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Multiserver-job systems, where jobs require concurrent service at many servers, occur widely in practice.

Essentially all of the theoretical work on multiserver-job systems focuses on maximizing utilization, with

almost nothing known about mean response time. In simpler settings, such as various known-size single-

server-job settings, minimizing mean response time is merely a matter of prioritizing small jobs. However,

for the multiserver-job system, prioritizing small jobs is not enough, because we must also ensure servers

are not unnecessarily left idle. Thus, minimizing mean response time requires prioritizing small jobs while

simultaneously maximizing throughput. Our question is how to achieve these joint objectives.

We devise the ServerFilling-SRPT scheduling policy, which is the first policy to minimize mean response

time in the multiserver-job model in the heavy traffic limit. In addition to proving this heavy-traffic result, we

present empirical evidence that ServerFilling-SRPT outperforms all existing scheduling policies for all loads,

with improvements by orders of magnitude at higher loads.

Because ServerFilling-SRPT requires knowing job sizes, we also define the ServerFilling-Gittins policy,

which is optimal when sizes are unknown or partially known.
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1 INTRODUCTION
1.1 The multiserver-job model
Traditional multiserver queueing theory focuses on models, such as the M/G/𝑘 , where every job

occupies exactly one server. For decades, these models remained popular because they captured
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Fig. 1. The distribution of number of CPUs requested by jobs in Google’s recently published Borg trace [38].
Number of CPUs is normalized so that the smallest job in the trace uses one normalized CPU.

the behavior of computing systems, while being amenable to theoretical analysis. However, such

one-server-per-job models are no longer representative of many modern computing systems.

Consider today’s large-scale computing centers, such as the those of Google, Amazon and

Microsoft. While the servers in these data centers still resemble the servers in traditional models

such as the M/G/𝑘 , the jobs have changed: Each job now requires many servers, which it holds

simultaneously. While some jobs require few servers, other jobs require many more servers. For

instance, in Fig. 1, we show the distribution of the number of CPUs requested by jobs in Google’s

recently published trace of its “Borg” computation cluster [14, 38]. The distribution is highly

variable, with jobs requesting anywhere from 1 to 100,000 normalized CPUs. Throughout this paper,

we will focus on this “multiserver-job model” (MSJ), by which we refer to the common situation in

modern systems where each job concurrently occupies a fixed number of servers (typically more

than one), throughout its time in service.

The multiserver-job model is fundamentally different from the one-server-per-job model. In

the one-server-per-job model, any work-conserving scheduling policy such as First-Come First-

Served (FCFS) can achieve full server utilization. In the multiserver-job model, a naïve scheduling

policy such as FCFS will waste more servers than necessary. As a result, server utilization and

system stability are dependent on the scheduling policy in the multiserver-job model. While

finding throughput-optimal scheduling policies is a challenge, several such policies are known,

including MaxWeight [24], Randomized Timers [11, 25], and ServerFilling [14]. However, none of

these policies give consideration to optimizing mean response time; each policy solely focuses on

optimizing throughput. In fact, the empirical mean response time of such policies can be very poor

[11], motivating our goal of finding throughput-optimal policies which moreover minimize mean

response time.

1.2 The challenges of minimizing MSJ mean response time
In the M/G/𝑘 setting, where each job requires a single server, it was recently proven that the SRPT-𝑘

(Shortest Remaining Processing Time-𝑘) scheduling policy minimizes mean response time in the

heavy-traffic limit [15]. SRPT-𝑘 is a very simple policy: serve the 𝑘 jobs of least remaining duration

(service time).

Unfortunately, in the multiserver-job system, trying to simply adapt the SRPT-𝑘 policy does not

result in an optimal policy for two reasons:

• Prioritizing by remaining job duration is not the right way to minimize mean response time.

We will show that an optimal policy must prioritize by remaining size, which we define to be
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proportional to the product of a job’s duration and its server need, the number of servers the

job requires. We define these terms in more detail in Section 3.

• Even with this concept of size, a prerequisite for minimizing mean response time in the

heavy-traffic limit is throughput-optimality, which requires a policy to efficiently utilize all of

the servers whenever possible. Unfortunately, greedily prioritizing the job of least remaining

size, as in SRPT-k, is not throughput optimal. Our policy must be throughput-optimal, while

also prioritizing small jobs.

We therefore ask:

What scheduling policy for the multiserver-job model should we use to minimize mean

response time in the heavy-traffic limit?
By “heavy-traffic” we mean as load 𝜌 → 1, while the number of servers, 𝑘 , stays fixed. The

precise definition of load 𝜌 and the heavy-traffic limit will be explained in detail in Section 3.

1.3 ServerFilling-SRPT and ServerFilling-Gittins
To answer this question, we introduce the ServerFilling-SRPT scheduling policy, the first scheduling

policy to minimize mean response time in the multiserver-job model in the heavy traffic limit.

ServerFilling-SRPT is defined in the setting where 𝑘 is a power of 2, and all server needs are

powers of 2. This setting is commonly seen in practice in supercomputing and other highly-parallel

computing settings [5, 6].

To define ServerFilling-SRPT, imagine all jobs are ordered by their remaining size. Select the

smallest initial subset 𝑀 of this sequence such that the jobs in 𝑀 collectively require at least 𝑘

servers. Finally, place jobs from𝑀 into service in order of largest server need. This procedure is

performed preemptively, whenever a job arrives or completes. As we show in Section 3.2, whenever

jobs with total server need at least 𝑘 are present in the system, this procedure will fill all 𝑘 servers.

We use this property to prove in Section 4 that ServerFilling-SRPT minimizes mean response time

in the heavy-traffic limit.

ServerFilling-SRPT requires the scheduler to know job durations, and hence sizes, in advance.

Sometimes the scheduler does not have duration information. In the M/G/1 setting, when job sizes

are unknown, the Gittins policy [12] is known to achieve optimal mean response time. We therefore

introduce the ServerFilling-Gittins policy in Section 5. We prove similar heavy-traffic optimality

results for ServerFilling-Gittins.

1.4 A generalization: DivisorFilling-SRPT and DivisorFilling-Gittins
While ServerFilling-SRPT requires that the server needs are powers of 2, we have developed a

more general scheduling policy which requires only that the server needs all divide 𝑘 . We call

this generalization DivisorFilling-SRPT. The DivisorFilling-SRPT policy is more complex than

ServerFilling-SRPT, and hence we defer its discussion to Appendix C. In Appendix C, we de-

fine both DivisorFilling-SRPT and DivisorFilling-Gittins. We then show that all of our results

about ServerFilling-SRPT and ServerFilling-Gittins hold for DivisorFilling-SRPT and DivisorFilling-

Gittins.

1.5 A Novel Proof Technique: MIAOW
In recent years, there have been a plethora of proof techniques developed to handle the analysis of

multiserver systems. These include:

• Multiserver tagged job analysis [15, 16, 32],

• Worst-case work gap [15, 16, 32],

• WINE (Work Integral Number Equality) [30, 31],
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Maximize throughput Minimize mean response time

Policies Attempted Proven Attempted Proven

MaxWeight [24] ✓ ✓
Randomized Timers [11, 25] ✓ ✓
ServerFilling [14] ✓ ✓
FCFS [8, 22, 27]

Simple backfilling heuristics: First-

Fit, BestFit, etc. [22, 41]

✓

Size-aided backfilling: EASY, con-

servative, dynamic, etc. [4, 22]

✓

Size-based heuristics: GreedySRPT,

FirstFitSRPT, etc. [4]

✓1

Size & learning heuristics [17] ✓ ✓
ServerFilling-SRPT (Section 4) &

DivisorFilling-SRPT (App. C)

✓ ✓ ✓ ✓

Table 1. Comparison of multiserver-job scheduling policies

• Work Decomposition law [31].

Unfortunately, none of these techniques suffice to handle the analysis of ServerFilling-SRPT and

DivisorFilling-SRPT. As we discuss in Section 4.2, the analysis of ServerFilling-SRPT requires

bounding the waste relative to a resource-pooled single-server SRPT system, where waste is the

expected product of work and unused system capacity. In order to analyze waste, we introduce a

new technique called MIAOW, Multiplicative Interval Analysis of Waste. MIAOW subdivides jobs

into multiplicative intervals based on their remaining sizes, and bounds the waste in each interval.

1.6 Comparison with other policies
In Table 1, we compare our ServerFilling-SRPT and DivisorFilling-SRPT policies and our asymptotic

optimality results with prior work in the multiserver-job setting. Prior work broadly falls into two

categories: theoretical results focusing on throughput-optimality, and good heuristic policies. Our

result is the first to theoretically study the problem of minimizing mean response time.

Fig. 2 compares the mean response time of ServerFilling-SRPT to that of prior throughput-optimal

policies, as well as naïve size-based heuristic policies. These selected policies are representative of

the empirical behavior of a wide variety of prior policies: Some of the policies shown have SRPT-like

behavior, some policies are throughput-optimal, but only our ServerFilling-SRPT policy achieves

both. Correspondingly, in this simulation and others we have performed, ServerFilling-SRPT has

the best mean response time at all loads 𝜌 , often by huge margins.

1.7 Summary of our contributions and outline
• In Section 3, we introduce the ServerFilling-SRPT scheduling policy.

• In Section 4, we bound the mean response time of ServerFilling-SRPT. We introduce MIAOW,

a new technique for bounding the total “relevant” work in the system. Using that bound, we

prove that ServerFilling-SRPT has asymptotically optimal mean response time as load 𝜌 → 1.

1
Because these heuristics are not throughput optimal, they are only competitive for mean response time at low to moderate

load 𝜌 .
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Fig. 2. Simulated mean response time 𝐸 [𝑇 ] as a function of load 𝜌 in a multiserver-job setting with 𝑘 = 8 total
servers. Server need is sampled uniformly from {1, 2, 4, 8}. Size is exponentially distributed, independent of the
number of servers required. Policies defined in Section 6. Simulations use 107 arrivals. Loads 𝜌 ∈ [0, 0.999]
simulated.

• In Section 5, we introduce the ServerFilling-Gittins scheduling policy, in the setting of un-

known or partially-known job sizes and durations. We prove a similar bound and asymptotic

optimality result for ServerFilling-Gittins.

• In Section 6, we empirically evaluate ServerFilling-SRPT using simulation, showing that it

outperforms prior policies on realistic distributions over a variety of loads, not just the 𝜌 → 1
limit.

All of our results for ServerFilling-SRPT and ServerFilling-Gittins also extend to DivisorFilling-SRPT

and DivisorFilling-Gittins.

2 PRIORWORK
There are no prior optimality or asymptotic optimality results for mean response time in the

multiserver-job system. The most similar system where such results have been proven is the M/G/𝑘 ,

a multiserver system with single-server jobs, and those results build off of classical results in the

M/G/1.

2.1 Single-server-job models (one server per job)
In the single-server setting, the Shortest Remaining Processing Time policy (SRPT), which prioritizes

the job of least remaining size, has been proven to minimize mean response time in the known-size

M/G/1, as well as the worst-case single-server system [28, 29]. Note that in the single-server setting,

a job’s size is simply its duration. In the unknown- and partially-known-size settings, the Gittins

policy is known to minimize mean response time in the M/G/1 [12, 33].

In the M/G/𝑘 , where jobs require a single server, [15] proves that the SRPT-𝑘 scheduling policy,

the natural analogue of SRPT in the M/G/𝑘 , asymptotically minimizes mean response time in

the known-size M/G/𝑘 in the heavy-traffic limit. There, as in this paper, load 𝜌 is defined as the
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long-term average fraction of busy servers; 𝜌 → 1 is the heavy-traffic limit. Specifically, the paper

shows that

lim
𝜌→1

𝐸 [𝑇 𝑆𝑅𝑃𝑇 -𝑘 ]
𝐸 [𝑇𝑂𝑃𝑇 -𝑘 ]

= 1.

This is proven despite the fact that the optimal policy OPT-𝑘 is unknown.

In the unknown job size setting, similar asymptotic optimality results for mean response time

have been proven for the Gittins-𝑘 policy [31] and a monotonic variant thereof [32]. Moreover,

for the Gittins-𝑘 policy, these results generalize to the partially-known job size setting, such as a

setting with imperfect job size estimates.

2.2 Multiserver-job model (many servers per job)
Theoretical results in the multiserver-job model are limited. The blocking model, where arriving

jobs either immediately receive service or are dropped, has received significant attention, with

many strong results [2, 37, 39, 43] such as the exact steady state distribution. However, without

any queue these models don’t fit most real computing systems well. In the queueing MSJ model,

which we focus on, results are much more limited [19]. The best-studied scheduling policy is the

first-come first-served (FCFS) policy. Stability region results for FCFS are known in several limited

settings [26, 27], and steady state results are only known in the case of two servers [3, 10, 23].

Recently, the Work Conserving Finite Skip (WCFS) framework has been used to analytically

characterize response time under the ServerFilling and DivisorFilling scheduling policies [14], both

of which serve jobs in near-FCFS order. We modify the ServerFilling and DivisorFilling policies

to prioritize jobs of shortest remaining size (SRPT). We then use a novel proof technique called

MIAOW to demonstrate that ServerFilling-SRPT and DivisorFilling-SRPT achieve asymptotically

similar mean response time to SRPT in an analogous M/G/1 setting.

There has also been work in the scaling multiserver-job model, where one analyzes a sequence

of multiserver-job systems with jointly increasing arrival rate, number of servers, and server needs

[20, 42]. The regimes investigated include multiserver-job analogues of the Halfin-Whitt regime.

Our results complement these, as we study a system with a fixed number of servers 𝑘 in the

heavy-traffic limit.

2.3 Supercomputing
Supercomputing centers are one of the originators of the multiserver-job model: Supercomputing

jobs closely resemble the jobs in the multiserver-job model. Jobs commonly demand anywhere

from one core to thousands of concurrent cores [21, 40]. Unfortunately, all of the papers in this

area focus on simulation or empirical results, rather than analytical results [1, 7–9, 22, 35, 36].

