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ABSTRACT
Dataflow devices represent an avenue towards saving the control

and data movement overhead of Load-Store Architectures. Various

dataflow accelerators have been proposed, but how to efficiently

schedule applications on such devices remains an open problem.

The programmer can explicitly implement both temporal and spa-

tial parallelism, and pipelining across multiple processing elements

can be crucial to take advantage of the fast on-chip interconnect,

enabling the concurrent execution of different program compo-

nents. This paper introduces canonical task graphs, a model that

enables streaming scheduling of task graphs over dataflow archi-

tectures. We show how a task graph can be statically analyzed to

understand its steady-state behavior, and we use this information to

partition it into temporally multiplexed components of spatially ex-

ecuted tasks. Results on synthetic and realistic workloads show how

streaming scheduling can increase speedup and device utilization

over a traditional scheduling approach.

1 INTRODUCTION
The end of Dennard scaling and Moore’s law have breathed new

life into the computer architecture research field, with researchers

looking for alternatives to overcome the inherent inefficiencies of

traditional Load-Store Architectures (LSAs). Driven by the specific

needs of application domains such as machine learning, various

highly parallel computing platforms have recently been proposed

to accelerate specific parts of, or even entire, computations. These

devices come in the flavor of Domain-Specific Architecture (such as

Google TPUs for machine learning workloads, [18]), devices with

hardened logic but flexible datapaths (Configurable Corse Grain

Array, CGRA, such as the Xilinx’s ACAP platform, [12]), and large

chips (such as the Cerebras Wafer Scale Engine, [25]). They all are

characterized by spatial parallelism, having tens to thousands of

Processing Elements (PEs), and a fast Network-On-Chip (NoC) for

efficient inter-PE communications.

Scheduling an application on these devices poses challenges

different from traditional LSAs. First, in these architectures, the

computation can be performed both spatially, by taking advantage

of a large number of computing units, and temporally, by time-

multiplexing resources to perform the computation. This intro-

duces a trade-off that must be understood to optimally schedule an

application on a given device. Second, and strictly related, pipelin-
ing can be crucial to fully exploit the device’s spatial parallelism.

It allows for the concurrent execution of different program com-

ponents, exploiting fast on-chip communication while reducing

off-chip memory accesses.
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Figure 1: Overview of the proposed approach. Blue solid
boxes identify the various scheduling steps. Dashed boxes
identify user-provided inputs and final output.

Synchronous DataFlow Graphs [23] and extensions, such as

Cyclo-static DataflowGraphs [10], have been proposed as models of

computation for dataflow applications. However, thesemodels focus

on schedules that improve the throughput of multiple application

iterations. In this work, instead, we tackle the issue of scheduling

a direct acyclic task graph onto a dataflow device: we propose a

methodology to analyze and optimize the application scheduling

by explicitly considering the challenges described above, pipelining

within a single application iteration and optimizing for latency. In

particular, we:

• introduce canonical task graphs: a dataflow-centric view of

the computation to model and statically analyze the execu-

tion of an application on an abstract dataflow architecture,

taking pipelining into account;

• propose algorithms for scheduling the application, consid-

ering spatial and temporal multiplexing;

• derive bounds on the parallel execution time of task graphs;

• present algorithms to guarantee deadlock-free execution

in the presence of pipelined tasks.

2 PROBLEM DEFINITION
The input application is described by a Direct Acyclic Task Graph
(DAG) 𝐺 = (𝑉 , 𝐸) (see Figure 1, top-left box), where 𝑉 is the set

of tasks in which the application can be decomposed, and an edge

(𝑖, 𝑗) ∈ 𝐸 represents a (data) dependency between task 𝑖 and task 𝑗 .

Edge labels represent the amount of data communicated between

tasks, counted in unitary elements (e.g., floating point numbers).
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For simplicity, we assume that all edges transport basic data types,

but the approach can be directly applied to any data width (i.e.,

edges can carry vectors of data).

We model the targeted dataflow device as consisting of 𝑃 homo-

geneous Processing Elements (PEs) and a global memory, which is

assumed to have infinite size (Figure 1, bottom-left box). PEs can

communicate directly with each other and with global memory.

They are interconnected by a Network-on-Chip (NoC) in which we

assume all communications perform without contention. PEs can

execute one task at a time. Tasks are non-preemptive, and they can

communicate according to two different modes:

• Buffered communication (solid edges in Figure 1). The pro-

ducer stores the output data in global memory, and the

consumer can later access the data. The consumer can start

only after the producer has finished.
• Streamed (or pipelined) communication (dashed edges in

Figure 1): the producer streams the data to the consumer,

element by element. The consumer can start as soon as the
producer outputs the first element, and their execution is

(partially) overlapped.

Given an application, we want to derive a static schedule for its
execution on the target device. Figure 1 outlines the proposed ap-

proach:

(1) The task graph is partitioned into temporally multiplexed

components that we call spatial blocks. Each of these com-

ponents can have at most 𝑃 tasks.

(2) The spatial blocks are scheduled one after the other, respect-

ing the dependencies expressed in the task graph. Tasks

within a spatial block can executed simultaneously, exploit-

ing spatial parallelism and, whenever possible, pipelining.

(3) The amount of buffer space needed to guarantee deadlock-

free execution of pipelined tasks is computed.

Buffered communication is the only communication mode allowed

between tasks belonging to different spatial blocks. On the other

hand, pipelined communication is the preferred way of communica-

tion within a streaming block, as it allow overlapping the execution

of communicating tasks, and may reduce off-chip memory accesses.

For some dataflow architectures, such as CGRAs, locality and

placement play an important role in achieving high performance.

We do not explicitly deal with placement in this work, but we

believe that the proposed approach can be the starting point for

tackling a similar challenge.

Once all tasks in a graph are scheduled, the makespan (i.e., the

schedule length) is given by the maximum finishing time of any

exit node of the graph. Our goal is to find the graph partitioning and
task-to-PE assignments that minimize the application makespan.

3 CANONICAL TASK GRAPHS
In the following, we introduce canonical task graphs that are DAGs
composed of certain types of nodes and that respect specific rules.

Then we discuss how we can represent applications within this

framework. Canonical task graphs are the subject of the analysis

and proofs discussed in Section 4.

3.1 Canonical nodes
We define as canonical a node that has a bounded number of input

and output edges, that receives the same amount of data from all its

input edges, and produces the same amount of data to all its output

edges. A task graph that is composed of only canonical nodes is

canonical. We distinguish between nodes that perform the actual

computation and nodes that serve as buffers to store, replicate, and

reshape data.

A computational node 𝑣 receives 𝐼 (𝑣) data elements from all

the input edges and produces 𝑂 (𝑣) = 𝑅(𝑣)𝐼 (𝑣) elements to each

output edge. We call 𝑅(𝑣) the node’s production rate. We distinguish

between three notable cases:

(1) 𝑅(𝑣) = 1, is the case of element-wise nodes. Examples of

element-wise tasks are vector-vector addition, Hadamard

product, and various activation functions in machine learn-

ing models.

(2) 𝑅(𝑣) < 1, is the case of downsampler nodes. Downsamplers

can be used to represent reductions, such as dot product,

statistics, pooling operators.

(3) 𝑅(𝑣) > 1, for upsampler nodes. Examples: vector concate-

nation, data replication.

In the following, we adopt a dataflow-centric view on the compu-

tation: we assume that the operations applied to compute over

the input or output data elements require linear time (one time

unit per element) and constant space. Furthermore, we assume PEs

can always satisfy the rate requirements implied by the given task

graph: they can accept/produce one element per unit of time from

each task inputs/outputs. Other than this, we do not restrict the

internal node semantics. Section 3.2 discusses how more complex

operations, such as outer products or vector normalization, can be

represented as canonical subgraphs, capturing their actual compute

time and dataflow.

We define buffer nodes as follows: a buffer node 𝑣 with a produc-

tion rate 𝑅(𝑣) buffers its inputs, and once all input elements have

been stored, they are output 𝑅(𝑣) times. It follows that we cannot

pipeline communications through a buffer node. Buffer nodes are

not active entities: unlike computational nodes, they do not need to

be scheduled on a PE. They can be implemented as memory com-

ponents, such as backing global memory or cache/scratchpad area

in the PEs. We introduce them to model and analyze computations

that may require reading the data multiple times or in a different

order. For example, the buffer node can output 𝑅(𝑣) copies of the
input, or a reshaped version of the input.

A source node 𝑣 reads its output from global memory. It does

not have a production rate, and directly outputs 𝑂 (𝑣) elements. A

sink node 𝑣 stores its inputs in global memory, and its production

rate is zero.

