optimize accuracy (e.g., cross-entropy).
The data distribution in many real-world applications is skewed

and classifiers, which are trained to improve accuracy, perform

poorly when applied to imbalanced data tasks since models could

be significantly biased toward the primary class. Therefore, the

Area Under Precision-Recall Curve (AUPRC) was introduced as an

effective metric. Although single-machine AUPRC maximization

methods have been designed, multi-party collaborative algorithm

has never been studied. The change from the single-machine to the

multi-party setting poses critical challenges. For example, existing

single-machine-based AUPRC maximization algorithms maintain

an inner state for local each data point, thus these methods are not

applicable to large-scale online multi-party collaborative training

due to the dependence on each local data point.

To address the above challenge, we study serverless multi-party

collaborative AUPRC maximization problem since serverless multi-

party collaborative training can cut down the communications cost

by avoiding the server node bottleneck, and reformulate it as a con-

ditional stochastic optimization problem in a serverless multi-party

collaborative learning setting and propose a new ServerLess biAsed

sTochastic gradiEnt (SLATE) algorithm to directly optimize the

AUPRC. After that, we use the variance reduction technique and

propose ServerLess biAsed sTochastic gradiEnt with Momentum-

based variance reduction (SLATE-M) algorithm to improve the
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convergence rate, which matches the best theoretical convergence

result reached by the single-machine online method. To the best

of our knowledge, this is the first work to solve the multi-party

collaborative AUPRC maximization problem. Finally, extensive ex-

periments show the advantages of directly optimizing the AUPRC

with distributed learning methods and also verify the efficiency of

our new algorithms (i.e., SLATE and SLATE-M).
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1 INTRODUCTION
Multi-party collaborative learning, such as distributed learning

[2, 8, 24] (typically focus on IID data and train learning model us-

ing the gradients from different parties) and federated learning

[34] (focus on non-IID data and train model via periodically av-

eraging model parameters from different parties coordinated by

the server), have been actively studied at past decades to train

large-scale deep learning models in a variety of real-world applica-

tions, such as computer vision [12, 49], natural language processing

[9], generative modeling [4] and other areas [22, 23, 32, 56]. In

literature, multi-party collaborative learning is also often called

decentralized learning (compared to centralized learning in the

single-machine setting). With different network topology, server-

less algorithms could be converted into different multi-party collab-

orative algorithms (seen in 3.1). On the other hand, although there

are many ground-breaking studies with DNN in data classification

[12, 38, 44, 48], most works focus on balanced data sets, optimize
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the cross entropy, and use accuracy to measure model performance.

From the viewpoint of optimization, the cross entropy between

the estimated probability distribution based on the output of deep

learning models and encoding ground-truth labels is a surrogate

loss function of the misclassification rate/accuracy. However, in

many real-world applications, such as healthcare and biomedicine

[7, 21, 65], where patients make up a far smaller percentage of

the population than healthy individuals, the data distribution is

frequently skewed due to the scarce occurrence of positive samples.

The data from the majority class essentially define the result, and

the accuracy fails to be an appropriate metric to assess classifiers’

performance. As a result, areas under the curves (AUC), including

area under the receiver operating curve (AUROC) and area under

precision-recall curves (AUPRC) are given much attention since

it excels at discovering models with strong predictive power in

imbalanced binary classification [5, 19].

The prediction performance of models, which are trained with

cross entropy as the loss function for imbalanced binary classifi-

cation, may be subpar because cross-entropy is not the surrogate

function of AUC, which call for the study of AUC maximization.

Recent works have achieved remarkable progress in directly opti-

mizing AUROC with single-machine and multi-party training algo-

rithms [26, 66]. Liu et al. [26] constructed deep AUC as a minimax

problem and resolved the stochastic AUC maximization problem

with a deep neural network as the classifier. Recently, Yuan et al.

[55] and Guo et al. [14] extended the single-machine training to

federated learning and proposed a PL-strongly-concave minimax

optimization method to maximize AUROC.

However, AUROC is not suitable for data with a much larger

number of negative examples than positive examples, and AUPRC

can address this issue because it doesn’t rely on true negatives.

Given that an algorithm that maximizes AUROC does not neces-

sarily maximize AUPRC [7] and matching of loss and metric is

important [10, 11, 33], the design of AUPRC maximization algo-

rithms has attracted attention [20, 37, 41, 42, 47]. Nonetheless, the

multi-party algorithm for AUPRC maximization problems has not

been studied. Existing AUPRC optimization methods cannot be

directly applied to multi-party collaborative training, since they

mainly focus on the finite-sum problem and maintain an inner state

for each positive data point, which is not permitted in a multi-party

online environment. In addition, to improve communication effi-

ciency, serverless multi-party collaborative learning algorithms are

needed to avoid the server node bottleneck in model training. Thus,

it is desired to develop efficient stochastic optimization algorithms

for serverless multi-party AUPRC maximization for deep learning

to meet the challenge of large-scale imbalanced data mining.

The challenges to design serverless multi-party collaborative

AUPRC maximization algorithm are three-fold. The first difficulty

lies in the complicated integral definition. To overcome the prob-

lem of the continuous integral, we can use some point estimators.

The average precision (AP) estimator is one of the most popularly

used estimators. AP can be directly calculated based on the sample

prediction scores and is not subject to sampling bias. It is ideally

suited to be used in stochastic optimization problems due to these

advantages.

The second difficulty lies in the nested structure and the non-

differential ranking functions in the AP. Traditional gradient-based

gradient descent techniques cannot directly be used with the origi-

nal concept of AP. Most existing optimization works use the surro-

gate function to replace the ranking function in the AP function

[14, 20, 26, 37, 42, 47]. We can follow these works and substitute a

surrogate loss for the ranking function in the AP function.

The third difficulty is that existing algorithms only focus on

finite-sum settings and maintain inner estimators 𝑢𝑡 for each posi-

tive data point, which is not permitted in multi-party collaborative

online learning. Therefore, despite recent developments, it is still

unclear if there is a strategy to optimize AUPRC for multi-party col-

laborative imbalanced data mining. It is natural to ask the following

question: Can we design multi-party stochastic optimization
algorithms to directly maximize AUPRC with guaranteed
convergence?

In this paper, we provide an affirmative answer to the aforemen-

tioned question. We propose the new algorithms for multi-party

collaborative AUPRCmaximization and provide systematic analysis.

Our main contributions can be summarized as follows:

• We cast the AUPRC maximization problem into non-convex

conditional stochastic optimization problem by substituting a

surrogate loss for the indicator function in the definition of AP.

Unlike existing methods that just focus on finite-sum settings,

we consider the stochastic online setting.

• We propose the first multi-party collaborative learning algo-

rithm, ServerLess biAsed sTochastic gradiEnt (SLATE), to solve

our new objective. It can be used in an online environment and

has no reliance on specific local data points. In addition, with

different network topologies, our algorithm can also be used

for distributed learning and federated learning.

• Furthermore, we propose a stochastic method (i.e., SLATE-M)

based on the momentum-based variance-reduced technique

to reduce the convergence complexity in multi-party collab-

orative learning. Our method can reach iteration complexity

of 𝑂
(
1/𝜖5

)
, which matches the lower bound proposed in the

single-machine conditional stochastic optimization.

• Extensive experiments on various datasets compared with base-

lines verify the effectiveness of our methods.

2 RELATEDWORK
2.1 AUROC Maximization
There is a long line of research that investigated the imbalanced data

mining with AUROC metric [14, 26, 52, 55, 66], which highlight the

value of the AUC metric in imbalanced data mining. Earlier works

about AUROC focused on linear models with pairwise surrogate

losses [21]. Furthermore, Ying et al. [52] solved the AUC square sur-

rogate loss using a stochastic gradient descent ascending approach

and provided a minimax reformulation of the loss to address the

scaling problem of AUC optimization. Later, Liu et al. [26] stud-

ied the application of AUROC in deep learning and reconstructed

deep AUC as a minimax problem, which offers a strategy to resolve

the stochastic AUC maximization problem with a deep neural net-

work as the predictive model. Furthermore, some methods were

proposed for multi-party AUROC maximization. Yuan et al. [55]

and Guo et al. [14] reformulated the federated deep AUROC maxi-

mization as non-convex-strongly-concave problem in the federated

setting. However, the analyses of methods in [55] and [14] rely on
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the assumption of PL condition on the deep models. Recently, [54]

developed the compositional deep AUROC maximization model

and [64] extend it to federated learning.

2.2 AUPRC Maximization
Early works about AUPRC optimization mainly depend on tradi-

tional optimization techniques. Recently, Qi et al. [37] analyzed

AUPRC maximization with deep models in the finite-sum setting.

They use a surrogate loss to replace the ranking function in the AP

function and maintain biased estimators of the surrogate ranking

functions for each positive data point. They proposed the algorithm

to directly optimize AUPRC and show a guaranteed convergence.

Afterward, Wang et al. [42] presented adaptive and non-adaptive

methods (i.e. ADAP and MOAP) with a new strategy to update

the biased estimators for each data point. The momentum average

is applied to both the outer and inner estimators to track indi-

vidual ranking scores. More recently, algorithms proposed in [41]

reduce convergence complexity with the parallel speed-up and

Jiang et al. [20], Wu et al. [47] introduced the momentum-based

variance-reduction technology into AUPRC maximization to re-

duce the convergence complexity. While we developed distributed

AUPRC optimization concurrently with [13], they pay attention

to X-Risk Optimization in federated learning. Because X-Risk opti-

mization is a sub-problem in conditional stochastic optimization

and federated learning could be regarded as decentralized learning

with a specific network topology (seen 3.1), our methods could also

be applied to their problem.

Overall, existing methods mainly focus on finite-sum single-

machine setting [20, 37, 41, 42, 47]. To solve the biased stochastic

gradient, they maintain an inner state for local each data point.

However, this strategy limits methods to be applied to real-world

big data applications because we cannot store an inner state for

each data sample in the online environment. In addition, we cannot

extend them directly from the single-machine setting to multi-party

setting, because under non-IID assumption, the data point on each

machine is different and this inner state can only contain the local

data information and make it difficult to train a global model.

In the perspective of theoretical analysis, Hu et al. [18] studied

the general condition stochastic optimization and proposed two

single-machine algorithms with and without using the variance-

reduction technique (SpiderBoost) named BSGD and BSpiderboost,

and established the lower bound at 𝜀−5
in the online setting.

AUPRC is widely utilized in binary classification tasks. It is

simple to adapt it for multi-class classifications. If a task hasmultiple

classes, we can assume that each class has a binary classification

task and adopt the one vs. the rest classification strategy. We can

then calculate average precision based on all classification results.

2.3 Serverless Multi-Party Collaborative
Learning

Multi-party collaborative learning (i.e, distributed and federated

learning) has wide applications in data mining and machine learn-

ing problems [16, 28, 31, 35, 43, 59, 62]. Multi-party collaborative

learning in this paper has a more general definition that does not

rely on the IID assumption of data to guarantee the convergence

analysis. In the last years, many serverless multi-party collaborative

learning approaches have been put out because they avoid the com-

munication bottlenecks or constrained bandwidth between each

worker node and the central server, and also provide some level of

data privacy [53]. Lian et al. [25] offered the first theoretical backing

for serverless multi-party collaborative training. Then serverless

multi-party collaborative training attracts attention [27, 30, 40, 51]

and the convergence rate has been improved using many differ-

ent strategies, including variance extension [40], variance reduc-

tion [36, 61], gradient tracking [30], and many more. In addition,

serverless multi-party collaborative learning has been applied to

various applications, such as reinforcement learning [17, 63? ], ro-
bust training [50], generative adversarial nets (GAN) [27], robust

principal component analysis [45] and other optimization prob-

lems [29, 57, 58, 60]. However, none of them focus on imbalanced

data mining. In application, the serverless multi-party collaborative

learning setting in this paper is different from federated learning

[34] which uses a central server with different communication

mechanisms to periodically average the model parameters for indi-

rectly aggregating data from numerous devices. However, with a

specific network topology (seen 3.1), federated learning could be re-

garded as multi-party collaborative learning. Thus, our algorithms

could be regarded as a general federated AUPRC maximization.

3 PRELIMINARY
3.1 Serverless Multi-Party Collaborative

Learning
Notations: We use x to denote a collection of all local model pa-

rameters x𝑛 , where 𝑛 ∈ [𝑁 ], i.e., x = [𝑥⊤
1
, 𝑥⊤

2
, . . . , 𝑥⊤

𝑁
]⊤ ∈ R𝑁𝑑

.

Similarly, we define u, v as the concatenation of u𝑛, v𝑛 for 𝑛 ∈ [𝑁 ].
In addition, ⊗ denotes the Kronecker product, and ∥ · ∥ denotes the
ℓ2 norm for vectors, respectively. D+

𝑛 denotes the positive dataset

on the 𝑁 worker nodes and D denotes the whole dataset on the 𝑛

worker nodes. In multi-party collaborative training, the network

system of N worker nodes G = (V, E) is represented by double

stochastic matrix W = {𝑤𝑖 𝑗 } ∈ R𝑁×𝑁
, which is defined as follows:

(1) if there exists a link between node i and node j, then 𝑤𝑖 𝑗 > 0,

otherwise𝑤𝑖 𝑗 = 0, (2) W = W⊤
and (3) W1 = 1 and 1⊤W = 1⊤. We

define the second-largest eigenvalue of W as 𝜆 and W := W ⊗ I𝑑 .
We denote the exact averaging matrix as J = 1

𝑁
(1𝑛1⊤𝑛 ) ⊗ I𝑑 and

𝜆 = ∥W − J∥. Taking ring network topology as an example, where

each node can only exchange information with its two neighbors.

The corresponding W is in the form of

W =

©«

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3

. . .

. . .
. . . 1/3

1/3 1/3 1/3

1/3 1/3 1/3

ª®®®®®®®®®¬
∈ R𝑁×𝑁

If we change the network topology, multi-Party collaborative learn-

ing could become different types of multi-party collaborative train-

ing. If W is
1

𝑁
11⊤, it is converted to distributed learning with the

average operation in each iteration. If we choose W as the Iden-

tity matrix and change it to
1

𝑁
11⊤ every q iteration, it would be

federated learning.
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3.2 AUPRC
AUPRC can be defined as the following integral problem [1]:

AUPRC =

∫ ∞

−∞
Pr(𝑦 = 1 | ℎ(x; z) ≥ 𝑐)𝑑 Pr(ℎ(x; z) ≤ 𝑐 | 𝑦 = 1)

where ℎ(x; z) is the prediction score function, x is the model pa-

rameter, 𝜉 = (z, 𝑦) is the data point, and 𝑃𝑟 (𝑦 = 1|ℎ(x; z) ≥ 𝑐) is
the precision at the threshold value of c.