These papers study a variety of scheduling policies, such as FCFS, various backfilling policies, and

other more novel policies. Backfilling policies considered include simpler, no-duration-information

policies such as FirstFit and BestFit [22, 41], as well as more complex, duration-information-based

policies such as EASY backfilling [34], conservative backfilling [34], Smallest Area
2
First-backfilling

[4], Dynamic Backfilling [22], and many more.

Often the primary goal of these papers is achieving high utilization, with secondary goals

including minimizing mean response time and ensuring fairness between different types of jobs.

However, their settings are sometimes more restrictive than our setting: preemption may be either

limited or impossible. When preemption is impossible, maximum utilization is lower, often around

𝜌 = 70%, and mean response times are often high near the utilization threshold.

2
The term “area” used in [4] is equivalent to our “size”.
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Our scheduling policies, such as ServerFilling-SRPT, can only be defined for the subset of settings

where preemption is possible, and our policies leverage preemption to achieve much stronger

results in those settings.

2.4 Virtual Machine Scheduling
In the field of cloud computing, the Virtual Machine (VM) scheduling problem is essentially a

multi-resource generalization of the multiserver-job model. In this model, rather than a single

requirement like server need, each job requires concurrent utilization of several different limited

resources, such as RAM, CPU, GPU, network bandwidth, etc. Of course, any results in this more

general setting also apply to the multiserver-job setting. In the VM scheduling literature, papers

typically focus on finding a throughput-optimal policy. Two major categories of such policies

are the preemptive MaxWeight [24] and non-preemptive Randomized Timers [11, 25] scheduling

frameworks.

These papers focus entirely on achieving throughput optimality, and the mean response time

of the resulting policies can be poor, as several of the above papers note. Work on optimal mean

response time in the VM scheduling literature has been limited to heuristic policies and empirical

evaluation [17].

3 SETTING
3.1 Multiserver-job Model
The multiserver-job (MSJ) model is a multiserver queueing model where each job requires a

fixed number of servers concurrently over its entire time in service. The jobs are therefore called

“multiserver jobs.”

A job 𝑗 has two requirements: A server need 𝑘 𝑗 and a service duration 𝑑 𝑗 . These requirements

are sampled i.i.d. from some joint distribution with random variables (𝐾, 𝐷). Note that 𝐾 and 𝐷

can be correlated. A job’s server need 𝑘 𝑗 is at most the total number of servers, 𝑘 . The total server

need of the jobs in service at any time must sum to at most 𝑘 . The job 𝑗 will complete after 𝑑 𝑗 time

in service.

We assume Poisson arrivals with rate 𝜆, and we assume preemption is allowed with no loss of

progress.

Let a job 𝑗 ’s size 𝑠 𝑗 be defined as 𝑘 𝑗𝑑 𝑗/𝑘 , and likewise define the job size distribution 𝑆 = 𝐾𝐷/𝑘 .
Job 𝑗 ’s size can be viewed as the area of a rectangle with height equal to the job’s duration 𝑑 𝑗 and

width equal to 𝑘 𝑗/𝑘 , the fraction of the total service capacity occupied by job 𝑗 . Likewise, a job’s

remaining size 𝑟 𝑗 is its remaining duration multiplied by 𝑘 𝑗/𝑘 . We define a job 𝑗 ’s service rate to be

𝑘 𝑗/𝑘 , the rate at which the job’s remaining size decreases during service. We define a job’s age 𝑎 𝑗
to be 𝑠 𝑗 − 𝑟 𝑗 , which increases at rate 𝑘 𝑗/𝑘 whenever the job is in service.

A resource-pooled M/G/1 is defined to be a system with a single server with the same capacity

as all 𝑘 original servers pooled together, and the same arrival rate 𝜆 and job size distribution 𝑆

as the original MSJ system. We allow the resource-pooled M/G/1 to divide its capacity arbitrarily

among the jobs in the system. In particular, while jobs in the MSJ system have fixed service rates

depending on their server needs, in the resource-pooled system any combination of service rates is

allowed, decreasing remaining sizes accordingly. Note that the resource-pooled system is strictly

more flexible than the MSJ system, so the optimal policy in the resource-pooled system is superior

to the optimal policy in the MSJ system.

Let𝑊 (𝑡) be the total work in the system at time 𝑡 : The sum of the remaining sizes 𝑟 𝑗 of all

job’s in the system at time 𝑡 . Let 𝐵(𝑡) be the “busyness” of the system at time 𝑡 : The fraction of

servers that are occupied at time 𝑡 . Note that 𝐵(𝑡) is also the total service rate of all jobs in service
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at time 𝑡 , and so 𝐵(𝑡) = − 𝑑
𝑑𝑡
𝑊 (𝑡), outside of arrival moments. We also define𝑊 and 𝐵 to be the

corresponding stationary random variables.

Let load 𝜌 = 𝜆𝐸 [𝑆] be the long-run average rate at which work arrives to the system. We assume

𝜌 < 1 as a necessary condition for stability. We will focus on settings where 𝜌 < 1 is also sufficient

for stability for some feasible scheduling policy. Note that 𝜌 is a constant and that 𝜌 = 𝐸 [𝐵], under
any scheduling policy for which the system is stable.

Next, let us define an 𝑟 -relevant job, where 𝑟 is a remaining size threshold. A job 𝑗 is 𝑟 -relevant if

𝑟 𝑗 ≤ 𝑟 . This terminology is in reference to the tagged job analysis used in studying SRPT in the

M/G/1 and M/G/𝑘 settings [15, 29]; in those settings, the service of a job with remaining size 𝑟 is

only affected by the presence of 𝑟 -relevant jobs in the system. The multiserver-job system is not as

simple, so we do not employ a tagged-job approach, but we reuse the terminology.

Correspondingly, let the 𝑟 -relevant work𝑊𝑟 (𝑡) be the total remaining size of all 𝑟 -relevant jobs

in the system at time 𝑡 , and let 𝐵𝑟 (𝑡) be the fraction of servers which are serving 𝑟 -relevant jobs

at time 𝑡 . Define 𝐵𝑟 and𝑊𝑟 correspondingly. The core of our proof lies in bounding expectations

of random variables involving 𝐵𝑟 and𝑊𝑟 , and combining these with a characterization of mean

response time 𝐸 [𝑇 ] in terms of 𝐵𝑟 and𝑊𝑟 .

Next, let us define the 𝑟 -relevant load 𝜌𝑟 to be the long-run average 𝑟 -relevant busyness of the

system. A job with size 𝑠 𝑗 receives min(𝑠 𝑗 , 𝑟 ) service while having remaining size ≤ 𝑟 . As a result,
𝜌𝑟 = 𝜆𝐸 [min(𝑆, 𝑟 )] = 𝐸 [𝐵𝑟 ]. We further divide the 𝑟 -relevant load based on whether the job in

question has initial size ≤ 𝑟 . Let the arrival load 𝜌𝐴𝑟 = 𝜆𝐸 [𝑆1{𝑆 < 𝑟 }], and let the recycled load
𝜌𝑅𝑟 = 𝜆𝑟𝑃 (𝑆 > 𝑟 ). Note that 𝜌𝑟 = 𝜌𝐴𝑟 + 𝜌𝑅𝑟 . Note also that 𝜌𝑟 , 𝜌

𝐴
𝑟 , and 𝜌

𝑅
𝑟 are all not dependent on

the policy 𝜋 .

Finally, let us define an 𝑟 -recycling moment to be a moment when a job 𝑗 with initial size 𝑠 𝑗 > 𝑟

reaches remaining size 𝑟 𝑗 = 𝑟 . Let 𝐸𝑟 [·] be an expectation taken over 𝑟 -recycling moments, just

prior to the job recycling.

3.2 ServerFilling-SRPT
This paper considers two settings of server needs:

• The “power of two” setting: 𝑘 is power of two, and all server needs 𝑘 𝑗 are powers of two.

• The “divisible” setting: 𝑘 is general, and all server needs 𝑘 𝑗 are divisors of 𝑘 .

Corresponding to these two settings, we have two policies of interest: ServerFilling-SRPT for the

power of two setting, and DivisorFilling-SRPT for the divisible setting. We define ServerFilling-SRPT

here, and DivisorFilling-SRPT in Appendix C. When writing equations throughout the paper, we

abbreviate ServerFilling-SRPT as SFS-𝑘 .

To implement SFS-𝑘 , start by ordering jobs in increasing order of remaining size 𝑟 𝑗 , breaking ties

arbitrarily. Define 𝑗1, 𝑗2, . . . such that

𝑟 𝑗1 ≤ 𝑟 𝑗2 ≤ . . . .

Next, consider initial subsets of this ordering:

{ 𝑗1}, { 𝑗1, 𝑗2}, { 𝑗1, 𝑗2, 𝑗3} . . . .

We are interested in the smallest initial subset 𝑀 in which the total server need is at least 𝑘 . In

other words, let 𝑖∗ be the smallest index such that

𝑖∗∑︁
𝑖=1

𝑘 𝑗𝑖 ≥ 𝑘.

If there is no such index, then ServerFilling-SRPT serves all jobs in the system simultaneously.
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Otherwise, ServerFilling-SRPT will serve a subset of 𝑀 = { 𝑗1, 𝑗2, . . . , 𝑗𝑖∗ }. Among this subset,

ServerFilling-SRPT prioritizes jobs of largest server need, placing jobs into service in descending

order of server need, until no servers remain or the next job cannot fit, breaking ties by smallest

remaining size, and further ties arbitrarily.

In the power-of-two setting, ServerFilling-SRPT guarantees the following strong property: At all

times, either all servers are busy, or all jobs are in service. This was proven for the ServerFilling

policy [14, Lemma 1], which is identical to ServerFilling-SRPT, except that jobs are ordered in

arrival order, rather than SRPT order. For completeness, we reprove this result here:

Lemma 3.1. Under the ServerFilling-SRPT policy, in the power-of-two setting, if the total server need
of jobs in the system is at least 𝑘 servers, all 𝑘 servers are busy.

Proof. Recall that𝑀 is a set of jobs, each with server need a power of two, which have a total

server need of at least 𝑘 . Label the jobs𝑚1,𝑚2, . . . in decreasing order of server need, tiebroken by

least remaining size.

𝑘𝑚1
≥ 𝑘𝑚2

≥ . . .

Let need(𝑧) represent the total server need of the first 𝑧 jobs in this ordering:

need(𝑧) =
𝑧∑︁
𝑖=1

𝑘𝑚𝑖
.

The set of jobs served by ServerFilling-SRPT is an initial sequence of this server need ordering:

{𝑚𝑖 | 𝑖 ≤ ℓ} for some ℓ . Specifically, the index ℓ up to which ServerFilling-SRPT serves jobs is the

largest index 𝑧 such that need(𝑧) ≤ 𝑘 . To prove Lemma 3.1, it suffices to show that need(ℓ) = 𝑘 .
Note that need(0) = 0 and need( |𝑀 |) ≥ 𝑘 . As a result, need(𝑧) must cross 𝑘 at some point. To

prove that need(ℓ) = 𝑘 , it suffices to prove that:

There exists no index ℓ ′ such that need(ℓ ′) < 𝑘 and need(ℓ ′ + 1) > 𝑘 . (1)

To prove (1), let us define remain(𝑧), the number of servers remaining after 𝑧 jobs have been placed

into service:

remain(𝑧) = 𝑘 − need(𝑧).
Because all server needs 𝑘 𝑗 are powers of two, we will show that remain(𝑧) carries an important

property:

remain(𝑧) is divisible by 𝑘𝑚𝑧+1 for all 𝑧. (2)

We will use (2) to prove (1). We write 𝑎 |𝑏 to indicate that 𝑎 divides 𝑏.

We will prove (2) by induction on 𝑧. For 𝑧 = 0, remain(0) = 𝑘 . Because 𝑘 is a power of two,

and 𝑘𝑚1
is a power of two no greater than 𝑘 , the base case holds. Next, assume that (2) holds for

some index 𝑧, meaning that 𝑘𝑚𝑧+1 |remain(𝑧). Note that remain(𝑧 + 1) = remain(𝑧) − 𝑘𝑚𝑧+1 . As

a result, 𝑘𝑚𝑧+1 |remain(𝑧 + 1). Now, note that 𝑘𝑚𝑧+2 |𝑘𝑚𝑧+1 , because both are powers of two, and

𝑘𝑚𝑧+2 ≤ 𝑘𝑚𝑧+1 . As a result, 𝑘𝑚𝑧+2 |remain(𝑧 + 1), completing the proof of (2).

Now,we are ready to prove (1). Assume for contradiction that such an ℓ ′ exists. Then remain(ℓ ′) >
0, and remain(ℓ ′ + 1) < 0. Because remain(ℓ ′ + 1) = remain(ℓ ′) − 𝑘𝑚ℓ′+1 , we therefore know that

𝑘𝑚ℓ′+1 > remain(ℓ ′). But from (2), we know that 𝑘𝑚ℓ′+1 divides remain(ℓ ′), which is a contradic-

tion. □

Note that Lemma 3.1 remains true if the power-of-two setting is replaced by the power-of-𝑥

setting, for any integer 𝑥 . In fact, the only condition on the server needs necessary to prove

Lemma 3.1 is that all server needs divide 𝑘 , and all server needs divide all larger server needs.
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An important corollary of Lemma 3.1 is a property which we call “relevant work efficiency”:

Corollary 3.1 (Relevant work efficiency). Under the ServerFilling-SRPT policy, in the power-
of-two setting, if there are 𝑘 or more 𝑟 -relevant jobs in the system, all servers are occupied by 𝑟 -relevant
jobs, meaning that 𝐵𝑟 = 1.

Proof. Note that |𝑀 | ≤ 𝑘 , because 𝑀 is the smallest initial subset of the SRPT ordering with

total server need at least 𝑘 , and all jobs have server need at least 1. Therefore, if there are 𝑘 or

more 𝑟 -relevant jobs in the system, then all jobs in𝑀 are 𝑟 -relevant, so ServerFilling-SRPT fills all

𝑘 servers with 𝑟 -relevant jobs, meaning that 𝐵𝑟 = 1. □

Corollary 3.1 is the sole property of ServerFilling-SRPT that we will use to prove our main

theorems, Theorems 4.1 and 4.2.