3.2 Representing generic computations with
canonical task graphs

Canonical nodes allow the user to represent a meaningful set

of operations. However, in generic computations, tasks may re-

ceive/produce arbitrary data volumes from/to their incident edges.

This is the case for operations such as outer product and matrix

multiplication. In the following, we go through some of these exam-

ples, discussing how we can map them into canonical task graphs,
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Figure 2: Outer product implementations and their represen-
tations as canonical graphs. Green squared nodes represent
buffer nodes, with the buffer space in squared brackets.

correctly modeling their computation time and parallelism oppor-

tunities, if any.

How an operation can be represented in a canonical task graph

depends on its actual implementation and runtime behavior. While

this can impact the parallelism and streaming opportunities, a more

general case analysis is outside the scope of this work, as this would

require complete knowledge of the internal semantics of the tasks

to capture their data access patterns. For the rest of the paper, we

assume the canonical task graph is provided as a result of a compiler

or synthesis pass on the user’s program.

3.2.1 Outer Product. Let us consider the outer product between
an 𝑁 -element vector 𝑢 and an𝑀-element vector 𝑣𝑇 , that produces

a matrix 𝐴 of size 𝑁 ×𝑀 . Figure 2 shows various implementations

and representations for the outer product operation as a canonical

task graph. All edge widths are equal to one (i.e., edges carry scalar

values). Task graph ➀ considers the case where every element of 𝑢

is multiplied by the entire vector 𝑣𝑇 , producing the final matrix 𝐴

row-by-row. In this case, every element of 𝑢 is replicated 𝑀 times

through an upsampler. Vector 𝑣𝑇 must instead be read entirely 𝑁

times, and therefore is stored in a buffer node. An element-wise

node represents the actual multiplication of 𝑢 and 𝑣𝑇 elements,

taking 𝑁𝑀 elements from both its inputs and producing 𝑁𝑀 ele-

ments in output. This implementation allows the streaming of input

vector 𝑢 and outputs matrix 𝐴 in row-major order. Implementation

➁ shows the symmetric implementation where every element of

𝑣𝑇 is multiplied by the entire vector 𝑢. This will produce the output

matrix 𝐴 column-by-column, enabling the streaming of 𝑣𝑇 and 𝐴.

Finally, implementation ➂ shows the case where both inputs are

buffered. In this case, only the result can be streamed.

3.2.2 Matrix-Matrix Multiplication. Consider the case of a Matrix-

Matrix multiplication𝐶 = 𝐴𝐵, where 𝐴 is a matrix of size 𝑁 ×𝐾 , 𝐵
is an 𝐾 ×𝑀 matrix, and 𝐶 is an 𝑁 ×𝑀 matrix. In the naive inner

product implementation, a row of𝐴 is multiplied by a column of𝐵 to

produce a single element of𝐶 . Its canonical representation is shown

in the graph ➀ of Figure 3. In this case, we exploit two buffer nodes

to replicate the two input matrices. The multiplication operation is

represented with a downsampler node, with a production rate of

1/𝐾 .
Usually, programmers are interested in parallel implementations

of matrix-matrix multiplication. Assuming that matrix 𝐴 elements

arrive row-by-row, the task graph ➁ in Figure 3 shows an imple-

mentation that computes each column of 𝐶 in parallel. Each task

𝐷𝑖 implements a matrix-vector multiplication: it is a downsampler

task that takes in input the matrix𝐴 and a column of 𝐵 to produce a
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Figure 3: Different Matrix-Matrix multiplication implemen-
tations and corresponding canonical task graphs.

column of𝐶 (𝑁 output elements). In this implementation, the input

matrix 𝐴 can be streamed directly to the various computing tasks.

The left-topmost task behaves like an element-wise operation by

replicating its input elements to the output edges. On the contrary,

elements of matrix 𝐵 must be read multiple times and need to be

explicitly buffered. As it will become clearer in Section 4, under

certain circumstances (if 𝐾 > 𝑀), we can also stream the output

row-by-row without performance penalties instead of buffering it.

Finally, task graph ➂ shows an implementation that parallelizes

along the 𝐾 dimension: each inner task 𝐸𝑖 computes an outer prod-

uct between a column of𝐴 and a row of 𝐵. The outer product result

is output row-by-row. The tree-structured rightmost element-wise

tasks are in charge of performing the element-wise sum of the outer

product results. The output matrix 𝐶 can be streamed to succes-

sive tasks. Similarly to Section 3.2.1, we can derive an alternative

implementation that produces the result column-by-column.

3.2.3 Vector normalization. Let 𝑥 be an 𝑁 elements vector, we

want to represent the vector normalization 𝑦 = 𝑥
| |𝑥 | | as a canonical

task graph. Figure 4 shows two different implementations. In ➀,
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Figure 4: Vector normalization: different implementations
and representations as canonical task graphs.

the vector 𝑥 is stored in a buffer since it must be read two times:

one to compute its norm (by the downsampler node) and one to

compute the division between each element and the norm (by

the element-wise node). Once computed, the norm value is stored

in a buffer and read 𝑁 times to perform the divisions. With this

implementation, no streaming communication can be exploited,

and the two operations are executed one after the other. When

dealing with a sequence of vectors, we can double the buffer space

(2𝑁 ) so that while the element-wise node works on vector 𝑖 , the
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downsampler can compute the norm for vector 𝑖 + 1. Task graph ➁

shows the case where the input vector 𝑥 is not buffered, but instead

streamed directly to both the downsampler and the element-wise

nodes. As it will become more evident in Section 6, such a solution

would require properly dimensioned buffer space for pipelined

communications to prevent deadlocks.

3.2.4 Softmax. The numerically stable softmax operation, applied

over an input vector 𝑥 with 𝑁 elements, is defined as:

𝑦𝑖 =
𝑒𝑥𝑖−max (x)∑𝑁
𝑗=1 𝑒

𝑥 𝑗−max (x)

Figure 5 shows a possible implementation as a canonical task

graph, where a separate task expresses each sub-operation. The

leftmost downsampler computes the maximum value of vector 𝑥 .

This partial result is buffered and then used by the following three

computational tasks to compute the value at the denominator: these

are in charge respectively of subtracting to each value of 𝑥 the max

(element-wise task), of exponentiating it (element-wise task), and

sum the corresponding values (downsampler task). This value is

then buffered and used by the bottom element-wise division task

to compute the final outputs 𝑦𝑖 . Note that in this implementation
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Figure 5: Softmax: representation as canonical task graph.

the values 𝑒𝑥𝑖−max(x)
are computed only once and used both for

computing the denominator and for the final division. This allows

to partially stream the internal computation.

4 ANALYSIS
Given a canonical task graph, we first characterize its execution

for an infinite number of processing elements: each task can be

assigned to a different PE, and the application is fully executed

in the spatial domain. We analyze the application’s steady-state
behavior and define its streaming depth, analogous to the concept

of depth of a parallel program. These analysis tools allow us to

define the schedule of a given canonical DAG considering a limited

number of PEs (Section 5). In the following, we use the term task

and node interchangeably. For reference, Table 1 lists all the used

symbols throughout the rest of the paper.

4.1 Streaming intervals
To analyze a streaming (sub-)graph, we are interested in its steady-

state behavior that is reached when for each edge (𝑢, 𝑣), the average
interval between elements output by node 𝑢 and the interval be-

tween elements consumed by the following node 𝑣 are balanced.

In the following, we discuss the conditions that apply when such a

state is reached.

We define for each edge 𝑒 its streaming interval 𝑠 (𝑒) as the aver-
age time interval between elements going through the edge 𝑒 while

Symbol Meaning

𝑅 (𝑣) Production rate of the node 𝑣

𝑠 (𝑒 ) Streaming interval of the edge 𝑒

𝑆𝑜 (𝑣)/ 𝑆𝑖 (𝑣) Output / Input streaming interval of the node 𝑣

𝐼 (𝑣)/𝑂 (𝑣) Number of elements read/produced by node 𝑣

𝐿𝑂 (𝑣) The time the last element leaves node 𝑣.

𝐹𝑂 (𝑣) The time the first element leaves node 𝑣.

𝑆𝑇 (𝑣) The starting time of node 𝑣.

L(𝑢 ) Level of the node 𝑢.

𝑊 (𝑣) Work of the node 𝑣.

𝑇 𝑠
∞ Streaming depth of the graph.

