
Offline Learning of Closed-Loop Deep Brain Stimulation
Controllers for Parkinson Disease Treatment

Qitong Gao
Electrical and Computer Engineering

Duke University
Durham, NC, USA

qitong.gao@duke.edu

Stephen L. Schmidt
Biomedical Engineering

Duke University
Durham, NC, USA

stephen.schmidt@duke.edu

Afsana Chowdhury
Electrical and Computer Engineering

Duke University
Durham, NC, USA

afsana.chowdhury@duke.edu

Guangyu Feng
Electrical and Computer Engineering

Duke University
Durham, NC, USA

guangyu.feng@duke.edu

Jennifer J. Peters
Biomedical Engineering

Duke University
Durham, NC, USA

jennifer.peters@duke.edu

Katherine Genty
Neurosurgery

Duke University
Durham, NC, USA

katherine.genty@duke.edu

Warren M. Grill
Biomedical Engineering

Duke University
Durham, NC, USA

warren.grill@duke.edu

Dennis A. Turner
Neurosurgery

Duke University
Durham, NC, USA

dennis.turner@duke.edu

Miroslav Pajic
Electrical and Computer Engineering

Duke University
Durham, NC, USA

miroslav.pajic@duke.edu

ABSTRACT
Deep brain stimulation (DBS) has shown great promise toward
treating motor symptoms caused by Parkinson’s disease (PD), by
delivering electrical pulses to the Basal Ganglia (BG) region of the
brain. However, DBS devices approved by the U.S. Food and Drug
Administration (FDA) can only deliver continuous DBS (cDBS) stim-
uli at a fixed amplitude; this energy inefficient operation reduces
battery lifetime of the device, cannot adapt treatment dynamically
for activity, and may cause significant side-effects (e.g., gait impair-
ment). In this work, we introduce an offline reinforcement learning
(RL) framework, allowing the use of past clinical data to train an
RL policy to adjust the stimulation amplitude in real time, with the
goal of reducing energy use while maintaining the same level of
treatment (i.e., control) efficacy as cDBS. Moreover, clinical proto-
cols require the safety and performance of such RL controllers to
be demonstrated ahead of deployments in patients. Thus, we also
introduce an offline policy evaluation (OPE) method to estimate
the performance of RL policies using historical data, before deploy-
ing them on patients. We evaluated our framework on four PD
patients equipped with the RC+S DBS system, employing the RL
controllers during monthly clinical visits, with the overall control
efficacy evaluated by severity of symptoms (i.e., bradykinesia and
tremor), changes in PD biomakers (i.e., local field potentials), and
patient ratings. The results from clinical experiments show that our
RL-based controller maintains the same level of control efficacy as
cDBS, but with significantly reduced stimulation energy. Further,
the OPE method is shown effective in accurately estimating and
ranking the expected returns of RL controllers.

This work is sponsored in part by the NSF CNS-1837499 award and the National AI
Institute for Edge Computing Leveraging Next Generation Wireless Networks, Grant
CNS-2112562, as well as by NIH UH3 NS103468. Investigational Summit RC+S systems
and technical support provided by Medtronic PLC. Apple Watches were provided by
Rune Labs.

KEYWORDS
Deep Brain Stimulation, Offline Reinforcement Learning, Offline
Policy Evaluation

1 INTRODUCTION
Currently, around 1.05 million individuals in the United States are
affected by Parkinson’s disease (PD) [44]. Deep brain stimulation
(DBS) is an effective treatment to reduce PD symptoms such as
tremor and bradykinesia [3, 12, 13, 49]. A DBS system consists of
electrodes that are placed into the Basal Ganglia (BG) region of
the brain, and a pulse generator implanted in the chest to generate
trains of short electrical pulses (see Fig. 1). Existing FDA-approved
DBS solutions are limited to continuous DBS (cDBS). These devices
are programmed to stimulate at a fixed amplitude, with the specific
parameters determined by clinicians through trial-and-error [52].
However, such stimuli usually lead to extensive energy consump-
tion, significantly reducing the battery lifetime of the device. More-
over, over-stimulated patients, even intermittently, may suffer from
side-effects such as dyskinesia and speech impairment [5]. As a
result, developments of closed-loop DBS controllers that are more
responsive to activity and patient state (i.e., context) are of consid-
erable interest to clinicians, patients, and the community.