DivisorFilling-SRPT in the divisible setting also satisfies the relevant work efficiency property: If

there are 𝑘 or more 𝑟 -relevant jobs in the system, then 𝐵𝑟 = 1, as we discuss in Appendix C. As a

result, our main theorems, Theorems 4.1 and 4.2, also hold for DivisorFilling-SRPT.

4 SERVERFILLING-SRPT: ASYMPTOTICALLY OPTIMAL MEAN RESPONSE TIME
4.1 Summary of Results and Proofs
To prove the optimality of ServerFilling-SRPT, we will compare ServerFilling-SRPT’s mean response

time against a resource-pooled M/G/1/SRPT system with the same size distribution 𝑆 . Let “SRPT-1”

denote the M/G/1/SRPT system. Recall that SRPT-1 combines the power of all 𝑘 servers into a

single server, which can work on any job or any mixture of jobs. This resource-pooled system is

strictly more flexible than the multiserver-job system, so the optimal policy in the resource-pooled

system forms a lower bound on the optimal policy in the MSJ system. Because SRPT minimizes

mean response time in the M/G/1, SRPT-1 yields a lower bound on the optimal mean response time

in the MSJ system.

We will upper bound the gap in mean response time between ServerFilling-SRPT and SRPT-1 for

all loads 𝜌 , and prove that the gap asymptotically grows slower than 𝐸 [𝑇 𝑆𝑅𝑃𝑇 -1]. By doing so, we

will show that ServerFilling-SRPT is asymptotically optimal in the multiserver-job system.

First, we prove a bound on the gap in mean response time between ServerFilling-SRPT and

SRPT-1:

Theorem 4.1. For all loads 𝜌 , in the power-of-two setting, the mean response time gap between
ServerFilling-SRPT and SRPT-1 is at most

𝐸 [𝑇 𝑆𝐹𝑆-𝑘 ] − 𝐸 [𝑇 𝑆𝑅𝑃𝑇 -1] ≤ (𝑒 + 1) (𝑘 − 1)
𝜆

ln
1

1 − 𝜌 + 𝑒
𝜆
.

The same is true of DivisorFilling-SRPT in the divisible setting.

Proof deferred to Section 4.3. □

We use this bound to prove that ServerFilling-SRPT yields optimal mean response time in the

heavy-traffic limit:

Theorem 4.2. If 𝐸 [𝑆2 (log 𝑆)+] < ∞, then ServerFilling-SRPT is asymptotically optimal in the
multiserver-job system:

lim
𝜌→1

𝐸 [𝑇 𝑆𝐹𝑆-𝑘 ]
𝐸 [𝑇 𝑆𝑅𝑃𝑇 -1]

= lim
𝜌→1

𝐸 [𝑇 𝑆𝐹𝑆-𝑘 ]
𝐸 [𝑇𝑂𝑃𝑇 -𝑘 ]

= 1.

The same is true of DivisorFilling-SRPT in the divisible setting.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 51. Publication date: December 2022.



Optimal Scheduling in the Multiserver-job Model under Heavy Traffic 51:11

Proof deferred to Section 4.3. □

The condition 𝐸 [𝑆2 (log 𝑆)+] < ∞ is very slightly stronger than finite variance.

In Section 5, we generalize both results to the settings of unknown- and partially-known job

duration.

4.2 A Novel Proof Technique: MIAOW
4.2.1 Challenges of multiserver-job analysis. As mentioned in Section 1, mean response time

analysis in the multiserver-job system is a difficult problem, with no size- or age-based scheduling

policies having previously been analyzed. The difficulty arises from two sources: First, analyzing the

mean response time of any systemwithmultiple servers under a size- or age-based scheduling policy

is already very difficult, even in a single-server-job setting such as the M/G/𝑘 . New techniques

based on relevant work have recently been developed to handle this challenge. The first such

analysis is as recent as 2018, when the SRPT-𝑘 policy was analyzed in the M/G/𝑘 [15], followed

by the analysis of the monotonic-Gittins-𝑘 and Gittins-𝑘 policies in the M/G/𝑘 in 2020 and 2021

[31, 32].

Unfortunately, the multiserver-job system presents a major additional challenge. We will show

in Sections 4.2.3 and 4.2.4 that these recent techniques for multiserver systems break when dealing

with our multiserver-job system. As a result, we need a new technique to analyze the multiserver-job

systems, which we introduce in Section 4.2.5.

4.2.2 Key idea of previous approaches: Relevant work similarity. The first step in applying relevant-

work-based techniques [15, 31, 32] is to prove a property which we call “relevant work similarity”:

Definition 4.1. A policy 𝜋 achieves relevant work similarity (RWS) if, for all remaining sizes
𝑟 (or ranks3 𝑟 ), the policy 𝜋 system and the optimal resource-pooled system OPT-1 (e.g. SRPT-1 or
Gittins-1) have similar expected 𝑟 -relevant work:

𝐸 [𝑊 𝜋
𝑟 ] − 𝐸 [𝑊𝑂𝑃𝑇 -1

𝑟 ] ≤ 𝑂 (𝑟 ) .

The RWS property holds for all three policies and systems analyzed previously [15, 31, 32], as

well as for ServerFilling-SRPT. Unfortunately, the RWS property is not sufficient on its own to

tightly bound mean response time, or to prove asymptotically optimal mean response time.

4.2.3 First attempt: Tagged job approach. One way to build on the RWS property to prove asymp-

totic optimality is to use the tagged job approach, employed by the SRPT-𝑘 [15] and monotonic-

Gittins-𝑘 [32] results. The tagged job approach combines the RWS property with an additional

property, which we call “relevant work implies response time”:

Definition 4.2. A policy 𝜋 achieves relevant work implies response time (RW→RT) if the
following holds: If a generic tagged job of size 𝑟 sees some amount 𝑥 of 𝑟 -relevant work in each of the
policy 𝜋 system and the optimal resource-pooled system OPT-1, then its expected response must be
similar (within 𝑂 (𝑟 )) in the two systems.

If the RWS and RW→RT properties can both be proven for some policy 𝜋 , it is relatively straight-

forward to tightly boundmean response time and prove that the policy 𝜋 has asymptotically optimal

mean response time. Unfortunately, for our ServerFilling-SRPT policy, the RW→RT property fails,

meaning that the tagged-job approach cannot be used.

For a counterexample to the RW→RT property for ServerFilling-SRPT, consider a scenario where

the tagged job requires 1 server and has the smallest size of any job in the system, and where it sees

3
Rank is the analogue of remaining size under the Gittins policy.
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many jobs on arrival, all of which require an even number of servers and have larger remaining

sizes. Furthermore, assume that arriving jobs rarely require 1 server. The resource-pooled SRPT-1

system will quickly complete the tagged job, as it has the smallest remaining size of any job in the

system.

In contrast, the ServerFilling-SRPT system will not quickly complete the tagged job, because

ServerFilling-SRPT prioritizes the jobs of largest server need among the initial subset𝑀 , as defined

in Section 3.2. The tagged job will need to wait until the system empties or additional 1-server jobs

arrive to be served. Clearly, similar relevant work does not imply similar response time.

This is an inherent difficulty of the multiserver-job system: Serving the tagged job any earlier

would require leaving at least one server empty, as the tagged job is the only job with an odd server

need, given the power-of-two setting. This could endanger throughput-optimality. As a result, the

tagged-job approach cannot be used to effectively analyze the multiserver-job system.

4.2.4 Second Attempt: Gittins-𝑘 . The analysis of the Gittins-𝑘 policy for the M/G/𝑘 [31] also relies

on the RWS property, which again is insufficient alone to prove asymptotically optimal mean

response time in their setting. As in our setting, for the Gittins-𝑘 system, the RW→RT property

fails, so the tagged-job approach cannot be employed.

The authors take a different approach: They introduce WINE [31, Theorem 6.3], our Lemma 4.3,

a new identity that relates response time and relevant work in all systems.
4
WINE implies

𝐸 [𝑇 𝜋-𝑘 ] − 𝐸 [𝑇𝑂𝑃𝑇 -1] = 1

𝜆

∫ ∞

0

𝐸 [𝑊 𝜋-𝑘
𝑟 ] − 𝐸 [𝑊𝑂𝑃𝑇 -1

𝑟 ]
𝑟2

. (3)

WINE is more general than the RW→RT property, because RW→RT only holds in certain systems.

We can see from (3) that the RWS property is almost enough to bound mean response time,

but the 𝑂 (𝑟 ) bound is too loose to show that the integral converges. The authors therefore prove

a stronger version of the RWS property at sufficiently low and high ranks 𝑟 . Combining their

strengthened bounds with WINE, they prove that Gittins-𝑘 achieves asymptotically optimal mean

response time in the M/G/𝑘 .

However, their proof of a stronger version of RWS at low ranks 𝑟 relies on the fact that under

Gittins-𝑘 in the M/G/𝑘 , the job of least rank is guaranteed to be served. This fails when applied to

ServerFilling-SRPT, because in our multiserver-job system the job of least rank is not guaranteed

to receive service. See the counterexample given in Section 4.2.3.

4.2.5 Our approach. Our key idea is to directly focus on the integrated relevant work difference

given in (3). This circumvents the need to strengthen the RWS property (like in Section 4.2.4) or

prove an RW→RT property (like in Section 4.2.3).

We start with a key property of the ServerFilling-SRPT system, which we call “relevant work

efficiency” (RWE). RWE states that if there are 𝑘 or more 𝑟 -relevant jobs in the system, then all

servers are occupied by 𝑟 -relevant jobs. We prove in Section 3.2, specifically in Corollary 3.1, that

ServerFilling-SRPT satisfies the RWE property.

While one can show that RWE implies RWS, RWS alone is not enough, as discussed in Section 4.2.4.

Instead, we use the RWE property to directly bound the integrated relevant work difference given

in (3), thereby directly bounding the mean response time difference. We prove this result in

Theorem 4.6. This forms the core of our proof that ServerFilling-SRPT achieves asymptotically

optimal mean response time.

Theorem 4.6 is our key technical theorem; it provides a novel bound on the waste in any system

which satisfies RWE. By waste, we refer to the quantity 𝐸 [𝑊𝑟 (1 − 𝐵𝑟 )], the expected product of

4
The name “WINE”, short for “work integral number equality” [30], is more recent than [31], but refers to their Theorem 6.3.
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𝑟 -relevant work and the fraction of system capacity not working on 𝑟 -relevant jobs. Note that the

SRPT-1 system never has any waste: If any 𝑟 -relevant job is present the entire system capacity is

working on such a job.

To boundwaste, we use a novel technique which we call MIAOW:Multiplicative Interval Analysis

of Waste. Intuitively, MIAOWmakes use of the fact that both𝑊𝑟 and 𝐵𝑟 change slowly as a function

of 𝑟 . We use this fact to bound the integrated waste over a generic interval of remaining sizes [𝑟ℓ , 𝑟ℎ].
This contrasts with the prior waste-based technique [31], which focused on bounding waste at

individual remaining sizes 𝑟 , an approach which does not imply a useful bound in the MSJ setting.

We then carefully select a sequence of remaining size intervals with multiplicatively diminishing

spare capacity 1 − 𝜌𝐴𝑟 . Applying our bound to each interval completes Theorem 4.6.

We note that MIAOW is stronger than the techniques used to prove asymptotically optimality

in the M/G/k for SRPT-𝑘 and Gittins-𝑘 [15, 31]. In particular, one could use our technique to

reprove all of the asymptotic optimality results in those papers. This follows from the fact that the

multiserver-job model is a generalization of the M/G/𝑘 : A multiserver-job setting where all server

needs are 1 is simply an M/G/𝑘 .

4.3 Proof of Main Results
Our goal is to bound the mean response time of the ServerFilling-SRPT policy, relative to the

resource-pooled SRPT-1 policy.

To bound mean response time, we start by applying the “work integral number equality” (WINE)

technique [30, 31] to write mean response time 𝐸 [𝑇 𝜋 ] for a general policy 𝜋 in terms of expected

relevant work 𝐸 [𝑊 𝜋
𝑟 ]. This technique was introduced in [31, Theorem 6.3], but we reprove it here

for completeness.

Lemma 4.3 (WINE Identity [31]). For an arbitrary scheduling policy 𝜋 , in an arbitrary system,

𝐸 [𝑇 𝜋 ] = 1

𝜆
𝐸 [𝑁 𝜋 ] = 1

𝜆

∫ ∞

𝑟=0

𝐸 [𝑊 𝜋
𝑟 ]

𝑟2
𝑑𝑟 .

Proof. We will prove that at every moment in time,

𝑁 𝜋 (𝑡) =
∫ ∞

𝑟=0

𝑊 𝜋
𝑟 (𝑡)
𝑟2

𝑑𝑟 . (4)

Recall that 𝑟 -relevant work𝑊 𝜋
𝑟 (𝑡) is simply a sum over the 𝑟 -relevant jobs in the system. As a

result, we can consider the integral in (4) as a sum over the jobs in the system.

Consider a general job 𝑗 , with remaining size 𝑟 𝑗 . The contribution of 𝑗 to the 𝑟 -relevant work

𝑊 𝜋
𝑟 (𝑡) is 𝑟 𝑗 , for thresholds 𝑟 such that 𝑟 𝑗 ≤ 𝑟 , and 0 otherwise.

Therefore, the contribution of job 𝑗 to the integral in (4) is∫ ∞

𝑟=0

𝑟 𝑗1{𝑟 𝑗 ≤ 𝑟 }
𝑟2

𝑑𝑟 =

∫ ∞

𝑟=𝑟 𝑗

𝑟 𝑗

𝑟2
𝑑𝑟 = 𝑟 𝑗

∫ ∞

𝑟=𝑟 𝑗

1

𝑟2
𝑑𝑟 = 𝑟 𝑗

1

𝑟 𝑗
= 1.