Table 1: List of used symbols.

u vK[4]K[4] 4K[1] u

v
time

Figure 6: Streaming intervals. Left: the task graph with an-
notated data volumes (blue labels), and streaming intervals
(green labels). Right: tasks data production over time.

the edge is streaming. This concept is exemplified in Figure 6. Here,

task 𝑣 is an upsampler node with a production rate of 4, which can

produce a new output element on every time unit. At steady-state

(𝐾 → ∞), task 𝑢 can only produce an output element every four

time units, blocked by the upsampler ingestion rate.

At the steady-state, a node will read data at an interval given

by the maximum streaming interval of its incident input edges. It

follows that given a node 𝑣 , all its incident input edges will have

the same streaming intervals, and all its output edges will have the

same streaming interval. Hence, we denote the streaming interval

of the input and output edges of 𝑣 with 𝑆𝑖 (𝑣) and 𝑆𝑜 (𝑣), respectively.
We continue with characterizing the streaming intervals.

First, all streaming intervals 𝑠 (𝑒) must satisfy

𝑠 (𝑒) ≥ 1, (1)

where 1 represents a single unit of time (e.g., a clock cycle). Second,

each type of computational node introduces additional constraints,

as follows. Consider a computational node 𝑣 , then its streaming

intervals satisfy

𝑆𝑜 (𝑣) = 𝑆𝑖 (𝑣)
𝑅(𝑣) (2)

This implies that an element-wise node produces data at the same

interval it receives. The output streaming interval of a downsampler

is higher than the input one, while an upsampler node behaves

the opposite. Unlike computational nodes, buffer, source, and sink

nodes do not affect the streaming intervals. They produce or ingest

data at the smallest streaming interval the descendants can read,

or the predecessors can produce. In addition, buffer nodes model

communications that cannot be pipelined: they start producing data

only once all the input elements have been received.

To compute the streaming intervals of a graph, we consider a

transformed task graphwhere each buffer node (if any) is duplicated

so that it occurs twice: as the sink of its predecessor nodes (tail), and
as the source of its successor nodes (head). This allows us to capture
that we cannot stream through buffer nodes. Then, we partition this
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graph into weakly connected components. We define as𝑊𝐶𝐶 (𝑣)
the set of nodes in the same weakly connected component as 𝑣 . All

the communicating nodes in the same𝑊𝐶𝐶 can exploit pipelined

communications. Then, we can characterize the streaming interval

of a node as follows:

Theorem 4.1. The streaming interval 𝑆𝑜 (𝑣) of a node 𝑣 is

𝑆𝑜 (𝑣) =
max

𝑢∈𝑊𝐶𝐶 (𝑣)
𝑂 (𝑢)

𝑂 (𝑣)
An example of a canonical task graph with annotated streaming

intervals is shown in Figure 7. The graph is transformed into a new

one composed of two𝑊𝐶𝐶s, whose edge streaming intervals are

independent of each other.

To prove Theorem 4.1, we introduce two lemmas that relate the

streaming intervals and the input/output elements.

Lemma 4.2. If there is a path from a node 𝑣𝑖 to a node 𝑣 𝑗 that does
not contain a buffer node, the input streaming interval of 𝑣 𝑗 satisfies
𝑆𝑖 (𝑣 𝑗 ) = 𝑂 (𝑣𝑖 )

𝐼 (𝑣𝑗 ) 𝑆
𝑜 (𝑣𝑖 ).

Proof. The proof is by induction on the number of edges in

the path. If there is a single edge in the path, 𝑂 (𝑣𝑖 ) = 𝐼 (𝑣 𝑗 ), and
the statement is trivial. Otherwise, consider the predecessor 𝑢 of

𝑣 𝑗 in the path. By induction hypothesis, 𝑆𝑖 (𝑢) = 𝑂 (𝑣𝑖 )
𝐼 (𝑢 ) 𝑆

𝑜 (𝑣𝑖 ). By
Equation (2) and 𝐼 (𝑢) = 𝐼 (𝑣 𝑗 )/𝑅(𝑢), the result follows. □

Next, we argue about what happens in a WCC that does not

contain buffer nodes, but possibly has multiple sources.

Lemma 4.3. For all pairs of nodes 𝑣𝑖 ≠ 𝑣 𝑗 where there exists a node
that is reachable from both 𝑣𝑖 and 𝑣 𝑗 without using buffer nodes along
the way, we have that 𝑆𝑜 (𝑣𝑖 )𝑂 (𝑣𝑖 ) = 𝑆𝑜 (𝑣 𝑗 )𝑂 (𝑣 𝑗 ).

Proof. Consider two such pairs 𝑖 ≠ 𝑗 . Consider two paths from

𝑣𝑖 and 𝑣 𝑗 that end in a node 𝑣
′
. By applying Lemma 4.2 to both paths,

we see that the streaming intervals satisfy

𝑂 (𝑣𝑗 )
𝐼 (𝑣′ ) 𝑆

𝑜 (𝑣 𝑗 ) = 𝑆𝑖 (𝑣 ′) =
𝑂 (𝑣𝑖 )
𝐼 (𝑣′ ) 𝑆

𝑜 (𝑣𝑖 ). Hence, we conclude that 𝑂 (𝑣𝑖 )𝑆𝑜 (𝑣𝑖 ) = 𝑂 (𝑣 𝑗 )𝑆𝑜 (𝑣 𝑗 ).
□

This means that the product of the number of output elements

and the output streaming interval is constant for all pairs of nodes

in a WCC, which implies Theorem 4.1:

Proof of Theorem 4.1. Consider the vertex 𝑢 in the weakly

connected component with the largest number of output elements

𝑂 (𝑢). By Lemma 4.3, the streaming interval of a vertex 𝑣 ∈𝑊𝐶𝐶 (𝑢)

is 𝑆𝑜 (𝑣) = 𝑆𝑜 (𝑢 )𝑂 (𝑢 )
𝑂 (𝑣) . For the theorem to follow, the output stream-

ing interval of 𝑢 has to be 𝑆𝑜 (𝑢) = 1. This ensures that all other

streaming intervals are at least 1. The streaming interval 𝑆𝑜 (𝑢)
cannot be smaller than 1 because that would violate Equation (1).

If it was larger than 1, we could divide all streaming intervals in

the WCC by this value and obtain a faster execution. Hence, we

conclude 𝑆𝑜 (𝑣) = 𝑂 (𝑢 )
𝑂 (𝑣) , as claimed. □

Theorem 4.1 give us a linear-time, in the number of nodes, al-

gorithm to compute the streaming intervals by just considering

the maximum volume of data produced by the nodes in the weakly

connected components.

4.2 Work and depth analysis
The work and depth model is used to analyze the running time of

parallel algorithms independently of the execution platform [1].

The algorithm’s cost is determined by considering the work, i.e.,
the total number of operations that are performed, and the depth,
i.e., the length of the longest shortest sequence of operations from

any input to any output.

Under the assumption that the operations applied to compute

over the input or output data elements require linear time (one time

unit per element) and constant space, we define the work of a node

as follows:

Work of a node Given a node 𝑣 with 𝐼 (𝑣) input and 𝑂 (𝑣) output
items, we define its work as𝑊 (𝑣) = max{𝐼 (𝑣),𝑂 (𝑣)}.
The work relates to the ideal execution time of the node in isolation.

That is, how much time the node takes to consume and produce all

the input and output data.

Work of the graph The work of a graph 𝐺 is defined as the sum

of the work of its nodes, and it is equal to the execution time of the

DAG on a single processor, 𝑇1 =
∑

𝑣∈𝑉 (𝐺 )𝑊 (𝑣).
If the task graph comprises only basic operations, this is equivalent

to the definition of work according the circuit work and depth

model [1].

To characterize the streaming execution of a canonical task

graph, we introduce the concept of Streaming Depth.

Streaming Depth We define as Streaming Depth (𝑇 𝑠∞) the min-

imum time needed to perform the computation with an infinite

number of PEs, when all computational tasks can be co-scheduled,

and they can stream.

In the following, we start by looking at graphs that have only

certain type of nodes, and then we consider the general case, for

which the streaming intervals play a crucial role.

4.2.1 Element-wise graph. Let us assume that the task graph is

composed by a single connected component and 𝑁 element-wise

tasks, reading and producing 𝑘 elements. The streaming interval

for each edge is 1 (Theorem 4.1). The work 𝑇1 is given by 𝑇1 = 𝑁𝑘 .

Formally, we define the level of a node 𝑣 in the task graph 𝐺 as:

L(𝑣) =
{
1 if v has no parent,

max(𝑢,𝑣) ∈𝐸 (𝐺 ) L(𝑢) + 1 else.