To overcome the problem of the continuous integral, we use AP

as the estimator to approximate AUPRC, which is given by [3]:

AP = E𝜉∼D+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (ℎ (x; z)) = E𝜉∼D+
r
+ (x; z)
r (x; z) (1)

where D+
denotes the positive dataset, and samples 𝜉 = (z, 𝑦) are

drawn from positive dataset D+
where z ∈ Z represents the data

features and 𝑦 = +1 is the positive label. r
+
denotes the positive

data rank ratio of prediction score (i.e., the number of positive data

points with no less prediction score than that of 𝜉 including itself

over total data number) and r denotes its prediction score rank

ratio among all data points (i.e., the number of data points with

no less prediction score than that of 𝜉 including itself over total

data number). D denotes the whole datasets and 𝜉 ′ = (z′, 𝑦′) ∼ D
denote a random data drawn from an unknown distribution D,

where z′ ∈ Z represents the data features and 𝑦′ ∈ Y = {−1, +1}.
Therefore, (1) is the same as:

AP = E𝜉∼D+
E𝜉 ′∼D I(ℎ(x; z′) ≥ ℎ(x; z)) · I (𝑦′ = 1)

E𝜉 ′∼D I(ℎ(x; z′) ≥ ℎ(x; z))
We employ the following squared hinge loss:

ℓ
(
x; z, z′

)
= (𝑚𝑎𝑥{𝑠 − ℎ(x; z) + ℎ(x; z′), 0})2

(2)

as the surrogate for the indicator function I(ℎ(x; z′) ≥ ℎ(x; z)),
where 𝑠 is a margin parameter, that is a common choice used by

previous studies [20, 37, 42]. As a result, the AUPRC maximization

problem can be formulated as:

𝐴𝑃 = E𝜉∼D+
E𝜉 ′∼D I (𝑦′ = 1) ℓ (x; z, z′)
E𝜉 ′∼D ℓ (x; z, z′)

In the finite-sum setting, it is defined as :

𝐴𝑃 =
1

|D+ |
∑︁

x𝑖 ,𝑦𝑖=1

r
+ (x𝑖 )
r (x𝑖 )

=
1

|D+ |
∑︁

𝜉∼D+

1

|D |
∑
𝜉∼D I (𝑦′ = 1) ℓ (x; z, z′)

1

|D |
∑
𝜉∼D ℓ (x; z, z′)

For convenience, we define the elements in 𝑔(x) as the surrogates
of the two prediction score ranking function r

+ (x) and r (x) re-
spectively. Define the following equation:

𝑔
(
x; 𝜉, 𝜉 ′

)
=

[
𝑔1 (x; 𝜉, 𝜉 ′)
𝑔2 (x; 𝜉, 𝜉 ′)

]
=

[
ℓ (x; z, z′) I (𝑦′ = 1)

ℓ (x; z, z′)

]
and 𝑔(x; 𝜉) = E𝜉 ′∼D𝑔 (x; 𝜉, 𝜉 ′) ∈ R2

, and assume 𝑓 (u) = −𝑢1

𝑢2

:

R2 ↦→ R for any u = [𝑢1, 𝑢2]⊤ ∈ R2
. We reformulate the optimiza-

tion objective into the following stochastic optimization problem:

min

x
𝐹 (x) = E𝜉∼D+ [𝑓 (𝑔(x; 𝜉)]

= E𝜉∼D+
[
𝑓 (E𝜉 ′∼D𝑔(x; 𝜉, 𝜉 ′))

]
(3)

It is similar to the two-level conditional stochastic optimization

[18], where the inner layer function depends on the data points

sampled from both inner and outer layer functions. Given that 𝑓 (·)

is a nonconvex function, problem (3) is a noncvonex optimiztion

problem. In this paper, we considers serverless multi-party collabo-

rative non-convex optimization where N worker nodes cooperate

to solve the following problem:

min

x
𝐹 (x) = min

x

1

𝑁

𝑛∑︁
𝑛=1

𝐹𝑛 (x) (4)

where 𝐹𝑛 (x) = E𝜉𝑛∼D+
𝑛
𝑓 (E𝜉 ′𝑛∼D𝑛

𝑔𝑛 (x; 𝜉𝑛, 𝜉
′
𝑛))where 𝜉 ′𝑛 = (z′𝑛, 𝑦′𝑛) ∼

D𝑛 and 𝜉𝑛 = (z𝑛, 𝑦𝑛) ∼ D+
We consider heterogeneous data set-

ting in this paper, which refers to a situation where D𝑖 and D𝑗 are

different (𝑖 ≠ 𝑗 ) on different worker nodes.

In order to design the method, we first consider how to compute

the gradient of 𝐹 (x).
∇𝐹𝑛 (x) =E𝜉𝑛∼D+

𝑛
∇𝑔𝑛 (x; 𝜉𝑛)⊤∇𝑓 (𝑔𝑛 (x; 𝜉𝑛))

=E𝜉𝑛∼D+
𝑛
∇𝑔𝑛 (x; 𝜉𝑛)⊤

(
−1

𝑔2

𝑛 (x; 𝜉𝑛)
,

𝑔1

𝑛 (x; 𝜉𝑛)(
𝑔2

𝑛 (x; 𝜉𝑛)
)
2

)⊤
where

∇𝑔𝑛 (x; 𝜉𝑛) =
[
∇𝑔1

𝑛 (x; 𝜉𝑛)
∇𝑔2

𝑛 (x; 𝜉𝑛)

]
=

[
E𝜉 ′𝑛∼D𝑛

I
(
𝑦′𝑛 = 1

)
∇ℓ

(
x; z𝑛, z′𝑛

)
E𝜉 ′𝑛∼D𝑛

∇ℓ
(
x; z𝑛, z′𝑛

) ]
We can notice that it is different from the standard gradient

since there are two levels of functions and the inner function also

depends on the sample data from the outer layer. Therefore, the

stochastic gradient estimator is not an unbiased estimation for

the full gradient. Instead of constructing an unbiased stochastic

estimator of the gradient [39], we consider a biased estimator of

∇𝐹𝑛 (𝑥) using one sample 𝜉 from D+
𝑛 and𝑚 sample 𝜉 ′ from D𝑛 as

B𝑛 in the following form:

∇𝐹𝑛 (x; 𝜉𝑛,B𝑛) (5)

=( 1

𝑚

∑︁
𝜉 ′∈B𝑛

∇𝑔𝑛 (x; 𝜉𝑛, 𝜉
′
𝑛))⊤∇𝑓 (

1

𝑚

∑︁
𝜉 ′𝑛∈B𝑛

𝑔𝑛 (x; 𝜉𝑛, 𝜉
′
𝑛))

where B𝑛 =
{
𝜉 ′𝑗

}𝑚
𝑗=1

. It is observed that ∇𝐹𝑛 (x; 𝜉𝑛,B𝑛) is the
gradient of an empirical objective such that

𝐹𝑛 (x; 𝜉𝑛,B𝑛) := 𝑓𝑛
©« 1

𝑚

∑︁
𝜉 ′𝑛∈B𝑛

𝑔𝑛 (x; 𝜉𝑛, 𝜉
′
𝑛)

ª®¬ .

4 ALGORITHMS
In this section, we propose the new serverless multi-party collabo-

rative learning algorithms for solving the problem (4). Specifically,

we use the gradient tracking technique ( which could be ignored

in practice) and propose a ServerLess biAsed sTochastic gradiEnt

(SLATE). We further propose an accelerated version of SLATE with

momentum-based variance reduction [6] technology (SLATE-M).

4.1 Serverless Biased Stochastic Gradient
(SLATE)

Based on the above analysis, we design a serverless multi-party

collaborative algorithms with biased stochastic gradient and is

named SLATE. Algorithm 1 shows the algorithmic framework of

the SLATE. Step 8 could be ignored in practice.
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Algorithm 1 SLATE Algorithm

1: Input: 𝑇 , step size 𝜂 inner batch size𝑚 and mini-batch size 𝑏;

u𝑛,0 = 0 and v𝑛,0 = 0 for 𝑛 ∈ {1, · · · , 𝑁 }
2: Initialize: 𝑥𝑛,0 = 1

𝑁

∑𝑁
𝑘=1

𝑥𝑛,0.

3: for 𝑡 = 0, 1, . . . ,𝑇 do
4: for 𝑛 = 1, 2, . . . , 𝑁 do
5: Draw 𝑏 samples B+

𝑛,𝑡 = {𝜉𝑖𝑛,𝑡 }𝑏𝑖=1
from D+

𝑛

6: Draw𝑚 samples B𝑛,𝑡 =

{
𝜉
′𝑗
𝑛,𝑡

}𝑚
𝑗=1

from D𝑛 ,

7: u𝑛,𝑡 = 1

𝑏

∑𝑏
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡 ,B𝑛,𝑡 ) as in (6)

8: v𝑛,𝑡 =
∑𝑁
𝑟=1

𝑤𝑛𝑟 (v𝑟𝑡−1
+ u𝑟𝑡 − u𝑟

𝑡−1
)

9: x𝑛,𝑡+1 =
∑𝑁
𝑟=1

𝑤𝑛𝑟 (x𝑛𝑡 − 𝜂v𝑛,𝑡 )
10: end for
11: end for
12: Output: 𝑥 chosen uniformly random from {x̄𝑡 }𝑇𝑡=1

.

At the beginning of Algorithm 1, one simply initializes local

model parameters x for all worker nodes. Given the couple structure

of problem (4). We can assign the value of gradient estimator u𝑛,0
and gradient tracker v𝑛,0 as 0.

At the Lines 5-6 of Algorithm 1, we draw 𝑏 samples as B+
𝑛,𝑡 from

positive dataset D+
𝑛 and𝑚 samples as B𝑛,𝑡 from full data sets D𝑛

on each node, respectively. We use a biased stochastic gradient to

update the gradient estimator u𝑛,𝑡 according to the (6).

u𝑛,𝑡 = (6)∑︁
𝜉∈B+

𝑛,𝑡

∑︁
𝜉 ′∈B𝑛,𝑡

(
𝑔1

(
x𝑛,𝑡 ; 𝜉, 𝜉 ′

)
− 𝑔2

(
x𝑛,𝑡 ; 𝜉, 𝜉 ′

)
I (y′ = 1)

)
∇ℓ

(
x𝑛,𝑡 ; z, z′

)
𝑏𝑚

(
𝑔2

(
x𝑛,𝑡 ; 𝜉, 𝜉 ′

) )
2

where 𝜉 = (z, 𝑦) and 𝜉 ′ = (z′, 𝑦′)
Afterward, at the Line 8 of Algorithm 1 (optional), we adopt

the gradient tracking technique [30] to reduce network consensus

error, where we update the v𝑛,𝑡 and then do the consensus step

with double stochastic matrix W as:

v𝑛,𝑡 =
𝑁∑︁
𝑟=1

𝑤𝑛𝑟 (v
𝑟
𝑡−1

+ u𝑟𝑡 − u𝑟𝑡−1
)

Finally, at the Line 9 of Algorithm 1, we update the model with

gradient tracker v𝑛,𝑡 , following the consensus step among worker

nodes with double stochastic matrix W:

x𝑛,𝑡+1 =

𝑁∑︁
𝑟=1

𝑤𝑛𝑟 (x𝑟,𝑡 − 𝜂v𝑟,𝑡 )

The output x̄𝑡 is defined as: x̄𝑡 = 1

𝑁

∑𝑁
𝑛=1

x𝑛,𝑡 .

4.2 SLATE-M
Furthermore, we further propose an accelerated version of SLATE

(SLATE-M) based on the momentum-based variance reduced tech-

nique, which has the better convergence complexity. The algorithm

is shown in Algorithm 2. Step 11 could be ignored in practice.
At the beginning, similar to the SLATE, worker nodes initialize

local model parameters x as seen in Lines 1-2 in Algorithm 2.

Different from SLATE, we initialize the u𝑛,0 with initial batch size
𝐵 and v𝑛,0∀𝑛 ∈ [𝑁 ], which can be seen in Lines 3-4 in Algorithm 2.

Then we do the consensus step to update the model parameters x𝑛 .

Algorithm 2 SLATE-M Algorithm

1: Input:𝑇 , step size 𝜂, momentum coefficient 𝛼 , inner batch size

𝑚 and mini-batch size 𝑏, and initial batch size 𝐵;

2: Initialize: x𝑛,0 = 1

𝑁

∑𝑁
𝑘=1

x𝑛,0
3: Draw 𝐵 samples of {𝜉𝑖

𝑛,0
}𝐵
𝑖=1

from D+
𝑛 , and draw

𝑚 samples B𝑛,0 =

{
𝜉
′𝑗
𝑛,0

}𝑚
𝑗=1

from D𝑛 , u𝑛,0 =

1

𝐵

∑𝐵
𝑖=1

∇𝐹𝑛 (x𝑛,0; 𝜉𝑖
𝑛,0

,B𝑛,0)∀𝑛 ∈ [𝑁 ]
4: v𝑛,0 =

∑𝑁
𝑟=1

𝑤𝑛𝑟u𝑟,0∀𝑛 ∈ [𝑁 ]
5: x𝑛,1 =

∑𝑁
𝑟=1

𝑤𝑛𝑟 (x𝑛,0 − 𝜂v𝑛,0)∀𝑛 ∈ [𝑁 ]
6: for 𝑡 = 1, 2, . . . ,𝑇 do
7: for 𝑛 = 1, 2, . . . , 𝑁 do
8: Draw 𝑏 samples B+

𝑛,𝑡 = {𝜉0

𝑛,1
, · · · , 𝜉𝑏

𝑛,1
} from D+

𝑛

9: Draw𝑚 samples B𝑛,𝑡 =

{
𝜉
′𝑗
𝑛,𝑡

}𝑚
𝑗=1

from D𝑛 ,

10: u𝑛,𝑡 = 1

𝑏

∑𝑏
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡 ,B𝑛,𝑡 ) + (1 − 𝛼) (u𝑛,𝑡−1 −
1

𝑏

∑𝑏
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡−1; 𝜉𝑖𝑛,𝑡 ,B𝑛,𝑡 ))
11: v𝑛,𝑡 =

∑𝑁
𝑟=1

𝑤𝑛𝑟 (v𝑟𝑡−1
+ u𝑟𝑡 − u𝑟

𝑡−1
)

12: x𝑛,𝑡+1 =
∑𝑁
𝑟=1

𝑤𝑛𝑟 (x𝑛𝑡 − 𝜂v𝑛,𝑡 )
13: end for
14: end for
15: Output: 𝑥 chosen uniformly random from {x̄𝑡 }𝑇𝑡=1

.

