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ABSTRACT
Due to the sweeping digitalization of processes, increasingly vast
amounts of time series data are being produced. Accurate classifi-
cation of such time series facilitates decision making in multiple
domains. State-of-the-art classification accuracy is often achieved
by ensemble learning where results are synthesized from multiple
base models. This characteristic implies that ensemble learning
needs substantial computing resources, preventing their use in
resource-limited environments, such as in edge devices. To extend
the applicability of ensemble learning, we propose the LightTS
framework that compresses large ensembles into lightweight mod-
els while ensuring competitive accuracy. First, we propose adaptive
ensemble distillation that assigns adaptive weights to different base
models such that their varying classification capabilities contribute
purposefully to the training of the lightweight model. Second, we
propose means of identifying Pareto optimal settings w.r.t. model
accuracy and model size, thus enabling users with a space budget
to select the most accurate lightweight model. We report on experi-
ments using 128 real-world time series sets and different types of
base models that justify key decisions in the design of LightTS and
provide evidence that LightTS is able to outperform competitors.

1 INTRODUCTION
With the instrumentation of processes in a broad range of settings,
time series data is increasingly prevalent. As a result, the ability
to analyze and create value from time series data is increasingly
important. For example, accurate classification of time series is
important in applications related to health, in industrial automation,
in web services, and in cybersecurity [1, 18, 48].

Time series classification methods are already capable of high
accuracy [44]. Most state-of-the-art methods [32, 36, 37] rely on en-
semble learning, where multiple base models perform classification
jointly. Ensemble learning is based on the wisdom of the crowd,
suggesting that a joint result from the crowd is often superior to
any result from a single source [2]. As shown in Figure 1(a), 𝑁
base models (𝐵𝑀s), e.g., classifiers based on InceptionTime [19],
Temporal Dictionary [38], or Forest Classifier [14], are combined
to provide a joint result. A simple and effective combination ap-
proach that is used commonly is to assign identical weights to all
base model, e.g., 1/𝑁 in Figure 1(a), such that all models contribute
equally to the result of the ensemble [6, 16, 31, 59].

While ensemble based methods achieve state-of-the-art accu-
racy, the use of multiple base models requires significant resources
for storing and executing the base models, which prevents their
use in resource-limited environments, e.g., on edge devices. For
example, the ongoing transformation of power grids to support
sustainable energy sources, e.g., wind and solar, relies on power

electronics (PE) devices that often have limited memory and com-
putational capabilities. It is of great interest to be able to perform
time series classification on PE devices—classifying workload time
series into different load levels can enable adaptive control and
maintenance [58]. To enable such uses, it is important to develop
lightweight models, e.g., using quantized (e.g., 4, 8, or 16 bits) param-
eters instead of full-precision (i.e., 32 bits) parameters. For instance,
a 16-bit quantized model may use only 50% of the storage of its full-
precision 32-bit counterpart. Focusing on the domain of time series
classification enables demonstrating the applicability of the pro-
posed method in real-world use cases such as PE adaptive control,
in addition to enabling evaluation of the proposal. Our methodology
is applicable in other domains with minor adjustments.

One approach to building such lightweight models in the setting
of large ensembles is Knowledge Distillation [25]. The idea is to
treat the large ensemble as a Teacher and then train a lightweight
Student model to mimic the results from the teacher—cf. Figure 1(b).
Though being an effective approach, two main challenges remain.
Lack of Distillation Flexibility: An important design consider-
ation in ensemble learning is to ensure a high level of diversity
among the base models. However, existing knowledge distillation
employs a single distillation step that employs the ensemble’s com-
bined output to teach the lightweight model, causing the contri-
bution by each base model to be fixed. When an ensemble uses
equal weights to combine the results of its base models, all base
models contribute equally to the lightweight model. This signifi-
cantly reduces the distillation flexibility. For example, some base
models may be more suitable for guiding the training of a 4-bit
quantized student model, while other base models may be more
suitable for a 16-bit model. Existing solutions are unable to identify
and exploit such diversity in the distillation process. As an analogy,
in a real-world teacher-student context, it is a good strategy to align
different subject teachers, e.g., physics or math teachers, with the
students who lack of the corresponding knowledge, e.g., physics
or math. Thus, using the same teacher, i.e., the ensemble, to teach
different quantized student models is too rigid. To enhance distilla-
tion flexibility, an approach is needed that can select different base
models adaptively, disregarding some models, and can assign appro-
priate weights to the selected models, thereby distilling knowledge
according to each student model’s level of compression.
Lack of Support for Pareto Optimal Settings: Existing knowl-
edge distillation considers distillations under specific student set-
tings [40]. For instance, for a deep learning based student model, a
student setting often specifies the number of layers and the quan-
tization bits of the parameters, e.g., 3 layers, 8 bits, and 40 filter
length as shown in Figure 1(b). However, in practical settings, we
often do not know how to configure such specific student settings
for different devices. Instead, only storage constraints are known.
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Figure 1: Ensemble Classifier, Knowledge Distillation, and LightTS.

Thus, it is beneficial to obtain Pareto optimal settings considering
accuracy vs. model sizes, a.k.a. Pareto frontiers (see the example in
Figure 2) over a large number of possible student settings. Given
edge devices with different storage constraints, Pareto frontiers
facilitate the selection of model settings with the highest accuracy
while meeting the storage constraints. For example, consider De-
vice #1 with a memory constraint of 100K. The Pareto frontier in
Figure 2 implies that Model𝑈 is the optimal model for the device, as
it has the highest accuracy among all models whose size is within
100K. The settings of Model𝑈 , 4 layers and 4-bit parameters, should
be used for Device #1. Similarly, for Device #2 with a memory con-
straint of 140K, we can use the frontier to identify an optimal model,
i.e., Model𝑉 . Thus, an effective and efficient method to identify the
Pareto frontier from a large number of student settings is called for
since the search space can reach sizes of 105 or even more.
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Figure 2: Pareto Frontier Example. Circles and crosses repre-
sent possible student settings. The Pareto frontier consists
of circles that represent optimal settings, as no other set-
tings exist with higher accuracy and smaller model size.

To address the two limitations, we propose LightTS, a flexible
framework to obtain Lightweight Time Series classification models
using novel adaptive ensemble distillation, as illustrated in Fig-
ure 1(c). LightTS is flexible in that it is model-agnostic—different
types of base models, including both deep and non-deep learning,
can be used in an ensemble that serves as input to LightTS.
Addressing Challenge 1: To ensure high distillation flexibility,
we propose a novel adaptive ensemble distillation. LightTS treats
all base models as teachers, rather than using the ensemble as a
single teacher, as done in classic knowledge distillation. In addi-
tion, LightTS adaptively assigns appropriate weights to different

teachers (𝜆𝑖 for teacher 𝑖 in Figure 1(c)). Given a specific quantized
student model, e.g., a 16-bit model, LightTS enables assignment of
higher weights to the teachers that may contribute more knowledge
to the training of the 16-bit model. It is also possible to disregard
unimportant teachers by assigning them zero weight. When a dif-
ferently quantized student model is called for, LightTS is able to
assign a different set of weights to the teachers. This offers con-
siderable distillation flexibility. We achieve this by a novel bi-level
optimization approach—an inner level optimization learns the quan-
tized model parameters of the student model, while an outer level
optimization adjusts the teacher weights {𝜆𝑖 }𝑁𝑖=1.
Addressing Challenge 2: We propose a novel encoded multi-
objective Bayesian optimization method to identify the Pareto fron-
tiers (see the lower part in Figure 1(c)). To do so, we first define a
search space that models a wide variety of quantized student model
settings. As shown in Figure 1(c), the search space specifies possible
layers per block (e.g., 1, 2, 3, 4, or 5), quantized parameter bit-widths
(e.g., 4, 8, 16, or 32 bits), and filter length (e.g., 10, 20, 40, 80, or 160).
Each layer can use parameters of a distinct size, thus giving rise to
a wide variety of quantized model settings.

Given a quantized model setting, we are able to obtain its accu-
racy, by using the proposed adaptive ensemble distillation, along
with its model size, by counting the total bits. However, it is prohib-
itively inefficient to compute the accuracy and size of all quantized
student model settings in the search space. Instead, we propose a
novel encoded multi-objective Bayesian optimization method to
explore the most promising settings while considering both accu-
racy and model size. In particular, we propose a novel encoding
scheme for the search space such that the encoded space captures
appropriate semantics and fits Bayesian optimization better. This
enables effective identification of Pareto frontiers.
Contributions: To the best of our knowledge, this is the first study
that introduces an adaptive ensemble distillation scheme and a
generic framework to identify a set of Pareto optimal lightweight
models that comply with different storage constraints for time
series classification. The paper makes the following contributions.

• It proposes an ensemble distillation strategy that is able to
adaptively select important base models and assign these
appropriate weights, while disregarding unimportant base
models, thus enabling more flexible knowledge distillation
to lightweight models than hitherto possible.
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• It proposes a novel encoding scheme along with an encoded
multi-objective Bayesian optimization method to find Pareto
frontiers, facilitating the identification of optimal models
under different storage constraints.
• It reports on comprehensive experiments that justify key
design decisions and demonstrate that LightTS is able to
outperform state-of-the-art solutions.

The remainder of the paper is organized as follows. Section 2 covers
preliminaries. Section 3 details the framework, and Section 4 reports
on the experiments. Section 5 reviews related work, and Section 6
concludes.

2 PRELIMINARIES
This section presents concepts that are necessary to introduce the
proposed framework.

2.1 Time Series Classification
2.1.1 Time Series. A time series T = ⟨t1, t2, . . . , t𝐶 ⟩ is a sequence
of 𝐶 observations where each observation is an 𝑀-dimensional
vector, so t𝑗 ∈ R𝑀 .