The number of levels in the task graph𝐺 is defined as the maximum

level of any of its vertices, L(𝐺) = max𝑣∈𝑉 (𝐺 ) L(𝑣).
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Given an infinite number of PEs, the time to execute 𝐺 depends

on the time it takes to inject all the data (𝑘) and the time it takes for

the last element to leave a source/input node to reach a sink/output

node (the number of levels in 𝐺 minus 1). Therefore the streaming
depth of 𝐺 is 𝑇 𝑠∞ = 𝑘 + L(𝐺) − 1. Note that if the task graph 𝐺 is

executed without streaming, its depth would be 𝑘 · L(𝐺). Hence,
the deeper the task graph, the bigger the advantage that streaming

might provide.

4.2.2 Downsamplers graph. In a DAG composed only of element-

wise and downsampler nodes, the source(s) produce(s) the maxi-

mum number of elements. Once the source(s) generate(s) all the

data, this must traverse all the graph to reach the sink(s) of the graph.

Therefore, we can define the streaming depth of the graph as a gen-

eralization of the element-wise DAG: 𝑇 𝑠∞ = (max𝑣∈𝑉 (𝐺 )𝑊 (𝑣)) +
L(𝐺) − 1.

4.2.3 General Canonical DAG. We first consider the case of a single

weakly connected component𝐺 without buffer nodes. We general-

ize the notion of levels: the level L(𝑣) of a node is given by:

L(𝑣) =
{
1 if v has no parent,

𝑚𝑎𝑥 (𝑅(𝑣), 1) +max(𝑢,𝑣) ∈𝐸 (𝐺 ) L(𝑢) else.

This is the time it takes for the last element leaving a source

node to reach node 𝑣 and be processed, taking into account the

presence of upsampler nodes. As before, the number of levels L(𝐺)
of a graph 𝐺 is the maximum L(𝑣) over any of its vertices 𝑣 .

Let the last-out time 𝐿𝑂 (𝑣) be the time the last element leaves

node 𝑣 . If 𝑣 is neither a source nor a buffer node, then

𝐿𝑂 (𝑣) = max

(𝑢,𝑣) ∈𝐸 (𝐺 )
𝐿𝑂 (𝑢 ) +

{
⌈ (𝑅 (𝑣) − 1)𝑆𝑜 (𝑣) ⌉ + 1 if 𝑅 (𝑣) > 1

1 else.

(3)

That is, element-wise and downsampler nodes finish their execu-

tion once they receive the last element from all the predecessors and

produce the corresponding result. Upsampler nodes need more time

as they have have to produce more than a single output element.

For a source node 𝑣 we have:

𝐿𝑂 (𝑣) = ⌈(𝑂 (𝑣) − 1)𝑆𝑜 (𝑣)⌉ + 1 ,

which implies that

(𝑂 (𝑣) − 1)𝑆𝑜 (𝑣) < 𝐿𝑂 (𝑣) ≤ 𝑂 (𝑣)𝑆𝑜 (𝑣) ,
as the streaming interval may not be an integer number in the

general case. From Theorem 4.1 we know that a source node’s

streaming interval depends on the maximum amount of data pro-

duced in the same weakly connected component. Therefore, we

can write the streaming depth as:

𝑇 𝑠∞ ≤ L(𝐺) +max

𝑢∈𝐺
𝑂 (𝑢) , (4)

where this bound is exact as the number of elements being streamed

goes to infinity. Note how, it suffices to look at the data volumes

and the number of levels, as the actual streaming intervals can be

written in terms of the data volume.

Let us now consider task graphs comprising also buffer nodes.

If 𝑣 is a buffer node we first need to wait for the completion of all

previous task before starting to produce new data. Therefore, its

last-output time is defined as:

𝐿𝑂 (𝑣) = max

(𝑢,𝑣) ∈𝐸 (𝐺 )
𝐿𝑂 (𝑢) + ⌈(𝑂 (𝑣) − 1)𝑆𝑜 (𝑣)⌉ + 1 .

To bound the streaming depth in general, we require the fol-

lowing constraint on how buffer nodes are placed in a canonical

graph: after ignoring the directions of edges between pairs of non-

buffer nodes, no directed cycle contains a buffer node. Such cycles

would create the need for large "implicit" buffers and can always

be avoided by introducing an additional buffer that breaks the cy-

cle. Under this assumption, we decompose the graph into weakly

connected components by splitting the buffer nodes, as described

in Section 4.1. Then, we can apply the bound from Equation (4)

to each of those components to determine their streaming depth.

We create a new DAG 𝐻 by merging each WCC into a supern-
ode, and create an edge between each pair (𝑢, 𝑣) of supernodes
where 𝑢 contains the tail and 𝑣 contains the head of a split buffer

node. Each supernode is assigned a depth equal to the depth of

the WCC it represents. Then, we compute the depth 𝑇∞ (𝐻 ) of 𝐻
as the deepest path in 𝐻 . Note that 𝐻 is acyclic because of our re-

quirement on how buffers are placed in canonical DAGs. In general,

it could be beneficial to start running another WCC even though

not all nodes in its preceding WCC have finished. However, as the

number of elements being streamed goes to infinity, this bound

becomes tight. Let 𝐿̂ be the largest total number of levels in the

WCCs given by any source to sink path in 𝐻 . Then, the bound

satisfies 𝑇 𝑠∞ (𝐺) ≤ 𝑇∞ (𝐻 ) ≤ 𝑇 𝑠∞ (𝐺) + 𝐿̂.

5 SCHEDULING
If there are more tasks than PEs (𝑃 < 𝑁 ), the graph must be

partitioned in temporally multiplexed components of at most 𝑃

spatially executed tasks. In the following, we refer to such com-

ponents as spatial blocks. As each spatial block is co-scheduled,

all edges between computational tasks of the same spatial block

can be streaming edges. On the contrary, edges between spatial

blocks are non-streaming. The partitioning must be done so that the

overall execution time (max𝑣∈𝑉 𝐿𝑂 (𝑣)) is minimized. Section 4.2.3

shows how the last-out time relates to the maximum amount of data

produced by the nodes in the graph. This allows us to define the

scheduling problem as an optimization problem. Given a canonical

task graph, we want to partition it into spatial blocks containing at

most 𝑃 computational nodes, such that:

• the sum of the maximum data volume being read or pro-

duced by a node of each spatial block is minimized;

• the dependencies between spatial blocks still form an acyclic

graph and respect the original task graph semantic (the

graph induced by a spatial block is still acyclic, being a

subgraph of the original task graph).

In the following, we first discuss how to schedule the tasks within

a given spatial block. Then we discuss the case of general canonical

task graphs, outlining an heuristic for the spatial block partitioning.

5.1 Scheduling within a spatial block
All the tasks in a spatial block can be co-scheduled (similarly to gang-

scheduling [11]), and take advantage of pipelined communications.

Let be 𝐵𝑖 the current spatial block and𝐺 [𝐵𝑖 ] the subgraph induced

by the tasks of 𝐵𝑖 . When we schedule tasks in the spatial block 𝐵𝑖 ,

all tasks in the spatial block 𝐵𝑖−1 have completed.
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We define as first-out time 𝐹𝑂 (𝑣) the time the first element leaves

node 𝑣 . If 𝑣 is not a buffer node or a source of the block:

𝐹𝑂 (𝑣) = max

(𝑢,𝑣) ∈𝐸 (𝐺 [𝐵𝑖 ])
𝐹𝑂 (𝑢 ) +

{⌈(
1

𝑅 (𝑣) − 1

)
𝑆𝑖 (𝑣)

⌉
+ 1 if 𝑅 (𝑣) < 1

1 else.

Element-wise and upsampler nodes can output the first element

as soon as they receive one from all predecessor nodes. On the

other hand, downsampler nodes must accumulate data according

to their given production rate before producing the first result. If

𝑣 is a buffer node, then it needs to wait for the completion of all

preceding tasks and its first-out time can be defined as:

𝐹𝑂 (𝑣) = max

(𝑢,𝑣) ∈𝐸 (𝐺 [𝐵𝑖 ] )
𝐿𝑂 (𝑢) + 1

If 𝑣 is a source node of the block, but not of the graph, it has to

wait for the completion of tasks in previous blocks:

𝐹𝑂 (𝑣) = max

(𝑢,𝑣) ∈𝐸 (𝐺 )
𝐿𝑂 (𝑢 ) +

{⌈(
1

𝑅 (𝑣) − 1

)
𝑆𝑜 (𝑣)
𝑅 (𝑣)

⌉
+ 1 if 𝑅 (𝑣) < 1

1 else.

Finally, 𝐹𝑂 (𝑣) = 1 if 𝑣 is a source of the whole task graph.