Because the contribution of an arbitrary job is 1, the integral in (4) simply counts the number of

jobs in the system at time 𝑡 , giving 𝑁 𝜋 (𝑡) as desired.
Note that 𝐸 [𝑇 𝜋 ] = 1

𝜆
𝐸 [𝑁 𝜋 ], by Little’s Law [18]. □

Now that we have written mean response time in terms of relevant work, we need to understand

𝐸 [𝑊 𝜋
𝑟 ] −𝐸 [𝑊 𝑆𝑅𝑃𝑇 -1

𝑟 ], the difference in 𝑟 -relevant work between a general policy 𝜋 and the resource

pooled SRPT-1 system. To do so, we employ the work-decomposition law. This technique was

introduced in [31], and we specialize it here to the SRPT setting. For completeness, we give the

proof in Appendix A.
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Lemma 4.4. [31, Theorem 7.2] For an arbitrary scheduling policy 𝜋 , in an arbitrary known-size
system,

𝐸 [𝑊 𝜋
𝑟 ] − 𝐸 [𝑊 𝑆𝑅𝑃𝑇 -1

𝑟 ] = 𝐸 [(1 − 𝐵𝜋𝑟 )𝑊 𝜋
𝑟 ] + 𝜌𝑅𝑟 𝐸𝑟 [𝑊 𝜋

𝑟 ]
1 − 𝜌𝐴𝑟

.

Proved in Appendix A. □

Combining Lemma 4.3, and specifically its implication (3), with Lemma 4.4, we arrive at the

following characterization of the mean response time difference between a general policy 𝜋 and

SRPT-1:

Lemma 4.5. For any scheduling policy 𝜋 , in any system,

𝐸 [𝑇 𝜋 ] − 𝐸 [𝑇 𝑆𝑅𝑃𝑇 -1] = 1

𝜆

∫ ∞

0

𝐸 [(1 − 𝐵𝜋𝑟 )𝑊 𝜋
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟 )
𝑑𝑟 (5)

+ 1

𝜆

∫ ∞

0

𝜌𝑅𝑟 𝐸𝑟 [𝑊 𝜋
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟 )
𝑑𝑟 . (6)

Intuitively, (5) and (6) measure the inefficiency of the policy 𝜋 relative to the ideal SRPT-1 system,

through the lens of𝑊 𝜋
𝑟 , the 𝑟 -relevant work under policy 𝜋 .

The first term (5) measures the extent to which 𝑟 -relevant work is present, but not being worked

on. In the multiserver-job system, not all of the system can be devoted to a single job, so the waste

𝐸 [(1 − 𝐵𝜋𝑟 )𝑊 𝜋
𝑟 ] will typically be nonzero.

The second term (6) measures the extent to which jobs 𝑟 -recycle while 𝑟 -relevant work is present

in the system. In the multiserver-job system, not all of the system can be devoted to a single job, so

jobs with remaining size above 𝑟 will be worked on, and will 𝑟 -recycle, while 𝑟 -relevant work is

present, so 𝐸𝑟 [𝑊 𝜋
𝑟 ] will also typically be nonzero.

Our goal is to bound the magnitude of (5) and (6) under the ServerFilling-SRPT policy, in the

power-of-two setting. We do so by making use of the key property of ServerFilling-SRPT, relevant

work efficiency (Corollary 3.1): If there are 𝑘 or more 𝑟 -relevant jobs in the system, then 𝐵𝑟 = 1.
We bound (5) in Theorem 4.6 using our novel MIAOW technique, and we bound (6) in Theo-

rem 4.7.

Theorem 4.6 (Bound waste). Under the ServerFilling-SRPT policy, in the power-of-two setting,∫ ∞

𝑟=0

𝐸 [(1 − 𝐵𝑟 )𝑊𝑟 ]
𝑟2 (1 − 𝜌𝐴𝑟 )

𝑑𝑟 ≤ 𝑒 (𝑘 − 1)
⌈
ln

1

1 − 𝜌

⌉
.

The same is true of DivisorFilling-SRPT in the divisible setting.

Proof. First, we make use of the key fact about ServerFilling-SRPT (and DivisorFilling-SRPT),

relevant work efficiency: If there are at least 𝑘 jobs with rank ≤ 𝑟 in the system, then 𝐵𝑟 = 1. This
is proven in Corollary 3.1 for ServerFilling-SRPT, and in Appendix C for DivisorFilling-SRPT.

Let us define𝑊 ∗
𝑟 to be the 𝑟 -relevant work of the 𝑘 − 1 jobs of least remaining size in the system.

Note that if 𝐵𝑟 < 1, then𝑊𝑟 =𝑊
∗
𝑟 , for ServerFilling-SRPT and DivisorFilling-SRPT. As a result,∫ ∞

𝑟=0

𝐸 [(1 − 𝐵𝑟 )𝑊𝑟 ]
𝑟2 (1 − 𝜌𝐴𝑟 )

𝑑𝑟 =

∫ ∞

𝑟=0

𝐸 [(1 − 𝐵𝑟 )𝑊 ∗
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟 )
𝑑𝑟 .

Next, we will break up the range of remaining sizes 𝑟 ∈ [0,∞) into a finite set of buckets. Let

{𝑟0, 𝑟1, . . . , 𝑟𝑚} be a list of𝑚 different remaining sizes, where 𝑟0 = 0. We will specify the list {𝑟𝑖 }
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later. Implicitly, we will say that 𝑟𝑚+1 = ∞. We can rewrite the above integral as:∫ ∞

𝑟=0

𝐸 [(1 − 𝐵𝑟 )𝑊 ∗
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟 )
𝑑𝑟 =

𝑚∑︁
𝑖=0

∫ 𝑟𝑖+1

𝑟=𝑟𝑖

𝐸 [(1 − 𝐵𝑟 )𝑊 ∗
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟 )
𝑑𝑟 . (7)

Next, we replace 𝑟 with either 𝑟𝑖 or 𝑟𝑖+1, selectively, to simplify things. Note that 𝐵𝑟 is increasing

as a function of 𝑟 , because as we increase the rank 𝑟 , more servers are busy with 𝑟 -relevant jobs.

Likewise, 𝜌𝐴𝑟 is increasing as a function of 𝑟 . Thus, for any 𝑟 ∈ [𝑟𝑖 , 𝑟𝑖+1],

𝐵𝑟𝑖 ≤ 𝐵𝑟 , 𝜌𝐴𝑟 ≤ 𝜌𝐴𝑟𝑖+1 .

Substituting into the integral from (7), we find that∫ 𝑟𝑖+1

𝑟=𝑟𝑖

𝐸 [(1 − 𝐵𝑟 )𝑊 ∗
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟 )
𝑑𝑟 ≤

∫ 𝑟𝑖+1

𝑟=𝑟𝑖

𝐸 [(1 − 𝐵𝑟𝑖 )𝑊 ∗
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟𝑖+1 )
𝑑𝑟 .

Next, let us perform some algebraic manipulation:∫ 𝑟𝑖+1

𝑟=𝑟𝑖

𝐸 [(1 − 𝐵𝑟𝑖 )𝑊 ∗
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟𝑖+1 )
𝑑𝑟 = 𝐸

[∫ 𝑟𝑖+1

𝑟=𝑟𝑖

(1 − 𝐵𝑟𝑖 )𝑊 ∗
𝑟

𝑟2 (1 − 𝜌𝐴𝑟𝑖+1 )
𝑑𝑟

]
= 𝐸

[
1 − 𝐵𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

∫ 𝑟𝑖+1

𝑟=𝑟𝑖

𝑊 ∗
𝑟

𝑟2
𝑑𝑟

]
. (8)

Now, let us make use of the definition of𝑊 ∗
𝑟 . Recall that𝑊

∗
𝑟 is the total remaining size of the 𝑘 − 1

jobs of least remaining size in the system.

𝑊 ∗
𝑟 =

𝑘−1∑︁
𝑗=1

𝑟 𝑗1{𝑟 𝑗 ≤ 𝑟 }

Substituting this into (8), we find it is equal to

= 𝐸

[
1 − 𝐵𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

𝑘−1∑︁
𝑗=1

∫ 𝑟𝑖+1

𝑟=𝑟𝑖

𝑟 𝑗1{𝑟 𝑗 ≤ 𝑟 }
𝑟2

𝑑𝑟

]
. (9)

Now, we will bound the integral in (9). As noted in Lemma 4.3, for an arbitrary remaining size 𝑟 𝑗 ,∫ ∞

𝑟=0

𝑟 𝑗1{𝑟 𝑗 ≤ 𝑟 }
𝑟2

𝑑𝑟 = 𝑟 𝑗

∫ ∞

𝑟=𝑟 𝑗

1

𝑟2
𝑑𝑟 = 𝑟 𝑗

1

𝑟 𝑗
= 1.

As a result, ∫ 𝑟𝑖+1

𝑟=𝑟𝑖

𝑟 𝑗1{𝑟 𝑗 ≤ 𝑟 }
𝑟2

𝑑𝑟 ≤ 1.

Substituting in this bound into (9), we find that

𝐸

[
1 − 𝐵𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

𝑘−1∑︁
𝑗=1

∫ 𝑟𝑖+1

𝑟=𝑟𝑖

𝑟 𝑗1{𝑟 𝑗 ≤ 𝑟 }
𝑟2

𝑑𝑟

]
≤ 𝐸

[
1 − 𝐵𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

(𝑘 − 1)
]

= (𝑘 − 1)𝐸
[
1 − 𝐵𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

]
= (𝑘 − 1)

1 − 𝜌𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

≤ (𝑘 − 1)
1 − 𝜌𝐴𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

.

Returning all the way back to the beginning, we find that∫ ∞

𝑟=0

𝐸 [(1 − 𝐵𝑟 )𝑊𝑟 ]
𝑟2 (1 − 𝜌𝐴𝑟 )

𝑑𝑟 ≤ (𝑘 − 1)
𝑚∑︁
𝑖=0

1 − 𝜌𝐴𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

. (10)
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We are now ready to construct the list {𝑟𝑖 }. Our goal in doing so is to minimize the sum

𝑚∑︁
𝑖=0

1 − 𝜌𝐴𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

.

Our only constrains are that 𝑟0 = 0 and 𝑟𝑚+1 = ∞. In particular,

1 − 𝜌𝐴𝑟0 = 1 − 𝜌𝐴0 = 1, 1 − 𝜌𝐴𝑟𝑚+1 = 1 − 𝜌𝐴∞ = 1 − 𝜌.
All other 𝑟𝑖 thresholds are ours to choose.

We will set 𝑟𝑖 such that the values 1 − 𝜌𝐴𝑟𝑖 form a geometric progression. In particular, define

𝑟1, 𝑟2, . . . to satisfy the following:

1 − 𝜌𝐴𝑟1 =
1

𝑒
, 1 − 𝜌𝐴𝑟2 =

1

𝑒2
, . . . 1 − 𝜌𝐴𝑟𝑖 =

1

𝑒𝑖
∀𝑖 ≤ 𝑚. (11)

If the size distribution 𝑆 is continuous, we choose 𝑟𝑖 to exactly satisfy (11). If 𝑆 is discontinuous,

then 𝜌𝐴𝑟 is discontinuous, so exact equality is not necessarily possible. However, it suffices to choose

𝑟𝑖 such that

1

𝑒𝑖
∈ [1 − 𝜌𝐴

𝑟+
𝑖
, 1 − 𝜌𝐴𝑟−

𝑖
] ∀𝑖 ≤ 𝑚,

which is always possible. By
+
and

−
, we refer to the one-sided limits.

We then set𝑚 = ⌈ln 1
1−𝜌 ⌉ − 1. This choice of {𝑟𝑖 } ensures that

1 − 𝜌𝐴𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

≤ 𝑒 ∀𝑖 ≤ 𝑚 (12)

𝑚∑︁
𝑖=0

1 − 𝜌𝐴𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

≤ 𝑒 (𝑚 + 1) = 𝑒
⌈
ln

1

1 − 𝜌

⌉
. (13)

For 𝑖 ≤ 𝑚 − 1, (12) follows immediately from (11). For 𝑖 = 𝑚, (12) follows from the fact that

1 − 𝜌𝐴𝑟𝑚+1 = 1 − 𝜌 .
Applying (10), we find that∫ ∞

𝑟=0

𝐸 [(1 − 𝐵𝑟 )𝑊𝑟 ]
𝑟2 (1 − 𝜌𝐴𝑟 )

𝑑𝑟 ≤ 𝑒 (𝑘 − 1)
⌈
ln

1

1 − 𝜌

⌉
. □

Now, it remains to bound (6):

Theorem 4.7 (Bound recycled work). Under the ServerFilling-SRPT policy, in the power-of-two
setting, ∫ ∞

𝑟=0

𝜌𝑅𝑟 𝐸𝑟 [𝑊𝑟 ]
𝑟2 (1 − 𝜌𝐴𝑟 )

𝑑𝑟 ≤ (𝑘 − 1) ln 1

1 − 𝜌 .

The same is true of DivisorFilling-SRPT in the divisible setting.

Proof. First, recall the key property of ServerFilling-SRPT and DivisorFilling-SRPT, relevant

work efficiency: If there are at least 𝑘 jobs with remaining size ≤ 𝑟 in the system, then 𝐵𝑟 = 1. This
is proven in Corollary 3.1 for ServerFilling-SRPT, and in Appendix C for DivisorFilling-SRPT.

When a job 𝑟 -recycles, it must have been in service despite having remaining size > 𝑟 . As a result,

there are at most 𝑘 − 1 other jobs with remaining size ≤ 𝑟 present in the system at an 𝑟 -recycling

moment. Each such job contributes at most 𝑟 work to𝑊𝑟 . As a result, 𝐸𝑟 [𝑊𝑟 ] ≤ (𝑘 − 1)𝑟 .∫ ∞

𝑟=0

𝜌𝑅𝑟 𝐸𝑟 [𝑊𝑟 ]
𝑟2 (1 − 𝜌𝐴𝑟 )

𝑑𝑟 ≤
∫ ∞

𝑟=0

(𝑘 − 1)𝑟𝜌𝑅𝑟
𝑟2 (1 − 𝜌𝐴𝑟 )

𝑑𝑟 = (𝑘 − 1)
∫ ∞

𝑟=0

𝜌𝑅𝑟

1 − 𝜌𝐴𝑟
1

𝑟
𝑑𝑟 .
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To bound the integrand, we will expand the definitions of 𝜌𝑅𝑟 and 𝜌𝐴𝑟 in the SRPT setting.