2.1.2 Labeled Time Series. A labeled time series set D is a collec-
tion of (T𝑖 , 𝑙𝑖 ) pairs, where T𝑖 is a time series and 𝑙𝑖 ∈ L is the time
series’s label, indicating a specific class among a set of classes L. For
example, in a human activity time series data set, L includes labels
representing different activity classes, such as walking, jumping,
and jogging.

2.1.3 Time Series Classification. A time series classifier is a func-
tion that takes as input a time series and returns its corresponding
label. During training, we are given a labeled time series set to train
the classifier. The accuracy of the classifier is evaluated on time
series that do not appear in the labeled time series set using for
training.

2.2 The InceptionTime Classifier
We use InceptionTime [19], a state-of-the-art neural classifier for
time series, as the student model in LightTS. Two considerations
lead to this choice of a neural classifier for achieving lightweight
student models. First, neural classifiers achieve state-of-the-art time
series classification accuracy [19]. Second, neural classifiers offer a
high degree of compressibility to be discussed in Section 2.3.

InceptionTime is a convolution neural network that employs
variable-length convolution filters to capture temporal patterns
of different time spans. Figure 3 shows an InceptionTime model
with 3 blocks, each with multiple convolutional layers (cf. the
zoom-in of the first block). A layer uses a specific number of same-
length convolution filters to extract features from the time series
T . Then, the different convolution layers are stacked. Specifically,
T (𝑖) =


𝑘
T (𝑖−1) ∗ 𝐹𝑘 where 𝐹 is a convolution filter, ∗ denotes

1D convolution,
 denotes concatenation, and T (𝑖) is the output of

the 𝑖-th block and T (0) = T . The lengths of convolution filters in
different layers generally vary, enabling the capture of patterns of
varying lengths. More specifically, the filter lengths are decreased
by half. For the 3-layer block, the filter lengths may be 40, 20, and
10. Processing time series with multiple layers with different fil-
ters provides a comprehensive context for classifying time series

since patterns of different length will fit better on the filters with
the closer length, as their receptive field [33] matches the pattern.
Thus, the concatenated output of the layers is the input for the
following block. Finally, the output of the last block is passed to a
fully connected (FC) layer with a Softmax function to assign a class
distribution to the time series.

InceptionTime
Block 2 

Layers: 2

Filters: 20, 10

Bits: 4

Block 3 
Layers: 3

Filters: 80, 40, 20

Bits: 8

Block 1 
Layers: 3

Filters: 40, 20, 10

Bits: 16

Time Series

Filters

ConcatenationConvolution

    * Fk

Class 

probabilities

FC

Figure 3: InceptionTime Classifier.

2.3 Quantized Neural Classifiers
Neural classifiers offer a high degree of compressibility. A neural
classifier like InceptionTime often consists of blocks, each with
multiple layers, each of which in turn includes convolutional filters
with different lengths. The parameters in the filters are often 32-bit
float, so full-precision InceptionTime always use 32-bit parame-
ters. Thus, to compress a neural classifier, it is possible to reduce the
number of blocks, the number of layers in a block, the filter lengths,
and the bit-width of the parameters in the different layers (i.e., pa-
rameter quantization), as shown in Figure 3. For example, Figure 4
illustrates how full-precision parameters, i.e., 32-bit floats, can be
quantized into 3-bit parameters using uniform quantization [23].
As 8.623728 falls into the interval [7.5, 12.5), it maps to 10, which is
then mapped to the 3-bit bucket 101.
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Figure 4: Quantization Mapping.

2.4 Knowledge Distillation
Knowledge Distillation (KD) [25] aims to transfer knowledge from
a teacher model to a student model, where the teacher is often a
larger model with higher discriminative capacity than the student.
In classification, the knowledge is represented by a probability
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distribution over classes produced by the teacher model. Let 𝑞
and 𝑝 represent the class distributions from the teacher and the
student, respectively. Then, knowledge distillation is formalized in
Equation 1, where 𝛼 ∈ [0, 1] is a hyper-parameter [54].

L = 𝛼 × L𝐶𝐸 (𝑝,𝑦) + (1 − 𝛼) × D𝑖𝑠𝑡 (𝑞, 𝑝) (1)

Specifically, the loss function is computed over two components
that are weighted by 𝛼 . The first component is the cross-entropy
(CE) between the student class probabilities 𝑝 and the ground truth
label 𝑦, which provides supervision from the ground truth labels.
The second component represents the distance between the teacher
and student distributions 𝑞 and 𝑝 , e.g., Kullback–Leibler (KL) di-
vergence, to encourage a student to mimic the behavior of a more
powerful teacher. They both contribute to training an accurate
student.

When a group of base models is available as the teachers, their
average-ensemble, 𝑞 = 1/𝑁 ×∑𝑞𝑖 , where 𝑞𝑖 is the class distribution
returned by the 𝑖-th base model, is typically considered as the
knowledge source [17]. Figure 5 shows an example of the knowledge
distillation with an ensemble consisting of three base models.

Student

BM 1 BM 2 BM 3

q1 : {0.4, 0.6} q2 : {0.5, 0.5} q3 : {0.7, 0.3}

Ensemble/Teacher q : (0.4 + 0.5 + 0.7)/3, (0.6 + 0.5 + 0.3)/3

p

Dist(q, p)Guidance from 
teacher knowledge 

y
ℒCE(p, y)

Supervision from 
ground truth

Figure 5: Classic Ensemble Knowledge Distillation.

3 LightTS
We first introduce the two problem scenarios supported by LightTS.
Then, we proceed to introduce twomain building blocks of LightTS,
adaptive ensemble distillation and Pareto frontier identification, which
each targets one of the two problem scenarios.

3.1 Problem Scenarios
The input to LightTS is an already trained ensemble consisting of
𝑁 full-precision base models {BM𝑖 }𝑁𝑖=1, as shown in Figure 6. Al-
though we employ InceptionTime as the quantized student model,
LightTS is not limited to InceptionTime but can also support other
bases models, including both deep and non-deep learning models.
It is only required that the base models output class distributions.
This design makes LightTS a generic framework.

The two problem scenarios supported by LightTS are shown
in Figure 6. First, a specific lightweight student setting is given,
e.g., the number of layers, filters length, and the quantization bits
per layer. Here, the goal of LightTS is to build an accurate student
model under this lightweight setting. We propose adaptive ensemble
distillation to support this scenario (cf. Section 3.2).

However, establishing student settings that achieve good ac-
curacy vs. space trade-offs is non-trivial, and it is inefficient to
manually identify such promising settings. Therefore, we consider
a second problem scenario, where the setting for the quantized
student model is not given. Instead, we define a search space that
covers a wide variety of lightweight student settings. Here, the goal
of LightTS is to identify the Pareto frontier in this space, which
includes Pareto optimal settings with the property that no other
settings have higher accuracy and smaller model size. We propose
an encoded multi-objective Bayes optimization method to identify
the Pareto frontier (cf. Section 3.3). Then, given a device with a
specific memory constraint, we can choose the setting that achieves
the highest accuracy while complying with the memory constraint.

Accurate Lightweight 
Student Model

Pareto Frontier

A Specific Student 
Setting

Student Setting 
Search Space

LightTS

Encoded Multi-
objective Bayesian 

Optimization

BM 2 
Teacher 2 …BM 3 

Teacher 3
BM 1 

Teacher 1
BM N 

Teacher N

Adaptive Ensemble 
Distillation

Figure 6: LightTSWorkflow.

3.2 Adaptive Ensemble Distillation
In the first problem scenario where a lightweight student setting is
given, we propose an adaptive ensemble distillation (AED) process
which assigns the teachers with learnable, adaptive weights, such
that different teachers can contribute differently to the student. The
scenario is aligned with the real-world analogy of taking advantage
from the skills of particular teachers to prepare the students who
require them the most, such as focusing on a specific subject teacher.

3.2.1 Learning adaptive weights. To obtain an accurate lightweight
student, we need to consider two perspectives. First, we need the su-
pervision from the ground truth labels in the training data. Second,
we need the guidance from the knowledge of the already trained
full-precision teachers. To distill knowledge from an ensemble of
already trained full-precision teachers, the classic knowledge distil-
lation (cf. Figure 5 in Section 2.4) utilizes the average knowledge of
the 𝑁 base models. Instead, in AED, we propose to introduce direct
connections from every base model to the student, such that each
base model works as a teacher, as shown in Figure 7. In the upper
part, the knowledge distillation is drawn by a direct link between
every teacher and the student. The knowledge from each teacher,
i.e., its class distribution𝑞𝑖 , guides the learning of the student’s class
distribution 𝑝𝑤 , through a distance metric D𝑖𝑠𝑡 (𝑞𝑖 , 𝑝𝑤), controlled
by a weight 𝜆𝑖 . In the bottom, the student’s class distribution 𝑝𝑤
is also adjusted with respect to the ground truth 𝑦 using the cross-
entropy (𝐶𝐸) loss. Here, we denote the student’s class distribution
by 𝑝𝑤 , meaning that it is the distribution returned by the student
with model parameter𝑤 .
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Figure 7: Adaptive Ensemble Distillation (AED).

Formally, in contrast to the ensemble distillation loss shown in
Equation 1, now the distance among every teacher and the student is
included as the second component weighted by their corresponding
𝜆𝑖 ∈ [0, 1], where

∑
𝜆𝑖 = 1, as shown in Equation 2. Thus, instead

of having one consolidated guidance between the ensemble and
the student, we now consider individual guidances between the
teachers and the student weighted by their associated weight 𝜆𝑖 .