The definition of 𝐹𝑛 (x𝑛,0; 𝜉𝑖
𝑛,0

,B𝑛,0) is similar to (6) as below:

1

|B+
𝑛,𝑡 |

𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡 ,B𝑛,𝑡 ) = (7)∑︁
𝜉∈B+

𝑛,𝑡

∑︁
𝜉 ′∈B𝑛,𝑡

(
𝑔1

(
x𝑛,𝑡 ; 𝜉, 𝜉 ′

)
− 𝑔2

(
x𝑛,𝑡 ; 𝜉, 𝜉 ′

)
I (y′ = 1)

)
∇ℓ

(
x𝑛,𝑡 ; z, z′

)
|B+

𝑛,𝑡 |𝑚
(
𝑔2

(
x𝑛,𝑡 ; 𝜉, 𝜉 ′

) )
2

where |B𝑛,𝑡 | denotes the size of batch B𝑛,𝑡 and 𝜉 = (z, 𝑦) and
𝜉 ′ = (z′, 𝑦′).

Afterwards, similar to SLATE, each iteration, we draw 𝑏 samples

from positive dataset D+
𝑛 and𝑚 samples from full data sets D𝑛 on

each worker node, respectively to construct the biased stochastic

gradient, seen in Line 8-9 of Algorithm 2.

The key different between SLATE and SLATE-M is that we up-

date gradient estimator u𝑛,𝑡 in SLATE-M with the following vari-

ance reduction method:

u𝑛,𝑡 =
1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡 ,B𝑛,𝑡 ) + (1 − 𝛼) (u𝑛,𝑡−1

− 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡−1; 𝜉𝑖𝑛,𝑡 ,B𝑛,𝑡 ))

where
1

𝑏

∑𝑏
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡 ,B𝑛,𝑡 ) and 1

𝑏

∑𝑏
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡−1; 𝜉𝑖𝑛,𝑡 ,B𝑛,𝑡 )
are defined in (7)

Finally, we update gradient tracker v𝑛,𝑡 and model parameters

x𝑛,𝑡 as in Lines 11-12 in Algorithm 2.

5 THEORETICAL ANALYSIS
Wewill discuss somemild assumptions and present the convergence

results of our algorithms (SLATE and SLATE-M).
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5.1 Assumptions
In this section, we introduce some basic assumptions used for theo-

retical analysis.

Assumption 1. ∀𝑛 ∈ [𝑁 ], we assume (i) there is 𝐶 (> 0) that
ℓ (𝑥 ; 𝑧𝑛, 𝑧𝑛) > 𝐶 ; (ii) there is𝑀 (> 0) that 0 < ℓ (𝑥 ; 𝑧𝑛, 𝑧

′
𝑛) < 𝑀 ; (iii)

ℓ (𝑥 ; 𝑧𝑛, 𝑧
′
𝑛) is Lipschitz continuous and smooth with respect to model

x for any 𝜉𝑛 = (𝑧𝑛, 𝑦𝑛) ∼ D+, 𝜉 ′𝑛 = (𝑧′𝑛, 𝑦′𝑛) ∼ D.

Assumption 2. ∀𝑛 ∈ [𝑁 ], we assume there exists a positive constant
𝜎 , such that ∥∇𝑔(x; 𝜉, 𝜉 ′)∥2 ≤ 𝜎2,∀𝜉 ∼ D+

𝑛 , 𝜉
′ ∼ D𝑛

Assumptions 1 and 2 are a widely used assumption in optimiza-

tion analysis of AUPRC maximization [20, 37, 42]. They can be

easily satisfied when we choose a smooth surrogate loss function

ℓ (x; z, z′) and a bounded score function model ℎ(x; ·).
Furthermore, based on Assumptions 1 and 2, we can build the

smoothness and lipschitz continuity of objective function in the

problem (4).

Lemma 1. (Lemma 1 in [42]) Suppose Assumptions 1 and 2 hold,
then ∀x, ∥𝑔𝑛 (x; 𝜉)∥2 ≤ 𝜎2

𝑔 , 𝑔𝑛 (x; 𝜉) is 𝐿𝑔-Lipschitz and 𝑆𝑔-smooth for
xi ∼ D+

𝑛 , and ∀𝑢 ∈ Ω, 𝑓 (𝑢) is 𝐿𝑓 -Lipschitz and 𝑆𝑓 -smooth. ∀x, 𝐹𝑛 (x)
is 𝐿𝐹 -Lipschiz and 𝑆𝐹 -smooth.

From the Lemma 1, we have 𝑓𝑛 and 𝑔𝑛 are 𝑆𝑓 -smooth and 𝑆ℎ-

smooth. This implies that for an samgle 𝜉𝑛 ∼ D+
𝑛 there exist 𝑆𝑓 > 0

and 𝑆𝑔 > 0 such that

E∥∇𝑓𝑛 (𝑥1) − ∇𝑓𝑛 (𝑥2)∥ ≤ 𝑆𝑓 ∥𝑥1 − 𝑥2∥
E∥∇𝑔𝑛 (𝑦1, 𝜉𝑛) − ∇𝑔𝑛 (𝑦2, 𝜉𝑛)∥ ≤ 𝑆𝑔 ∥𝑦1 − 𝑦2∥

And 𝑓𝑛 and 𝑔𝑛 are 𝐿𝑓 -Lipchitz continuous and 𝐿𝑔-Lipchitz con-

tinuous. This implies that there exist 𝐿𝑓 > 0 and 𝐿𝑔 > 0 such

that

E∥∇𝑓𝑛 (𝑥)∥2 ≤ 𝐿2

𝑓

E∥∇𝑔𝑛 (𝑦1, 𝜉𝑛)∥2 ≤ 𝑆2

𝑔

In addition, we also have bounded variance of𝑔𝑛 . There exist 𝜎𝑔 > 0

such that

E𝜉𝑛∼D+
𝑛
∥𝑔𝑛 (x; 𝜉𝑛, 𝜉

′
𝑛) − E𝜉 ′𝑛∼D𝑛

𝑔𝑛 (x; 𝜉𝑛, 𝜉
′
𝑛)∥2 ≤ 𝜎2

𝑔

which indicates that the inner function 𝑔𝑛 has bounded variance.

To control the estimation bias, we follow the analysis in single-

machine conditional stochastic optimization [18].

Lemma 2. (Proposition B.1 in [18]) Under Assumptions 1 and 2, on
the 𝑛-th worker node, for a sample 𝜉𝑛 ∼ D+

𝑛 and𝑚 samples B𝑛 from
D𝑛 ,
(a) B𝑛 =

{
𝜉 ′𝑗

}𝑚
𝑗=1

and we have

∥E∇𝐹𝑛 (𝑥 ; 𝜉𝑛,B𝑛) − ∇𝐹𝑛 (𝑥)∥2 ≤
𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
(8)

.
(b) E∇𝐹𝑛 (𝑥 ; 𝜉𝑛,B𝑛) are 𝑆𝐹 -Lipschitz smooth
(c) ∇ (𝑓 (𝑔𝑛 (x, 𝜉𝑛))) − ∇𝐹 (𝑥)

2

2
≤ 𝐿2

𝑓
𝐿2

𝑔 (9)

Lemma 2 (a) provide a bound of biased stochastic gradient, which

will be used in the following theoretical analysis.

Assumption 3. The function 𝐹𝑛 (𝑥) is bounded below, i.e., inf𝑥 𝐹𝑛 (𝑥) >
−∞.

5.2 The Communication Mechanism in
Serverless Multi-Party Collaborative
Training

The network system of N worker nodes G = (V, E) is represented
by double stochastic matrix W = {𝑤𝑖 𝑗 } ∈ R𝑁×𝑁

in the analysis.

For the ease of exposition, we write the x𝑡 and v𝑡 -update in

Algorithm 1 and Algorithm 2 in the following equivalent matrix

form: ∀𝑡 ≥ 0,

v𝑡 = W(v𝑡−1 + u𝑡 − u𝑡−1), x𝑡+1 = W(x𝑡−1 − 𝜂v𝑡 )

where W := W ⊗ I𝑑 and x𝑡 , u𝑡 , v𝑡 are random vectors in R𝑁𝑑
that

respectively concatenate the local estimates {x𝑛,𝑡 }𝑁𝑛=1
of a station-

ary point of 𝐹 , gradient trackers {v𝑛,𝑡 }𝑁𝑛=1
, gradient estimators

{u𝑛,𝑡 }𝑁𝑛=1
. With the exact averaging matrix J, we have following

quantities:

1 ⊗ x̄𝑡 := Jx𝑡 , 1 ⊗ ū𝑡 := Ju𝑡 , 1 ⊗ v̄𝑡 := Jv𝑡

Next, we enlist some useful results of gradient tracking-based

algorithms for serveress multi-party collaborative stochastic opti-

mization

Lemma 3. (Lemma 1 in [51]) For double stochastic matrix, we have
the following:
(a) ∥Wx − Jx∥ ≤ 𝜆∥x − Jx∥,∀x ∈ R𝑛𝑑 .
(b) v̄𝑡 = ū𝑡 ,∀𝑡 ≥ 0. As the update step in 1 and 2, we have

x̄𝑡+1 = x̄𝑡 − 𝜂v̄𝑡 = x̄𝑡 − 𝜂ū𝑡

(c) According to the definition of network W, we have the following
inequalities: ∀𝑘 ≥ 0,

∥x𝑡+1 − Jx𝑡+1∥2 ≤ 1 + 𝜆2

2

∥x𝑡 − Jx𝑡 ∥2 + 2𝜂2𝜆2

1 − 𝜆2
∥v𝑡 − Jv𝑡 ∥2

(10)

∥x𝑡+1 − Jx𝑡+1∥2 ≤ 2𝜆2 ∥x𝑡 − Jx𝑡 ∥2 + 2𝜂2𝜆2 ∥v𝑡 − Jv𝑡 ∥2
(11)

∥x𝑡+1 − Jx𝑡+1∥ ≤ 𝜆 ∥x𝑡 − Jx𝑡 ∥2 + 𝜂𝜆 ∥v𝑡 − Jv𝑡 ∥ (12)

Then, we study the convergence properties of SLATE and SLATEM.

We first discus the metric to measure convergence of our algo-

rithms. Given that the loss function is nonconvex, we are unable to

demonstrate convergence to an global minimum point. Instead, we

establish convergence to an approximate stationary point, defined

below:

Definition 1. A point 𝑥 is called 𝜖-stationary point if ∥∇𝑓 (𝑥)∥ ≤
𝜖 . Generally, a stochastic algorithm is defined to achieve an 𝜖-

stationary point in 𝑇 iterations if E∥∇𝑓 (𝑥𝑇 )∥ ≤ 𝜖 .

5.3 Convergence Analysis of SLATE Algorithm
First, we study the convergence properties of our SLATE algorithm.

The detailed proofs are provided in the supplementary materials.

Theorem 1. Suppose the sequence {x̄𝑡 }𝑇𝑡=1
be generated from Algo-

rithm 1 and Assumptions 1, 2, and 3 hold, 0 < 𝜂 ≤ min{ 1−𝜆2

24𝜆2𝑆𝐹
, 1

6𝑆𝐹
},
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SLATE in algorithm 1 has the following

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇𝐹 (x̄𝑡 )∥2 ≤ 2E[𝐹 (x̄0) − 𝐹 (x̄𝑇 )]
𝜂𝑇

+
(

1

𝜆2
+ 5𝑁

)
32𝜆2𝜂2𝐿2

𝑓
𝐿2

𝑔𝑆
2

𝐹

(1 − 𝜆2)2𝑁
+

2𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
+

2𝜂𝑆𝐹𝐿
2

𝑓
𝐿2

𝑔

𝑁

Corollary 1. Based on the analysis in Theorem 1, by setting 𝜂 =

𝑂 (
√︃

𝑁
𝑇
) , SLATE in Algorithm 1 has the following

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇𝐹 (x̄𝑡 )∥2 ≤ 𝑂 (E[𝐹 (x̄0) − 𝐹 (x̄𝑇 )]
(𝑁𝑇 )1/2

)

+
(

1

𝜆2
+ 5

)
24𝜆2𝐿2

𝑓
𝐿2

𝑔𝑆
2

𝐹

(1 − 𝜆2)2
𝑂 (𝑁

𝑇
) +

2𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
+𝑂 (

2𝑆𝐹𝐿
2

𝑓
𝐿2

𝑔

(𝑁𝑇 )1/2

)

Based on the result in Theorem 1 and Corollary 1, we can get

the convergence result of SLATE.

Remark 1. According to Corollary 1, without loss of generality,

we let 𝑚 = 𝑂 (𝜀−2), 𝑏 = 𝑂 (1) and
√
𝑇 > 𝑁 , we know to make

1

𝑇

∑𝑇−1

𝑡=0
E∥∇𝐹 (x̄𝑡 )∥2 ≤ 𝜀2

, we have iterations 𝑇 should be as large

as 𝑂 (𝑁 −1𝜀−4).
In Algorithm 1, we sample 𝑏 +𝑚 data points to build the biased

stochastic gradients u𝑛,𝑡 , and need 𝑇 iterations. Thus, our SLATE

algorithm has a sample complexity of 𝑚 · 𝑇 = 𝑂 (𝑁 −1𝜀−6), for
finding an 𝜖-stationary point. In addition, the result also indicates

the linear speedup of our algorithm with respect to the number of

worker nodes.

5.4 Convergence Analysis of SLATE-M
In the subsection, we study the convergence properties of our

SLATE-M algorithm. The details about proofs are provided in the

supplementary materials.

Theorem 2. Suppose the sequence {x̄𝑡 }𝑇𝑡=1
be generated from Algo-

rithm 2 and Assumptions 1, 2, and 3 hold, 0 < 𝜂 ≤ 𝑚𝑖𝑛{ 1

4
,

(1−𝜆2)2

90𝜆2
,

√
1−𝜆2

12

√
7𝜆

} 1

𝑆𝐹
and 𝛼 =

72𝑆2

𝐹
𝜂2

𝑁𝑏
, SLATE-M in Algorithm 2 has

the following

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇F(x̄𝑡 )∥2 ≤ 2(F(x̄0) − F(x̄𝑇 ))
𝜂𝑇

+
3𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
+ 3

𝐿2

𝑔𝐿
2

𝑓

𝛼𝑁𝐵𝑇

+
6𝛼𝐿2

𝑔𝐿
2

𝑓

𝑁𝑏
+

96𝜆2𝐿2

𝑔𝐿
2

𝑓(
1 − 𝜆2

)
3

𝐵𝑇
+

256𝜆2𝛼2𝐿2

𝑓
𝐿2

𝑔

(1 − 𝜆2)3
+

64𝜆4E
∇F̂0

2

(1 − 𝜆2)3𝑁𝑇

Corollary 2. Based on the analysis in the theorem 2, we choose
𝑏 = 𝑂 (1), 𝜂 = 𝑂 ( 𝑁 2/3

𝑇 1/3
), 𝛼 = 𝑂 ( 𝑁 1/3

𝑇 2/3
), 𝐵 = 𝑂 ( 𝑇 1/3

𝑁 2/3
), SLATE-M in

Algorithm 2 has the following

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇F(x̄𝑡 )∥2 ≤ 𝑂 ( 2(F(x̄0) − F(x̄𝑇 ))
(𝑁𝑇 )2/3

+
3𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚

+𝑂 (
3𝐿2

𝑔𝐿
2

𝑓

(𝑁𝑇 )2/3

) +𝑂 (
6𝐿2

𝑔𝐿
2

𝑓

(𝑁𝑇 )2/3

) +
352𝜆2𝐿2

𝑓
𝐿2

𝑔

(1 − 𝜆2)3
𝑂 (𝑁

2/3

𝑇 4/3

)

+
64𝜆4E

∇F̂0

2

(1 − 𝜆2)3𝑁𝑇
(13)

Based on the result in theorem 2, we can get the convergence

result of SLATE-M.