When a node produces some data, its streaming successor (if

any) is ready to start. We define the starting time of a task 𝑣 as

follow:

𝑆𝑇 (𝑣) =


0 if 𝑣 is a source of the graph

max(𝑢,𝑣) ∈𝐺 𝐿𝑂 (𝑢 ) if 𝑣 is a source of the block

max(𝑢,𝑣) ∈𝐺 [𝐵𝑖 ] 𝐹𝑂 (𝑢 ) otherwise.

Once scheduled, a task will run until its last-out time (see Equa-

tion (3)). Figure 8 shows an example of spatial block scheduling. It

is worth remarking that buffer nodes are not active entities: they

are used to express buffering opportunities and will be not actually

scheduled on a PE. Anyway, they play a crucial role in scheduling

as they affect the first-output and last-output times of successive

tasks.

To schedule a task, we should look at all its predecessors to

compute its starting, first-out, and last-out time. Computing the

streaming intervals requires linear time in the number of nodes (see

Section 4.1). Therefore, scheduling all the tasks in the spatial blocks

requires O(𝑁 2), where 𝑁 is the number of nodes in the graph.

5.2 Spatial block partitioning
The NP-hard sum-of-max partition problem under a Knapsack Con-
straint [17] is equivalent to the spatial block partitioning problem

of a generic canonical task graph where the spatial blocks are re-

stricted to be connected components.

We propose a greedy heuristic for the spatial block partitioning,

outlined in Algorithm 1. The heuristic comes in two variants. In the

first one (SB-LTS), we add a node to a spatial block if its produced

data volume is less than the data volume produced by the block’s

Algorithm 1: Compute Spatial Blocks

Input: General canonical task graph𝐺 = (𝑉 , 𝐸 ) , number of PEs 𝑃 , variant ∈
{SB-LTS, SB-RLX}

Result: a partition of𝐺 ’s nodes in spatial blocks

1 𝑆𝐵 ← [{∅} ]; 𝑖 ← 0;

2 while |𝑉 | > 0 do
3 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ← compute source nodes of the graph;

4 𝑐𝑎𝑛𝑑 ← node in 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 producing less data than than the block’s

sources, a node which is a block source, or the node in 𝑠𝑜𝑢𝑟𝑐𝑒

producing less data (if variant = SB-RLX), −1 otherwise. Break ties by

node level;

5 if 𝑐𝑎𝑛𝑑 ≠ −1 then
6 add 𝑐𝑎𝑛𝑑 to 𝑆𝐵 [𝑖 ], remove it and its out edges from𝐺 ;

7 if |𝑆𝐵 [𝑖 ] | ≥ 𝑃 or 𝑐𝑎𝑛𝑑 = −1 then
8 add new spatial block to 𝑆𝐵; 𝑖 ← 𝑖 + 1;

9 return SB;

source(s) from which it depends (if any). We continue adding to

the same spatial block until such node does exist or the block is

full. Otherwise, we create a new spatial block, and we start filling

it. In this way, we are guaranteeing that the streaming interval of

the block’s sources is not increased by adding an upsampler node

producing more data than the source itself, and no other node is

slowed down by this. Note that in this case, a spatial block may

have less than 𝑃 tasks. The second variant (SB-RLX), relaxes the
requirement on the produced data volume: if no other candidate is

available, a node can be added to the current spatial block even if it

is producing more data than the block’s source(s). In this case, all

spatial blocks (except the last one) contain 𝑃 tasks.

In both variants, we guarantee by construction that there are

no cyclic dependencies between spatial blocks: at any time, we

consider candidate nodes whose predecessors have been already

inserted into a spatial block. The proposed heuristic loops over all

nodes in the graph, selecting on each step the most convenient

one, according to the considered variant. Its complexity is O(𝑁 2),
where 𝑁 is the number of nodes in the graph.

Once the task graph is partitioned into spatial blocks, we can

schedule them one after the other in the same order in which they

are created, using the approach described in Section 5.1.

6 BUFFER SPACE FOR DEADLOCK-FREE
EXECUTION

Streaming communications can exploit the Network-on-Chip, or

rely on communication channels implemented in backing memory.

In both cases, we abstract them as FIFO channels having a fixed

buffer space, and using blocking-after-service semantics (writes

may block if the FIFO buffer is full). Insufficient FIFO buffer space

can cause a deadlock even if the task graph is acyclic. This sec-

tion discusses how to detect such situations and dimension FIFO

channels accordingly.

Let us consider the two examples shown in Figure 9. Task graph

➀ illustrates a situation where a deadlock can occur because mul-

tiple disjoint paths exist between two given nodes (0 and 4 in the

example). When task 0 sends its first element to task 4 (right path),

this is waiting for the first element comings from 3 (left path). This

will arrive later due to multiple reducer nodes in the left path. If the

communication channel between task 0 and task 4 has insufficient

buffer space, task 0 will eventually stall because the channel to
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task 4 gets full and cannot send more data. This will prevent the

data from continuing to travel on the left path because the reducer

does not receive enough data to produce its first output element.

Task graph ➁ in Figure 9 shows a more general situation where

the nodes are part of an undirected cycle. In this case, task 2 is

waiting for the input data coming from task 1. This will let task

5 stall because it is not receiving any data. This situation will be

propagated to tasks 3, 4, and 0, causing the entire computation to

deadlock. In both examples, if enough buffer space is provided for

the inter-task communications, we can tolerate the delay in the

generation, consumption, and propagation of data across various

paths, resolving the deadlock situations.

In general, once the schedule has been computed, we are inter-

ested in understanding what is the smallest buffer space required
to avoid deadlocks and guarantee that the execution behaves as

expected in the computed schedule (i.e., no bubbles in pipelined

communications as data flows according to the streaming intervals).

Since deadlocks can occur only along streaming paths, we can ana-

lyze each spatial block independently by considering its undirected

cycles.

Let 𝑣 be a node in an undirected cycle having more than one

predecessor in the same spatial block 𝐵𝑖 . To compute the buffer

space of one of its incident streaming edges, we need to consider the

highest delay a single data element experiences in reaching node

𝑣 through that edge. Then the buffer space is given by that delay,

subtracted from the highest delay found across all input edges of
node 𝑣 . For canonical task graph, the highest delay for some data

reaching node 𝑣 through edge (𝑢, 𝑣) is given by 𝐹𝑂 (𝑢).
Therefore, we can compute the buffer space for its incident edges

(𝑢, 𝑣) as:

𝐵(𝑢, 𝑣) =
max(𝑡,𝑣) ∈𝐺 [𝐵𝑖 ] 𝐹𝑂 (𝑡) − 𝐹𝑂 (𝑢)

𝑆𝑜 (𝑢) (5)

or the edge data volume, if the computed buffer space is larger than

the data being sent between 𝑢 and 𝑣 . The denominator takes into
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Figure 9: Two task graphs that can deadlock because of in-
sufficient buffer space and their schedule. Blue edge labels
represent the data volume sent between tasks. Green labels
indicate the streaming intervals. Red arrows highlight dead-
lock situations due to channels being empty or full.

account streaming intervals greater than 1 (i.e., the buffer space is

filled at a slower rate).

It follows that for the task graph ➀ (Figure 9) the FIFO channel

used for the streaming communication between tasks 0 and 4 must

have a buffer space equal to 18. In task graph ➁, the buffer space

for the channel between tasks 3 and 5 must be equal to 32.

Regarding the detection of undirected cycles, it is worth noting

that we do not need to look at all undirected cycles. Instead, we

need to analyze all the nodes that are part of an undirected cycle.

To find these nodes, we use a modified Depth-First Search (DFS)

visit: starting from a node, we perform a DFS visit of the Spatial

Block, where we do not consider the directionality of edges. A back-

edge between node 𝑢 and 𝑣 indicates the presence of a cycle. We

mark all the ancestors of both 𝑢 and 𝑣 , until a common ancestor is

found. Once the DFS is completed, we return the weakly connected

components of the marked nodes as different undirected cycles.

The complexity of this approach is 𝑂 ( |𝑉 | + |𝐸 |).

7 EVALUATION
We implemented our analysis passes, heuristics, and buffer space

computation in a proof-of-concept framework written in Python
1
.

Given a canonical task graph and the number of available PEs, it

produces a streaming scheduling for the considered architecture

and the required FIFO buffer space to prevent deadlocks. All the

tests are executed on a machine running Ubuntu 20.20, with 128

GB of main memory, and a 16C/32T AMD Ryzen 9 5950X CPU.