L = 𝛼 × L𝐶𝐸 (𝑝𝑤 , 𝑦) + (1 − 𝛼) ×
𝑁∑︁
𝑖=1

𝜆𝑖 × 𝐷𝑖𝑠𝑡 (𝑞𝑖 , 𝑝𝑤) (2)

As it can be observed in the new loss function, the two compo-
nents represent different types of weights that we want to optimize.
First, the classification cross-entropy loss L𝐶𝐸 (𝑝𝑤 , 𝑦) involves 𝑝𝑤 ,
which is associated with quantized model parameters𝑤 from the
student, e.g., quantized convolutional filters. Second, the degree
of contribution 𝜆𝑖 comes from each teacher. Both components are
dependent to each other because (i) when𝑤 is learned, it requires
to know how much the teachers are contributing via their 𝜆𝑖 ; and
(ii) while adjusting the set 𝝀 = {𝜆𝑖 }𝑁𝑖=1, it requires to perceive the
student accuracy, i.e., depending on𝑤 . The condition of having two
optimization objectives leads us to consider a bi-level optimization
modeling, where each objective can be adjusted alternatively while
considering the results from each other.

In the inner-level optimization stage, we learn the model param-
eters𝑤 for the student. While adjusting𝑤 , the 𝝀 is kept static, the
distances with respect to the teachers D𝑖𝑠𝑡 (𝑞𝑖 , 𝑝𝑤) and the classi-
fication loss L𝐶𝐸 (𝑝𝑤 , 𝑦) can change, as they are dependent on𝑤 .
This step uses the training data set. In the outer-level optimization
stage, the 𝝀 is adjusted using the validation set, while the distances
w.r.t. the teachers and the cross-entropy loss remain unchangeable.
Formally, the above bi-level optimization is detailed next in Equa-
tions (3) and (4), where 𝐷t𝑟𝑎𝑖𝑛 and 𝐷v𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 denote the data for
training and validation, respectively. It is detailed in Algorithm 1.

argmin
𝝀
L(𝝀,𝑤∗, 𝐷v𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛) (3)

𝑠 .𝑡 .,𝑤∗ = argmin
𝑤
L(𝝀,𝑤, 𝐷t𝑟𝑎𝑖𝑛) (4)

Equation 4 represents the inner-level optimization. Under a specific
disposition of 𝝀, it finds the optimized student weights𝑤∗, meaning
that under this specific 𝝀, the student with𝑤∗ gives the best accu-
racy on the training data. It uses the training set, since in this step
it is where the model is supervised trained in terms of classification
performance, where cross-entropy loss with ground truths is used.
The step is shown in line 6 in Algorithm 1. Here, 𝑝𝑤 represents
the class distribution for the student, given its parameters𝑤 . We

denote 𝜆𝑖 with a box to indicate that it is not changing during the
inner optimization step, usually referred as parameters freezing [3].
Here, the Softmax function 𝜎 (·) assures ∑𝜎 (𝜆𝑖 ) = 1.

In Equation 3, representing the outer-level optimization, the goal
is to find the best 𝝀 given that the student has already an optimal
weight𝑤∗, so the distances with respect to all teachers are set and
weighted by 𝝀. The step uses a validation set to assure that its
optimization is independent with respect to the 𝑤∗ adjustments,
and the 𝝀 is optimized using back-propagation (BP). The 𝝀 set
acts as hyper-parameters to the inner step, so also using the same
training set could derive on unsought conditions such as overfitting,
and thus we use the validation set instead. The step is shown in
line 8 in Algorithm 1. Similarly to line 6, we use boxes to indicate
that the classification cross entropy loss and the distances w.r.t. the
teachers are fixed during the outer optimization. We run multiple
inner-level steps for each outer-level one to have a stable training,
meaning that the model will not get different 𝝀 values at every
iteration. It gets a single set of 𝝀, train for 𝑣 iterations, and then get
another updated set for 𝝀.
Complexity: Algorithm 1 executes 𝐸 training epochs. In each, BP
updates the model parameters𝑤 ; and every 𝑣 epochs, BP updates 𝝀.
This gives cost 𝐸 × 𝐵𝑃𝑤 + 𝐸/𝑣 × 𝐵𝑃𝝀 , where 𝐵𝑃𝑤 and 𝐵𝑃𝝀 are the
costs for updating the parameters𝑤 and 𝝀 using BP, respectively.
Since there are many more parameters in 𝑤 than in 𝝀 and 𝑣 is a
small constant, we obtain an asymptotic complexity of O(𝐸×𝐵𝑃𝑤),
the same as for classic Knowledge Distillation.

Algorithm 1 Learning Adaptive Weights
1: Input: [𝑞1, 𝑞2, . . . , 𝑞𝑁 ]: 𝑁 class distributions from full preci-

sion teachers.
2: [𝜆1, 𝜆2, . . . , 𝜆𝑁 ] ← Uniform weight initialization: 1/𝑁
3: 𝑣 ← Validation steps
4: Quantized weight𝑤 :← Random initialization
5: for training epochs 𝑒 ← 1, 2, . . . , 𝐸 do

⊲ Using training data

6:
argmin𝑤 𝛼 × L𝐶𝐸 (𝑝𝑤 , 𝑦) +

(1 − 𝛼) ×∑𝑁
𝑖=1 𝜎 (𝜆𝑖 ) × D𝑖𝑠𝑡 (𝑞𝑖 , 𝑝𝑤)

7: if 𝑒 mod 𝑣 = 0 then ⊲ Using validation data

8:
argmin𝜆 𝛼 × L𝐶𝐸 (𝑝𝑤 , 𝑦) +

(1 − 𝛼) ×∑𝑁
𝑖=1 𝜎 (𝜆𝑖 ) × D𝑖𝑠𝑡 (𝑞𝑖 , 𝑝𝑤)

In addition to classification, the proposal can be applied to fore-
casting by replacing the cross entropy term in Equation 2 by a
forecasting error term, e.g., mean square error.

3.2.2 Removing Unimportant Teachers. We have teachers and stu-
dents with different strengths and limitations. Recall that a design
principle of ensemble learning is to maintain high diversity among
the base models, i.e., the teachers in our setting. The students are
also diverse as they are constrained in different ways, e.g., different
layers, filter lengths, and bit-widths. Ideally, we want to associate
the students with the teachers that offer them the most knowledge
(already achieved in the proposed AED), while removing teachers
who are not contributing or even affecting adversely the student
learning. In addition, removing teachers that do not contribute
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to the student makes it easier to assign more accurate adaptive
weights in future iterations.

A simple yet effective principle for removing unnecessary teach-
ers is considering the student classification accuracy as the indicator
of improvement. In the current scenario, we can use the student
accuracy as the metric for evaluating if the removal of one teacher
is contributing to a better guidance to the student. The criteria can
be applied with the leave-one-out idea [39] that iteratively removes
teachers. After removing a teacher, we can check whether the stu-
dent improves the classification accuracy. For example, in Figure 8
we present a scenario with five teachers. If we want to remove
one teacher, there are five different ways to do so, i.e., removing
𝑇1, 𝑇2, 𝑇3, 𝑇4, or 𝑇5. Then, we can evaluate whether removing 𝑇𝑖
results in student accuracy improvement. If so, we consider further
removing. Otherwise, we stop removing. For example, if removing
𝑇1 or 𝑇4 further improves the student performance, while 𝑇2, 𝑇3,
and 𝑇5 decrease it, we continue the leave-one-out removal for 𝑇1
and 𝑇4 branches, but stop further removal for the other 3 cases, as
Figure 8 shows.

This solution is not efficient if we only rely on the student per-
formance, because we only rely on results but not criteria to choose
the teachers that will be removed. Therefore, conducting an ex-
haustive exploration becomes very costly, as shown in Figure 8,
where leave-one-out of five teachers, marked as −𝑇𝑖 , at the first two
iterations are exemplified. In the worst case, the number of cases
to evaluate following this strategy grows at a factorial pace, so it
becomes an intractable problem with relatively few cases, e.g., ten
teachers require 10! ≈ 3.6 × 106 evaluations.

5 Teachers 
T1, T2, T3, T4, T5

−T2
−T1 −T3

−T5−T4

4 Teachers 
T1, T3, T4, T5

4 Teachers 
T1, T2, T4, T5

4 Teachers 
T1, T2, T3, T5

4 Teachers 
T1, T2, T3, T4

−T2 −T3 −T4 −T5 −T1 −T2 −T3 −T5

4 Teachers 
T2, T3, T4, T5

Figure 8: Leave-one-out Based Teacher Removal, Yielding
Factorial Growth in the Worst Case.

Wepropose to utilize the weight𝝀 associated with the teachers to
facilitate amore efficient teacher removal strategy.More specifically,
the teacher with the lowest 𝜆𝑖 is removed. After removing the
teacher, we conduct a new round of AED. We keep removing the
teacher with the lowest 𝜆 until running out of base models. The
maximum possible number of iterations is linear, i.e., removing all
𝑁 teachers. Finally, we return the teacher configuration with the
highest accuracy. Figure 9 shows an example where we remove 𝑇5
and then 𝑇3.

A condition that arises over using𝝀 as the indicator for removing
teachers is that, after assuring

∑
𝜎 (𝜆𝑖 ) = 1 using a Softmax func-

tion, sometimes the 𝝀 values become very close. Thus, it becomes
ambiguous which is the weakest teacher to be removed since more
than one can be suitable. An example of five teachers is shown in

Figure 9: LightTS Teacher Removal.

Figure 10(a), where the first three teachers have similarly small 𝜆
values.

λ1 λ2 λ3 λ4 λ5

Ambiguous 
removal

(a) Softmax, Teacher
Importance.

γ1 γ2 γ3 γ4 γ5

(b) Gumbel, Teacher
Unimportance.

Confident removal

̂λ1 ̂λ2 ̂λ3 ̂λ4 ̂λ5

(c) Gumbel, Teacher
Importance.

Figure 10: Confident Teacher Removal.

To contend with the above undesired condition, we need a dis-
tribution where the majority of weights have similarly large values
and only one is significantly smaller, as Figure 10(c) shows. In such
a scenario, the removal decision is more confident, as a clearly weak
teacher is removed.