Remark 2. According to Corollary 2, without loss of generality, Let

𝑚 = 𝑂 (𝜀−2),𝑏 = 𝑂 (1) 𝜂 = 𝑂 ( 𝑁 2/3

𝑇 1/3
), 𝛼 = 𝑂 ( 𝑁 1/3

𝑇 2/3
), and𝐵 = 𝑂 ( 𝑇 1/3

𝑁 2/3
),

we know to make
1

𝑇

∑𝑇−1

𝑡=0
E∥∇𝐹 (x̄𝑡 )∥2 ≤ 𝜀2

, we have iterations 𝑇

should be as large as 𝑂 (𝑁 −1𝜀−3).
In Algorithm 2, in each iteration, we sample 𝑏 +𝑚 data points

to build the biased stochastic gradients u𝑛,𝑡 , and need 𝑇 iterations.

Thus, our SLATE-M algorithm has a sample complexity of𝑚 ·𝑇 =

𝑂 (𝑁 −1𝜀−5), for finding an 𝜖-stationary point, which also achieves

the linear speedup of our algorithm with respect to the number of

worker nodes.

Remark 3. The sample complexity of 𝑂 (𝑁 −1𝜀−5) in SLATE-M

matches the best convergence complexity achieved by the single-

machine stochastic method for conditional stochastic optimization

in the online setting, and also match the lower bound for the online

stochastic algorithms [18].

6 EXPERIMENTS
In this section, we conduct extensive experiments on imbalanced

benchmark datasets to show the efficiency of our algorithms. All

experiments are run over a machine with AMD EPYC 7513 32-

Core Processors and NVIDIA RTX A6000 GPU. The source code is

available at https://github.com/xidongwu/D-AUPRC.
The goal of our experiments is two-fold: (1) to verify that (4)

is the surrogate function of AUPRC and illustrate that directly

optimizing the AUPRC in the multi-party collaborative training

would improve the model performance compared with traditional

loss optimization, and (2) to show the efficiency of our methods for

AUPRC maximization.

6.1 Configurations
Datasets: We conduct experiments on imbalanced benchmark

datasets from LIBSVM data
1
: w7a and w8a, and four typical image

datasets: MNIST dataset, Fashion-MNIST dataset, CIFAR-10, and

Tiny-ImageNet dataset (seen in Table 1). For w7a and w8a, we scale

features to [0, 1]. For image datasets, following [37, 42], we con-

struct the imbalanced binary-class versions as follows: Firstly, the

first half of the classes (0 - 4) in the original MNIST, Fashion-MNIST,

and CIFAR-10, and (0 - 99) in Tiny-ImageNet datasets are converted

to be the negative class, and another half of classes are considered

to be the positive class. Because the original distributions of image

datasets are balanced, we randomly drop 80% of the positive ex-

amples in the training set to make them imbalanced and keep test

sets of image datasets unchanged. Finally, we evenly partition each

datasets into disjoint sets and distribute datasets among worker

nodes.

Models: For w7a and w8a, we use two layers of neural net-

works with the dimension of the hidden layer as 28. The RELU is

used as the activation function. For MNIST, Fashion MNIST and

Cifar-10 data sets, we choose model architectures from [46] for our

imbalanced binary image classification task. For Tiny-ImageNet,

we choose ResNet-18 [15] as the classifier. In our algorithms, We

1
https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
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Table 1: Statistics of benchmark datasets

Data Set Training examples Testing examples Feature Size Proportion of positive data

w7a 24692 25057 300 2.99%

w8a 49749 14951 300 2.97 %

MNIST 60000 10000 28 × 28 16.7%

Fashion MNIST 60000 10000 28 × 28 16.7 %

CIFAR-10 50000 10000 3 × 32 × 32 16.7 %

Tiny-ImageNet 100000 10000 3 × 64 × 64 16.7 %

(a) w7a dataset (b) MNIST dataset (c) CIFAR-10 dataset

Figure 1: Precision-Recall curves of the models on the testing set

(a) w7a dataset (b) w8a dataset (c) MNIST dataset

(d) Fashion MNIST dataset (e) CIFAR-10 dataset (f) Tiny-ImageNet dataset

Figure 2: AP vs Iterations on the test set

modify the output of all models to 1 and the sigmoid function is

followed since we consider binary classification tasks.

In the experiments, the number of worker nodes is set as N = 20

and we use the ring-based topology as the communication network

structure. [25].

6.2 Comparison with Existing Multi-Party
Stochastic Methods

Baselines: We compare our algorithms with two baselines: 1) D-

PSGD [25], a SGD-like serverless multi-party collaborative algo-

rithm with the Cross-Entropy loss as the optimization objective.
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Table 2: Final averaged AP scores on the testing data

Method w7a w8a MNIST Fashion MNIST CIFAR-10 Tiny-ImageNet

D-PSGD 0.6372 0.6585 0.9592 0.9497 0.5058 0.5906

CODA 0.5414 0.5786 0.9460 0.9474 0.5668 0.5971

SLATE 0.7788 0.8072 0.9911 0.9515 0.7279 0.6032

SLATEM 0.7778 0.8063 0.9913 0.9515 0.7285 0.6131

Table 3: SLATE test accuracy on CIFAR-10 with margin pa-
rameter 𝑠, and positive batch size b (B=60)

Margin 0.1 0.3 0.5 0.7 0.9

b = 5 0.6270 0.5971 0.5992 0.5928 0.5765

b = 10 0.6910 0.5887 0.5956 0.5986 0.5989

b = 15 0.7248 0.5895 0.5902 0.5952 0.5979

b = 20 0.7279 0.6001 0.5870 0.5929 0.5962

b = 25 0.7216 0.6038 0.5876 0.5933 0.5962

Table 4: SLATE-M test accuracy on CIFAR-10 with margin
parameter 𝑠, positive batch size b (B = 60), and 𝛼

Margin 0.1 (𝛼 = 0.1) 0.1 (𝛼 = 0.9) 0.3 (𝛼 = 0.1) 0.3 (𝛼 = 0.9)

b = 15 0.7273 0.7272 0.5853 0.5895

b = 20 0.7285 0.7289 0.5986 0.6001

b = 25 0.7167 0.7206 0.6024 0.6036

D-PSGD runs SGD locally and then computes the neighborhood

weighted average by fetching model parameters from neighbors;

2) CODA, a typical federated learning algorithm for optimizing

minimax formulated AUROC loss [14, 55]. CODA runs local SGDA

with the periodic model average in the federated learning setting.

We convert it into the serverless multi-party setting and run local

SGDA, following the consensus step to update the models. Gradi-

ent tracking steps are ignored. In the experiments, we ignore the

gradient tracking steps to reduce computation and communication

costs.

Parameter tuning: We perform a grid search to tune all methods

carefully. The total batch size m drawn from D is chosen in the set

{20, 20, 20, 20, 60, 200}. For SLATE and SLATE-M, the positive batch

size b in the total batch size is chosen in the set {2, 2, 3, 5, 20, 35},
and m - b negative data points. The squared hinge loss is used as (2),

𝛼 is chosen from {0.1, 0.9} and the margin parameter s is selected

from {0.1, 0.3, 0.5, 0.7, 0.9}. The step size is selected from the set

{0.01, 0.005, 0.001}. For the D-PSGD, the step size is chosen in the

set {0.01, 0.005, 0.001}. For the CODA, the step size for minimum

variable is chose from the set {0.01, 0.005, 0.001} and that for the

maximum variable is chosen from the set {0.0001, 0.0005, 0.001}.
Moreover, we use Xavier normal to initialize models.

Experimental results: Table 2 summarizes the final results on

the test sets. In order to present the advantage of optimization

of AUPRC, we plot the Precision-Recall curves of final models on

testing sets of W7A, MNIST, and CIFAR-10 when training stop in

Figure 1. Then we illustrate the convergence curve on test sets in

Figure 2. Results show that our algorithms (i.e., SLATE, SLATE-M)

can outperform baselines in terms of AP with a great margin across

each benchmark, regardless of model structure. The experiments

verify that 1) the objective function (4) is a good surrogate loss

function of AUPRC and directly optimizing the AUPRC in the multi-

party collaborative training would improve the model performance

compared with traditional loss optimization in the imbalanced data

mining. 2) Although CODA, with minimax formulated AUROC

loss, has a relatively better performance compared with D-PSGD

in large-scale datasets (CIFAR-10 and Tiny-ImageNet), the results

verify the previous results that an algorithm that maximizes AU-

ROC does not necessarily maximize AUPRC. Therefore, designing

the algorithms for AUPRC in multi-party collaborative training is

necessary. 3) our algorithms can efficiently optimize the (4) and

largely improve the performance in terms of AUPRC in multi-party

collaborative imbalanced data mining. 4) In datasets CIFAR-10 and

Tiny-ImageNet, SLATE-M has better performance compared with

SLATE.

Ablation study: In this part, we study the effect of margin param-

eters, positive batch size, and 𝛼 of SLATE-M. The results are listed

in Table 3 and Table 4.

7 CONCLUSION
In this paper, we systematically studied how to design serverless

multi-party collaborative learning algorithms to directly maximize

AUPRC and also provided the theoretical guarantee on algorithm

convergence. To the best of our knowledge, this is the first work to

optimize AUPRC in the multi-party collaborative training. We cast

the AUPRC maximization problem into non-convex two-level sto-

chastic optimization functions under the multi-party collaborative

learning settings as the problem (4), and proposed the first multi-

party collaborative learning algorithm, ServerLess biAsed sTochas-

tic gradiEnt (SLATE). Theoretical analysis shows that SLATE has a

sample complexity of 𝑂 (𝜀−6) and shows a linear speedup respec-

tive to the number of worker nodes. Furthermore, we proposed a

stochastic method (i.e., SLATE-M) based on the momentum-based

variance-reduced technique to reduce the convergence complexity

for maximizing AP in multi-party collaborative optimization. Our

methods reach iteration complexity of𝑂
(
1/𝜖5

)
, which matches the

best convergence complexity achieved by the single-machine sto-

chastic method for conditional stochastic optimization in the online

setting, and also matches the lower bound for the online stochastic

algorithms. Unlike existing single-machine methods that just focus

on finite-sum settings andmust keep an inner state for each positive

data point, we consider the stochastic online setting. The extensive

experiments on various data sets compared with previous stochastic

multi-party collaborative optimization algorithms validate the ef-

fectiveness of our methods. Experimental results also demonstrate

that directly optimizing the AUPRC in the multi-party collaborative

training would largely improve the model performance compared

with traditional loss optimization.
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A SUPPLEMENTARY MATERIAL
A.1 Basic Lemma
We draw one sample 𝜉𝑛 from D+

𝑛 and𝑚 sample 𝜉 ′𝑛 from D𝑛 as B𝑛 . We define

𝑔𝑛 (𝑥 ; 𝜉𝑛) = E𝜉 ′𝑛∼D𝑛
𝑔𝑛

(
𝑥 ; 𝜉𝑛, 𝜉

′
𝑛

)
𝑔𝑛 (𝑥, 𝜉𝑛) =

1

𝑚

∑︁
𝜉 ′𝑛∈B𝑛

𝑔𝑛 (𝑥, 𝜉𝑛 ; 𝜉 ′𝑛)

𝐹𝑛 (𝑥 ; 𝜉𝑛,B𝑛) = 𝑓 (𝑔𝑛 (𝑥, 𝜉𝑛))

We also define

∇𝐹𝑛 (𝑥) = ∇E𝜉𝑛 𝑓 (𝑔𝑛 (𝑥, 𝜉𝑛)) = E𝜉𝑛 [∇ (𝑓 (𝑔𝑛 (𝑥, 𝜉𝑛)))] = E𝜉𝑛 [∇𝑓 (𝑔𝑛 (𝑥, 𝜉𝑛)) · ∇𝑔𝑛 (𝑥, 𝜉𝑛)]

𝐹𝑛 (𝑥) = E𝐹𝑛 (𝑥 ; 𝜉𝑛,B𝑛) = E [𝑓 (𝑔𝑛 (𝑥, 𝜉𝑛))]

∇𝐹𝑛 (𝑥) = E∇𝐹𝑛 (𝑥 ; 𝜉𝑛,B𝑛) (14)

For convenience, we denote

x̄𝑡 =
1

𝑁

𝑁∑︁
𝑛=1

x𝑛,𝑡 , v̄𝑡 =
1

𝑁

𝑁∑︁
𝑛=1

v𝑛,𝑡 , ū𝑡 =
1

𝑁

𝑁∑︁
𝑛=1

u𝑛,𝑡 𝐹 (x̄) = 1

𝑁

𝑁∑︁
𝑛=1

𝐹𝑛 (x̄),∇𝐹 (x̄) =
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x̄) (15)

and ∇F̂𝑡 = [∇𝐹1 (x1)⊤,∇𝐹2 (x2)⊤, . . . ,∇𝐹𝑁 (x𝑁 )⊤]⊤ ∈ R𝑛𝑑 .