𝜌𝑅𝑟 = 𝜆𝑟𝑃 (𝑆 > 𝑟 )
𝜌𝐴𝑟 = 𝜆𝐸 [𝑆1{𝑆 ≤ 𝑟 }] .

We therefore bound as follows:

𝜌𝑅𝑟

1 − 𝜌𝐴𝑟
1

𝑟
=

𝜆𝑟𝑃 (𝑆 > 𝑟 )
1 − 𝜆𝐸 [𝑆1{𝑆 ≤ 𝑟 }]

1

𝑟
=

𝜆𝑃 (𝑆 > 𝑟 )
1 − 𝜆𝐸 [𝑆1{𝑆 ≤ 𝑟 }] .

Now, note that 𝑃 (𝑆 > 𝑟 ) = 𝑑
𝑑𝑟
𝐸 [min(𝑆, 𝑟 )], and that 𝐸 [min(𝑆, 𝑟 )] ≥ 𝐸 [𝑆1{𝑆 ≤ 𝑟 }]. As a result,

𝜆𝑃 (𝑆 > 𝑟 )
1 − 𝜆𝐸 [𝑆1{𝑆 ≤ 𝑟 }] ≤ 𝜆𝑃 (𝑆 > 𝑟 )

1 − 𝜆𝐸 [min(𝑆, 𝑟 )] =
𝜆 𝑑
𝑑𝑟
𝐸 [min(𝑆, 𝑟 )]

1 − 𝜆𝐸 [min(𝑆, 𝑟 )] = − 𝑑
𝑑𝑟

ln
1

1 − 𝜆𝐸 [min(𝑆, 𝑟 )] .

Integrating over all 𝑟 ∈ [0,∞), we find that∫ ∞

𝑟=0

𝜌𝑅𝑟

1 − 𝜌𝐴𝑟 )
1

𝑟
𝑑𝑟 ≤

[
− ln

1

1 − 𝜆𝐸 [min(𝑆, 𝑟 )]

]∞
𝑟=0

= ln
1

1 − 𝜌 . □

Now, we’re ready to put it all together. We derive a bound on mean response time:

Theorem 4.1. In anymultiserver-job system, the difference inmean response time between ServerFilling-
SRPT and SRPT-1 is at most

𝐸 [𝑇 𝑆𝐹𝑆-𝑘 ] − 𝐸 [𝑇 𝑆𝑅𝑃𝑇 -1] ≤ (𝑒 + 1) (𝑘 − 1)
𝜆

ln

(
1

1 − 𝜌

)
+ 𝑒
𝜆
.

The same is true of DivisorFilling-SRPT in the divisible setting.

Proof. From Lemma 4.5, we know that

𝐸 [𝑇 𝑆𝐹𝑆-𝑘 ] − 𝐸 [𝑇 𝑆𝑅𝑃𝑇 -1]

=
1

𝜆

∫ ∞

0

𝐸 [(1 − 𝐵𝑆𝐹𝑆-𝑘𝑟 )𝑊 𝑆𝐹𝑆-𝑘
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟 )
𝑑𝑟 + 1

𝜆

∫ ∞

0

𝜌𝑅𝑟 𝐸𝑟 [𝑊 𝑆𝐹𝑆-𝑘
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟 )
𝑑𝑟 .

We apply Theorem 4.6 and Theorem 4.7 to bound the two terms:

𝐸 [𝑇 𝑆𝐹𝑆-𝑘 ] − 𝐸 [𝑇 𝑆𝑅𝑃𝑇 -1] ≤ 1

𝜆
𝑒 (𝑘 − 1)

⌈
ln

1

1 − 𝜌

⌉
+ 1

𝜆
(𝑘 − 1) ln 1

1 − 𝜌 .

We use the bound ⌈𝑥⌉ ≤ 𝑥 + 1 to simplify the resulting expression. □

Now, we use this bound to prove asymptotic optimality:

Theorem 4.2. If 𝐸 [𝑆2 (log 𝑆)+] < ∞,

lim
𝜌→1

𝐸 [𝑇 𝑆𝐹𝑆-𝑘 ]
𝐸 [𝑇 𝑆𝑅𝑃𝑇 -1]

= lim
𝜌→1

𝐸 [𝑇 𝑆𝐹𝑆-𝑘 ]
𝐸 [𝑇𝑂𝑃𝑇 -𝑘 ]

= 1.

The same is true of DivisorFilling-SRPT in the divisible setting.

Proof. From Theorem 4.1, we know that the gap 𝐸 [𝑇 𝑆𝐹𝑆-𝑘 ] −𝐸 [𝑇 𝑆𝑅𝑃𝑇 -1] grows as𝑂 (log 1
1−𝜌 ) in

the 𝜌 → 1 limit. It is known that if 𝐸 [𝑆2 (log 𝑆)+] < ∞, then 𝐸 [𝑇 𝑆𝑅𝑃𝑇 -1] = 𝜔 (log 1
1−𝜌 ) in the 𝜌 → 1

limit. This is proven in [31, Appendix B.2], and specifically in the proof of [31, Theorem 1.3]. □
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5 SERVERFILLING-GITTINS: ASYMPTOTIC OPTIMALITY WITH UNKNOWN SIZES
We generalize our results to the setting of unknown sizes or of partially known sizes (e.g. size

estimates). To do so, we replace the SRPT job ordering with the Gittins job ordering, thus creating

the ServerFilling-Gittins (SFG-𝑘) and DivisorFilling-Gittins policies.

5.1 Background
The Gittins policy is the optimal scheduling policy for minimizing mean response time in the M/G/1

in the unknown and partially-known size settings [12, 33], filling the same role as SRPT in the

known-size setting.

The Gittins policy is an age-based index policy, meaning that it assigns each job a rank according

to the job’s age and static characteristics (e.g. server need), as well as any other information the

scheduler may have, and serves the job of least rank. In the blind MSJ setting, the Gittins rank

function can be defined as follows: Let 𝑆𝑖 be the job size distribution of jobs with server need 𝑖 .

Then a job with server need 𝑖 and age 𝑎 has rank:

inf
𝑏>𝑎

𝐸 [min(𝑆𝑖 , 𝑏) − 𝑎 | 𝑆𝑖 > 𝑎]
𝑃 [𝑆𝑖 ≤ 𝑏 |𝑆𝑖 > 𝑎]

.

The definition of the Gittins rank in settings where the server has more information is similar, but

more complicated. For more details, see [31, 33].

We define the ServerFilling-Gittins policy by ordering jobs in increasing order of Gittins rank, and

then applying the same ServerFilling procedure as described in Section 3.2. We define DivisorFilling-

Gittins similarly, based on the DivisorFilling procedure given in Appendix C.

5.2 Notation
Our notation follows [31]. We start by defining a job state space 𝑋 of all possible job states 𝑥 . For

instance, in the unknown size setting, a job’s state is simply its age 𝑎. In the known-size setting,

a job’s state was its remaining size. Every state 𝑥 is mapped to rank(𝑥). We call a job in state 𝑥

𝑟 -relevant if rank(𝑥) < 𝑟 .
Next, we need to adjust the concept of “remaining size” slightly. We define 𝑆𝑟 (𝑥), the 𝑟 -relevant

remaining size of a job in state 𝑥 , to be the random variable denoting the amount of service the job

needs in order to reach an 𝑟 -irrelevant state or complete. In the known-size case, this amount of

service was deterministic, but here it is a random variable.

We can now define𝑊𝑟 , the 𝑟 -relevant work in the system, to be the total of all jobs’ 𝑟 -relevant

remaining size in steady state. Likewise, 𝐵𝑟 is the fraction of servers occupied by 𝑟 -relevant jobs.

We also define two state distributions: 𝑋𝐴
, the state of arriving jobs, and 𝑋𝑅

𝑟 , the state of jobs

recycling relative to rank 𝑟 . In the known-size case, 𝑋𝑅
𝑟 is deterministic, and in the unknown size

case, 𝑋𝐴
is deterministic, but in general both are random variables. We also define 𝜆𝑅𝑟 to be the rate

at which jobs recycle relative to rank 𝑟 . This is equal to 𝜆 times the expected number of 𝑟 -recyclings

per job.

We can now define the two constituents of 𝑟 -relevant load, 𝜌𝐴𝑟 and 𝜌𝑅𝑟 .

𝜌𝐴𝑟 := 𝜆𝐸 [𝑆𝑟 (𝑋𝐴)]
𝜌𝑅𝑟 := 𝜆𝑅𝑟 𝐸𝑟 [𝑆𝑟 (𝑋𝑅

𝑟 )]
Now, we are ready to state our main result for ServerFilling-Gittins.

5.3 Asymptotic Optimality for ServerFilling-Gittins
Our main result for ServerFilling-Gittins is an analogous bound on mean response time to Theo-

rem 4.1, our bound on mean response time for ServerFilling-SRPT:
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Theorem 5.1. For all loads 𝜌 , in the power-of-two setting, the mean response time gap between
ServerFilling-Gittins and Gittins-1 is at most

𝐸 [𝑇 𝑆𝐹𝐺-𝑘 ] − 𝐸 [𝑇𝐺𝑖𝑡𝑡𝑖𝑛𝑠-1] ≤ (𝑒 + 1) (𝑘 − 1)
𝜆

ln
1

1 − 𝜌 + 𝑒
𝜆
.

The same is true of DivisorFilling-Gittins in the divisible setting.

Note that this bound is in some ways stronger than the bound on Gittins-𝑘 given in [31]. Our

bound is the first uniform bound on multiserver Gittins, meaning that our bound doesn’t depend on

𝑆 except via 𝐸 [𝑆], unlike the bound on Gittins-𝑘 in [31]. Note also that the M/G/𝑘 is a special case of

the multiserver-job system when server needs are all 1, and that in this special case, ServerFilling-

Gittins specializes to Gittins-𝑘 . As a result, Theorem 5.1 is a strict improvement upon the bound

given in [31].

We use this bound to prove that ServerFilling-Gittins yields optimal mean response time in the

heavy-traffic limit:

Theorem 5.2. If 𝐸 [𝑆2 (log 𝑆)+] < ∞, then ServerFilling-Gittins is asymptotically optimal in the
multiserver-job system:

lim
𝜌→1

𝐸 [𝑇 𝑆𝐹𝐺-𝑘 ]
𝐸 [𝑇𝐺𝑖𝑡𝑡𝑖𝑛𝑠-1]

= lim
𝜌→1

𝐸 [𝑇 𝑆𝐹𝐺-𝑘 ]
𝐸 [𝑇𝑂𝑃𝑇 -𝑘 ]

= 1.

The same is true of DivisorFilling-Gittins in the divisible setting.

Theorem 5.2 follows from Theorem 5.1 just as Theorem 4.2 follows from Theorem 4.1.

To prove Theorem 5.1, an analogous proof to the proof of Theorem 4.1 given in Section 4.3

suffices. We simply must replace certain quantities used in Section 4.3 with the equivalent quantities

for the Gittins policy. Specifically, rather than thinking of a job as 𝑟 -relevant if it has remaining size

≤ 𝑟 , we instead think of a job as 𝑟 -relevant if it has rank ≤ 𝑟 under the Gittins policy. We redefine

𝑊 𝜋
𝑟 , 𝐵𝜋𝑟 , and 𝜌𝑟 , 𝜌

𝐴
𝑟 , and 𝜌

𝑅
𝑟 accordingly, as described in Section 5.2. For full details, see Appendix B.

The recycling term of our key background lemma Lemma 5.3 is likewise slightly different:

Lemma 5.3. For any scheduling policy 𝜋 ,

𝐸 [𝑇 𝜋 ] − 𝐸 [𝑇𝐺𝑖𝑡𝑡𝑖𝑛𝑠-1] = 1

𝜆

∫ ∞

0

𝐸 [(1 − 𝐵𝜋𝑟 )𝑊 𝜋
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟 )
𝑑𝑟 (14)

+ 1

𝜆

∫ ∞

0

𝜆𝑅𝑟 𝐸𝑟 [𝑆𝑟 (𝑋𝑅
𝑟 )𝑊 𝜋

𝑟 ]
𝑟2 (1 − 𝜌𝐴𝑟 )

𝑑𝑟 . (15)

Here 𝜌𝑟
𝑅
𝐸𝑟 [𝑊 𝜋

𝑟 ] fromLemma 4.5 becomes 𝜆𝑅𝑟 𝐸𝑟 [𝑆𝑟 (𝑋𝑅
𝑟 )𝑊 𝜋

𝑟 ]. Note that in the SRPT case, 𝑆𝑟 (𝑋𝑅) =
𝑟 , because under SRPT, a job 𝑟 -recycles when its remaining size is 𝑟 . Lemma 5.3 follows from [31,

Theorem 7.2].

Bounding the waste term involving 𝐸 [(1 − 𝐵𝜋𝑟 )𝑊 𝜋
𝑟 ] proceeds completely analogously to The-

orem 4.6. Bounding the recycled work term involving 𝜆𝑅𝑟 𝐸𝑟 [𝑆𝑟 (𝑋𝑅
𝑟 )𝑊 𝜋

𝑟 ] is likewise completely

analogous to Theorem 4.7. For the full details, see Appendix B.

6 EMPIRICAL RESULTS
We have proven that ServerFilling-SRPT yields asymptotically optimal mean response time in the

heavy-traffic limit (as 𝜌 → 1). To empirically validate our theoretical results and broaden our

comparison to general 𝜌 , we use simulation to compare the mean response time of ServerFilling-

SRPT to that of several previously proposed policies:
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Fig. 3. Ratio of mean response time between several multiserver-job policies and SRPT-1.𝐾 uniformly sampled
from {1, 2, 4, 8}. 𝑆 exponentially distributed, independent of 𝐾 . Each simulation consists of 107 arrivals. Loads
up to 𝜌 = 0.999 simulated.

MaxWeight: A throughput optimal policy which considers all possible sets of jobs that can be

served at a time. Each job is given a weight equal the number of jobs in the system with the

same server need. The set of jobs with the maximum total weight is served [24]. Note that

this policy requires solving a NP-hard Bin Packing problem for each service.