To this end, we consider a reparameterization trick, specifically
the Gumbel-Max Trick [28, 35], to introduce stochastic noises
𝑔𝑠 into weights 𝝀 during the teacher removal to make the “re-
moving” part differentiable, and leverage a temperature factor
𝜏 to control the sharpness of the reparameterized distribution,
𝜆∗
𝑖
=

𝑒𝑥𝑝 ( (𝜆𝑖+𝑔𝑠𝑖 )/𝜏)∑
𝑗 𝑒𝑥𝑝 ( (𝜆 𝑗+𝑔𝑠 𝑗 )/𝜏) . In this way, the reparameterized weight

contains a deterministic part, i.e., 𝝀, and a stochastic part, i.e., 𝑔𝑠 ,
enabling to sample a teacher to be removed instead of just taking
the argmax, given their different probabilities. The Gumbel-Max
Trick considers the Gumbel distribution [24] for noises 𝑔𝑠 which is
stable under operations that involve finding maximums [34]. More
importantly, through controlling 𝜏 , the reparameterized weights
smoothly approach the discrete argmax computation, so as enlarg-
ing the gap between largest weight and the remaining ones and
making it likely to become the maximum, as shown in Figure 10(b).

Although a Gumbel-Softmax function on 𝜆 enables the “remov-
ing” differentiable, it behaves similarly to the argmax as the tem-
perature 𝜏 decreases close to zero, while is contrary to our intuition
which is supposed to remove the minimal one, i.e., argmin. Thus,
instead of reparameterizing the “importance” of each teacher, we
apply the Gumbel-Softmax function to the negative of the set of 𝝀
to get the opposite behavior, which we call the “unimportance” of
teachers 𝛾𝑖 =

𝑒𝑥𝑝 ( (−𝜆𝑖+𝑔𝑠𝑖 )/𝜏)∑
𝑗 𝑒𝑥𝑝 ( (−𝜆 𝑗+𝑔𝑠 𝑗 )/𝜏) , which is shown in Figure 10(b).

Thus, we manage to maximize the teachers unimportance, identi-
fying the teacher that it is most likely to be disregarded based on
𝜸 , as shown in Figure 10(b). Then, the values are re-parameterized
to teacher importance by applying a Softmax function to the neg-
ative of the unimportance 𝜆𝑖 = 𝜎 (−𝛾𝑖 ). In 𝜆, the minimal value is
confidently identifiable, as Figure 10(c) shows. In Algorithm 1, 𝜆
is utilized in lines 6 and 8. After Algorithm 1 finishes, the teacher
with the minimal weight 𝜆 is removed.
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Complexity: Given an ensemble with 𝑁 base models, i.e., teachers,
we can remove at most𝑁 −1 teachers. This implies that Algorithm 1
executes at most 𝑁 − 1 times. Thus, the complexity of AED with
teacher removal is O(𝑁 × 𝐸 × 𝐵𝑃𝑤).

3.3 Identifying Pareto Frontiers
In the second problem scenario, instead of identifying a well-per-
forming student for a specific setting, we explore a search space of
settings to find optimal sets of student settings that target different
space restrictions. To achieve this goal, we first define a search
space that fits neural classifiers as well define the notion of the
Pareto frontier. Then, we propose an effective encoding scheme,
that enables use of a novel multi-objective Bayesian optimization
method for identifying Pareto optimal solutions in the search space.

3.3.1 Search Space. The neural classifiers introduced in Section 2.3
have four components that contribute to the model size of a student:
the number of blocks, the number of layers per block, the filter
length, and the bit-width.

The number of blocks controls the network depth.When keeping
the number of blocks fixed, changing the number of layers per
block also controls the network depth. Thus, we consider a search
space that includes only three dimensions: the number of layers per
block, the filter length, and the bit-with per block, while keeping
the number of blocks 𝐵 fixed. Different filter length enables the
capture of time series patterns of different time spans [19], which
often vary across data sets. Thus, in addition to contributing to the
model size, dynamic adjustment of the filter length enables better
classification accuracy.

Given𝐵 blocks, each blockmay choose the number of layers from
L = {1, 2, 3, 4, 5}, a filter length from F = {10, 20, 40, 80, 160}, and a
bit-width from W = {4, 8, 16, 32}. The selected filter length applies
to the first layer. In the remaining layers, the filter lengths are
reduced by half. The search space then includes ( |L| × |W| × |F|)𝐵
different student settings, which amounts to a very large space.

A student setting x𝑖 in the search space is a sequence of 𝐵 entries,
corresponding to 𝐵 blocks. For the 𝑗-th entry, 1 ≤ 𝑗 ≤ 𝐵, tuple
(𝐿𝑗 , 𝐹 𝑗 ,𝑊𝑗 ) indicates that there are 𝐿𝑗 layers, that the filter length
in the first layer is 𝐹 𝑗 , and that the bit-width is𝑊𝑗 , as shown in
Equation 5. For example, with 𝐵 = 3 blocks, the student setting x0
has three entries, where the first entry (3, 20, 8) indicates that there
are 3 layers in the first block, that the filter length of the first layer
is 20, meaning that the filter lengths of the following layers are 10
and 5, and that the bit-width of filters is 8 bits.

x𝑖 =
©«
(𝐿1, 𝐹1,𝑊1)
(𝐿2, 𝐹2,𝑊2)

. . .

(𝐿𝐵, 𝐹𝐵,𝑊𝐵)

ª®®®¬ , x0 =
©«
(3, 20, 8)
(4, 40, 4)
(2, 10, 16)

ª®¬ (5)

Applicability to Other Neural Classifiers: Although we use
InceptionTime as the base model, the proposed method is not lim-
ited to InceptionTime. With minor adjustments, the search space
can be adapted to accommodate a variety of neural classifiers. More
specifically, the choices of the numbers of blocks and layers and
the bit-widths apply universally across different neural classifiers.
The filter lengths are specific to convolutional classifiers such as

InceptionTime. When using other types of classifiers, other com-
ponents need to be considered. For fully-connected classifiers [49],
the number of neurons per layer needs to be included into the
search space; for recurrent neural network based classifiers [30],
the sizes of their recurrent weight matrices need to be included into
the search space; for Transformer-based classifiers [57], the sizes
of the projection matrices need to be included. Thus, the search
space can be adapted easily to different classifiers. In this paper,
we consider a search space based on InceptionTime because it
outperforms other classifiers at time series classification [44].

3.3.2 Pareto Frontier. Given a student setting, we can obtain its
accuracy using the proposed AED, but this is costly. Next, it is also
possible to compute the size based on the setting using the infor-
mation on the bits per layer, the number of filters, and filter lengths
(see Section 2.3), which is very efficient. Thus, for each setting, we
can define a tuple 𝑠 that includes its associated accuracy and its
model size—see Equation 6.

𝑠𝑖 = (x𝑖 , a𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 , s𝑖𝑧𝑒𝑖 ) (6)

We use S to denote the set of all student settings. Given two settings
𝑠1, 𝑠2 ∈ S, 𝑠2 dominates 𝑠1, denoted as 𝑠2 ≻ 𝑠1, if 𝑠2 is more accurate
and not larger than 𝑠1 or if 𝑠2 is smaller than 𝑠1 and is not worse
than 𝑠1 in terms of accuracy.

The Pareto frontier 𝑃 (S) is a subset of S, where for every tuple
𝑠 ∈ 𝑃 (S) no other tuple 𝑠 ′ exists that dominates 𝑠 , as shown in
Equation 7.

𝑃 (S) = {𝑠 ∈ S | �{𝑠 ′ ∈ S | 𝑠 ′ ≻ 𝑠 ∧ 𝑠 ′ ≠ 𝑠}} (7)

The frontier facilitates the identification of the setting with the
highest accuracy under specific model size constraints. Thus, the
aim is to identify the Pareto frontier.

3.3.3 Encoded Multi-objective Bayesian Optimization. To get the
exact Pareto frontier, it is necessary to perform domination com-
parisons on the ( |L| × |W| × |F|)𝐵 settings in the search space, e.g.,
using skyline querying algorithms [5]. However, since evaluat-
ing the accuracy for a setting using AED is costly, it is infeasi-
ble to evaluate the accuracy of all ( |L| × |W| × |F|)𝐵 settings us-
ing AED. Instead, we evaluate the accuracy of a small subset of 𝑄
(𝑄 ≪ (|L| × |W| × |F|)𝐵 ) settings, to obtain an approximate fron-
tier.

A naive way to select the𝑄 settings is to apply random sampling.
Although being simple, random sampling may not be effective
as it takes into account neither accuracy nor model size. We pro-
pose instead a novel encoded multi-objective Bayesian optimization
method to focus on exploring the most promising settings in the
search space, by considering both accuracy and model size—see
Figure 11.

To initialize the optimization process, we first randomly select
𝑃 settings, 𝑃 < 𝑄 . We evaluate these using AED to obtain their
accuracies and also compute their sizes. They constitute the set of
evaluated settings (𝐸𝑆).

In classic multi-objective Bayesian optimization (MOBO), as
shown in the white boxes in Figure 11, the evaluated settings 𝐸𝑆
are used to build a Gaussian Process (GP) that estimates the accura-
cies of the unevaluated settings. We use a GP because it is able to
estimate not only the accuracy but also a probability distribution
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Randomly Select R settings 
-No need to evaluate accuracy

-R>>P

Randomly Select P settings 
-Evaluate accuracy via AED

-Compute the model size

Evaluated Settings (ES) 
(xi, accuracyi, sizei)

Train Encoder  (Alg. 2) 
-Autoencoder training: R unevaluated

-Accuracy training: P evaluated settings

Φ( ⋅ )

Encoded Evaluated 
Settings (EES) 

(Φ(xi), accuracyi, sizei)

Encoder Φ( ⋅ )

Build GP Estimator 
-Estimate accuracy of 
unevaluated settings

Multi-objective Optimization 
-Objective  w.r.t. accuracy and size

-Acquisition function considering  
and its uncertainty

g( ⋅ )
g( ⋅ )

Select new setting  
-Maximizes acquisition function

-Evaluate accuracy via AED

-Compute the model size

̂x Q-P 
iterations

(x̂, accuracy, size)

Figure 11: Encoded Multi-Objective Bayesian Optimization.

of the estimated accuracy, which is helpful for guiding the subse-
quent exploration. An objective function is built considering both
the estimated accuracies and model sizes, and then an acquisition
function helps identify the most promising setting x̂ based on the
objective function. We evaluate x̂’s accuracy using AED, compute
its size, and feed it back to the GP estimator to get it updated. Then,
a new iteration starts until we have evaluated 𝑄 settings.