Lemma 4. (Lemma 6 in [51]) Let {𝑉𝑡 }𝑡≥0, {𝑅𝑡 }𝑡≥0 and {𝑄𝑡 }𝑡≥0 be non-negative sequences and 𝐶 ≥ 0 be some constant such that 𝑉𝑡 ≤
𝑞𝑉𝑡−1 + 𝑞𝑅𝑡−1 +𝑄𝑡 +𝐶,∀𝑡 ≥ 1, where 𝑞 ∈ (0, 1) Then the following inequality holds: ∀𝑇 ≥ 1,

𝑇−1∑︁
𝑡=0

𝑉𝑡 ≤ 𝑉0

1 − 𝑞
+ 1

1 − 𝑞

𝑇−2∑︁
𝑡=0

𝑅𝑡 +
1

1 − 𝑞

𝑇−1∑︁
𝑡=1

𝑄𝑡 +
𝐶𝑇

1 − 𝑞
(16)

B SLATE
B.1 Proofs of the Intermediate Lemmas
Lemma 5. Let Assumptions 1, 2 hold, and 𝐹 is 𝑆𝐹 -smooth, we have

E𝐹 (x̄𝑡+1) ≤ E𝐹 (x̄𝑡 ) − (𝜂
2

− 𝜂2𝑆𝐹 )E∥∇𝐹 (x̄𝑡 )∥2 − 𝜂

2

E∥∇𝐹 (x̄𝑡 )∥2

+
𝜂𝑆2

𝐹

𝑁

𝑁∑︁
𝑛=1

∥𝑥𝑛,𝑡 − x̄𝑡 ∥2 +
𝜂𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
+
𝜂2𝑆𝐹𝐿

2

𝑓
𝐿2

𝑔

𝑁
(17)

Proof. Based on the smoothness of F, we have

E𝐹 (x̄𝑡+1)
(𝑎)
≤ E𝐹 (x̄𝑡 ) + E⟨∇𝐹 (x̄𝑡 ), x̄𝑡+1 − x̄𝑡 ⟩ +

𝑆𝐹

2

E ∥x̄𝑡+1 − x̄𝑡 ∥2

(𝑏 )
≤ E𝐹 (x̄𝑡 ) − 𝜂E⟨∇𝐹 (x̄𝑡 ), ū𝑡 ⟩ +

𝜂2𝑆𝐹

2

E∥ū𝑡 ∥2

(𝑐 )
≤ E𝐹 (x̄𝑡 ) − 𝜂E⟨∇𝐹 (x̄𝑡 ),

1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )⟩ + 𝜂2𝑆𝐹E[∥ū𝑡 −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2 + ∥ 1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2]

(𝑑 )
= E𝐹 (x̄𝑡 ) − (𝜂

2

− 𝜂2𝑆𝐹 )E∥
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2 − 𝜂

2

E∥∇𝐹 (x̄𝑡 )∥2 + 𝜂

2

E∥∇𝐹 (x̄𝑡 ) −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2 + 𝜂2𝑆𝐹E∥ū𝑡 −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2

≤ E𝐹 (x̄𝑡 ) − (𝜂
2

− 𝜂2𝑆𝐹 )∥
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2 − 𝜂

2

E∥∇𝐹 (x̄𝑡 )∥2 + 𝜂E∥∇𝐹 (x̄𝑡 ) −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2

+ 𝜂E∥ 1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 ) −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2 + 𝜂2𝑆𝐹E∥
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 ) − ū𝑡 ∥2
(18)
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where inequality (a) holds by the smoothness of 𝐹 ; equality (b) follows from update step in Step 9 of Algorithm 1 and lemma 2 (b); (c) uses

the fact that E𝑢𝑛,𝑡 = ∇𝐹𝑛 (x𝑛,𝑡 ) and ∥𝑎 + 𝑏∥2 ≤ 2∥𝑎∥2 + 2∥𝑏∥2
; (d) holds since the inequality ⟨𝑎, 𝑏⟩ = 1

2
[∥𝑎∥2 + ∥𝑎∥2 − ∥𝑎 − 𝑏∥2]. Taking

expectation on both sides and considering the last third term

E∥∇𝐹 (x̄𝑡 ) −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2 ≤ 1

𝑁

𝑁∑︁
𝑖=1

E∥∇𝐹𝑛 (x̄𝑡 ) − ∇𝐹𝑛 (x𝑛,𝑡 )∥2

≤
𝑆2

𝐹

𝑁

𝑁∑︁
𝑖=1

∥𝑥𝑛,𝑡 − x̄𝑡 ∥2
(19)

Considering the last second term and Lemma 2 (a), we have

E∥ 1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 ) −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2 ≤ 1

𝑁

𝑁∑︁
𝑛=1

E∥∇𝐹𝑛 (x𝑛,𝑡 ) − ∇𝐹𝑛 (x𝑛,𝑡 )∥2

≤
𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
(20)

Given that E𝑢𝑛,𝑡 = ∇𝐹𝑛 (x𝑛,𝑡 ) and Lemma 2 (c), for the last term, we have

E∥ 1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 ) − ū𝑡 ∥2 ≤ 1

𝑁 2

𝑁∑︁
𝑛=1

E∥∇𝐹𝑛 (x𝑛,𝑡 ) − u𝑛,𝑡 ∥2 ≤
𝐿2

𝑓
𝐿2

𝑔

𝑁
(21)

Therefore, we obtain

E𝐹 (x̄𝑡+1) ≤ E𝐹 (x̄𝑡 ) − (𝜂
2

− 𝜂2𝑆𝐹 )E∥∇𝐹 (x̄𝑡 )∥2 − 𝜂

2

E∥∇𝐹 (x̄𝑡 )∥2 +
𝜂𝑆2

𝐹

𝑁

𝑁∑︁
𝑛=1

∥𝑥𝑛,𝑡 − x̄𝑡 ∥2

+
𝜂𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
+
𝜂2𝑆𝐹𝐿

2

𝑓
𝐿2

𝑔

𝑁
(22)

□

Lemma 6. Let Assumptions 1, 2 hold. We have: ∀𝑡 ≥ 0,

E
[
∥v𝑡+1 − Jv𝑡+1∥2

]
≤ 1 + 𝜆2

2

E
[
∥v𝑡 − Jv𝑡 ∥2

]
+

6𝜆2𝜂2𝑆2

𝐹
𝑁

1 − 𝜆2
E

∇𝐹𝑡 2

+
24𝜆2𝑆2

𝐹

1 − 𝜆2
E

[
∥x𝑡 − Jx𝑡 ∥2

]
+

(
6𝜆2𝜂2𝑆2

𝐹
𝑁

1 − 𝜆2
+ 3𝑁 + 2

)
𝐿2

𝑓
𝐿2

𝑔 (23)

Proof. Using the gradient tracking update step in Algorithm 1, and the fact that WJ = JW = J, we have: ∀𝑡 ≥ 0,

E ∥v𝑡+1 − Jv𝑡+1∥2

=E ∥W (v𝑡 + u𝑡+1 − u𝑡 ) − J (v𝑡 + u𝑡+1 − u𝑡 )∥2

=E ∥Wv𝑡 − Jv𝑡 + (W − J) (u𝑡+1 − u𝑡 )∥2

=E ∥Wv𝑡 − Jv𝑡 ∥2 + E ∥(W − J) (u𝑡+1 − u𝑡 )∥2

+ 2E ⟨(W − J)v𝑡 , (W − J) (u𝑡+1 − u𝑡 )⟩
≤𝜆2E ∥v𝑡 − Jv𝑡 ∥2 + 𝜆2E ∥u𝑡+1 − u𝑡 ∥2

+ 2E ⟨(W − J)v𝑡 , (W − J) (u𝑡+1 − u𝑡 )⟩ (24)

where the last inequality is due to Lemma 3 (a). since 𝑢𝑡+1 and 𝑣𝑡+1 are F𝑡+1 -measurable.

For the second term in (24), we have

E ∥u𝑡+1 − u𝑡 ∥2

(𝑎)
= E[∥u𝑡+1 − ∇F̂𝑡+1∥2 + ∥∇F̂𝑡+1 − u𝑡 ∥2]
=E[∥u𝑡+1 − ∇F̂𝑡+1∥2 + 2∥∇F̂𝑡+1 − ∇F̂𝑡 ∥2 + 2∥u𝑡 − ∇F̂𝑡 ∥2]
≤3𝑁𝐿2

𝑓
𝐿2

𝑔 + 2𝑆2

𝐹E
[
∥x𝑡+1 − x𝑡 ∥2

]
(25)
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where the equality (a) follows that E[u𝑡+1 | F𝑡+1] = ∇F̂𝑡+1 and the last inequality uses Lemma 2 (b) and (c). ∀𝑡 ≥ 0,

E ∥x𝑡+1 − x𝑡 ∥2 =E ∥x𝑡+1 − Jx𝑡+1 + Jx𝑡+1 − Jx𝑡 + Jx𝑡 − x𝑡 ∥2

(𝑎)
≤ 3E ∥x𝑡+1 − Jx𝑡+1∥2 + 3𝑁𝜂2E ∥ū𝑡 ∥2 + 3E ∥x𝑡 − Jx𝑡 ∥2

(𝑏 )
≤ 9E

[
∥x𝑡 − Jx𝑡 ∥2

]
+ 3𝑁𝜂2E

[
∥ū𝑡 ∥2

]
+ 6𝜂2𝜆2E

[
∥v𝑡 − Jv𝑡 ∥2

]
(26)

where (b) holds due to Lemma 3 (b), and (c) holds due to (11) and 𝜆 ≤ 1. Putting the (26) into (25), we have

E ∥u𝑡+1 − u𝑡 ∥2 ≤ 3𝑁𝐿2

𝑓
𝐿2

𝑔 + 18𝑆2

𝐹E ∥x𝑡 − Jx𝑡 ∥2 + 6𝑁𝜂2𝑆2

𝐹E ∥ū𝑡 ∥2 + 12𝜂2𝜆2𝑆2

𝐹E ∥v𝑡 − Jv𝑡 ∥2
(27)

For the last term in (24), we have,

E [⟨(W − J)v𝑡 , (W − J) (u𝑡+1 − u𝑡 )⟩ | F𝑡+1]

=E
〈
(W − J)v𝑡 , (W − J)

(
∇F̂𝑡+1 − u𝑡

)〉
=E

〈
(W − J)v𝑡 , (W − J)

(
∇F̂𝑡 − u𝑡

)〉
+ E

〈
(W − J)v𝑡 , (W − J)

(
∇F̂𝑡+1 − ∇F̂𝑡

)〉
(28)

Furthermore, we have

E
[〈
(W − J)v𝑡 , (W − J)

(
∇F̂𝑡 − u𝑡

)〉
| F𝑡

]
(𝑎)
= E

[〈
Wv𝑡 , (W − J)

(
∇F̂𝑡 − u𝑡

)〉
| F𝑡

]
(𝑏 )
= E

[〈
W2 (v𝑡−1 + u𝑡 − u𝑡−1) , (W − J)

(
∇F̂𝑡 − u𝑡

)〉
| F𝑡

]
(𝑐 )
= E

[〈
W2u𝑡 , (W − J)

(
∇F̂𝑡 − u𝑡

)〉
| F𝑡

]
=E

[〈
W2

(
u𝑡 − ∇F̂𝑡

)
, (W − J)

(
∇F̂𝑡 − u𝑡

)〉
| F𝑡

]
=E

[(
u𝑡 − ∇F̂𝑡

)⊤ (
J − W⊤W2

) (
u𝑡 − ∇F̂𝑡

)
| F𝑡

]
=E

[(
u𝑡 − ∇F̂𝑡

)⊤
diag

(
J − W⊤W2

) (
u𝑡 − ∇F̂𝑡

)
| F𝑡

]
≤E

[u𝑡 − ∇F̂𝑡
2 | F𝑡

]
/𝑁 ≤ 𝐿2

𝑓
𝐿2

𝑔 (29)

where (a) holds since J(W − J) = O𝑛𝑝 , (b) because the update step of v𝑡 ; (c) because Eu𝑡 = ∇𝐹𝑡 and v𝑡−1 and u𝑡−1 are independently.

For the second term in (32), we have

E
〈
(W − J)v𝑡 , (W − J)

(
∇F̂𝑡+1 − ∇F̂𝑡

)〉
(𝑎)
= E

〈
(W − J) (v𝑡 − Jv𝑡 ) , (W − J)

(
∇F̂𝑡 − ∇F̂𝑡−1

)〉
(𝑏 )
≤ 𝜆2𝑆𝐹 ∥v𝑡 − Jv𝑡 ∥ ∥x𝑡+1 − x𝑡 ∥ (30)

where (a) follows (W − J)J = O𝑛𝑝 and (b) the Cauchy-Schwarz inequality and smooth of 𝐹 (𝑥), we have: ∀𝑘 ≥ 0, where the last inequality

uses ∥W − J∥ = 𝜆 and the 𝑆𝐹 smoothness of 𝐹𝑛,𝑡 .

Furthermore, ∀𝑡 ≥ 0,

∥x𝑡+1 − x𝑡 ∥
= ∥x𝑡+1 − Jx𝑡+1 + Jx𝑡+1 − Jx𝑡 + Jx𝑡 − x𝑡 ∥

≤ ∥x𝑡+1 − Jx𝑡+1∥ + 𝜂
√
𝑁 ∥ū𝑡 ∥ + ∥x𝑡 − Jx𝑡 ∥

≤2 ∥x𝑡 − Jx𝑡 ∥ + 𝜂
√
𝑁 ∥ū𝑡 ∥ + 𝜂𝜆 ∥v𝑡 − Jv𝑡 ∥ (31)

where the last inequality uses (12). Combining the above two inequalities, we have
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〈
(W − J)v𝑡 , (W − J)

(
∇F̂𝑡+1 − ∇F̂𝑡

)〉
≤𝜆3𝜂𝑆𝐹 ∥v𝑡 − Jv𝑡 ∥2 + (𝜆 ∥v𝑡 − Jv𝑡 ∥)

(
𝜆𝜂𝑆𝐹

√
𝑁 ∥ū𝑡 ∥

)
+ 2 (𝜆 ∥v𝑡 − Jv𝑡 ∥) (𝜆𝑆𝐹 ∥x𝑘 − Jx𝑘 ∥)

(𝑎)
≤ 𝜆3𝜂𝑆𝐹 ∥v𝑡 − Jv𝑡 ∥2 + 𝑐0𝜆

2

2

∥v𝑡 − Jv𝑡 ∥2 +
𝜆2𝜂2𝑆2

𝐹
𝑁

2𝑐0

∥ū𝑡 ∥2 + 𝑐1𝜆
2 ∥v𝑡 − Jv𝑡 ∥2 +

𝜆2𝑆2

𝐹

𝑐1

∥x𝑡 − Jx𝑡 ∥2

≤(𝜆3𝜂𝑆𝐹 + 𝑐0𝜆
2

2

+ 𝑐1𝜆
2) ∥v𝑡 − Jv𝑡 ∥2 +

𝜆2𝜂2𝑆2

𝐹
𝑁

2𝑐0

∥ū𝑡 ∥2 +
𝜆2𝑆2

𝐹

𝑐1

∥x𝑡 − Jx𝑡 ∥2
(32)

where (a) holds due to the Young’s inequality and 𝑐0, 𝑐1 (> 0) are arbitrary.
Then putting (27), (32), (29) and (32) into (24), we have

E∥v𝑡+1 − Jv𝑡+1
∥2 ≤𝜆2 (1 + 12𝜆2𝜂2𝑆2

𝐹 + 2𝜆𝜂𝑆𝐹 + 𝑐0 + 2𝑐1)E∥v𝑡 − Jv𝑡 ∥2 + 3𝜆2𝑁𝐿2

𝑓
𝐿2

𝑔

+2𝐿2

𝑓
𝐿2

𝑔 + (18 + 2

𝑐1

)𝜆2𝑆2

𝐹E∥x𝑡 − Jx𝑡 ∥2 + (6 + 1

𝑐0

)𝜆2𝜂2𝑆2

𝐹𝑁E∥ū𝑡 ∥2 . (33)

We set 𝑐0 = 1−𝜆2

6𝜆2
and 𝑐1 = 1−𝜆2

12𝜆2
. When 0 < 𝜂 ≤ min{ 1−𝜆2

24𝜆2𝑆𝐹
, 1

6𝑆𝐹
}, we have 𝜆2 (1 + 12𝜆2𝜂2𝑆2

𝐹
+ 2𝜆𝜂𝑆𝐹 + 𝑐0 + 2𝑐1) ≤ 1+𝜆2

2
, and the fact

E∥ū𝑡 ∥ =E∥
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2 + E∥ 1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 ) − ū𝑡 ∥2

≤2E∥ 1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 ) −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x̄𝑡 )∥2 + 2E∥ 1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x̄𝑡 )∥2 +
𝐿2

𝑓
𝐿2

𝑔

𝑁

≤
2𝑆2

𝐹

𝑁

𝑁∑︁
𝑛=1

E∥x𝑛,𝑡 − x̄𝑡 ∥2 + 2E∥∇𝐹 (x̄𝑡 )∥2 +
𝐿2

𝑓
𝐿2

𝑔

𝑁

then we have

E
[
∥v𝑡+1 − Jv𝑡+1∥2

]
≤ 1 + 𝜆2

2

E
[
∥v𝑡 − Jv𝑡 ∥2

]
+

(
6𝜆2𝜂2𝑆2

𝐹
𝑁

1 − 𝜆2
+ 3𝑁 + 2

)
𝐿2

𝑓
𝐿2

𝑔

+
36𝜆2𝑆2

𝐹

1 − 𝜆2
E

[
∥x𝑡 − Jx𝑡 ∥2

]
+

12𝜆2𝜂2𝑆2

𝐹
𝑁

1 − 𝜆2
E

∇𝐹 (x̄𝑡 )2

(34)

where

□

B.2 Proofs of Theorem
Based on previous lemmas, we start to prove the convergence of Theorem.