Existing DBS control methods focus on simply switching on/off
the stimulation or scaling up/down its intensity in a proportional
control approach, conditioned on the change of specific biomarkers,
i.e., when they cross over some pre-determined thresholds [1, 2, 5,
40, 41]. Biomarkers include local field potentials (LFPs) and elec-
troencephalography (EEG) from the BG, as well as accelerometery
data and electromyography obtained from wearable devices [50].
Though such methods have improved energy efficiency [25, 41],
they still require substantial efforts to experiment and fine-tune
the thresholds for each specific patient. Moreover, the patient may
suffer from sub-optimal DBS settings in between clinical visits with

ar
X

iv
:2

30
2.

02
47

7v
4

 [
cs

.L
G

]
 1

6
M

ar
 2

02
3

ICCPS ’23, May 9–12, 2023, San Antonio, Texas Qitong Gao et al.

poor symptom control due to varying patient state. For example,
exercise or fluctuations in medication dosage or timing could affect
their PD symptoms and DBS control, so the tuning results may be
biased. Consequently, the challenge (I) of developing closed-loop
DBS controllers is to ensure that the control policy can perform
consistently over diverse and dynamic patient contexts and states.

Reinforcement learning (RL) has shown considerable potential
in control over complicated systems [15, 21, 22, 46], and various
RL-based approaches have been proposed to facilitate closed-loop
DBS [19, 23, 48, 52]. Specifically, several approaches [23, 48, 52]
model EEG and LFP as the state space of the RL environment and use
temporal difference learning or fitted Q-iteration to design control
policies adapting stimulation amplitudes/frequencies to conserve
energy usage. The deep actor-critic based approach proposed in [19]
further allows the temporal pattern of the stimuli to be adapted
over time, benefiting from the use of deep RL techniques capable of
searching in larger state and action space. Although such methods
achieve satisfactory control of efficacy and energy savings jointly,
they have only been evaluated in simulations, i.e., on computational
BG models [30, 58]. One may assume that unlimited training data
can be obtained from such models, which is contrary to the real-
world case where the device programming is done in clinics and
the patient only participates sparsely over time.

Another limitation of directly using deep RL methods for real-
time DBS control is the computational complexity of evaluating the
RL policies in vivo, as they are usually represented by deep neural
networks (DNNs) that may require millions of multiplications in a
single forward pass. The resource-constrained implantable devices
(e.g., Fig. 1) may not support or facilitate such computations. Thus,
the challenge (II) of closed-loop DBS is to ensure that the con-
troller can be designed with limited training samples and executed
without the need of extensive computing resources. Further, in con-
trast to simulated or robotic environments where most RL policies
can be deployed directly for performance evaluation, the safety and
control efficacy of the controllers directly used on patients need
to be thoroughly evaluated before each test condition starts [51].
Hence, the challenge (III) of enabling closed-loop DBS therapies
in patients is being able to proactively provide accurate estimations
of the expected performance of the controllers.

Consequently, in this paper, we first introduce an offline RL
framework to address the challenges (I) and (II) above, resulting in a
closed-loopDBS system that is both effective (in terms of therapy) and
energy-efficient. Specifically, we model the BG regions of the brain
as a Markov decision process (MDP), capturing the underlying neu-
ronal activities in response to the stimuli. Then, the deep actor-critic
algorithm [39] is adapted to adjust the amplitude of the stimuli ac-
cording to the changes in LFPs. A total of four patients, equipped
with the Medtronic Summit RC+S DBS devices [59], participated in
the data collection and testing trials in clinics. Given that the deep
actor-critic framework is considered offline RL and can leverage all
historically collected trajectories, i.e., experience replay to facilitate
optimizing the control policy, we address challenge (I) by vary-
ing the level of activities, medications etc. of the patients before
and during the trials. Similarly, experience collected from non-RL
controllers can also be used to update the policy; for example, in
the early stage of learning, a controller that generates uniformly
random amplitudes (within some range) can facilitate exploring the

Figure 1: An implantable deep brain stimulation (DBS) de-
vice. The stimuli, generated by the pulse generator at a given
amplitude and frequency, are delivered to the basal ganglia
(BG) through multi-contact electrodes. Each electrode has
four contacts; two stimulate the BG and two sense local field
potentials (LFPs) that may be used for control feedback.

state and action space. We also introduce model distillation/com-
pression [26] techniques specifically for the DBS systems, such that
the RL policies can be captured by deep neural networks (DNNs)
with significantly fewer nodes, whose forward passes can be exe-
cuted within the required control rates, addressing challenge (II).