GP estimator: AGP is a probabilistic regression model, that learns
amapping 𝑓 (·) from amultidimensional point, e.g., a student setting
x𝑖 , to a real value, e.g., the accuracy 𝜇𝑖 of the setting, along its
probability distribution, so 𝑓 (x𝑖 ) ∼ N (𝜇𝑖 , 𝜎2𝑖 ). Given 𝑃 evaluated
settings x1:𝑃 , the joint distribution is:

f (x1:𝑃 ) ∼ N (AED(x1:𝑃 ),K(x1:𝑃 , x1:𝑃 )), (8)

where AED(x1:𝑃 ) is the evaluated accuracies for the 𝑃 settings, and
K is the covariance matrix with kernel function 𝜅 (x𝑖 , x𝑗 ). A gener-
ally used kernel 𝜅 is the squared exponential covariance function:
𝜅 (x𝑖 , x𝑗 ) = 𝜃 𝑓 exp

(
−
��� (x𝑖−x𝑗 )22Θ2

���) with variance 𝜃 𝑓 , scaled by the
noise level Θ of the observations.

Taking the GP as the prior [42], the posterior predictive distri-
bution for an unevaluated setting x∗ is defined as:

𝑓 (x∗) ∼ 𝑵 (𝜇 (x∗), 𝜎2 (x∗)), (9)

where 𝜇 (x∗) = 𝜅 (x∗, x1:𝑃 )K(x1:𝑃 , x1:𝑃 )−1f (x1:𝑃 ), and 𝜎2 (x∗) =

𝜅 (x∗, x∗) − 𝜅 (x∗, x1:𝑃 ) K(x1:𝑃 , x1:𝑃 )−1𝜅 (x∗, x1:𝑃 )𝑇 .
As the kernel function 𝜅 (x𝑖 , x𝑗 ) suggests, the distance between

two different settings affects the GP estimator significantly: if the
distance between two settings is small, the are expected to have
similar accuracy. Therefore, a meaningful distance metric between
settings is important. We proceed to illustrate why the Euclidean
distance on the space of original settings fails to be meaningful and
then elaborate a novel encoding scheme such that the Euclidean
distance on the encoded space offers meaningful distances.
Complexity: The process shown in Figure 11 requires running AED
with teacher removal 𝑄 times, yielding O(𝑄 × 𝑁 × 𝐸 × 𝐵𝑃𝑤). In
addition, the GP estimator is run 𝑄 − 𝑃 times. The complexity of a

GP estimator is O(𝑛3) due to the matrix inverse operation, where 𝑛
is the size of the covariance matrixK. The size ofK keeps increasing
as the steps continues and reaches 𝑄 in the last step. Thus, the GP
part is O(𝑄4). In total, we get O(𝑄 × 𝑁 × 𝐸 × 𝐵𝑃𝑤 +𝑄4).

Problems of the Original Space: Consider three settings x1, x2,
and x3, all with three blocks, as shown in Equation 10. We also
show their accuracies and the Euclidean distances x1x2 and x1x3
in the original space.

x1 =
©«
(4, 40, 8)
(4, 40, 8)
(4, 40, 8)

ª®¬ ,
Accuracy: 0.37

x2 =
©«
(1, 40, 8)
(1, 40, 8)
(1, 40, 8)

ª®¬ ,
0.24

x3 =
©«
(4, 40, 16)
(4, 40, 16)
(4, 40, 16)

ª®¬
0.38

(10)

Distances Original x1x2 = 5.19 x1x3 = 13.85
Encoded x1x2 = 3.33 x1x3 = 1.70

Settings x1 and x2 have the same bit-width, but they have different
numbers of layers, 4 vs. 1, yielding quite different neural structures
and dissimilar accuracies. In contrast, x1 and x3 differ on the bit-
width, 8 vs. 16, but share the same number of layers and have similar
accuracy. Based on the above, x1x3 should be smaller than x1x2, as
x1 and x3 have more similar accuracies.

However, in the original space, x1x3 is much larger than x1x2, as
the bit-width difference (16 − 8)2 is larger than the layer difference
(4− 1)2. Thus, the distance in the original space is not aligned with
the accuracy similarity. This happens because the values are discrete
and the different semantics of the different values are also different
dimensions, so adding up the distances directly is semantically
incorrect.
A Novel Encoding Scheme: To address the problem of inconsis-
tent distances, we propose to utilize a continuous latent space in-
stead of the original discrete values to capture semantic similarities.
In addition, a continuous space is known to fit GPs better [15, 46].
Thus, we propose an encoder Φ : x→ z that maps the setting xi to
a continuous feature vector zi. Then, we use the encoded zi as the
input to the GP.

We proceed to cover the training of the encoder Φ. The training
involves two phases, as illustrated in Figure 12 and detailed in Algo-
rithm 2. In the first phase, we connect the encoder with a decoder
Γ(·). To train the encoder and decoder jointly, we random sample
𝑅 unevaluated settings, without knowing the accuracies of the 𝑅
settings, where 𝑅 >> 𝑃 . We use the decoder to reconstruct the 𝑅
settings {xr}𝑅𝑟=1. It computes x′𝑟 = Γ(Φ(xr)) and then minimizes
the lossLr𝑒𝑐𝑜𝑛𝑠 (xr, x′𝑟 ) = 1

𝑅

∑𝑅
𝑟=1 (xr−x′𝑟 )2. In other words, the en-

coder and decoder work together as an autoencoder. This enables an
encoder that is able to transform a discrete setting xr into a contin-
uous vector zr. However, since the training data remains “accuracy
blind,” the encoded continuous space fails to capture the seman-
tics related to accuracy. In the second phase, we therefore connect
the encoder with an accuracy predictor Ψ(·) and train the encoder
and predictor jointly using the 𝑃 evaluated settings {xp}𝑃𝑝=1, so
the predictor estimates a𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑝 ′ = Ψ(Φ(xp)) by minimizing the
loss La𝑐𝑐𝑢𝑟 (a𝑐𝑐𝑢𝑟𝑝 , 𝑎𝑐𝑐𝑢𝑟𝑝 ′) = 1

𝑃

∑𝑃
𝑝=1 (a𝑐𝑐𝑢𝑟𝑝 − 𝑎𝑐𝑐𝑢𝑟𝑝 ′)2. Since

the encoder is already trained with the decoder using 𝑅 unevalu-
ated settings, we use an only small amount of 𝑃 , where 𝑃 << 𝑅,
evaluated settings to fine tune it, such that the encoded space is
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aligned better with accuracy. As Algorithm 2 shows, we use the
two training phases interchangeably.

x

x′ 

zEncoder 
Φ( ⋅ )

Decoder 
Γ( ⋅ )

Predictor 
Ψ( ⋅ )

Autoencoder training with R 
unevaluated settings

Accuracy training with 
P evaluated settings ac

cu
ra

cy
′ 

ℒrecons(x, x′ )

ℒaccur(accuracy,
accuracy′ )

Figure 12: Two-phase Training for Encoder Φ(·).

Algorithm 2 Two-phase Encoder Φ(·) Training.
1: Input: R unevaluated settings: {xr}, P evaluated settings:
(xi, a𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 )

2: Output: Encoder Φ
3: 𝑝𝑠 ← Predictor steps
4: Encoder Φ, Decoder Γ, Predictor Ψ
5: for 𝑒 ← 1, 2, . . . , 𝐸𝑝𝑜𝑐ℎ𝑠 do
6: x′𝑟 ← Γ(Φ(xr)) ⊲ Autoencoder training, using 𝑅
7: argminΦ,Γ Lr𝑒𝑐𝑜𝑛𝑠 (xr, x′𝑟 )
8: if 𝑒 mod 𝑝𝑠 = 0 then ⊲ Predictor training, using 𝑃
9: a𝑐𝑐𝑢𝑟𝑎𝑐𝑦′𝑝 ← Ψ(Φ(xp))
10: argminΦ,Ψ La𝑐𝑐𝑢𝑟 (𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑝 , 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦′𝑝 )

The integration of the encoding scheme into the overall Bayesian
Optimization process is shown in Figure 11 using grey boxes. After
training the Encoder Φ(·) using 𝑅 unevaluated settings and 𝑃 evalu-
ated settings, it is used to map all the evaluated settings (𝐸𝑆) to the
corresponding encoded space, getting the Encoded Evaluated Set-
tings (𝐸𝐸𝑆). Then, based on the𝐸𝐸𝑆 , we build a GP to estimate the ac-
curacy of the unevaluated settings. To facilitate the identification of
settings on the Pareto frontier, given an unevaluated setting x∗, we
define a joint objective function𝑔(x∗) = 𝛽×𝑓 (x∗)−(1−𝛽)×S𝑖𝑧𝑒 (x∗)
that considers both the estimated accuracy 𝑓 (x∗) and the computed
model size S𝑖𝑧𝑒 (x∗), preventing divergent optimizations if they are
considered separately. We use different 𝛽 in different optimization
iterations, facilitating searches with different trade-offs between
accuracy and model size. More specifically, 𝛽 is randomly sam-
pled following the PACE model strategy [29]. Since the estimated
accuracy 𝑓 (x∗) is uncertain, the joint objective 𝑔(x∗) is also un-
certain. Next, we use the Expected Improvement (𝐸𝐼 ) acquisition
function [10, 11] based on the joint objective 𝑔(·), to determine the
most promising setting x̂. We evaluate x̂’s accuracy using AED and
compute its size, and we use the trained encoder Φ(·) to encode x̂
and then add it to 𝐸𝐸𝑆 . Based on the updated 𝐸𝐸𝑆 , the GP estimator
is also updated. Then, a new iteration starts.