Proof. Recall Lemma 3, we have

∥x𝑡+1 − Jx𝑡+1∥2 ≤ 1 + 𝜆2

2

∥x𝑡 − Jx𝑡 ∥2 + 2𝜂2𝜆2

1 − 𝜆2
∥v𝑡 − Jv𝑡 ∥2

(35)

Putting (35) and lemma 6 into lemma 4, then we have

𝑇∑︁
𝑡=0

∥x𝑡 − Jx𝑡 ∥2 ≤ 4𝜆2𝜂2

(1 − 𝜆2)2

𝑇∑︁
𝑡=0

∥v𝑡 − Jv𝑡 ∥2
(36)

𝑇∑︁
𝑡=0

∥v𝑡 − Jv𝑡 ∥2 ≤ 2

1 − 𝜆2
∥v0 − Jv

0
∥2 +

(
6𝜆2𝜂2𝑆2

𝐹

1 − 𝜆2
+ 5𝑁

)
2𝐿2

𝑓
𝐿2

𝑔𝑇

1 − 𝜆2

+
72𝜆2𝑆2

𝐹

(1 − 𝜆2)2

𝑇∑︁
𝑡=0

E
[
∥x𝑡 − Jx𝑡 ∥2

]
+

24𝜆2𝜂2𝑆2

𝐹
𝑁

(1 − 𝜆2)2

𝑡=𝑇∑︁
𝑡=0

E
∇𝐹 (x̄𝑡 )2

(37)
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Then putting (36) into (37), we get

𝑇∑︁
𝑡=0

∥x𝑡 − Jx𝑡 ∥2 ≤ 4𝜆2𝜂2

(1 − 𝜆2)2

2

1 − 𝜆2
∥v0 − Jv

0
∥2 +

96𝜆4𝜂4𝑆2

𝐹
𝑁

(1 − 𝜆2)4

𝑡=𝑇∑︁
𝑡=0

E
∇𝐹 (x̄𝑡 )2

+
288𝜆4𝜂2𝑆2

𝐹

(1 − 𝜆2)4

𝑇∑︁
𝑡=0

E ∥x𝑡 − Jx𝑡 ∥2 +
(

6𝜆2𝜂2𝑆2

𝐹

1 − 𝜆2
+ 5𝑁

)
8𝜆2𝜂2𝐿2

𝑓
𝐿2

𝑔𝑇

(1 − 𝜆2)3

Then we have

[1 −
288𝜆4𝜂2𝑆2

𝐹

(1 − 𝜆2)4
]

𝑇∑︁
𝑡=0

∥x𝑡 − Jx𝑡 ∥2 ≤
(

6𝜆2𝜂2𝑆2

𝐹

1 − 𝜆2
+ 5𝑁

)
8𝜆2𝜂2𝐿2

𝑓
𝐿2

𝑔𝑇

(1 − 𝜆2)3
+

96𝜆4𝜂4𝑆2

𝐹
𝑁

(1 − 𝜆2)4

𝑡=𝑇∑︁
𝑡=0

E
∇𝐹 (x̄𝑡 )2

(38)

When 0 < 𝜂 ≤ min{ 1−𝜆2

24𝜆2𝑆𝐹
, 1

6𝑆𝐹
}, we have [1 − 192𝜆4𝜂2𝑆2

𝐹

(1−𝜆2 )4
] ≥ 1

2
, Therefore, we have

𝑇∑︁
𝑡=0

∥x𝑡 − Jx𝑡 ∥2 ≤
(

1

𝜆2
+ 5𝑁

)
16𝜆2𝜂2𝐿2

𝑓
𝐿2

𝑔𝑇

(1 − 𝜆2)2
+

192𝜆4𝜂4𝑆2

𝐹
𝑁

(1 − 𝜆2)4

𝑡=𝑇∑︁
𝑡=0

E
∇𝐹𝑡 2

(39)

Putting (39) into lemma 5, we have

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇𝐹 (x̄𝑡 )∥2 ≤ 2E[𝐹 (x̄0) − 𝐹 (x̄𝑇 )]
𝜂𝑇

+
2𝜂𝑆𝐹𝐿

2

𝑓
𝐿2

𝑔

𝑁

+
2𝑆2

𝐹

𝑁𝑇

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑛=1

∥𝑥𝑛,𝑡 − x̄𝑡 ∥2 +
2𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
− (1 − 2𝜂𝑆𝐹 )

𝑇

𝑇−1∑︁
𝑡=0

E∥∇𝐹 (x̄𝑡 )∥2

≤ 2E[𝐹 (x̄0) − 𝐹 (x̄𝑇 )]
𝜂𝑇

− 1

𝑇
[1 − 2𝜂𝑆𝐹 −

384𝜆4𝜂4𝑆4

𝐹

(1 − 𝜆2)4
]
𝑇−1∑︁
𝑡=0

∥∇𝐹 (x̄𝑡 )∥2

+
(

1

𝜆2
+ 5𝑁

)
32𝜆2𝜂2𝐿2

𝑓
𝐿2

𝑔𝑆
2

𝐹

(1 − 𝜆2)2𝑁
+

2𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
+

2𝜂𝑆𝐹𝐿
2

𝑓
𝐿2

𝑔

𝑁

≤ 2E[𝐹 (x̄0) − 𝐹 (x̄𝑇 )]
𝜂𝑇

+
(

1

𝜆2
+ 5𝑁

)
32𝜆2𝜂2𝐿2

𝑓
𝐿2

𝑔𝑆
2

𝐹

(1 − 𝜆2)2𝑁
+

2𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
+

2𝜂𝑆𝐹𝐿
2

𝑓
𝐿2

𝑔

𝑁

□

Then we discuss the convergence rate of the algorithm 1. Setting 𝜂 = 𝑂 (
√︃

𝑁
𝑇
) , we have final

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇𝐹 (x̄𝑡 )∥2 ≤ 𝑂 (E[𝐹 (x̄0) − 𝐹 (x̄𝑇 )]
(𝑁𝑇 )1/2

) +
(

1

𝜆2
+ 5𝑁

)
32𝜆2𝐿2

𝑓
𝐿2

𝑔𝑆
2

𝐹

(1 − 𝜆2)2
𝑂 ( 1

𝑇
) +

2𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
+𝑂 (

2𝑆𝐹𝐿
2

𝑓
𝐿2

𝑔

(𝑁𝑇 )1/2

) (40)

Let𝑚 = 𝑂 (𝜀−2) and
√
𝑇 > 𝑁 , we know to make

1

𝑇

∑𝑇−1

𝑡=0
E∥∇𝐹 (x̄𝑡 )∥2 ≤ 𝜀2

, we have 𝑇 ≤ 𝑁 −1𝜀−4
.

C PROOF OF SLATE-M ALGORITHM
C.1 Proofs of the Intermediate Lemmas
Lemma 7. Suppose the sequence {𝑥𝑡 }𝑇

0
are generated from SLATE-M in algorithm 2, we have

𝐹 (x̄𝑡+1) ≤ 𝐹 (x̄𝑡 ) − (𝜂
2

− 𝜂2𝑆𝐹

2

)∥ū𝑡 ∥2 − 𝜂

2

∥∇𝐹 (x̄𝑡 )∥2 +
3𝜂𝑆2

𝐹

2𝑁
∥x𝑡 − x̄𝑡 ∥2

+
3𝜂𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

2𝑚
+ 3𝜂

2

∥ 1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 ) − ū𝑡 ∥2
(41)
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Proof.

𝐹 (x̄𝑡+1)
(𝑎)
≤ 𝐹 (x̄𝑡 ) + ⟨∇𝐹 (x̄𝑡 ), x̄𝑡+1 − x̄𝑡 ⟩ +

𝑆𝐹

2

∥x̄𝑡+1 − x̄𝑡 ∥2

(𝑏 )
= 𝐹 (x̄𝑡 ) − 𝜂⟨∇𝐹 (x̄𝑡 ), ū𝑡 ⟩ +

𝜂2𝑆𝐹

2

∥ū𝑡 ∥2

(𝑐 )
= 𝐹 (x̄𝑡 ) − (𝜂

2

− 𝜂2𝑆𝐹

2

)∥ū𝑡 ∥2 − 𝜂

2

∥∇𝐹 (x̄𝑡 )∥2 + 𝜂

2

∥∇𝐹 (x̄𝑡 ) − ū𝑡 ∥2

≤ 𝐹 (x̄𝑡 ) − (𝜂
2

− 𝜂2𝑆𝐹

2

)∥ū𝑡 ∥2 − 𝜂

2

∥∇𝐹 (x̄𝑡 )∥2 + 3𝜂

2

∥∇𝐹 (x̄𝑡 ) −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2

+ 3𝜂

2

∥ 1

𝑁

𝑁∑︁
𝑛=1

∇𝐹 (x𝑛,𝑡 ) −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2 + 3𝜂

2

∥ 1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 ) − ū𝑡 ∥2
(42)

where inequality (a) holds by the smoothness of F(x); equality (b) follows from update step in Step 9 of Algorithm 1; (c) uses the fact that

⟨𝑎, 𝑏⟩ = 1

2
[∥𝑎∥2 + ∥𝑎∥2 − ∥𝑎 − 𝑏∥2]. Taking expectation on both sides and considering the last third term

E∥∇𝐹 (x̄𝑡 ) −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2 ≤ 1

𝑁

𝑁∑︁
𝑛=1

E∥∇𝐹𝑛 (x̄𝑡 ) − ∇𝐹𝑛 (x𝑛,𝑡 )∥2 ≤
𝑆2

𝐹

𝑁

𝑁∑︁
𝑛=1

∥𝑥𝑛,𝑡 − x̄𝑡 ∥2
(43)

Considering the last second term, we have

E∥ 1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑡 ) −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑡 )∥2 ≤ 1

𝑁

𝑁∑︁
𝑛=1

E∥∇𝐹𝑛 (x𝑛,𝑡 ) − ∇𝐹𝑛 (x𝑛,𝑡 )∥2 ≤
𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
(44)

Therefore, we obtain

𝐹 (x̄𝑡+1) ≤ 𝐹 (x̄𝑡 ) − (𝜂
2

− 𝜂2𝑆𝐹

2

)∥ū𝑡 ∥2 − 𝜂

2

∥∇𝐹 (x̄𝑡 )∥2 +
3𝜂𝑆2

𝐹

2𝑁

𝑁∑︁
𝑛=1

∥𝑥𝑛,𝑡 − x̄𝑡 ∥2

+
3𝜂𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

2𝑚
+ 3𝜂

2

∥ 1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 ) − ū𝑡 ∥2
(45)

□

Lemma 8. Assume that the stochastic partial derivatives 𝑢𝑡 be generated from SLATE-M in Algorithm 2, we have

E∥ū𝑡+1 −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡+1)∥2 ≤ (1𝛼)2E∥ū𝑡 −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2 +
2(1 − 𝛼)2𝑆2

𝐹

𝑁 2𝑏
E∥x𝑡+1 − x𝑡 ∥2 +

2𝛼2𝐿2

𝑔𝐿
2

𝑓

𝑁𝑏

E∥𝑢𝑛,𝑡+1 − ∇𝐹𝑛 (x𝑛,𝑡+1)∥2 ≤ (1 − 𝛼)2E∥u𝑛,𝑡 − ∇𝐹 (x𝑛,𝑡 )∥2 +
2(1 − 𝛼)2𝑆2

𝐹

𝑏
E∥𝑥𝑛,𝑡+1 − x𝑛,𝑡 ∥2 +

2𝛼2𝐿2

𝑔𝐿
2

𝑓

𝑏
(46)



KDD ’23, August 6–10, 2023, Long Beach, CA, USA Xidong Wu, Zhengmian Hu, Jian Pei, Heng Huang

Proof. Recall that ū𝑡+1 = 1

𝑁

∑𝑁
𝑛=1

[ 1

𝑏

∑𝑏
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖
𝑛,𝑡+1

,B𝑛,𝑡+1) + (1 − 𝛼) (𝑢𝑛,𝑡 − 1

𝑏

∑𝑏
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖
𝑛,𝑡+1

,B𝑛,𝑡+1))],
and ∇𝐹𝑛 (𝑥𝑛,𝑡 ) = E∇𝐹𝑛 (𝑥𝑛,𝑡 ; 𝜉𝑛,𝑡 ,B𝑛,𝑡 ), we have

E∥ū𝑡+1 −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡+1)∥2

=E∥ 1

𝑁

𝑁∑︁
𝑛=1

[ 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) + (1 − 𝛼) (𝑢𝑛,𝑡 −

1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1)) − ∇𝐹𝑛 (x𝑛,𝑡+1)] ∥2

=E∥ 1

𝑁

𝑁∑︁
𝑖=1

[( 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡+1)) − (1 − 𝛼) ( 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡 )) + (1 − 𝛼) (ū𝑡 − ∇𝐹 (x𝑛,𝑡 )] ∥2

(𝑎)
= (1 − 𝛼)2E∥ū𝑡 −

1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2 + 1

𝑁 2

𝑁∑︁
𝑖=1

E∥( 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡+1))