ServerFilling: A policy which orders jobs in arrival order, then uses the same procedure to

place jobs onto servers as our ServerFilling-SRPT policy specified in Section 3.2. ServerFilling

is throughput-optimal in the power-of-two setting [14].

We also compare against resource-pooled SRPT-1, our lower bound on the optimal policy.

In Fig. 3, we show the ratio of mean response time between the multiserver-job policies and

SRPT-1. As proven in Theorem 4.2, for ServerFilling-SRPT, this ratio converges to 1, implying that

ServerFilling-SRPT yields asymptotically optimal mean response time. In contrast, for MaxWeight

and ServerFilling, the ratio is far from one, and appears to diverge. ServerFilling-SRPT has superior

mean response time at all 𝜌 .

In Fig. 4, we show a setting with higher variance job sizes, where 𝐶2 = 10. In high-variance

settings, making effective use of job size information is at its most important. Here, the ratio for

ServerFilling-SRPT again converges smoothly to 1, while the ratios for MaxWeight and ServerFilling

diverge rapidly.

In Section 1, Fig. 2, we also compared ServerFilling-SRPT against two size-based heuristic policies:

GreedySRPT: Order jobs in increasing order of remaining size. As long as sufficient servers

are available, place jobs into service. When a job has higher server need than the remaining

number of servers available, stop.

FirstFitSRPT: Order jobs in increasing order of remaining size. As long as sufficient servers

are available, place jobs into service. If a job has higher server need than the remaining

number of servers available, skip that job. Continue through the list of jobs, placing jobs into
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Fig. 4. Ratio of mean response time between several multiserver-job policies and SRPT-1 under high variance.
𝐾 uniformly sampled from {1, 2, 4, 8}. 𝑆 hyperexponentially distributed, 𝐶2 = 10, independent of 𝐾 . Each
simulation consists of 107 arrivals. Loads up to 𝜌 = 0.999 simulated.

service if sufficient servers are available, until all servers are full, or all jobs are exhausted.

This policy was studied under the name “Smallest Area First” [4].

GreedySRPT makes no effort to pack jobs efficiently onto servers, while FirstFitSRPT is unreliable

at doing so. For both of these policies, the stability region is significantly smaller than the optimal

stability region. This is why neither policy is depicted in Fig. 3 or Fig. 4, as both are unstable for all

loads 𝜌 ≥ 0.85, and hence have infinite mean response time on this domain.

We summarize our experiments as follows: In all experiments, at all 𝜌 , ServerFilling-SRPT has

minimal mean response time.

7 CONCLUSION
We introduce the ServerFilling-SRPT scheduling policy for the multiserver-job system. We prove a

tight bound on the mean response time of ServerFilling-SRPT in the power-of-two setting, which

applies for all loads 𝜌 . We use that bound to prove that ServerFilling-SRPT achieves asymptotically

optimal mean response time in heavy traffic. We also show that ServerFilling-SRPT empirically

achieves the best mean response time of any policy simulated, across all loads 𝜌 . We also introduce

the DivisorFilling-SRPT policy, in the more general divisible setting, and the ServerFilling- and

DivisorFilling-Gittins policies, in the settings of unknown- and partially-known job sizes, proving

similar asymptotic optimality results for each.

One of the major insights of this paper is that achieving asymptotically optimal mean response

time requires prioritizing jobs of small remaining size without sacrificing the throughput of the

system. ServerFilling-SRPT is the first policy to achieve both goals simultaneously.

The MIAOW analysis technique introduced in this paper extends beyond ServerFilling-SRPT

and the multiserver-job setting. In fact, it allows the analysis of any system and any policy in which

the relevant work efficiency property (Corollary 3.1) can be proven.

One direction of future work is to study multiserver-job scheduling policies outside of the

divisible setting. No mean response time analysis is currently known for any scheduling policy in
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this more general setting, much less any optimality results, so new techniques will likely be needed.

In particular, no policy with the remaining work efficiency property can exist in this setting.
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A PROOF OF LEMMA 4.4 (WORK DECOMPOSITION)
Lemma 4.4. [31, Theorem 7.2] For an arbitrary scheduling policy 𝜋 , in an arbitrary system,

𝐸 [𝑊 𝜋
𝑟 ] − 𝐸 [𝑊 𝑆𝑅𝑃𝑇 -1

𝑟 ] = 𝐸 [(1 − 𝐵𝜋𝑟 )𝑊 𝜋
𝑟 ] + 𝜌𝑅𝑟 𝐸𝑟 [𝑊 𝜋

𝑟 ]
1 − 𝜌𝐴𝑟

.
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Proof. We will employ the rate conservation law, applied to the random variable (𝑊 𝜋
𝑟 )2, the

square of the stationary distribution of 𝑟 -relevant work in the system. The rate conservation law

states that, because (𝑊 𝜋
𝑟 )2 is a stationary random variable, its expected rate of increase and decrease

must be equal. This argument can be formalized further using Palm Calculus.

To find these rates of increase and decrease, let us first examine𝑊 𝜋
𝑟 .𝑊 𝜋

𝑟 decreases continuously

as work completes, and increases by jumps whenever jobs arrive.𝑊 𝜋
𝑟 decreases at rate 𝐵𝜋𝑟 , the

fraction of servers that are occupied by 𝑟 -relevant jobs. When a job arrives with size 𝑆 , it contributes

[𝑆1{𝑆 ≤ 𝑟 }] relevant work, increasing𝑊 𝜋
𝑟 by that amount. Such arrivals occur at rate 𝜆. Finally,

whenever a job recycles, by being served until its remaining size falls to 𝑟 , it adds 𝑟 relevant work

to𝑊 𝜋
𝑟 .

Using these rates, we can calculate the expected rates of increase and decrease of (𝑊 𝜋
𝑟 )2.

Increase due to arrivals: 𝜆𝐸 [(𝑆1{𝑆 ≤ 𝑟 })2] + 2𝜌𝐴𝑟 𝐸 [𝑊 𝜋
𝑟 ]

Increase due to recycling: 𝜆𝑅𝑟 𝑟
2 + 2𝜌𝑅𝑟 𝐸𝑟 [𝑊 𝜋

𝑟 ]
Decrease due to service: 2𝐸 [𝐵𝜋𝑟𝑊 𝜋

𝑟 ]

Equating these rates, we find that

2𝐸 [𝐵𝜋𝑟𝑊 𝜋
𝑟 ] = 𝜆𝐸 [(𝑆1{𝑆 ≤ 𝑟 })2] + 2𝜌𝐴𝑟 𝐸 [𝑊 𝜋

𝑟 ] + 𝜆𝑅𝑟 𝑟2 + 2𝜌𝑅𝑟 𝐸𝑟 [𝑊 𝜋
𝑟 ] .

𝐸 [𝐵𝜋𝑟𝑊 𝜋
𝑟 ] = 𝜆

2
𝐸 [(𝑆1{𝑆 ≤ 𝑟 })2] + 𝜌𝐴𝑟 𝐸 [𝑊 𝜋

𝑟 ] + 𝜆
𝑅
𝑟

2
𝑟2 + 𝜌𝑅𝑟 𝐸𝑟 [𝑊 𝜋

𝑟 ] .

𝐸 [𝑊 𝜋
𝑟 ] − 𝐸 [(1 − 𝐵𝜋𝑟 )𝑊 𝜋

𝑟 ] = 𝜆

2
𝐸 [(𝑆1{𝑆 ≤ 𝑟 })2] + 𝜌𝐴𝑟 𝐸 [𝑊 𝜋

𝑟 ] + 𝜆
𝑅
𝑟

2
𝑟2 + 𝜌𝑅𝑟 𝐸𝑟 [𝑊 𝜋

𝑟 ] .

𝐸 [𝑊 𝜋
𝑟 ] = 𝐸 [(1 − 𝐵𝜋𝑟 )𝑊 𝜋

𝑟 ] + 𝜆
2
𝐸 [(𝑆1{𝑆 ≤ 𝑟 })2] + 𝜌𝐴𝑟 𝐸 [𝑊 𝜋

𝑟 ] + 𝜆
𝑅
𝑟

2
𝑟2 + 𝜌𝑅𝑟 𝐸𝑟 [𝑊 𝜋

𝑟 ] .

𝐸 [𝑊 𝜋
𝑟 ] (1 − 𝜌𝐴𝑟 ) = 𝐸 [(1 − 𝐵𝜋𝑟 )𝑊 𝜋

𝑟 ] + 𝜆
2
𝐸 [(𝑆1{𝑆 ≤ 𝑟 })2] + 𝜆

𝑅
𝑟

2
𝑟2 + 𝜌𝑅𝑟 𝐸𝑟 [𝑊 𝜋

𝑟 ] .

𝐸 [𝑊 𝜋
𝑟 ] (1 − 𝜌𝐴𝑟 ) = 𝐸 [(1 − 𝐵𝜋𝑟 )𝑊 𝜋

𝑟 ] + 𝜌𝑅𝑟 𝐸𝑟 [𝑊 𝜋
𝑟 ] + 𝜆

2
𝐸 [(𝑆1{𝑆 ≤ 𝑟 })2] + 𝜆

𝑅
𝑟

2
𝑟2. (16)

Let us evaluate (16) in the case where the policy 𝜋 is SRPT-1. The first two terms of the right-hand

side are nonnegative terms depending on the policy 𝜋 , while the second two terms are the same

for all policies.

Let us start with the first term on the right-hand side, 𝐸 [(1 − 𝐵𝜋𝑟 )𝑊 𝜋
𝑟 ]. Note that under SRPT-1,

if𝑊 𝜋
𝑟 is nonzero, i.e. if a 𝑟 -relevant job is present, then SRPT-1 will serve a 𝑟 -relevant job on its

single server, and so 𝐵𝑆𝑅𝑃𝑇 -1
𝑟 = 1. As a result, either𝑊 𝑆𝑅𝑃𝑇 -1

𝑟 or 1 − 𝐵𝑆𝑅𝑃𝑇 -1
𝑟 must always be zero,

so this term is equal to 0.

Next, consider the second term, 𝜌𝑅𝑟 𝐸𝑟 [𝑊 𝜋
𝑟 ]. Recall that 𝐸𝑟 [·] is an expectation over system states

at times when 𝑟 -relevant jobs recycle. In the SRPT-1 system, if a job is recycling by falling down to

remaining size 𝑟 , there must be no jobs in the system with remaining size less than 𝑟 . As a result,

𝐸𝑟 [𝑊 𝜋
𝑟 ] = 0.

We therefore conclude that

𝐸 [𝑊 𝑆𝑅𝑃𝑇 -1
𝑟 ] (1 − 𝜌𝐴𝑟 ) =

𝜆

2
𝐸 [(𝑆1{𝑆 ≤ 𝑟 })2] + 𝜆

𝑅
𝑟

2
𝑟2. (17)

As an aside, note that this argument shows that SRPT-1 has the least value of 𝐸 [𝑊 𝜋
𝑟 ] for any policy

𝜋 . This fact, combined with Lemma 4.3, provides an alternative proof that SRPT-1 is the optimal

scheduling policy in the M/G/1.
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Subtracting (17) from (16), we find that

𝐸 [𝑊 𝜋
𝑟 ] (1 − 𝜌𝐴𝑟 ) − 𝐸 [𝑊 𝑆𝑅𝑃𝑇 -1

𝑟 ] (1 − 𝜌𝐴𝑟 ) = 𝐸 [(1 − 𝐵𝜋𝑟 )𝑊 𝜋
𝑟 ] + 𝜌𝑅𝑟 𝐸𝑟 [𝑊 𝜋

𝑟 ]

𝐸 [𝑊 𝜋
𝑟 ] − 𝐸 [𝑊 𝑆𝑅𝑃𝑇 -1

𝑟 ] = 𝐸 [(1 − 𝐵𝜋𝑟 )𝑊 𝜋
𝑟 ] + 𝜌𝑅𝑟 𝐸𝑟 [𝑊 𝜋

𝑟 ]
1 − 𝜌𝐴𝑟

.

□

B SERVERFILLING-GITTINS PROOFS
Our results for ServerFilling-Gittins follow near-identical proofs as given in Section 4.3 for ServerFilling-

SRPT. We give the proofs here for completeness.

Our starting point is the “work integral number equality” (WINE) identity [30, 31].

Theorem B.1 (Theorem 6.3, [31]). The mean number of jobs and mean response time in an
arbitrary system, under an arbitrary scheduling policy, is

𝐸 [𝑁 ] = 𝜆𝐸 [𝑇 ] =
∫ ∞

0

𝐸 [𝑊𝑟 ]
𝑟2

𝑑𝑟 .

Now, we can state the work-decomposition law in a Gittins system.

Theorem B.2 (Theorem 7.2, [31]). For all 𝑟 ≥ 0, the mean 𝑟 -relevant work gap between an
arbitrary policy 𝜋 and M/G/1/Gittins is

𝐸 [𝑊 𝜋
𝑟 ] − 𝐸 [𝑊𝐺𝑖𝑡𝑡𝑖𝑛𝑠-1

𝑟 ] = 𝐸 [(1 − 𝐵𝜋𝑟 )𝑊 𝜋
𝑟 ] + 𝜆𝑅𝑟 𝐸𝑟 [𝑆𝑟 (𝑋𝑅

𝑟 )𝑊 𝜋
𝑟 ]

1 − 𝜌𝐴𝑟
. (18)

Wewill handle the two numerator terms of (18) separately. Let us start by combining Theorem B.1

with Theorem B.2, and try to bound the resulting integral.

We must bound

𝐸 [𝑇 𝜋 ] − 𝐸 [𝑇𝐺𝑖𝑡𝑡𝑖𝑛𝑠-1] = 1

𝜆

∫ ∞

0

𝐸 [(1 − 𝐵𝜋𝑟 )𝑊 𝜋
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟 )
+ 1

𝜆

∫ ∞

0

𝜆𝑅𝑟 𝐸𝑟 [𝑆𝑟 (𝑋𝑅
𝑟 )𝑊 𝜋

𝑟 ]
𝑟2 (1 − 𝜌𝐴𝑟 )

.