We experiment with two sets of graphs. First, we consider small

and medium-sized random synthetic task graphs generated from

four well-known computations: Tasks Chain, Fast Fourier Trans-

form [6], Gaussian Elimination [33], and Tiled Cholesky Factor-

ization [20]. The Chain task graph is composed of 𝑁 tasks, where

task 𝑖 receives data from task 𝑖 − 1 (if present) and sends the data

to task 𝑖 + 1 (if present). The Fast-Fourier Transform graph is ob-

tained from the one-dimensional FFT Algorithm [6, 33], which is

composed of recursive calls and butterfly operations. Given the

number of input points 𝑁 , there are 2𝑁 − 1 recursive call tasks

and 𝑁 log
2
𝑁 butterfly operation tasks. In the Gaussian Elimination

[33, 36], being𝑀 the matrix size, the total number of tasks is equal

to
𝑀2+𝑀−2

2
. Finally, we consider the task graph obtained for the

Cholesky decomposition by using the left-looking tiled variant [20].

Being the matrix composed by𝑇 ×𝑇 tiles, the total number of tasks

is
𝑇 3

6
+ 𝑇 2

2
+ 𝑇

3
.

For a given topology, we consider different DAGs by randomly

generating edge weights: therefore, each task graph will have dif-

ferent data volumes and types of canonical nodes. We do not in-

troduce buffer nodes so that all edges can be streaming within a

spatial block. Then, we compare results obtained from canonical

task graphs with ones obtained from a related model. Finally, we

consider larger graphs representing real-world applications (Ma-

chine Learning workloads).

Comparison metrics. In the following, we show the results ob-

tained with the two variants of our steaming schedule heuristic

defined in Section 5.2 (STR-SCH-1 and STR-SCH-2 indicating the
SB-LTS and SB-RLX versions, respectively). To evaluate the gain

1
The framework is available at: https://github.com/spcl/streamingsched

https://github.com/spcl/streamingsched
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Figure 10: Distributions of speedup over sequential execution for synthetic task graphs, considering streaming (STR-SCH-1 and
STR-SCH-2 for SB-LTS and SB-RLX variants) and non-streaming scheduling (NSTR-SCH). White labels report PEs utilization.

in performance and PE utilization, we compare them with the case

where all communications are buffered. We refer to this case as

non-streaming scheduling (NSTR-SCH). For this, we consider a

classical critical path list-based scheduling for homogeneous pro-

cessing elements, with bottom-level priorities (similar to CP/MISF,

[19]), and insertion slot. To compare the obtained results across

different topologies, we measure the schedule length (makespan)
and compute the following metrics:

Speedup The speedup is defined as the ratio of the sequential

execution time (computed by assigning all tasks to a single PE)

to the parallel execution time (the makespan).

Streaming Scheduling Length Ratio We extend the definition

of Scheduling Length Ratio (SLR) of Topcuoglu et al. [33], con-

sidering streaming communications. The Streaming SLR (SSLR)

is defined as the ratio between the makespan and the streaming

depth of the DAG.

7.1 Synthetic Canonical Task Graphs
Figure 10 shows the speedup distributions as box plots for 100

randomly generated task graphs, when scheduled considering a

varying number of PEs. The middle line of a box plot represents

the median; the upper and lower limits of the box indicate the first

quartile (Q1) and the third quartile (Q3). White labels report the

PEs utilization.

The chain task graph is composed of a linear chain of 8 tasks.

Here, the non-streaming scheduling has a speedup of 1, given that

all the tasks must be performed sequentially, one after the other.

Instead, pipelined communications allow the concurrent execution

of several tasks, giving us a higher speedup as long as we increase

the number of PEs. Similar results are also obtained with the other

considered topologies: the buffered communication approach stops

scaling, while streaming scheduling enables additional gains with

better PE utilization. It is worth noting that, in all the cases, the

non-streaming heuristics achieves the highest attainable speedup

(the corresponding SLR is 1). Concerning the differences between

the two variants of streaming scheduling, we notice that SB-RLX
achieves higher speedup when the number of PEs is approaching

the number of tasks in the DAG. The rationale is that this variant

partitions the graph in a less or equal number of spatial blocks (one if

the number of tasks is less or equal to the number of PEs) compared

to the SB-LTS one. Although upsampler nodes can increase the

streaming intervals, scheduling a single spatial block (instead of two,

or more, executed back-to-back) can sometimes pay off, producing

a higher performing schedule.

Figure 11 reports the SSLR distributions for the two variants

of the streaming scheduling heuristics. In both cases, the SSLR is

reduced as long as we increase the number of PEs. Following the

previous results, SB-RLX can approach minimum SSLR (one) for

the DAGs when the number of PEs is equal to or larger than the

number of tasks.

7.2 Comparison with Synchronous DataFlow
Graphs

Synchronous DataFlow Graphs (SDFGs) [23], and immediate exten-

sions, such as Cyclo-static Dataflow Graphs (CSDFGs) [10], have

been used to analyze and schedule streaming graphs. To the best of

our knowledge, they are the most related models of computation

to canonical task graphs.

In an SDFG, nodes represent computations, and edges represent

FIFO channels. A node can execute (“fire”) when there is enough

data on all the inputs. Each edge 𝑢 → 𝑣 is annotated with the pro-

duction rate (howmany tokens𝑢 produces per firing), consumption

rate (how many tokens 𝑣 consumes per firing), and the initial num-

ber of tokens. In a CSDFG, the number of tokens consumed and

produced by an actor varies from one firing to the next, following

a periodic behavior. In this section, we compare our scheduling

results with the ones obtained with CSDFGs.

Provided that there are no buffer nodes (not supported in CSD-

FGs), we can convert a given canonical task graph into an equivalent

CSDFG: each canonical node is represented by a corresponding

CSDFG node. Using different production/consumption rates per

firing, we conveniently represent downsamplers and upsamplers.

A CSDFG can be statically analyzed to compute its optimal

throughput: i.e., the number of iterations of the entire graph that

can be executed per unit of time. The exact determination of the

throughput requires computing an optimal schedule [3]. We allow
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Figure 11: Streaming SLR distributions for synthetic task graphs with STR-SCH-1 (SB-LTS) and STR-SCH-2 (SB-RLX) variants.
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only one instance of the graph to be in execution at a given time,

by adding in the equivalent CSDFG edges from the sink(s) to the

source(s), with an initial token. In this way, by computing the in-

verse of the CSDFG throughput, we derive the makespan of the

implied optimal schedule, and we compare it with the one obtained

by our heuristics.

We consider two publicly available CSDFG frameworks: SDF3

[8] and Kiter [2]. SDF3 uses symbolic execution [13], while Kiter

uses K-Periodic Scheduling [3]. Both approaches compute the op-

timal throughput. As the analysis of a CSDFG is computationally

expensive, we set a time-out to 1 hour for analyzing a single graph.

Since the two frameworks do not allow restricting the number of

used processing elements, we set it to the number of nodes in the

graph in our scheduling strategy, and we use the SB-RLX heuristic.

Figure 12 shows the result obtained with the same synthetic

graphs generated in Section 7.1.We note that the number of CSDFGs

that can not be scheduled within the time constraint grows (up

to 30%) as the graph grows in complexity and size. In addition

to this, in the cases where the CSDFG frameworks can return a

result within the given time, the analysis time is still 2-3 orders of

magnitude more expensive than with canonical task graphs. On the

left side of the figure, we report the ratio of the makespan computed

with canonical graphs and the makespan computed using SDF3

(Kiter produces identical results), showing that the difference is

negligible in most cases.

Therefore, when a computation can be analyzed with both ap-

proaches, canonical task graphs can produce a schedule marginally

less efficient than CSDFG but in a fraction of their time, allowing

the analysis of larger and more complicated applications.

7.3 Real task graphs
In addition to synthetic graphs, we evaluate the benefits of our

approach to real-world machine-learning inference workloads. We

use DaCeML [29] to extract a first version of the task graph for

each considered workload, where nodes are ONNX [27] operators,

and edges are labeled with data movements between the different

operations. From the ONNX graph, we generate the corresponding

canonical task graph. Given an ONNX operation, we can distinguish

between:

• operators such as Reshape, Transpose, and Slice, that can
be represented as buffer nodes.

• Operations that can be mapped one-to-one to a canonical

task. For example, Add, Sub, and Relu can be mapped to

element-wise tasks, while MaxPool and ReduceSum can be

mapped to downsampler tasks.