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Data Sets. We use the UCR time series archive [9] that com-
prises an extensive catalogue of time series from different domains.

Experiments are conducted on the 128 available data sets, and we
focus on data sets with many classes since they are the most chal-
lenging and have important real-world uses. Details of the selected
subset of the data sets are shown in Table 1, including the number
of classes, the sizes of the training, validation, and testing sets, the
domains, and the average time series lengths.

Table 1: Data Sets.

Data set Classes Train/Val/Test Domain Avg. Len.
Adiac 37 312/78/391 Images 176
Crop 27 5720/1440/16800 Images 46
FaceAll 14 448/112/1690 Images 131
NonInvECG1 42 1440/360/1965 ECG 750
NonInvECG2 42 1440/360/1965 ECG 750
Phoneme 39 171/43/1896 Sound 1024
PigAirway 52 83/19/208 Blood flow 2000
PigArt 52 83/19/208 Blood flow 2000
UWave 8 1680/560/2241 Motion 315

4.1.2 Evaluation Metrics. To assess performance, we consider sev-
eral metrics. First, Accuracy is the percentage of cases where the
class with the highest output probability has the correct class label.
It is also used in conjunction with the null-hypothesis Friedman
test [20] and the Wilcoxon-Holm post-hoc method [27, 50] to eval-
uate all data sets. Next, Top-5 Accuracy evaluates the classification
results based on the top-5 output probabilities. If the probability
associated with the correct label is within the top-5, the result
is considered as correct. It is used in the experiments involving
data sets with many labels. Finally, Model size indicates how much
memory a model requires for a specific configuration of layers and
bit-width.

4.1.3 Baselines. LightTS is compared to four knowledge distilla-
tion methods. Although these methods use different strategies to
combine the results from base models into a single teacher model,
they share the same distillation scheme—the distillation is con-
ducted between a single teacher and a student. (1) In Classic Knowl-
edge Distillation (Classic KD) [25, 52], the teacher is the average
of the class probabilities across all base models, as shown in Equa-
tion 1 in Section 2.4. The next three baselines aims at improving
Classic KD by proposing different techniques to weigh the base
models differently, i.e., finding values other than the 1/𝑁 in Fig-
ure 1(b). (2) Adaptive Ensemble (AE-KD) [17] optimizes the weights
using Support Vector Machines according to the teachers diver-
sity derived from gradient changes. (3) Reinforced Multi-Teacher
(Reinforced) [54] computes the weights following a reinforced
learning process using the training losses as the reward metric.
(4) Cross-validation Accuracy Weighted Probabilistic Ensemble
(CAWPE) [31] uses the cross-validation accuracy results to assign the
weights. Thus, if a model has a high accuracy during validation,
it has a high weight in the final ensemble. In addition, we include
two variations of LightTS. (5) AED-LOO: we use AED with leave-
one-out teacher removal. (6) AED-One: we use AED without teacher
removal, i.e., Algorithm 1 is run only once. Finally, we also include
the full-precision ensemble FP-Ensem for reference. As knowledge
distillation can boost student performance [45, 53], a quantized
student can possibly outperform FP-Ensem.
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4.1.4 Ensemble Teachers. To evaluate the generality of LightTS
on different types of ensembles, we consider ensembles with a wide
variety of base models. The ensembles for all cases have𝑁 = 10 base
models, and the base models are initialized with different random
states to ensure diversity. The base models used are detailed as
follows. (1) InceptionTime [19] is the state-of-the-art deep learning
method [44]. It is the default base model in the experiments. We
consider three types of non-deep learning based methods that are
components for state-of-the-art meta-ensemble classifiers [37]. (2)
Temporal Dictionary Ensemble (TDE) [38] transforms a time series
into a bag of segments of a given size and discretizes them as words.
Then, it draws a histogram for the word counting and applying a
nearest neighbor algorithm to classify the transformed series. (3)
Canonical Interval Forest Classifier (CIF ) [36] builds a Time Series
Forest using a set of 22 particular features [32] to summarize them
in intervals that are used to classify the time series. (4) Time Series
Forest Classifier (Forest) [14] builds several trees for representing
a time series, summarizing them in intervals. Then, a forest is
built over the trees to identify singular features in the intervals to
perform the classification of the series.

4.1.5 Implementation Details. The LightTS framework is imple-
mented using Python 3.9.7, the machine learning architecture Py-
Torch 1.9.1, and the BayesianOptimization infrastructure of BoTorch
0.5.1. The source code is publicly available at https://github.com/d-
gcc/Distiller. All the models are tested using Titan RTX GPUs with
24GB of VRAM under Ubuntu 20.04.3 on an Intel Xeon W-2155
with 128GB of RAM.

To ensure fair comparisons, we follow commonmachine learning
practices and use the validation set to adjust the hyper-parameters
for all methods. The ensemble of ten base teacher models is trained
in full-precision using different random seeds to ensure diversity.
They are trained for 1,500 epochs, with a learning rate of 0.01, Adam
optimized, and using a batch size of 64. Then, following the same
configuration, the distilled student is quantized according to the
testing configuration, uses a validation set of 20% with Stochastic
Gradient Descent as the optimizer, and the weights 𝝀 are adjusted
every 𝑣 = 50 epochs. The predictor for the encoded MOBO is also
adjusted every 50 epochs.

4.2 Experimental Results
4.2.1 Problem Scenario 1. We consider lightweight students with
3 blocks and 3 layers per block. All layers use the same bit-width,
chosen among 4-bit, 8-bit, and 16-bit. This means that the light-
weight students obtained by different methods have the same size.
Thus, we only evaluate their accuracy.
InceptionTime as Base Models: We report the results for the
complete UCR data sets using InceptionTime as the base models.
Figure 13 shows the critical difference diagram on Accuracy after
applying the null-hypothesis Friedman test and theWilcoxon-Holm
post-hoc test to rank the evaluatedmethods. The evaluatedmethods
are ranked according to the pairwise comparison of accuracy for
every set and bit-width. Then, the average rank across all the data
sets and all bit-width settings is computed, as the diagram shows.

Figure 13 shows that our proposals LightTS and AED-LOO achieve
the best results. They are clustered in the first rank, and they are
statistically more accurate than the other methods. In particular,

12345678
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3.1224AED-LOO

Figure 13: Accuracy Ranking, Full UCR Archive.

LightTS and AED-LOO are statistically more accurate than the full-
precision ensemble FP-Ensem, which is ranked in second. This
may sound counter-intuitive, but this is possible because knowl-
edge distillation can boost student performance, enabling a well-
distilled quantized student to outperform FP-Ensem. Then comes
Reinforced, which is followed by a statistically similar cluster of
the remaining baselines led by AED-One. Disaggregated results for
4-bit, 8-bit, and 16-bit are shown in Figures 14, 15, and 16, respec-
tively.
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Figure 14: 4-bit Accuracy Ranking.
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Figure 15: 8-bit Accuracy Ranking.
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Figure 16: 16-bit Accuracy Ranking.

For data sets with 2 or 3 classes, representing 46% of the UCR
data sets, we explore the results in Figure 17. It shows a similar
ranking as in the overall results, with all the methods having closer
results, which is expected as several pairwise comparisons are tied
giving the reduced number of classes. This suggests that LightTS
works equally well on data sets with few classes.

Detailed results for challenging data sets with many labels are
shown in Table 2. For those cases, in addition to the baselines,
we consider a full-precision student, denoted as FP-Stud. This is
a student model with 32-bit model parameters, which based on
knowledge distilled from the full precision ensemble using AED.
FP-Stud is supposed to offer an accuracy upper bound to the quan-
tized student with 4-bit, 8-bit, and 16-bit model parameters, denoted
by a rectangle, e.g., the fourth row of Table 2.

The main observation is the leading performance in terms of
Accuracy and Top-5 Accuracy of LightTS on all data sets. The
metrics for LightTS are consistently better on all data sets, and they
are close to the accuracy of FP-Ensem. On data sets such as Adiac
and PigArt, some of the quantized models are able to outperform
FP-Ensem, which can be explained by the two sources of training in
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Table 2: Accuracy of Lightweight Student Models, using an Ensemble of InceptionTime Base Models.

Accuracy Top-5 Accuracy Accuracy Top-5 Accuracy Accuracy Top-5 Accuracy
Bit-width 4 8 16 4 8 16 4 8 16 4 8 16 4 8 16 4 8 16

Adiac NonInvECG1 PigAirway
FP-Ensem/FP-Stud 0.79 / 0.83 0.95 / 0.97 0.96 / 0.96 1.00 / 1.00 0.56 / 0.59 0.91 / 0.93
Classic KD 0.29 0.41 0.48 0.65 0.80 0.83 0.55 0.68 0.78 0.91 0.94 0.99 0.18 0.24 0.27 0.32 0.50 0.63
AE-KD 0.29 0.36 0.38 0.51 0.56 0.74 0.57 0.63 0.78 0.98 0.98 0.99 0.19 0.22 0.24 0.42 0.55 0.55
Reinforced 0.20 0.23 0.40 0.41 0.51 0.87 0.56 0.62 0.78 0.92 0.95 0.99 0.14 0.21 0.26 0.54 0.57 0.59
CAWPE 0.23 0.27 0.38 0.48 0.56 0.82 0.72 0.77 0.77 0.97 0.99 0.99 0.17 0.21 0.26 0.44 0.48 0.68
AED-LOO 0.76 0.78 0.78 0.96 0.97 0.97 0.94 0.95 0.94 1.00 1.00 1.00 0.56 0.57 0.59 0.91 0.91 0.92
LightTS 0.77 0.77 0.79 0.97 0.97 0.97 0.92 0.94 0.95 1.00 1.00 1.00 0.53 0.54 0.55 0.90 0.90 0.90