We bound the first term in Lemma B.3 and the second term in Lemma B.5.

Lemma B.3. ∫ ∞

𝑟=0

𝐸 [(1 − 𝐵𝑟 )𝑊𝑟 ]
𝑟2 (1 − 𝜌𝐴𝑟 )

𝑑𝑟 ≤ 𝑒 (𝑘 − 1) ⌈ln 1

1 − 𝜌 ⌉ .

Proof. First, we make use of the key fact about ServerFilling-Gittins (and DivisorFilling-Gittins):

If there are at least 𝑘 jobs with rank ≤ 𝑟 in the system, then 𝐵𝑟 = 1. Thus, we can replace𝑊𝑟 by𝑊
′
𝑟 ,

the work of the 𝑘 − 1 jobs of least rank in the system:∫ ∞

𝑟=0

𝐸 [(1 − 𝐵𝑟 )𝑊𝑟 ]
𝑟2 (1 − 𝜌𝐴𝑟 )

𝑑𝑟 =

∫ ∞

𝑟=0

𝐸 [(1 − 𝐵𝑟 )𝑊 ′
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟 )
𝑑𝑟 .

Next, we will break up the ranks 𝑟 ∈ [0,∞) into a finite set of buckets. Let 𝑅 = [𝑟1, 𝑟2, . . .] be a
list of ranks, where 𝑟1 = 0. We will specify the list 𝑅 later. Implicitly, we will say that 𝑟 |𝑅 |+1 = ∞.

We can rewrite the above integral as:∫ ∞

𝑟=0

𝐸 [(1 − 𝐵𝑟 )𝑊 ′
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟 )
𝑑𝑟 =

|𝑅 |∑︁
𝑖=1

∫ 𝑟𝑖+1

𝑟=𝑟𝑖

𝐸 [(1 − 𝐵𝑟 )𝑊 ′
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟 )
𝑑𝑟 . (19)
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Next, we replace 𝑟 with either 𝑟𝑖 or 𝑟𝑖+1, selectively, to simplify things. Note that 𝐵𝑟 is increasing as

a function of 𝑟 - as we increase the rank 𝑟 , more servers are busy with 𝑟 -relevant jobs. Likewise, 𝜌𝐴𝑟
is increasing as a function of 𝑟 . Thus,

𝐵𝑟𝑖 ≤ 𝐵𝑟

𝜌𝐴𝑟 ≤ 𝜌𝐴𝑟𝑖+1 .

Substituting into the integral from (7), we find that∫ 𝑟𝑖+1

𝑟=𝑟𝑖

𝐸 [(1 − 𝐵𝑟 )𝑊 ′
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟 )
𝑑𝑟 ≤

∫ 𝑟𝑖+1

𝑟=𝑟𝑖

𝐸 [(1 − 𝐵𝑟𝑖 )𝑊 ′
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟𝑖+1 )
𝑑𝑟 .

Next, let us perform some algebraic manipulation:∫ 𝑟𝑖+1

𝑟=𝑟𝑖

𝐸 [(1 − 𝐵𝑟𝑖 )𝑊 ′
𝑟 ]

𝑟2 (1 − 𝜌𝐴𝑟𝑖+1 )
𝑑𝑟 = 𝐸

[∫ 𝑟𝑖+1

𝑟=𝑟𝑖

(1 − 𝐵𝑟𝑖 )𝑊 ′
𝑟

𝑟2 (1 − 𝜌𝐴𝑟𝑖+1 )
𝑑𝑟

]
= 𝐸

[
1 − 𝐵𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

∫ 𝑟𝑖+1

𝑟=𝑟𝑖

𝑊 ′
𝑟

𝑟2
𝑑𝑟

]
.

Note that 𝐵𝑟𝑖 and𝑊
′
𝑟 are conditionally independent because given ®𝑋 , the current states of the jobs

in the system, the busyness 𝐵𝑟𝑖 is deterministic. We can make this explicit:

𝐸

[
1 − 𝐵𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

∫ 𝑟𝑖+1

𝑟=𝑟𝑖

𝑊 ′
𝑟

𝑟2

]
𝑑𝑟 = 𝐸

[
1 − 𝐵𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

∫ 𝑟𝑖+1

𝑟=𝑟𝑖

𝐸 [𝑊 ′
𝑟 | ®𝑋 ]
𝑟2

𝑑𝑟

]
. (20)

Next, let us recall the definition of𝑊 ′
𝑟 :

𝑊 ′
𝑟 =

𝑘−1∑︁
𝑗=1

𝑆𝑟 (𝑋 𝑗 ),

𝐸 [𝑊 ′
𝑟 | ®𝑋 ] =

𝑘−1∑︁
𝑗=1

𝐸 [𝑆𝑟 (𝑋 𝑗 ) |𝑋 𝑗 ] .

Following [31], let us define service(𝑋 𝑗 , 𝑟 ) to be 𝐸 [𝑆𝑟 (𝑋 𝑗 ) |𝑋 𝑗 ], the expected 𝑟 -relevant work of a

job 𝑋 𝑗 .

Substituting this into (20), we find that

𝐸

[
1 − 𝐵𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

∫ 𝑟𝑖+1

𝑟=𝑟𝑖

𝐸 [𝑊 ′
𝑟 | ®𝑋 ]
𝑟2

𝑑𝑟

]
=𝐸

[
1 − 𝐵𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

𝑘−1∑︁
𝑗=1

∫ 𝑟𝑖+1

𝑟=𝑟𝑖

service(𝑋 𝑗 , 𝑟 )
𝑟2

𝑑𝑟

]
. (21)

Now, let us make use of the basic fact about service(𝑋 𝑗 , 𝑟 ) from [31] which underlies Theorem B.1:

For any job state 𝑋 𝑗 which is not the empty job,∫ ∞

𝑟=0

service(𝑋 𝑗 , 𝑟 )
𝑟2

𝑑𝑟 = 1.

For the empty job, service is 0.
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This provides a loose bound on the integral in (9), which integrates over a smaller interval of

ranks. Substituting in this bound, we find that

𝐸

[
1 − 𝐵𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

𝑘−1∑︁
𝑗=1

∫ 𝑟𝑖+1

𝑟=𝑟𝑖

service(𝑋 𝑗 , 𝑟 )
𝑟2

𝑑𝑟

]
≤ 𝐸

[
1 − 𝐵𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

min{𝑁,𝑘 − 1}
]

≤ (𝑘 − 1)𝐸
[
1 − 𝐵𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

]
= (𝑘 − 1)

1 − 𝜌𝐴𝑟𝑖 − 𝜌
𝑅
𝑟

1 − 𝜌𝐴𝑟𝑖+1
≤ (𝑘 − 1)

1 − 𝜌𝐴𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

.

Returning all the way back to the beginning, we find that∫ ∞

𝑟=0

𝐸 [(1 − 𝐵𝑟 )𝑊𝑟 ]
𝑟2 (1 − 𝜌𝐴𝑟 )

𝑑𝑟 ≤ (𝑘 − 1)
|𝑅 |∑︁
𝑟=0

1 − 𝜌𝐴𝑟𝑖
1 − 𝜌𝐴𝑟𝑖+1

.

To optimize this bound, we need to choose 𝑅 to minimize this sum. To do so, we set |𝑅 | = ⌈ln 1
1−𝜌 ⌉,

and choose 𝑟𝑖 such that

1 − 𝜌𝐴
𝑟+
𝑖

1 − 𝜌𝐴𝑟−
𝑖+1

≤ 𝑒.

for all 𝑖 < |𝑅 |. By +
and

−
, we refer to the left and right limits, thereby handling the possibility that

𝜌𝐴𝑟 is discontinuous as a function of 𝑟 . We therefore find that∫ ∞

𝑟=0

𝐸 [(1 − 𝐵𝑟 )𝑊𝑟 ]
𝑟2 (1 − 𝜌𝐴𝑟 )

𝑑𝑟 ≤ 𝑒 (𝑘 − 1)
⌈
ln

1

1 − 𝜌

⌉
.

□

Now, it remains to bound the recyclings term in (18). Note that this term is identical to the one

in [31], so we can use essentially the same approach - we just disentangle it from the other term.

First, we use a basic theorem from [31]:

Lemma B.4 (Lemma 8.2, [31]).

𝜆𝑅𝑟 𝐸𝑟 [𝑆𝑟 (𝑋𝑅
𝑟 )𝑊𝑟 ] ≤ (𝑘 − 1)𝑟𝜌𝑅𝑟 .

Now, it remains to bound the recyclings-dependent term, plugged into Theorem B.1.

Lemma B.5. ∫ ∞

𝑟=0

(𝑘 − 1)𝑟𝜌𝑅𝑟
𝑟2 (1 − 𝜌𝐴𝑟 )

𝑑𝑟 ≤ (𝑘 − 1) ln 1

1 − 𝜌
Proof. First, let us simplify:∫ ∞

𝑟=0

(𝑘 − 1)𝑟𝜌𝑅𝑟
𝑟2 (1 − 𝜌𝐴𝑟 )

𝑑𝑟 = (𝑘 − 1)
∫ ∞

𝑟=0

𝜌𝑅𝑟

1 − 𝜌𝐴𝑟
1

𝑟
𝑑𝑟 .

To bound the integrand, we will explicitly consider the Gittins game. Using the definitions of

undone𝐴 (𝑟 ), and game𝐴 (𝑟 ) given in Appendix B.2 of [31], we bound as follows:

𝜌𝑅𝑟

1 − 𝜌𝐴𝑟
1

𝑟
≤ 𝜆𝑟undone𝐴 (𝑟 )

1 − 𝜆(game𝐴 (𝑟 ) − 𝑟undone𝐴 (𝑟 ))
1

𝑟

≤ 𝜆undone𝐴 (𝑟 )
1 − 𝜆game𝐴 (𝑟 )

=
𝜆 𝑑
𝑑𝑟
game𝐴 (𝑟 )

1 − 𝜆game𝐴 (𝑟 )
=
𝑑

𝑑𝑟
ln

1

1 − 𝜆game𝐴 (𝑟 )
.

Above, we make use of [31, Lemma 5.3].
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Integrating over all 𝑟 ∈ [0,∞), we find that∫ ∞

𝑟=0

𝜌𝑅𝑟

1 − 𝜌𝐴𝑟
1

𝑟
𝑑𝑟 ≤

[
ln

1

1 − 𝜆game𝐴 (𝑟 )

]∞
𝑟=0

= ln
1

1 − 𝜆game𝐴 (∞) − ln
1

1 − 𝜆game𝐴 (0)
.

From the definition of the Gittins game, it is straightforward to prove that game𝐴 (0) = 0, and that

game𝐴 (∞) = 𝐸 [𝑆].
As a result, ∫ ∞

𝑟=0

𝜌𝑅𝑟

1 − 𝜌𝐴𝑟
1

𝑟
𝑑𝑟 ≤ ln

1

1 − 𝜌 .

□

Now, we’re ready to put it all together. We derive a bound on mean response time:

Theorem 5.1. In any multiserver-job system in the power-of-two setting the difference in mean
response time between ServerFilling-Gittins and Gittins-1 (resource pooled) is at most

𝐸 [𝑇 𝑆𝐹𝐺-𝑘 ] − 𝐸 [𝑇𝐺𝑖𝑡𝑡𝑖𝑛𝑠-1] ≤ (𝑒 + 1) (𝑘 − 1)
𝜆

ln

(
1

1 − 𝜌

)
+ 𝑒
𝜆
.

The same is true of DivisorFilling-Gittins in the divisible setting.

Proof. Combine Theorem B.1 with Theorem B.2, using Lemma B.3 and Lemma B.5 to bound

the two terms. □

Note that this bound is in some ways stronger than the bound on Gittins-𝑘 given in [31]. Our

bound is the first uniform bound on multiserver Gittins, meaning that our bound doesn’t depend on

𝑆 except via 𝐸 [𝑆], unlike the bound on Gittins-𝑘 in [31]. Note also that the M/G/𝑘 is a special case of

the multiserver-job system when server needs are all 1, and that in this special case, ServerFilling-

Gittins specializes to Gittins-𝑘 . As a result, Theorem 5.1 is a strict improvement upon the bound

given in [31].

Analogous to Theorem 4.2, we use our bound to prove that ServerFilling-Gittins (andDivisorFilling-

Gittins) achieve asymptotically optimal mean response time.

Theorem 5.2. If 𝐸 [𝑆2 (log 𝑆)+] < ∞,

lim
𝜌→1

𝐸 [𝑇 𝑆𝐹𝐺-𝑘 ]
𝐸 [𝑇𝐺𝑖𝑡𝑡𝑖𝑛𝑠-1]

= 1.

Note that 𝐸 [𝑇 𝑆𝑅𝑃𝑇 -1] ≤ 𝐸 [𝑇𝐺𝑖𝑡𝑡𝑖𝑛𝑠-1] by the optimality of SRPT, so 𝐸 [𝑇𝐺𝑖𝑡𝑡𝑖𝑛𝑠-1] = 𝜔 ( 1
1−𝜌 )

whenever 𝐸 [𝑆2 (log 𝑆)+] < ∞, just as 𝐸 [𝑇 𝑆𝑅𝑃𝑇 -1] = 𝜔 ( 1
1−𝜌 ) in this case.

C DIVISORFILLING-SRPT
The DivisorFilling-SRPT policy is a scheduling policy for the divisible server needs setting of the

multiserver-job system, where all server needs 𝑘 𝑗 perfectly divide the total number of servers 𝑘 .

To implement DivisorFilling-SRPT, we order jobs in increasing order of remaining size 𝑟 𝑗 , and

then apply a recursive procedure to select the jobs to serve, which we will specify in Appen-

dix C.1. DivisorFilling-Gittins is defined identically, replacing increasing remaining size order with

increasing rank order.

DivisorFilling-SRPT achieves two key guarantees:

(1) DivisorFilling-SRPT always serves a subset of the 𝑘 jobs of least remaining size in the system.
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(2) If at least 𝑘 jobs are present, DivisorFilling-SRPT serves jobs with total server need exactly 𝑘 .