To address challenge (III), we introduce a model-based offline pol-
icy evaluation (OPE) method that captures the underlying dynamics
of the considered MDP, where the expected returns of the control
policy can be estimated by the mean return of the trajectories rolled
out from the learned model, without directly deploying the policy
to the patient. In each DBS trial, the control efficacy is evaluated
from various sources, including LFP biomarkers recorded from the
implantable DBS device, patient responses to bradykinesia tests,
satisfaction level reported by the patient, and the overall tremor
severity quantified from accelerometry data collected by external
wearable devices (e.g., smart watch). Note that each of the latter
three criteria is only evaluated once at the end of each trial; yet they
are imperative for evaluating the control efficacy from the patient’s
side. These efficacy metrics are thus considered sparsely available
compared to the LFPs that can be sensed in each time step, which
limits the use of existing OPE methods, including importance sam-
pling (IS) [16, 54], distributional correction estimations (DICE) [47],
and the model-based OPE [20], as these do not allow for explicitly
capturing/modeling such end-of-session rewards. Our OPE method
can capture such behaviors through a specially designed architec-
ture and training objective, outperforming existing methods as we
show in clinical experiments.

The contributions of this work are three-fold: (𝑖) to the best of our
knowledge, this is the first ‘full-stack’ offline RL methodology that
facilitates both optimizing and evaluating RL-based DBS control
policies using historical data; (𝑖𝑖) we developed an RL-based DBS
controller whose performance is validated through clinical trials
with PD patients, demonstrating reduced energy consumption with
non-inferior control efficacy compared to cDBS – this is the first ef-
fective closed-loop DBS control that is not an ON/OFF switch-
ing, or scaling up/down proportionally, and has been exten-
sively tested in clinic (i.e., on patients); (𝑖𝑖𝑖) our OPE method
effectively captures the end-of-session rewards, leading to accurate

Offline Learning of Closed-Loop Deep Brain Stimulation Controllers for Parkinson Disease Treatment ICCPS ’23, May 9–12, 2023, San Antonio, Texas

Figure 2: The overall architecture of the RC+S DBS system.
The Summit research and development kit (RDK) can be
used to configure the Summit program, allowing us to com-
pute the beta amplitude (𝑃𝛽) and execute the RL controller.

estimations of control efficacy using the data collected in clinic;
thus, helps demonstrate the effectiveness of the policies to be tested
proactively, and can be used to prioritize the policies that could lead
to better performance within the limited amount of testing time.

This paper is organized as follows. Sec. 2 provides the basics of
DBS, RL, and OPE, before our clinical closed-loop DBS setup is in-
troduced in Sec. 3. In Sec. 4, the offline RL framework is introduced,
enabling training and updating RL controllers with historical data.
Sec. 5 introduces the model-based OPE approach to estimate perfor-
mance of RL policies. Sec. 6 presents the results of the experimental
evaluations on patients, before concluding remarks in Sec. 7.

2 PRELIMINARIES AND MOTIVATION
In this section, we first introduce DBS, before presenting in the next
section the DBS experimental setup we developed for clinical trials,
including sensing, communication and control. Also, preliminaries
for offline RL and OPE are briefly introduced; more comprehensive
reviews of RL and OPE can be found in [19, 20, 39, 57].

2.1 The Need for Closed-Loop DBS
PD is caused by progressive death of dopaminergic neurons in the
substantia nigra region of the brain. This change in dopaminergic
signaling results in pathological activity in the BG regions targeted
by DBS, globus pallidus pars interna (GPi), globus pallidus pars ex-
terna (GPe) and subthalamic nucleus (STN); see Fig. 1. Given the
reduced number of neurons, the level of dopamine generally de-
creases in BG, leading to various motor symptoms such as bradyki-
nesia and tremor [7, 11, 34]. Physiologically, the effect of PD can be
captured by the changes in LFPs in GPi, GPe and STN. Specifically,
PD can cause abnormal neuron firings in these regions, and lead to
increased beta-band (13-35 Hz) amplitude (𝑃𝛽), referred to as the
beta amplitude, of the LFPs [20].