− (1 − 𝛼) ( 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡 ))∥2

=(1 − 𝛼)2E∥ū𝑡 −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2 + 1

𝑁 2

𝑁∑︁
𝑖=1

E∥(1 − 𝛼) [( 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡+1))

− ( 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡 ))] + 𝛼 ( 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡+1))∥2

≤(1 − 𝛼)2E∥ū𝑡 −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 )∥2 + 2(1 − 𝛼)2

𝑁 2

𝑁∑︁
𝑖=1

E∥( 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡+1))

− ( 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡+1))∥2 + 2𝛼2

𝑁 2

𝑁∑︁
𝑖=1

E∥( 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡+1))∥2

(𝑏 )
≤ (1 − 𝛼)2E∥ū𝑡 −

1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 ))∥2 +
2(1 − 𝛼)2𝑆2

𝐹

𝑁 2𝑏
E∥x𝑡+1 − x𝑡 ∥2 +

2𝛼2𝐿2

𝑔𝐿
2

𝑓

𝑁𝑏
(47)

where (a) holds due to E[( 1

𝑏

∑𝑏
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖
𝑛,𝑡+1

,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡+1)) − (1−𝛼) ( 1

𝑏

∑𝑏
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖
𝑛,𝑡+1

,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡 ))] = 0 and

(b) is due to the lemma 2 (b).Similarly, we have

E∥𝑢𝑛,𝑡+1 − ∇𝐹𝑛 (x𝑛,𝑡+1)∥2

=E∥ [ 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡+1)]

− (1 − 𝛼) ( 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (𝑥𝑛,𝑡+1)) + (1 − 𝛼) (𝑢𝑛,𝑡 − ∇𝐹𝑛 (x𝑛,𝑡 )∥2

=(1 − 𝛼)2E∥𝑢𝑛,𝑡 − ∇𝐹𝑛 (x𝑛,𝑡 )∥2 + E∥( 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡+1))

− (1 − 𝛼) ( 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡 ))∥2

≤(1 − 𝛼)2E∥𝑢𝑛,𝑡 − ∇𝐹𝑛 (x𝑛,𝑡 )∥2 + 2(1 − 𝛼)2E∥( 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡+1))

− ( 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡 ))∥2 + 2𝛼2E∥( 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡+1))∥2

≤(1 − 𝛼)2E∥u𝑛,𝑡 − ∇𝐹 (x𝑛,𝑡 )∥2 +
2(1 − 𝛼)2𝑆2

𝐹

𝑏
E∥𝑥𝑛,𝑡+1 − x𝑛,𝑡 ∥2 +

2𝛼2𝐿2

𝑔𝐿
2

𝑓

𝑏
(48)

□
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Lemma 9. Suppose sequence v𝑡 are generated by Algorithm 2 and if 0 < 𝜂 ≤ 1−𝜆2

2

√
24𝜆2𝑆𝐹

, we have

E ∥v𝑡+1 − Jv𝑡+1∥2 ≤ 3 + 𝜆2

4

E ∥v𝑡 − Jv𝑡 ∥2 +
21𝜆2𝑁𝑆2

𝐹
𝜂2

1 − 𝜆2
E ∥ū𝑡 ∥2

+
63𝜆2𝑆2

𝐹

1 − 𝜆2
E ∥x𝑡 − Jx𝑡 ∥2 + 7𝜆2𝛼2

1 − 𝜆2
E

u𝑡 − ∇F̂𝑡
2 + 3𝜆2𝑁𝛼2𝐿2

𝑓
𝐿2

𝑔

E ∥v0 − Jv
0
∥2 ≤ 𝜆2E

u0 − ∇F̂0

2 + 𝜆2E
∇F̂0

2

Proof. Similar to (24), we have

∥v𝑡+1 − Jv𝑡+1∥2 ≤ 𝜆2 ∥v𝑡 − Jv𝑡 ∥2 + 𝜆2 ∥u𝑡+1 − u𝑡 ∥2 + 2 ⟨(W − J)v𝑡 , (W − J) (u𝑡+1 − u𝑡 )⟩ (49)

To bound the above terms, we recall the update of each local stochastic gradient estimator u𝑛,𝑡 in Algorithm 2: ∀𝑡 ≥ 0,

𝑢𝑛,𝑡+1 =
1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) + (1 − 𝛼) (𝑢𝑛,𝑡 −

1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1))

Firstly, we consider the second term in (49), We have that ∀𝑡 ≥ 0 and ∀𝑛 ∈ [𝑁 ]

u𝑛,𝑡+1 − u𝑛,𝑡 =
1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − 𝛼𝑢𝑛,𝑡 − (1 − 𝛼) 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1))

=
1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) −

1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − 𝛼 (u𝑛,𝑡 − ∇𝐹𝑛 (x𝑛,𝑡 ))

+ 𝛼 ( 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡 )) (50)

We take the expectation to obtain: ∀𝑡 ≥ 1 and ∀𝑖 ∈ [1, 𝑁 ],

E
u𝑛,𝑡+1 − u𝑛,𝑡

2 ≤3E∥ 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡+1; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) −

1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1)∥2

+3𝛼2E∥𝑢𝑛,𝑡 − ∇𝐹𝑛 (x𝑛,𝑡 )∥2 + 3𝛼2E

 1

𝑏

𝑏∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,𝑡 ; 𝜉𝑖𝑛,𝑡+1
,B𝑛,𝑡+1) − ∇𝐹𝑛 (x𝑛,𝑡 )


2

≤3𝑆2

𝐹E
x𝑛,𝑡+1 − x𝑛,𝑡

2 + 3𝛼2E
𝑢𝑛,𝑡 − ∇𝐹𝑛 (x𝑛,𝑡 )

2 + 3𝛼2𝐿2

𝑔𝐿
2

𝑓
(51)

Next, towards the last term in (49). Then we take expectation on the both sides of (50), we have that ∀𝑡 ≥ 1,

E [u𝑡+1 − u𝑡 | F𝑡+1] = ∇F̂𝑡+1 − ∇F̂𝑡 − 𝛼 (u𝑡 − ∇F̂𝑡 ) (52)

Then we discuss the bound of the third term with F𝑡+1-measurability of v𝑡+1, we have: ∀𝑡 ≥ 1,

2 ⟨(W − J)v𝑡 , (W − J)E [u𝑡+1 − u𝑡 | F𝑡+1]⟩
(𝑎)
= 2

〈
(W − J)v𝑡 , (W − J)

(
∇F̂𝑡+1 − ∇F̂𝑡 − 𝛼 (u𝑡 − ∇F̂𝑡 )

)〉
(𝑏 )
≤ 2𝜆 ∥v𝑡 − Jv𝑡 ∥ · 𝜆

∇F̂𝑡+1 − ∇F̂𝑡 − 𝛼 (u𝑡 − ∇F̂𝑡 )


(𝑐 )
≤ 1 − 𝜆2

2

∥v𝑡 − Jv𝑡 ∥2 + 2𝜆4

1 − 𝜆2

∇F̂𝑡+1 − ∇F̂𝑡 − 𝛼 (u𝑡 − ∇F̂𝑡 )
2

,

(𝑑 )
≤ 1 − 𝜆2

2

∥v𝑡 − Jv𝑡 ∥2 +
4𝜆4𝑆2

𝐹

1 − 𝜆2
∥x𝑡+1 − x𝑡 ∥2 + 4𝜆4𝛼2

1 − 𝜆2
∥u𝑡 − ∇F̂𝑡 ∥2

(53)

where (a) uses (52), (b) is due to the Cauchy-Schwarz inequality and ∥W−J∥ = 𝜆, (c) uses the elementary inequality that 2𝑎𝑏 ≤ 𝑐0𝑎
2+𝑏2/𝑐0,

with 𝑐0 = 1−𝜆2

2𝜆2
for any 𝑎, 𝑏 ∈ R, and (𝑑) holds since each 𝐹 (𝑥) is 𝐿-smooth.
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Putting (51) and (53) into to (49) obtain: ∀𝑡 ≥ 1,

E ∥v𝑡+1 − Jv𝑡+1∥2 ≤ 1 + 𝜆2

2

E ∥v𝑡 − Jv𝑡 ∥2 +
7𝜆2𝑆2

𝐹

1 − 𝜆2
E ∥x𝑡+1 − x𝑡 ∥2 + 7𝜆2𝛼2

1 − 𝜆2
E

u𝑡 − ∇F̂𝑡
2 + 3𝜆2𝑁𝛼2𝐿2

𝑓
𝐿2

𝑔

(𝑎)
≤

(
1 + 𝜆2

2

+
42𝜆4𝑆2

𝐹
𝜂2

1 − 𝜆2

)
E ∥v𝑡 − Jv𝑡 ∥2 +

21𝜆2𝑁𝑆2

𝐹
𝜂2

1 − 𝜆2
E ∥ū𝑡 ∥2

+
63𝜆2𝑆2

𝐹

1 − 𝜆2
E ∥x𝑡 − Jx𝑡 ∥2 + 7𝜆2𝛼2

1 − 𝜆2
E

u𝑡 − ∇F̂𝑡
2 + 3𝜆2𝑁𝛼2𝐿2

𝑓
𝐿2

𝑔

(𝑏 )
≤ 3 + 𝜆2

4

E ∥v𝑡 − Jv𝑡 ∥2 +
21𝜆2𝑁𝑆2

𝐹
𝜂2

1 − 𝜆2
E ∥ū𝑡 ∥2

+
63𝜆2𝑆2

𝐹

1 − 𝜆2
E ∥x𝑡 − Jx𝑡 ∥2 + 7𝜆2𝛼2

1 − 𝜆2
E

u𝑡 − ∇F̂𝑡
2 + 3𝜆2𝑁𝛼2𝐿2

𝑓
𝐿2

𝑔 (54)

where (a) follows the (26) and (b) holds due to
1+𝜆2

2
+ 42𝜆4𝑆2

𝐹
𝜂2

1−𝜆2
≤ 3+𝜆2

4
if 0 < 𝛼 ≤ 1−𝜆2

2

√
42𝜆2𝑆𝐹

. In addition,

E ∥v0 − Jv
0
∥2 = E ∥W (u0) − JW (u0)∥2 = E ∥(W − J)u1∥2

≤ 𝜆2E
u0 − ∇F̂(x0) + ∇F̂(x0)

2

≤ 𝜆2E
u0 − ∇F̂0

2 + 𝜆2E
∇F̂0

2

□

C.2 proof of Theorem
Then we start the proof of Theorem 2.

Proof. Recall that

E∥ū𝑡+1 −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹 (𝑥𝑛,𝑡+1)∥2 ≤ (1 − 𝛼)2E∥ū𝑡 −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹 (x𝑛,𝑡 )∥2 +
2(1 − 𝛼)2𝑆2

𝐹

𝑁 2𝑏
E∥x𝑡+1 − x𝑡 ∥2 +

2𝛼2𝐿2

𝑔𝐿
2

𝑓

𝑁𝑏
(55)

We know that
1

1−(1−𝛼 )2
≤ 1

𝛼 for 𝛼 ∈ (0, 1). Based on Lemma 4, we have: ∀𝑇 ≥ 2,

𝑇−1∑︁
𝑡=0

E

ū𝑡 −
1

𝑁

𝑁∑︁
𝑛=1

∇𝐹 (𝑥𝑛,0)
2

(56)

≤
E

ū0 − 1

𝑁

∑𝑁
𝑛=1

∇𝐹 (𝑥𝑛,0)
2

𝛼
+
𝑇−2∑︁
𝑡=0

2𝑆2

𝐹

𝑁 2𝛼𝑏
E∥x𝑡+1 − x𝑡 ∥2 +

2𝛼𝐿2

𝑔𝐿
2

𝑓

𝑁𝑏
𝑇

≤
E

ū0 − 1

𝑁

∑𝑁
𝑛=1

∇𝐹 (𝑥𝑛,0)
2

𝛼
+

6𝑆2

𝐹

𝑁 2𝛼𝑏

𝑇−2∑︁
𝑡=0

[E∥x𝑡+1 − Jx𝑡+1
∥2 + ∥Jx𝑡+1

− Jx𝑡 ∥2 + ∥x𝑡 − Jx𝑡 ∥2] +
2𝛼𝐿2

𝑔𝐿
2

𝑓

𝑁𝑏
𝑇

≤
E

ū0 − 1

𝑁

∑𝑁
𝑛=1

∇𝐹 (𝑥𝑛,0)
2

𝛼
+

12𝑆2

𝐹

𝑁 2𝛼𝑏

𝑇−1∑︁
𝑡=0

E∥x𝑡 − Jx𝑡 ∥2 +
6𝜂2𝑆2

𝐹

𝑁𝛼𝑏

𝑇−1∑︁
𝑡=0

∥ū𝑡 ∥2 +
2𝛼𝐿2

𝑔𝐿
2

𝑓

𝑁𝑏
𝑇

≤
𝐿2

𝑔𝐿
2

𝑓

𝛼𝑁𝐵
+

12𝑆2

𝐹

𝑁 2𝛼𝑏

𝑇−1∑︁
𝑡=0

E∥x𝑡 − Jx𝑡 ∥2 +
6𝜂2𝑆2

𝐹

𝑁𝛼𝑏

𝑇−1∑︁
𝑡=0

∥ū𝑡 ∥2 +
2𝛼𝐿2

𝑔𝐿
2

𝑓

𝑁𝑏
𝑇

where 𝐵 is the initial batch size. Recall that

E∥𝑢𝑛,𝑡+1 − ∇𝐹𝑛 (x𝑛,𝑡+1)∥2 ≤ (1 − 𝛼)2E∥u𝑛,𝑡 − ∇𝐹 (x𝑛,𝑡 )∥2 +
2(1 − 𝛼)2𝑆2

𝐹

𝑏
E∥𝑥𝑛,𝑡+1 − x𝑛,𝑡 ∥2 +

2𝛼2𝐿2

𝑔𝐿
2

𝑓

𝑏
(57)
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Similarly, we have the following: ∀𝑇 ≥ 2,

𝑁∑︁
𝑛=1

𝑇−1∑︁
𝑡=0

E
u𝑛,𝑡 − ∇𝐹𝑛 (x𝑛,𝑡 )

2

(58)

≤
𝑁∑︁
𝑛=1

E
u𝑛,0 − ∇𝐹𝑛 (𝑥𝑛,0)

2

𝛼
+

2𝑆2

𝐹

𝛼𝑏

𝑇−2∑︁
𝑡=0

E∥𝑥𝑡+1 − 𝑥𝑡 ∥2 +
2𝛼𝑁𝐿2

𝑔𝐿
2

𝑓

𝑏
𝑇

≤
𝑁∑︁
𝑛=1

E
u𝑛,0 − ∇𝐹𝑛 (𝑥𝑛,0)

2

𝛼
+

6𝑁𝑆2

𝐹
𝜂2

𝛼

𝑇−1∑︁
𝑡=1

E ∥ū𝑡 ∥2 +
12𝑆2

𝐹

𝛼𝑏

𝑇∑︁
𝑡=1

E ∥x𝑡 − Jx𝑡 ∥2 +
2𝛼𝑁𝐿2

𝑔𝐿
2

𝑓

𝑏
𝑇

≤
𝑁𝐿2

𝑓
𝐿2

𝑔

𝛼𝐵
+

6𝑁𝑆2

𝐹
𝜂2

𝛼

𝑇−2∑︁
𝑡=0

E ∥ū𝑡 ∥2 +
12𝑆2

𝐹

𝛼𝑏

𝑇−1∑︁
𝑡=0

E ∥x𝑡 − Jx𝑡 ∥2 +
2𝛼𝑁𝐿2

𝑔𝐿
2

𝑓

𝑏
𝑇

where the last inequality follows that

E
u𝑛,0 − ∇𝐹 (x𝑛,0)

2

= E

 1

𝐵

𝐵∑︁
𝑖=1

∇𝐹𝑛 (x𝑛,0; 𝜉𝑖𝑛,0,B𝑛,0)) − ∇𝐹𝑛 (x𝑛,0)
2

(59)

(𝑎)
=

1

𝐵2

𝐵∑︁
𝑖=1

E
∇𝐹𝑛 (x𝑛,0; 𝜉𝑖𝑛,0,B𝑛,0)) − ∇𝐹𝑛 (x𝑛,0)

2

≤
𝐿2

𝑔𝐿
2

𝑓

𝐵
, (60)

where (𝑎) follows from E[ 1

𝑏

∑𝑏
𝑖=1

∇𝐹𝑛 (x𝑛,0; 𝜉𝑖
𝑛,0

,B𝑛,0)) − ∇𝐹𝑛 (x𝑛,0)] = 0.