Item 1 is part of the definition of DivisorFilling-SRPT in Appendix C.1. We prove Item 2 as Theo-

rem C.1 in Appendix C.2.

DivisorFilling-SRPT is identical to the DivisorFilling policy defined in [13, Appendix A], except

that DivisorFilling orders jobs in the arrival ordering, while DivisorFilling-SRPT orders jobs in

SRPT order. Note that [13] is the electronic companion to [14], and that Appendix A only appears

in the electronic companion.

As a corollary of Items 1 and 2, we can prove the “relevant work efficiency” property for

DivisorFilling-SRPT:

Corollary C.1 (Relevant work efficiency). Under the DivisorFilling-SRPT policy, in the divisi-
ble setting, if there are 𝑘 or more 𝑟 -relevant jobs in the system, all servers are occupied by 𝑟 -relevant
jobs.

The same is true for DivisorFilling-Gittins.

From Corollary C.1, we can use the same techniques as were used for ServerFilling-SRPT to

prove Theorems 4.1 and 4.2.

C.1 DivisorFilling-SRPT Definition
Order all jobs in the system in order of least remaining size. Let𝑀 be the set of 𝑘 jobs with least

remaining size, or all jobs if less than 𝑘 are present.

We now split into three cases:

(1) 𝑀 contains at least 𝑘/6 jobs with server need 𝑘 𝑗 = 1.

(2) 𝑘 = 2𝑎3𝑏 for some integers 𝑎, 𝑏, and𝑀 contains < 𝑘/6 jobs with 𝑘 𝑗 = 1.
(3) 𝑘 has largest prime factor 𝑝 ≥ 5, and𝑀 contains < 𝑘/6 jobs with 𝑘 𝑗 = 1.

C.1.1 Case 1. If𝑀 contains at least𝑘/6 jobswith server need 1, we initially parallel the ServerFilling-
SRPT policy: we order jobs in𝑀 by server need (tiebroken by least remaining size), and place jobs

into service in that order. However, because server needs are not powers of two, we may reach a

point where no more jobs fit into service, but servers are still unoccupied. In this case, we place

jobs from𝑀 with server need 1 into service, again tiebroken by least remaining size. We continue

doing so until all 𝑘 servers are full or no more server need 1 jobs remain.

C.1.2 Case 2. Suppose that 𝑘 is of the form 2𝑎3𝑏 , and that Case 1 does not apply.

We will recurse on one of two subsets of 𝑀 : the set of jobs with even server need, or the set

of jobs of odd server need greater than 1. Note that all jobs in the latter subset have server needs

divisible by 3. We call the former subset 𝑀2 and the latter subset 𝑀3. To decide which subset to

recurse on, we compare the values 2|𝑀2 | and 3|𝑀3 |, and recurse on the subset whose value is larger.

In the case of a tie, we arbitrarily select𝑀2.

If 2|𝑀2 | is larger, we will only serve jobs from among𝑀2. To decide which jobs to serve, imagine

that we combine pairs of servers. Doing so reduces 𝑘 by a factor of 2, and reduces the server

need of each job in 𝑀2 by a factor of 2. We now recursively compute which jobs from 𝑀2 the

DivisorFilling-SRPT policy would serve in this subproblem, and serve those same jobs. If 3|𝑀3 | is
larger, we combine triples of servers, and then perform the same recursion.

C.1.3 Case 3. Suppose that 𝑘 has largest prime factor 𝑝 ≥ 5, and that Case 1 does not apply.

Let 𝑀𝑝 be the set of jobs in 𝑀 with server need divisible by 𝑝 . If 𝑝 |𝑀𝑝 | ≥ 𝑘 , we recurse as in

Case 2 by combining groups of 𝑝 servers.

Otherwise, we will only serve jobs from𝑀 whose server need is not divisible by 𝑝 , and also greater
than 1. Let𝑀𝑟 be this subset of𝑀 . Note that all jobs in𝑀𝑟 have server needs which are divisors of
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𝑘/𝑝 . We therefore construct a set𝑀 ′
consisting of the 𝑘/𝑝 jobs of𝑀𝑟 with least remaining size. If

less than 𝑘/𝑝 jobs are in𝑀𝑟 ,𝑀
′
is all of𝑀𝑟 . We then apply the DivisorFilling-SRPT procedure to

𝑀 ′
, setting the total number of servers 𝑘 ′ = 𝑘/𝑝 in the subproblem. We extract the subset of jobs

that DivisorFilling-SRPT serves in the subproblem from𝑀𝑟 . We repeat this process by extracting

subsets from the remaining jobs in𝑀𝑟 , repeating until we have extracted 𝑝 subsets from𝑀𝑟 , or𝑀𝑟

contains no jobs. DivisorFilling-SRPT serves all jobs that were served in any of the 𝑝 subproblems.

Note that this set of jobs served is valid to serve, with total server need at most 𝑘 , because each

of the 𝑝 subproblems have total server need at most 𝑘/𝑝 .

C.2 DivisorFilling-SRPT Fills All Servers
Our proof mirrors the proof in [13, Appendix A], whichwe reprove tomake this paper self-contained.

Theorem C.1. If at least 𝑘 jobs are present, DivisorFilling-SRPT serves a set of jobs with total server
need exactly 𝑘 .

The same is true for DivisorFilling-Gittins.

Proof. We will prove that if𝑀 contains 𝑘 jobs, DivisorFilling-SRPT serves all 𝑘 jobs. Our proof

proceeds by strong induction on 𝑘 . Specifically, assume that for all 𝑘 ′ < 𝑘 , if𝑀 ′
consists of at least

𝑘 ′ jobs whose server needs divide 𝑘 ′, then DivisorFilling-SRPT run on𝑀 ′
serves a set of jobs with

total server need 𝑘 ′. We will show that this assumption implies the desired result for 𝑘 servers.

Again, we split into three cases:

(1) 𝑀 contains at least 𝑘/6 jobs with server need 𝑘 𝑗=1.

(2) 𝑘 = 2𝑎3𝑏 for some integers 𝑎, 𝑏, and𝑀 contains < 𝑘/6 jobs with 𝑘 𝑗 = 1.
(3) 𝑘 has largest prime factor 𝑝 ≥ 5, and𝑀 contains < 𝑘/6 jobs with 𝑘 𝑗 = 1.

C.2.1 Case 1. Suppose𝑀 contains at least 𝑘/6 jobs with server need 1.

Let us label the jobs in𝑀 as𝑚1,𝑚2, . . . in decreasing order of server need:

𝑘𝑚1
≥ 𝑘𝑚2

≥ . . . .

Let 𝑖∗ be defined as

𝑖∗ = argmax
𝑖

𝑖∑︁
ℓ=1

𝑘𝑚ℓ
≤ 𝑘.

In Case 1, DivisorFilling-SRPT serves jobs𝑚1, . . .𝑚𝑖∗ , as well as any jobs with 𝑘 𝑗 = 1 that fit in the

remaining servers. Let us write sum𝑖 :=
∑𝑖

ℓ=1 𝑘𝑚ℓ
. Because𝑀 contains at least 𝑘/6 jobs with server

need 1, to prove Theorem C.1 in this case, it suffices to show that sum𝑖∗ ≥ 5𝑘/6. The remaining

servers are filled by the jobs with server need 1.

First, note that sum𝑘 ≥ 𝑘 , because𝑀 contains 𝑘 jobs, each with server need at least 1. Next, note

that 𝑘 − sum𝑖∗ < 𝑘𝑚𝑖∗+1 , by the definition of 𝑖∗. Because the labels𝑚1,𝑚2, . . . are in decreasing order

of server need, 𝑘 − sum𝑖∗ < 𝑘𝑚𝑖∗ .

We will now proceed by enumerating the possible sequences of the 𝑖∗ largest server needs in𝑀 .

To prove that 𝑘 − sum𝑖∗ ≤ 𝑘/6, we need only consider such sequences where all server needs are

greater than 𝑘/6. Such sequences consist only of the elements 𝑘, 𝑘/2, 𝑘/3, 𝑘/4, 𝑘/5. We enumerate

all possible such sequences in Table 2. Note that if 𝑘 is not divisible by all of {2, 3, 4, 5}, some entries

will not apply. This only tightens the resulting bound on 𝑘 − sum𝑖∗ for such 𝑘 .

As shown in Table 2, in all cases 𝑘 − sum𝑖∗ ≤ 𝑘/6. The remaining servers are filled with jobs

with server need 1. DivisorFilling-SRPT serves a set of jobs with total server need exactly 𝑘 , as

desired. As a result, Theorem C.1 holds in this case.
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Sequence 𝑘𝑚1
, . . . , 𝑘𝑚𝑖∗ 𝑘 − sum𝑖∗ Sequence 𝑘𝑚1

, . . . , 𝑘𝑚𝑖∗ 𝑘 − sum𝑖∗

𝑘 0 𝑘/2, 𝑘/2 0

𝑘/2, 𝑘/3 𝑘/6 𝑘/2, 𝑘/4, 𝑘/4 0

𝑘/2, 𝑘/4, 𝑘/5 𝑘/20 𝑘/2, 𝑘/5, 𝑘/5 𝑘/10
𝑘/3, 𝑘/3, 𝑘/3 0 𝑘/3, 𝑘/3, 𝑘/4 𝑘/12
𝑘/3, 𝑘/3, 𝑘/5 2𝑘/15 𝑘/3, 𝑘/4, 𝑘/4 𝑘/6
𝑘/3, 𝑘/4, 𝑘/5, 𝑘/5 𝑘/60 𝑘/3, 𝑘/5, 𝑘/5, 𝑘/5 𝑘/15
𝑘/4, 𝑘/4, 𝑘/4, 𝑘/4 0 𝑘/4, 𝑘/4, 𝑘/4, 𝑘/5 𝑘/20
𝑘/4, 𝑘/4, 𝑘/5, 𝑘/5 𝑘/10 𝑘/4, 𝑘/5, 𝑘/5, 𝑘/5 3𝑘/20
𝑘/5, 𝑘/5, 𝑘/5, 𝑘/5, 𝑘/5 0

Table 2. All possible sequences of the 𝑖∗ largest server needs in𝑀 in which all server needs exceed 𝑘/6.

C.2.2 Case 2. Suppose that 𝑘 = 2𝑎3𝑏 for integers 𝑎, 𝑏, and that Case 1 does not apply.

Recall that𝑀2 is the set of jobs in𝑀 with even server need, and that𝑀3 is the set of jobs with

odd server need, with server need greater than 1. We recurse on one of these subsets, by comparing

2|𝑀2 | and 3|𝑀3 |. Note that if𝑀2 is recursed on, the total number of servers in the subproblem is

𝑘/2, and all server needs are divisors of 𝑘/2. For𝑀3, the same is true of 𝑘/3.
For Theorem C.1 to hold inductively, we must show that if𝑀2 is recursed on, then |𝑀2 | ≥ 𝑘/2,

and that if𝑀3 is recursed on, then |𝑀3 | ≥ 𝑘/3. Because we select a subset by comparing 2|𝑀2 | and
3|𝑀3 |, if either set is large enough, the set recursed on will be large enough.

Because there are < 𝑛/6 jobs with server need 1, |𝑀2 |+ |𝑀3 | ≥ 5𝑘/6. Therefore, either |𝑀2 | ≥ 𝑘/2
or |𝑀3 | ≥ 𝑘/3.

Suppose that 2|𝑀2 | ≥ 3|𝑀3 |. Call𝑀 ′
2 the set of jobs in𝑀2, but with all server needs reduced by

a factor of 2. 𝑀 ′
2 is the subset that DivisorFilling recurses on. Because |𝑀 ′

2 | = |𝑀2 | ≥ 𝑘/2 in this

case, by our inductive hypothesis the recursive call returns a subset of𝑀 ′
2 with total server need

𝑘/2. The corresponding jobs in𝑀2 have total server need 𝑘 , so DivisorFilling-SRPT serves a set of

jobs with total server need exactly 𝑘 , completing the inductive step in this case. If 3|𝑀3 | ≥ 2|𝑀2 |,
then |𝑀3 | ≥ 𝑘/3, and the same argument applies.

C.2.3 Case 3. Suppose that 𝑘 has largest prime factor 𝑝 ≥ 5, and that Case 1 does not apply.

If 𝑝 |𝑀𝑝 | ≥ 𝑘 , Theorem C.1 holds inductively, by the same argument as in Case 2.

Let us therefore focus on the extraction procedure. We must show that the extraction procedure

always extracts 𝑝 subsets with total server need exactly 𝑘/𝑝 , to ensure that the overall set served

has total server need 𝑘 .

Note that |𝑀𝑝 | < 𝑘/𝑝 ≤ 𝑘/5, and that there are ≤ 𝑘/6 jobs with server need 1. 𝑀𝑟 consists of

the remaining jobs. As a result,

|𝑀𝑟 | ≥ 𝑘 − 𝑘/6 − 𝑘/5 =
19𝑘

30
.

Note also that every job in |𝑀𝑟 | has server need at least 2. The total server need extracted in

each step is at most 𝑘/𝑝 , so the number of jobs extracted is at most 𝑘/2𝑝 . To prove that 𝑝 subsets

each with total server need 𝑘/𝑝 can be extracted, it suffices to show that at least 𝑘/𝑝 jobs remain

after the first 𝑝 − 1 subsets have been extracted.

The number of jobs remaining at this point is at least:

19𝑘

30
− (𝑝 − 1)𝑘

2𝑝
=
19𝑘

30
− 𝑘

2
+ 𝑘

2𝑝
=
2𝑘

15
+ 𝑘

2𝑝
.
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To prove that the number of jobs remaining is at least 𝑘/𝑝 , we just need to show that 2𝑘/15 ≥ 𝑘/2𝑝 .
But 𝑝 ≥ 5, so 2𝑘/15 > 𝑘/10 ≥ 𝑘/2𝑝 .
Therefore, by induction, each of the 𝑝 subsets extracted from 𝑀𝑟 has total server need 𝑘/𝑝 .

Combining these subsets gives a total server need of 𝑘 . Therefore, DivisorFilling-SRPT serves a set

of jobs with total server need exactly 𝑘 , as desired. □
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