Crop NonInvECG2 PigArt
FP-Ensem/FP-Stud 0.76 / 0.76 0.95 / 0.97 0.96 / 0.96 1.00 / 1.00 0.99 / 1.00 0.99 / 1.00
Classic KD 0.67 0.68 0.69 0.96 0.96 0.96 0.80 0.81 0.83 0.99 0.99 0.99 0.53 0.63 0.67 0.64 0.89 0.99
AE-KD 0.68 0.69 0.69 0.96 0.96 0.96 0.55 0.61 0.82 0.88 0.93 0.99 0.27 0.69 0.73 0.62 0.78 0.94
Reinforced 0.69 0.70 0.71 0.96 0.96 0.96 0.79 0.81 0.82 0.99 0.99 0.99 0.18 0.24 0.28 0.54 0.65 0.74
CAWPE 0.68 0.69 0.70 0.96 0.96 0.96 0.74 0.78 0.81 0.99 0.99 0.99 0.24 0.42 0.43 0.40 0.57 0.76
AED-LOO 0.71 0.72 0.73 0.96 0.97 0.96 0.94 0.95 0.95 1.00 1.00 1.00 0.96 0.98 0.98 1.00 1.00 1.00
LightTS 0.72 0.73 0.73 0.97 0.97 0.97 0.94 0.94 0.95 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00

FaceAll Phoneme UWave
FP-Ensem/FP-Stud 0.81 / 0.85 0.97 / 0.99 0.29 / 0.30 0.61 / 0.64 0.93 / 0.95 1.00 / 1.00
Classic KD 0.75 0.77 0.80 0.84 0.88 0.89 0.26 0.27 0.29 0.59 0.61 0.62 0.75 0.79 0.81 1.00 1.00 1.00
AE-KD 0.74 0.76 0.75 0.83 0.88 0.94 0.24 0.23 0.26 0.56 0.57 0.58 0.77 0.79 0.81 1.00 1.00 1.00
Reinforced 0.68 0.72 0.79 0.85 0.86 0.86 0.26 0.28 0.29 0.60 0.60 0.62 0.72 0.72 0.80 1.00 0.99 0.99
CAWPE 0.69 0.70 0.76 0.83 0.85 0.86 0.22 0.23 0.26 0.58 0.61 0.63 0.66 0.79 0.81 1.00 0.99 0.99
AED-LOO 0.81 0.83 0.82 0.99 0.98 0.98 0.27 0.26 0.26 0.61 0.60 0.60 0.86 0.87 0.87 1.00 1.00 1.00
LightTS 0.81 0.82 0.84 0.98 0.98 0.98 0.26 0.27 0.27 0.61 0.62 0.63 0.87 0.88 0.89 1.00 1.00 1.00
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Figure 17: Accuracy Ranking, 59 Data Sets with 2 or 3
Classes.

the quantized student, i.e., distillation loss and the classification loss.
However, even when quantized models outperform the ensemble,
they still perform below the upper-bound performance of FP-Stud.
The condition is explained by the fact that 32-bit provides more
information, so that model captures better the complete parameters
representation, without any precision loss. Therefore, it is expected
that it outperforms all quantization settings since they lose some
level of precision.

The AED-LOO baseline achieves very good performance for Accu-
racy and Top-5 Accuracy. In most of the cases, it is second best. This
is expected since AED-LOO shares the AED component with LightTS.
Also, the differences between the two methods are related to how
they remove teachers. LightTS can evaluate all the 𝑁 possible en-
sembles, regardless the changes in accuracy when some teachers are
removed, while AED-LOO stops when the accuracy drops because
of its factorial growth in the number of evaluations.

The rather reduced performance of the remaining baselines is
related to the premises on which they are built. In all cases, they
estimate the weights for the classes probabilities and combine them
in a single ensemble, instead of considering independently each
base model contribution to the student. This works well in full
precision models, but it conflicts with the quantization because the

final ensemble does not provide enough support for the compressed
student in contrast to the independent distillation for each member.

In addition, the evaluation on the UWave shows the model ap-
plicability in multi-dimensional time series, so the compression
process it is not constrained by the input dimensions. Also, the
small number of labels in the data set, only eight, gives the perfect
score for the Top-5 Accuracy metric for all the baselines.
Teacher removal:To assess the effect of using theGumbel-Softmax
based teacher removal strategy, we compare it with two variants:
using the Softmax function to remove teachers and no removing
teachers from the ensemble. The results are shown in Table 3 for
the Adiac data set. Other data sets show similar results. Using the
Gumbel-Softmax yields 16–24% improvement in the Accuracy and
around 5–13% improvement in the Top-5 Accuracy with respect to
Softmax removal and no removal. Thus, the choice of the Gumbel-
Softmax for disregarding base models is justified.

Table 3: Teacher Removal Strategies for Adiac Data Set.

Accuracy Top-5 Accuracy
Bit-width 4-bit 8-bit 16-bit 4-bit 8-bit 16-bit
No removal 0.55 0.61 0.64 0.86 0.92 0.93
Softmax 0.53 0.57 0.63 0.84 0.85 0.92
Gumble 0.77 0.77 0.79 0.97 0.97 0.97

Running time: We cover training time and inference time sep-
arately. The training time is evaluated using the complete UCR
archive in Figure 18(a) for all bit settings also considering the null-
hypothesis Friedman and the Wilcoxon-Holm post-hoc tests. The

11



ranking places Classic KD and AED-One in the first group. This
is expected, as they share the same complexity as shown by the
complexity analysis in Section 3.2.1. Reinforced and LightTS are
second, while CAWPE and AE-KD are third, and AED-LOO is last, as
it uses an inefficient leave-one-out strategy to remove teachers.
The overall results for LightTS show an appropriate trade-off be-
tween accuracy and training time. It achieves the best accuracy
with a very competitive running time, and the efficiency contenders
(Reinforced, AED-One, and Classic KD) are in the bottom segment
in terms of overall accuracy. In addition, the training time on the
full UCR archive is shown in Figure 18(b) using box plots. Next,
inference occurs online, where we use the quantized model to per-
form classification. Its running time depends only on its size (e.g.,
4, 8, or 16 bits) and is independent of the distillation method used.
To conclude, since training occurs offline and thus is often not time
critical, LightTS is the best choice as it offers the best accuracy. If
the training time is critical, AED-One is the best choice as it is as
efficient as Classic KD, but is more accurate.
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Figure 18: Total Training Time, Full UCR Archive.

Non-deep Learning Based Models: To verify that LightTS is
a generic framework, which can also apply to base models other
than InceptionTime, we consider non-deep learning based models,
TDE, CIF, and Forest, Table 4 shows results on data sets Adiac and
PigAirway, due to the space limitation. Results on the remaining
data sets exhibit similar trends.

The main observation is that LightTS offers much better Accu-
racy and Top-5 Accuracy performance than the baselines. Specif-
ically for Accuracy, the level of improvement with respect to the
baselines is, for most of the cases, around a factor of three. The
reason for the large difference is the adaptability of LightTS when
choosing teachers. It is able to identify the candidates that are better
aligned with the student settings and distills knowledge from them,
while the other methods include all the base models regardless of
their performance.

Next, in all cases, the full-precision ensemble outperforms the
distilled cases at Accuracy, meaning that there is still room for
improvement of the quantized student models. As the differences
between the non-deep learning basemodels and LightTS are higher
than when using InceptionTime as base models, it appears that
the architectural differences between the teachers and the student
have some effect on the distillation performance.
Hyper-parameter sensitivity: In Figure 19, the sensitivity for
the hyper-parameters 𝛼 and 𝜏 is evaluated for the Adiac data set
in a configuration of 4 bits. It shows that 𝛼 is stable when the two
losses are balanced. Then, the accuracy changes are steeper with
𝜏 modifications, meaning that it leads to a different selection of
teachers, affecting the overall performance. The choice of 0.5 for
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Figure 19: Hyper-parameter Sensitivity, Adiac, 4-bit.
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Figure 20: Effect of the Number of Base Models 𝑁 .

both parameters seems precise, since it is among the best possible
options. Other data sets and bit settings show similar trends.
Effect of the number of base models N: Figure 20 shows the
impact of the number of base models 𝑁 on Accuracy and Training
time for data sets Adiac, PigAirway, and NonInvECCG2. In all cases,
when 𝑁 is small, the accuracy results are significantly affected
mainly because the opportunities to choose appropriate basemodels
and to disregard unsuitable base models are reduced. Then, as 𝑁
increases, the accuracy is relatively stable within a range of 5%,
achieving the best accuracy with some 25 or 30 base models. For
PigAirway andNonInvECCG2, the results decrease slightly when the
number of base models reaches 30, which we attribute to the added
uncertainty caused by having more base models, i.e., removing
base models becomes increasingly arbitrary as more options are
available. The changes for Adiac are very slightly after considering
25 models, suggesting it will reach a maximum closer closer to that
range. The total training time grows linearly as the number of base
models increases, which is consistent with the complexity analysis.

4.2.2 Problem Scenario 2. To find optimal student settings using
the proposed encoded multi-objective Bayesian optimization, we
initialize the process with 𝑃 = 10 random settings and search for 40
additional settings, meaning that𝑄 = 50. We show the results on the
data set Adiac given the space limitation. Experiments conducted
in other data sets show similar observations.
Feature transformation effect: To evaluate the effect of using
the two-phase encoder, we assess it in comparison to (1) a single
phase encoder using the reconstruction loss only (i.e., an autoen-
coder) but without considering the accuracy adjustment loss func-
tion, (2) using the original space where the values are normalized,
and (3) the original discrete space. We use these different spaces to
train a GP accuracy estimator and evaluate the estimated accuracy
vs. ground truth accuracy of 50 randomly sampled settings. The
results for data sets Adiac, PigAirway, and NonInvECCG2 in Table 5
show that the proposed two-phase encoder gives the most accurate
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Table 4: Accuracy of Lightweight Students, using Ensembles with Base Models other than InceptionTime.