To further bound

∑𝑇−1

𝑡=0

v𝑡 − Jy𝑡
2

, we obtain: if 0 < 𝛼 ≤ 1−𝜆2

2

√
24𝜆2𝑆𝐹

, then ∀𝑇 ≥ 2,

𝑇−1∑︁
𝑡=0

E
[
∥v𝑡 − Jv𝑡 ∥2

]
≤ 4E ∥v0 − Jv0∥2

1 − 𝜆2
+

84𝜆2𝑁𝑆2

𝐹
𝜂2(

1 − 𝜆2

)
2

𝑇−2∑︁
𝑡=0

E ∥ū𝑡 ∥2 +
252𝜆2𝑆2

𝐹(
1 − 𝜆2

)
2

𝑇−2∑︁
𝑡=0

E ∥x𝑡 − Jx𝑡 ∥2 + 28𝜆2𝛼2(
1 − 𝜆2

)
2

𝑇−1∑︁
𝑡=1

E
u𝑡 − ∇F̂ (x𝑡 )

2 +
12𝜆2𝑁𝛼2𝐿2

𝑓
𝐿2

𝑔𝑇

1 − 𝜆2

≤
4𝜆2E

∇F̂0

2

1 − 𝜆2
+

4𝜆2𝑁𝐿2

𝑓
𝐿2

𝑔(
1 − 𝜆2

)
𝐵

+
84𝜆2𝑁𝑆2

𝐹
𝜂2(

1 − 𝜆2

)
2

𝑇−1∑︁
𝑡=0

E ∥ū𝑡 ∥2 +
252𝜆2𝑆2

𝐹(
1 − 𝜆2

)
2

𝑇−1∑︁
𝑡=0

E ∥x𝑡 − Jx𝑡 ∥2 +
12𝜆2𝑁𝛼2𝐿2

𝑓
𝐿2

𝑔𝑇

1 − 𝜆2
+ 28𝜆2𝛼2(

1 − 𝜆2

)
2

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑛=1

E
u𝑛,𝑡 − ∇F̂𝑛

(
x𝑛,𝑡

)2

Furthermore, we use (58) and if 0 < 𝜂 ≤ 1−𝜆2

2

√
42𝜆2𝐿

and 𝛼 ∈ (0, 1), then ∀𝑇 ≥ 2,

𝑇−1∑︁
𝑡=0

E ∥v𝑡 − Jv𝑡 ∥2 ≤
252𝜆2𝑁𝑆2

𝐹
𝜂2(

1 − 𝜆2

)
2

𝑇−1∑︁
𝑡=0

E ∥ū𝑡 ∥2 +
588𝜆2𝑆2

𝐹(
1 − 𝜆2

)
2

𝑇−1∑︁
𝑡=0

E
[
∥x𝑡 − Jx𝑡 ∥2

]
+

28𝜆2𝑁𝛼𝐿2

𝑔𝐿
2

𝑓(
1 − 𝜆2

)
2

𝐵
+

56𝜆2𝑁𝛼3𝐿2

𝑓
𝐿2

𝐹
𝑇(

1 − 𝜆2

)
2

+
12𝜆2𝑁𝛼2𝐿2

𝑓
𝐿2

𝑔𝑇

1 − 𝜆2
+

4𝜆2E
∇F̂0

2

1 − 𝜆2
+

4𝜆2𝑁𝐿2

𝑓
𝐿2

𝑔(
1 − 𝜆2

)
𝐵

(61)

Finally, we use Lemma 4 in (10) to obtain: ∀𝑇 ≥ 2,

𝑇−1∑︁
𝑡=0

E ∥x𝑡 − Jx𝑡 ∥2 ≤ 4𝜆2𝜂2

(1 − 𝜆2)2

𝑇−2∑︁
𝑡=0

∥v𝑡 − Jy𝑡 ∥

≤
1008𝜆4𝑁𝑆2

𝐹
𝜂4(

1 − 𝜆2

)
4

𝑇−1∑︁
𝑡=0

E ∥ū𝑡 ∥2 +
2352𝜆4𝑆2

𝐹
𝜂2(

1 − 𝜆2

)
4

𝑇−1∑︁
𝑡=0

E ∥x𝑡 − Jx𝑡 ∥2

+ ( 7𝛼

1 − 𝜆2
+ 1)

16𝜆4𝑁𝐿2

𝑔𝐿
2

𝑓
𝜂2(

1 − 𝜆2

)
3

𝐵
+ ( 14𝛼

1 − 𝜆2
+ 3)

16𝜆2𝑁𝛼2𝐿2

𝑓
𝐿2

𝑔𝑇𝜂
2

(1 − 𝜆2)3
+

16𝜆4𝜂2

∇F̂0

2

(1 − 𝜆2)3
(62)
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which may be written equivalently as(
1 −

2352𝜆4𝑆2

𝐹
𝜂2(

1 − 𝜆2

)
4

)
𝑇∑︁
𝑡=1

E
[
∥x𝑡 − Jx𝑡 ∥2

]
≤

1008𝜆4𝑁𝑆2

𝐹
𝜂4(

1 − 𝜆2

)
4

𝑇−1∑︁
𝑡=0

E ∥ū𝑡 ∥2 + ( 7𝛼

1 − 𝜆2
+ 1)

16𝜆4𝑁𝐿2

𝑔𝐿
2

𝑓
𝜂2(

1 − 𝜆2

)
3

𝐵

+ ( 14𝛼

1 − 𝜆2
+ 3)

16𝜆2𝑁𝛼2𝐿2

𝑓
𝐿2

𝑔𝑇𝜂
2

(1 − 𝜆2)3
+

16𝜆4𝜂2E
∇F̂ (x0)

2

(1 − 𝜆2)3
(63)

We observe in (63) that

2352𝜆4𝑆2

𝐹
𝛼2

(1−𝜆2 )4
≤ 1

2
if 0 < 𝜂 ≤ (1−𝜆2)2

90𝜆2𝑆𝐹
. Based on Lemma 7, we have

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇F(x̄𝑡 )∥2 ≤ 2(F(x̄0) − F(x̄𝑇 ))
𝜂𝑇

− (1 − 𝜂𝑆𝐹 )
1

𝑇

𝑇−1∑︁
𝑡=0

∥ū𝑡 ∥2 +
3𝑆2

𝐹

𝑁𝑇

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑛=1

∥x𝑛,𝑡 − x̄𝑡 ∥2

+
3𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
+ 3

1

𝑇

𝑇−1∑︁
𝑡=0

∥ 1

𝑁

𝑁∑︁
𝑛=1

∇𝐹𝑛 (x𝑛,𝑡 ) − ū𝑡 ∥2

(𝑎)
≤ 2(F(x̄0) − F(x̄𝑇 ))

𝜂𝑇
− (1 − 𝜂𝑆𝐹 )

1

𝑇

𝑇−1∑︁
𝑡=0

∥ū𝑡 ∥2 +
3𝑆2

𝐹

𝑁𝑇

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑛=1

∥x𝑛,𝑡 − x̄𝑡 ∥2

+
3𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
+ 3

𝐿2

𝑔𝐿
2

𝑓

𝛼𝑁𝐵𝑇
+

36𝑆2

𝐹

𝑁 2𝛼𝑏𝑇

𝑇−1∑︁
𝑡=0

E∥x𝑡 − Jx𝑡 ∥2 +
18𝜂2𝑆2

𝐹

𝑁𝛼𝑏𝑇

𝑇−1∑︁
𝑡=0

∥ū𝑡 ∥2 +
6𝛼𝐿2

𝑔𝐿
2

𝑓

𝑁𝑏

(𝑏 )
≤ 2(F(x̄0) − F(x̄𝑇 ))

𝜂𝑇
− (1 − 𝜂𝑆𝐹 −

18𝜂2𝑆2

𝐹

𝑁𝛼𝑏
) 1

𝑇

𝑇−1∑︁
𝑡=0

∥ū𝑡 ∥2 + 2

𝑁𝜂2𝑇

𝑇−1∑︁
𝑡=0

E∥x𝑡 − Jx𝑡 ∥2

+
3𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
+ 3

𝐿2

𝑔𝐿
2

𝑓

𝛼𝑁𝐵𝑇
+

6𝛼𝐿2

𝑔𝐿
2

𝑓

𝑁𝑏

(𝑐 )
≤ 2(F(x̄0) − F(x̄𝑇 ))

𝜂𝑇
− (1 − 𝜂𝑆𝐹 −

18𝜂2𝑆2

𝐹

𝑁𝛼𝑏
) 1

𝑇

𝑇−1∑︁
𝑡=0

∥ū𝑡 ∥2 +
3𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
+ 3

𝐿2

𝑔𝐿
2

𝑓

𝛼𝑁𝐵𝑇
+

6𝛼𝐿2

𝑔𝐿
2

𝑓

𝑁𝑏

+
4032𝜆4𝑆2

𝐹
𝜂2(

1 − 𝜆2

)
4

𝑇

𝑇−1∑︁
𝑡=0

E ∥ū𝑡 ∥2 + ( 7𝛼

1 − 𝜆2
+ 1)

64𝜆4𝐿2

𝑔𝐿
2

𝑓(
1 − 𝜆2

)
3

𝐵𝑇
+ ( 14𝛼

1 − 𝜆2
+ 3)

64𝜆2𝛼2𝐿2

𝑓
𝐿2

𝑔

(1 − 𝜆2)3
+

64𝜆4E
∇F̂0

2

(1 − 𝜆2)3𝑁𝑇

=
2(F(x̄0) − F(x̄𝑇 ))

𝜂𝑇
− (1 − 𝜂𝑆𝐹 −

18𝜂2𝑆2

𝐹

𝑁𝛼𝑏
−

4032𝜆4𝑆2

𝐹
𝜂2(

1 − 𝜆2

)
4

) 1

𝑇

𝑇−1∑︁
𝑡=0

∥ū𝑡 ∥2 +
3𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
+ 3

𝐿2

𝑔𝐿
2

𝑓

𝛼𝑁𝐵𝑇
+

6𝛼𝐿2

𝑔𝐿
2

𝑓

𝑁𝑏

+ ( 7𝛼

1 − 𝜆2
+ 1)

64𝜆4𝐿2

𝑔𝐿
2

𝑓(
1 − 𝜆2

)
3

𝐵𝑇
+ ( 14𝛼

1 − 𝜆2
+ 3)

64𝜆2𝛼2𝐿2

𝑓
𝐿2

𝑔

(1 − 𝜆2)3
+

64𝜆4E
∇F̂0

2

(1 − 𝜆2)3𝑁𝑇

(𝑑 )
≤ 2(F(x̄0) − F(x̄𝑇 ))

𝜂𝑇
+

3𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚
+ 3

𝐿2

𝑔𝐿
2

𝑓

𝛼𝑁𝐵𝑇
+

6𝛼𝐿2

𝑔𝐿
2

𝑓

𝑁𝑏
+

96𝜆2𝐿2

𝑔𝐿
2

𝑓(
1 − 𝜆2

)
3

𝐵𝑇
+

256𝜆2𝛼2𝐿2

𝑓
𝐿2

𝑔

(1 − 𝜆2)3
+

64𝜆4E
∇F̂0

2

(1 − 𝜆2)3𝑁𝑇

where (a) holds due to (56); (b) uses the 𝛼 =
72𝑆2

𝐹
𝜂2

𝑁𝑏
and 𝑆𝐹𝜂 ≤ 1

4
≤ 1

2
; (c) follows the (63) and (d) holds due to the fact that 1−𝜂𝑆𝐹 − 18𝜂2𝑆2

𝐹

𝑁𝛼𝑏
−

4032𝜆4𝑆2

𝐹
𝜂2

(1−𝜆2 )4
≥ 0 if 0 < 𝜂 ≤ 𝑚𝑖𝑛{ 1

4
,
(1−𝜆2)2

90𝜆2
} 1

𝑆𝐹
, and 𝛼 =

72𝑆2

𝐹
𝜂2

𝑁𝑏
≤ 1−𝜆2

14𝜆2
if 𝜂 ≤

√
1−𝜆2

12

√
7𝜆𝑆𝐹

□

Then, we choose 𝑏 = 𝑂 (1), 𝜂 = 𝑂 ( 𝑁 2/3

𝑇 1/3
), 𝛼 = 𝑁 1/3

𝑇 2/3
, 𝐵 = 𝑇 1/3

𝑁 2/3

1

𝑇

𝑇−1∑︁
𝑡=0

E∥∇F(x̄𝑡 )∥2 ≤ 𝑂 ( 2(F(x̄0) − F(x̄𝑇 ))
(𝑁𝑇 )2/3

+
3𝐿2

𝑔𝑆
2

𝑓
𝜎2

𝑔

𝑚

+𝑂 (
3𝐿2

𝑔𝐿
2

𝑓

(𝑁𝑇 )2/3

) +𝑂 (
6𝐿2

𝑔𝐿
2

𝑓

(𝑁𝑇 )2/3

) +
352𝜆2𝐿2

𝑓
𝐿2

𝑔

(1 − 𝜆2)3
𝑂 (𝑁

2/3

𝑇 4/3

) +
64𝜆4E

∇F̂0

2

(1 − 𝜆2)3𝑁𝑇
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