• More complicated operators such as MatMul, SoftMax, and
Conv must be explicitly represented as a canonical task

graph as discussed in Section 3.2.
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#PEs STR-SCH
Speedup

NSTR-SCH
Speedup G

512 109.4 83.6 1.3

1024 123.2 88.3 1.4

1536 128.8 90.1 1.4

2048 135.0 90.2 1.5

#PEs STR-SCH
Speedup

NSTR-SCH
Speedup G

256 153.7 111.7 1.4

512 218.8 142.5 1.5

768 290.6 149.4 1.9

1024 305.0 153.0 2.0

Table 2: Results for Resnet-50 (left) and a transformer en-
coder layer (right). Last column shows the performance gain
(G) of the streaming scheduling over non-streaming one.

We considered the canonical task graph originated from the Resnet-

50 model [15] and from an encoder layer of the base transformer

model proposed by Vaswani et al. [34]. We considered the im2col
approach [5] to express the convolution operation as a matrix-

matrix multiplication. The Conv and the Batch Normalization
operator in Resnet-50, and the Softmax and MatMul operators of

transformer encoders, are converted into canonical nodes as showed

in Section 3.2. For each MatMul we choose the implementation that

maximizes parallelism depending on the input matrices’ sizes.

The resulting canonical task graph for Resnet-50 is composed by

54,252 nodes, 246 of which are buffer nodes, while the task graph for

the transformer encoder, is composed by 4,748 nodes, 37 of which

are buffer nodes. Table 2 reports the achieved speedups and gains

over the non-streaming scheduling. We do not noticed relevant

difference between the two variants of the streaming scheduling,

therefore we report the result for the SB-LTS version. For Resnet, we
can take advantage of pipelined communications mainly between

Batch Normalization, ReLu and MaxPool operations, resulting

in a performance gain over the non-streaming version. For the

transformer encoder, the gain is higher, due to the presence of

longer chains of operators that can be easily pipelined. For both

the considered applications we approach a Streaming SLR of 1 as

we increase the number of PEs.

8 RELATEDWORK
Static task graph scheduling for homogeneous processing elements

is a well-studied problem in computer science. Being an inherently

hard problem, various heuristics have been proposed over time [22,

35]. These can be broadly categorized into list-based [16, 28, 33, 36]

and cluster-based techniques [21, 37]. Generally, these approaches

assume that computation and communications costs are given as

input parameters, and that a task can only start when all its parents

have terminated. In contrast, we assume the computation costs are

proportional to data being produced and ingested, and allow concur-

rent execution of communicating tasks and contribute to reducing

the application makespan through pipelined communication.

Traditional scheduling heuristics usually have a local view, and
decisions are made based on the graph’s portion being analyzed.

Other approaches try to make global decisions. This is the case

of look-ahead heuristics, such as the Dynamic Critical Path algo-

rithm proposed by Kwok and Ahmad [21], or by approaches using

partitioning-assisted list-based heuristics as in the work of Özkaya

et al. [38]. Similarly, we consider the graph’s global structure by

partitioning it into spatial blocks and then scheduling each block

independently. The work of Cong et al. [7] deals with mapping

streaming applications on FPGA, optimizing communication and

computation simultaneously. The authors considered spatial sched-

uling while we simultaneously deal with both temporal and spatial

scheduling.

Synchronous DataFlow Graph (SDFG) [23], and extensions, are

the most closely related models to canonical task graphs. Due

to their analyzability, SDFGs are commonly used for multimedia

and real-time applications, and streaming languages, such as LUS-

TRE [14] and StreamIt [32], are based on this model of computation.

Various works tackle the problem of deadlock-freedomness and

buffer sizing for SDFG graphs. The buffer sizing problem is NP-

complete [26], and approximate or heuristic solutions have been

proposed. Stuijk et al. [30, 31] present a heuristic approach for com-

puting the complete trade-off space between the throughput and

buffer size of a given SDFG. Li et al. [24] analyze different types of

deadlocks and propose solutions to deal with them.

These approaches can not be generally applied to canonical task

graphs, as they follow a different model of computation. We high-

light several fundamental differences between SDFGs and canonical

task graphs:

• Previous work on scheduling SDFGs mainly target pipelin-

ing across multiple graph iterations, with the throughput

being the primary concern. Instead, we propose a model

that considers pipelining across tasks (i.e., within a single

graph iteration) as a first-class citizen, and we focus on

optimizing the latency of a single graph iteration.

• SDFGs can only be used to model fully streaming applica-

tions. We can also explicitly represent non-streaming [sub-]

computations thanks to the buffer node concept.

• We provide easy-to-compute bounds on the application’s

parallel and streaming execution time. To the best of our

knowledge, similar bounds exist only for simpler variants of

SDFGs (e.g., Homogeneous DFG). More interesting graphs

need to be transformed into HDFG (as in Cong et al. [7]),

resulting in a graph having a size that, in the worst case, is

exponentially larger than the original graph.

Various commercially available accelerators allow the user to

take advantage of streaming communication either through low-

level APIs or via proprietary compiler passes: for example the Sam-

banova Reconfigurable Data Flow Architecture [9], Xilinx ACAP

devices [12], and Cerebras Wafer Scale chips [25]. Despite these

specific solutions, we believe that a complete methodology for deal-

ing with the problem of scheduling a streaming computation on

dataflow architecture is yet to be established. In this work, we con-

tribute with a holistic view of the problem, abstracting away from

the underlying hardware characteristics, and proposing solutions

for the spatio-temporal scheduling of applications on homogeneous

processing elements.

9 CONCLUSION
This paper proposes methods, analyses, and algorithms to schedule

task graphs on dataflow architectures, explicitly considering task

pipelining and their concurrent spatial execution. The analysis at

steady-state facilitates the reasoning and enables decisions that take

into account the global structure of the task graph and its dataflow

characteristics. This allows us to partition the task graph into tem-

porally multiplexed components of spatially executed tasks and to
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compute buffer size to guarantee deadlock freedom.With streaming

scheduling, we can better exploit a dataflow device, increasing the

speedup over non-streaming approaches, even for large graphs.

The proposed method can be extended considering dataflow

architectures with heterogeneous processing elements, typical of

System-on-Chip, and taking into account placement, which plays

a crucial role in Coarse-Grained Reconfigurable Arrays. While

pipelining across multiple running tasks is a natural fit for dataflow

architectures, we believe this approach can be applied to other plat-

forms or to clusters of dataflow devices. The proposed models and

analysis are still relevant but need to be adequately extended, for

example by considering communications across devices.
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A SCHEDULING - SPATIAL BLOCK
PARTITIONING

In this section we discuss the spatial block partitioning of canonical

task graphs with given characteristics, and we show how we can

derive bounds for their execution.

A.1 Element-wise Task Graph
Consider the case of a task graph composed only of element-wise

tasks. In this case, we can construct a schedule for 𝑃 processing ele-

ments that obtains near-linear speedup over the work until reaching

the streaming depth in the limit. The statement has the same form

as Brent’s theorem for non-streaming tasks graph [4].

We can order the tasks by their level, breaking ties arbitrarily.

Then, using this order, we subdivide the tasks into spatial blocks of

𝑃 tasks. Each spatial block receives a level order according to the

position in the task level order. We schedule the spatial blocks in

this level order.

Theorem A.1. The time 𝑇𝑃 it takes to execute an element-wise
streaming task graph on 𝑃 processors satisfies 𝑇 𝑠∞ ≤ 𝑇𝑃 ≤

𝑇1
𝑃
+𝑇 𝑠∞.

Proof. Consider a longest path 𝑣1, . . . 𝑣𝑙 in the task DAG G.

From the point on when 𝑣1 gets scheduled, it takes 𝑘 steps until the

last element gets output by 𝑣1. It takes at least one time step for

this element to move along the path for the other vertices. As the

path has L(𝐺) vertices, the lower bound follows (see Section 4.2.2

of the main paper).

Consider the time it takes to complete a spatial block 𝐵𝑖 . We treat

the subgraph of 𝐺 induced by the tasks of 𝐵𝑖 as a task sub-DAG

𝐺 [𝐵𝑖 ]. By construction of the scheduling, once 𝐵 gets scheduled,

all predecessors have completed and their results are available in

memory. Hence, it takes 𝑘 time to fill up the pipeline of 𝐺 [𝐵𝑖 ] and
another L(𝐺 [𝐵𝑖 ])−1 steps for the last element to finish the pipeline.