TDE CIF Forest
Accuracy Top-5 Accuracy Accuracy Top-5 Accuracy Accuracy Top-5 Accuracy

Bit-width 4 8 16 4 8 16 4 8 16 4 8 16 4 8 16 4 8 16

A
di
ac

FP-Ensem/FP-Stud 0.50 / 0.61 0.79 / 0.83 0.79 / 0.84 0.97 / 0.97 0.74 / 0.77 0.95 / 0.96
Classic KD 0.14 0.13 0.12 0.37 0.32 0.31 0.24 0.27 0.24 0.48 0.43 0.56 0.21 0.23 0.18 0.57 0.42 0.40
AE-KD 0.13 0.18 0.16 0.35 0.41 0.37 0.21 0.24 0.21 0.46 0.43 0.47 0.23 0.29 0.21 0.55 0.71 0.49
Reinforced 0.11 0.13 0.14 0.30 0.31 0.30 0.24 0.19 0.19 0.53 0.37 0.37 0.15 0.18 0.19 0.41 0.36 0.39
CAWPE 0.12 0.15 0.14 0.34 0.35 0.33 0.15 0.14 0.14 0.35 0.31 0.34 0.12 0.15 0.14 0.34 0.35 0.33
LightTS 0.32 0.37 0.41 0.65 0.69 0.75 0.66 0.71 0.71 0.93 0.94 0.95 0.68 0.69 0.71 0.93 0.93 0.95

Pi
gA

ir
w
ay

FP-Ensem/FP-Stud 0.76 / 0.80 0.97 / 0.98 0.42 / 0.46 0.93 / 0.94 0.42 / 0.45 0.94 / 0.95
Classic KD 0.22 0.23 0.14 0.63 0.63 0.42 0.11 0.13 0.11 0.33 0.39 0.34 0.14 0.15 0.10 0.40 0.43 0.34
AE-KD 0.15 0.20 0.18 0.39 0.49 0.49 0.11 0.13 0.17 0.35 0.35 0.47 0.11 0.10 0.11 0.33 0.33 0.32
Reinforced 0.13 0.13 0.19 0.36 0.43 0.49 0.12 0.10 0.07 0.29 0.31 0.27 0.08 0.10 0.14 0.25 0.37 0.40
CAWPE 0.11 0.12 0.12 0.33 0.38 0.35 0.11 0.12 0.12 0.32 0.35 0.36 0.11 0.12 0.12 0.33 0.38 0.35
LightTS 0.60 0.66 0.70 0.93 0.95 0.96 0.36 0.40 0.45 0.68 0.73 0.77 0.33 0.38 0.42 0.66 0.70 0.74

estimation for the unevaluated settings’ accuracy, which outper-
forms the one-phase autoencoder. In addition, simply normalizing
the values in settings fails to improve accuracy.

Table 5: Gaussian Processes Accuracy Estimation.

Adiac PigAirway NonInvECG2
MAE MAPE MAE MAPE MAE MAPE

Original 0.12 0.31 0.05 0.25 0.04 0.06
Normalized 0.11 0.31 0.05 0.27 0.05 0.06
Single Encoder 0.09 0.24 0.05 0.23 0.04 0.05
Two-phase Encoder 0.08 0.23 0.04 0.16 0.04 0.05

Base settings improvement: In Figure 21(a), 21(b), and 21(c), we
show how the encoded Bayesian optimization is able to improve
the results of the fixed settings used in the first set of experiments
for the Adiac, PigAirway, and NonInvECCG2 data sets, respectively.
In the figure, we include the three lightweight student cases of 4, 8,
and 16 bits (c.f. Table 2) denoted as “Base settings,” and denoting
upper-left areas for possible improvements, meaning that any point
in that area has a better accuracy at a reduced size. We only show
the results in the areas for improvement to keep the figures clear,
so fewer than 𝑄 = 50 points are shown. Then, we illustrate the
effect of the optimization with two levels of flexibility. First, we
keep the number of layers fixed as the base settings and apply
the optimization limiting the search space to only bit-width. In
the figure, these are denoted as “Fixed layers.” Then, we explore
the complete search space, varying the number of layers, filter
length, and bit-width, shown in the figure as “Encoded MOBO.”
The evaluation shows that the optimization process is able to find
better student settings than with the base settings, i.e., improving
accuracy while consuming less space. In addition, the figure shows
that exploring only the bit-width space enables better settings, but
that it is potentially more beneficial to explore the complete search
space, since there are better settings when also the layers can be
varied.
Pareto frontiers: Using the Adiac, PigAirway, and NonInvECCG2
data sets, we show in Figures 22(a), 22(b), and 22(c) a comparison of
the Pareto frontiers when using different methods. We include the

Table 6: Optimization Running Time (hours).

Adiac PigAirway NonInvECG2
Random 4.61 2.72 19.65
MOBO 5.78 3.45 28.77
Encoded MOBO 5.85 3.48 29.82

proposed encodedMulti-objective Bayesian optimization (“Encoded
MOBO”); classic Multi-objective Bayesian optimization (“MOBO”),
where the settings are not encoded; and randomly choosing all 𝑄
settings (“Random”). The Encoded MOBO obtains a better Pareto
frontier than do the other two methods, i.e., it is closer to the upper,
left corner. Thus, the frontier includes settings with relatively small
model size and high accuracy, meaning that it is possible to find
very competitive settings with very strict memory constraints.

The methods are evaluated in terms of running time, as shown
in Table 6. The “Random” search is faster since it does not optimize
the search, but that leads to a poor Pareto frontier. Next, the differ-
ences in running time between the “MOBO” and “Encoded MOBO”
optimizations are relatively small, which is expected because of the
similar optimization processes.

To evaluate the effect of initializing the optimization process
with evaluated settings sets of different size, i.e., with fixed Q while
changing 𝑃 , we build the Pareto frontiers with 𝑃 equal to 5, 10,
20, 30, and 40—see Figure 23. Using 𝑃 = 5 constrains the process
substantially, and it only identifies models of relatively large size,
implying that a poorly-initialized GP may mislead the optimization
process of BO. In contrast, using 𝑃 = 10, 20, 30 yields similar Pareto
frontiers, and we empirically find that 𝑃 = 10 is a good choice since
it successfully initializes the exploration similarly to larger values.

5 RELATEDWORK
Time Series Classification: Time series classification has seen
substantial advances, and state-of-the-art methods offer impres-
sive accuracy [18, 44]. However, the state-of-the-art methods re-
quire significant computing resources, making them inapplicable
in resource-limited settings. Some methods (e.g., [37]) use large
ensembles, that combine the results from dozens of single mod-
els to compute a result, while other methods (e.g.,[12, 13, 22, 32])
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Figure 21: Base Settings Improvement.
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Figure 22: Identifying Pareto Frontiers.
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Figure 23: Varying 𝑃 , Encoded MOBO, Adiac.

require multiple data transformations for exploring time series
properties [4, 26], which requires substantial memory. Then, deep
learning [19, 49] and non-deep learning [14, 32, 36, 38, 52] based
ensembles are competitive models, so they are considered as inputs
for LightTS.
Knowledge Distillation: Knowledge distillation has been studied
since its introduction [25], with studies considering single teach-
ers [8, 41, 43, 45], ensembles of diverse teachers [17, 21, 54, 56], and
techniques that aim to improve performance via self-distillation [55]
and online student feedback [7]. When compressing from an en-
semble of diverse teachers into a student, existing studies consider
mainly a student with full-precision parameters, while we consider
lightweight students, e.g., with 4, 8, or 16-bit quantized parameters.
This difference calls for a more flexible distillation strategy and
means to identify the Pareto optimal frontier, which is not con-
sidered by existing studies. Although different methods exist that
balance different teachers’ contributions to an ensemble [17, 31, 54],
which then guides the knowledge distillation, no studies consider
the removal of teachers. We propose a novel bi-level optimiza-
tion modeling that not only assigns appropriate weights to useful
teachers, but also facilitates removal of irrelevant teachers, thus
achieving more flexible distillation and higher accuracy, as shown
in the experiments.

Pareto frontier: Existing studies do not consider how to build a
Pareto frontier, partially because they consider only students with
full-precision parameters [45, 47, 53]. In our setting, it is possible to
use different bit-widths in different layers, making it challenging to
identify Pareto frontiers efficiently. To contend with this challenge,
we propose a novel encoding scheme along with an EncodedMOBO
method to identify a Pareto frontier by only evaluating a small
number of student model settings. Skyline querying [5, 51] is able
to efficiently identify the Pareto frontier for an input data set 𝐷 in
the form of (accuracy, size) pairs. However, naively constructing
𝐷 requires evaluating the accuracy of large numbers of student
settings, which is prohibitively expensive. The Encoded MOBO
aims at constructing an appropriate input data set 𝐷 by evaluating
the accuracy of a small number of student settings, upon which any
skyline querying algorithm can be applied. Thus, skyline querying
and Encoded MOBO are orthogonal.

6 CONCLUSIONS AND FUTUREWORK
This paper proposes LightTS, a novel and flexible framework that
extends state-of-the-art time series classification to resource-limited
devices. First, LightTS is able to adaptively distil the knowledge
from a set of high-capacity, large base models to a lightweight
model. In doing this, it employs a bi-level optimization approach
to estimate the benefit of each base model during the distillation.
Second, an encoded multi-objective Bayesian optimization method
is proposed to search for the Pareto optimal settings for lightweight
models under varying space constraints. The results of experimental
studies offer evidence of the effectiveness of LightTS when used
on a variety of real-world time series data sets with different base
models.

In future work, it is of interest to explore more flexible distil-
lation paradigms, such as online distillation that does not require
pretrained base models. It is also of interest to study how to adapt
distillation to streaming settings.
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