Now, we sum the total time:

𝑇𝑝 =

⌈𝑛/𝑝⌉∑︁
𝑖=1

(𝑘 + L(𝐺 [𝐵𝑖 ] ) − 1) = 𝑘 ⌈𝑛/𝑝 ⌉ +
⌈𝑛/𝑝⌉∑︁
𝑖=1

(L(𝐺 [𝐵𝑖 ] ) − 1)

≤ 𝑘 ⌈𝑛/𝑝 ⌉ + L(𝐺 ) − 1 ≤ 𝑘𝑛

𝑝
+ 𝑘 + L(𝐺 ) − 1 =

𝑇1

𝑝
+𝑇 𝑠
∞

The only step in the derivation that is not arithmetic is the relation

between the sum of the levels of the spatial blocks and the overall

number of levels of the graph:

∑⌈𝑛/𝑝 ⌉
𝑖=1

(L(𝐺 [𝐵𝑖 ]) − 1 ≤ L(𝐺) − 1. To
see the bound, we charge the costs of the spatial blocks to the levels

of the task DAG G: when a spatial block does not contain tasks

with different levels (in G), then it does not contribute anything to

the cost. Otherwise, consider the tasks of block 𝐵𝑖 in level order.

Whenever we change from level 𝑖 to level 𝑖 + 1, we charge this cost
to level 𝑖 of𝐺 . No level of𝐺 is double-charged this way because we

constructed the spatial blocks level-wise, and the last level is never

charged. □

A.2 Downsampler Task Graph
Consider the case of a task graph composed only of element-wise

and downsampler nodes. We define the spatial blocks by group-

ing together nodes that have similar work, proceeding in non-

increasing order of work as shown in Figure 14. We detail the

algorithm in Algorithm 2.

Algorithm 2: Compute Spatial Blocks

Input: Task Graph𝐺 = (𝑉 , 𝐸 ) composed by elwise and downsampler nodes,

number of PEs 𝑃

Result: a partition of𝐺 ’s nodes in spatial blocks

1 Compute the work for each node in the graph;

2 𝑆𝐵 ← [{∅} ];
3 𝑖 ← 0;

4 while |𝑉 | > 0 do
5 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 ← compute source nodes of the graph;

6 𝑐𝑎𝑛𝑑 ← select node in 𝑠𝑜𝑢𝑟𝑐𝑒𝑠 with highest work (and lowest level in

case of tie);

7 if |𝑆𝐵 [𝑖 ] | ≥ 𝑃 then
8 add new spatial block to 𝑆𝐵;

9 𝑖 ← 𝑖 + 1;
10 end
11 𝑆𝐵 [𝑖 ] = 𝑆𝐵 [𝑖 ] ∪ {𝑐𝑎𝑛𝑑 };
12 remove 𝑐𝑎𝑛𝑑 and its outgoing edges from𝐺 ;

13 end
14 return SB;

Theorem A.2. Consider a task DAG 𝐺 with element-wise and
downsampler nodes. Let 𝑥 be the maximum number of nodes in the
same level with different work. The proposed algorithm satisfies

𝑇𝑝 ≤
𝑇1

𝑝
+𝑇 𝑠∞ +min(𝑛 − 1, (𝑥 − 1) (L(𝐺) − 1)) .

Proof. Observe that the algorithm picks nodes in order of non-

increasing work. This is because, along any path in the task DAG,

the work only stays the same or decreases. Hence, once we schedule

a node, it cannot happen that a node with larger work than was

last scheduled becomes available to schedule.

Hence, we can consider the nodes ordered by non-increasing

work 𝑣1, . . . , 𝑣𝑛 , partitioned into blocks of 𝑝 nodes (except for the

last block). Let 𝐵𝑖 denote the 𝑖-th spatial block and let max(𝐵𝑖 ) be
the maximum work of any node in the 𝑖-th spatial block. Note that

the time it takes to execute 𝐵𝑖 is max(𝐵𝑖 ) to fill the pipeline and

L(𝐺 [𝐵𝑖 ]) − 1 to finish streaming. Overall, the work 𝑇𝑝 is

𝑇𝑝 =

⌈𝑛/𝑝 ⌉∑︁
𝑖=1

(max(𝐵𝑖 ) + L(𝐺 [𝐵𝑖 ]) − 1) .

Next, we upper bound 𝑇𝑝 . Because we cannot cross levels more

than 𝑛 − 1 times in total, we get that

∑
𝑖 (L(𝐵𝑖 ) − 1) ≤ 𝑛 − 1. Each

time a block has some node in level 𝑖 and level 𝑖 + 1, we charge
this to level 𝑖 . Observe that the scheduling algorithm can be viewed

as scheduling the subgraphs induced by a certain work-amount in

order of their weight, and then each subgraph in level-order. Hence,

each level is charged at most 𝑥 times, except the last (which is never

charged). We conclude

∑
𝑖 (L(𝐵𝑖 ) − 1) ≤ 𝑥 (L(𝐺) − 1).
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Figure 13: Error results for synthetic task graphs with STR-SCH-1 (SB-LTS) and STR-SCH-2 (SB-RLX) variants.
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Figure 14: Task graph composed by element wise and down-
sampler nodes. Blue labels indicate data volumes. Different
node colors identifies different spatial blocks computed con-
sidering 𝑃 = 3.

We compute a lower bound for 𝑇1. All streaming nodes in the

𝑖-th block have at least as much work as max(𝐵𝑖+1). This means we

can bound the work of a block by the maximum of the next block

(times 𝑝). Hence, we can can define a lower bound for the work 𝑇1
as follows:

𝑇1 ≥
⌈𝑛/𝑝 ⌉∑︁
𝑖=2

𝑝 max(𝐵𝑖 )

Note that the sum leaves out the block 𝐵1, which contains the

maximum weight node. We observe that

𝑇1

𝑝
≥
⌈𝑛/𝑝 ⌉∑︁
𝑖=2

max(𝐵𝑖 )

Hence, we conclude:

𝑇𝑝 ≤ min(𝑛 − 1, 𝑥 (L(𝐺) − 1)) +
⌈𝑛/𝑝 ⌉∑︁
𝑖=1

max(𝐵𝑖 )

≤ min(𝑛 − 1, 𝑥 (L(𝐺) − 1)) +
(
max

𝑣∈𝑉 (𝐺 )
𝑊 (𝑣)

)
+ 𝑇1
𝑝

≤ min(𝑛 − 1, (𝑥 − 1) (L(𝐺) − 1)) +𝑇 𝑠∞ +
𝑇1

𝑝
□

With symmetric arguments, we can draw similar conclusions

for case of a canonical task graph composed only by upsampler and

element-wise nodes.

B EVALUATION
B.1 Validation on Synthetic Task Graphs
We use Discrete Event Simulation to assess the correctness of buffer

space computation for pipelined communications (i.e., the simula-

tion does not deadlock), and the quality of results (the steady-state

analysis allows us to compute a realistic makespan). The Discrete

Event Simulation is implemented in simpy, a process-based discrete-
event simulation framework based on Python. For the simulation

we take into account:

• data communication volumes and dependencies, as expressed

in the given task graph;

• communication type (streaming/non-streaming), as decided

by our spatial blocks;

• PE assignments of each task, as decided by the scheduling

heuristic.

An independent process simulates each task of the DAG. Stream-

ing communications between tasks are modeled using FIFO chan-

nels. They have finite size and are accessed using blocking-after-

service semantic (the sender hangs if there is no free space). FIFOs

are dimensioned according to the computed buffer size.

We run the simulation, pick the simulated application makespan,

and compute the relative error among the simulated application

makespan and the makespan reported by our scheduling algorithm:

a negative error, indicates that the scheduling makespan is larger

than the simulated one. For all the considered cases, simulations

finish without deadlocks (the computed buffer space is sufficient).

Figure 13 reports the error distribution as boxplots for the two

versions of the proposed streaming scheduling heuristic. In each

boxplot, the middle turquoise line represents the median, The upper

and lower limits of the box indicate the first quartile (Q1) and

the third quartile (Q3). The whiskers extents show the rest of the

distribution, except for points that are determined to be outliers.

Being 𝐼𝑄𝑅 = 𝑄3 −𝑄1 the interquartile range, the lower and upper

whiskers indicate the smallest sample > 𝑄1 − 1.5 · 𝐼𝑄𝑅, and the

largest sample < 𝑄3 + 1.5 · 𝐼𝑄𝑅, respectively. Samples outside the

whiskers are outliers and reported as circles. For readability, we

reported only the top-5 and bottom-5 outliers, if present.
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As it can be noted, for the considered cases, the median error is

zero, or very close to zero, showing how our steady-state analysis

correctly models the actual execution on average. We do not notice

any sensible differences between the two considered streaming

heuristics. Quartiles andwhiskers are very narrow, with the greatest

whiskers extent being [−7%, 4%] for Cholesky factorizationwith 128
PEs. Outliers are usually negative, meaning that our analysis could

underestimate the actual execution time. The same test case exhibits

the largest outliers, with a value over 50% error, as a consequence

of a more densely connected task graph.
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