Existing research-only DBS devices are capable of capturing the
changes in LFPs through the multi-contact electrodes implanted in
the BG. As illustrated in Fig. 1, we used 4-contact electrodes placed
in the STN and GP regions. Monopolar stimulation was delivered
on a single contact on each lead (with the case serving as counter-
electrode). The two contacts surrounding the stimulation contact
were used for sensing LFPs (i.e., sandwich sensing). Existing devices
providing open-loop cDBS stimulate pulses at a fixed amplitude,
which in most cases can correct the abnormal neuronal activity [37].
However, constantly stimulating with high amplitudes significantly
reduces the battery lifetime of the DBS device andmay cause serious
side-effects such as speech impairment [4, 40, 60]. Consequently, it

is important to design DBS controllers that are effective (from the
control, i.e., therapy, perspective) and energy-efficient.

As discussed in Introduction, current aDBS approaches require
considerable time and effort for the patients and their healthcare
providers to determine the thresholds through trial-and-error [63].
Several deep-RL-based controllers have been proposed for closed-
loop DBS, which can adapt the amplitude of the stimulation pulses
in real time [19, 20] in response to changes in the feedback signals
(e.g., 𝑃𝛽). However, such frameworks are only validated through
numerical simulations, i.e., on simplified computational BG models,
instead of clinical trials with human participants. In real world,
substantial historical experience, or trajectories collected from past
interactions between the controller and the environment (patient),
may be necessary to learn an RL policy with suitable control efficacy
and patient satisfaction [38]. Offline RL holds promise to resolve
this challenge, as it can use the data collected from any type of
controllers, including cDBS or simply a policy switching between
arbitrary stimulation amplitudes/frequencies, to optimize an RL
control policy. Moreover, each time before a new control policy is
deployed to the patient, the clinicians need to assess its effective-
ness and may require justifications toward its estimated control
efficacy and performance [51]. OPE can facilitate such use cases,
as it is capable of estimating the expected return of RL policies
using historical trajectories, bridging the gap between the offline
RL training and evaluations. Preliminaries for offline RL and OPE
are presented in two subsections below.

2.2 Offline Reinforcement Learning
Offline RL has proven useful in many domains, including robot-
ics [18, 22], healthcare [21], etc., since it can optimize the control
policies without requiring the environment to be presented, which
guarantees the safety of the learning process. Further, it does not
require the training data to be exclusively collected by the control
policy being updated, leading to improved sample efficiency. To
facilitate offline RL, the underlying dynamical environments are
firstly modeled as Markov decision processes (MDPs).

Definition 2.1 (MDP). AnMDP is a tupleM = (S, 𝑠0,A,P, 𝑅,𝛾),
where S is a finite set of states; 𝑠0 is the initial state; A is a finite set
of actions; P is the transition function defined as P : S × A → S;
𝑅 : S × A × S → R is the reward function, and 𝛾 ∈ [0, 1) is a
discount factor.

Then, the RL policy 𝜋 : S → A determines the action 𝑎 = 𝜋 (𝑠)
to be taken at a given state 𝑠 . The accumulated return under a policy
𝜋 can be defined as follows.

Definition 2.2 (Accumulated Return). Given an MDPM and
a policy 𝜋 , the accumulated return over a finite horizon starting from
the stage 𝑡 and ending at stage 𝑇 , for 𝑇 > 𝑡 , is defined as

𝐺𝜋
𝑡 =

∑︁𝑇−𝑡
𝑘=0

𝛾𝑡+𝑘𝑟𝑡+𝑘 , (1)

where 𝑟𝑡+𝑘 is the return at the stage 𝑡 + 𝑘 .

The goal of offline RL can now be defined as follows.

Problem 1 (Offline Reinforcement Learning). Given anMDP
M with unknown transition dynamics P, a pre-defined reward func-
tion 𝑅, and a experience replay buffer E𝜇 = {[(𝑠0, 𝑎0, 𝑟0, 𝑠1), . . . ,

ICCPS ’23, May 9–12, 2023, San Antonio, Texas Qitong Gao et al.

Figure 3: Timeline for training RL-based DBS controllers in
clinical studies. Since only limited data can be collected dur-
ing each clinical visit, offline RL can be used to fine-tune ex-
isting or train new controllers using all the historical data.
Then, offline policy evaluation (OPE) facilitates choosing
the possible top-performing ones to be tested in the next
visit.

(𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇−1, 𝑠𝑇)] (0) , [(𝑠0, 𝑎0, 𝑟0, 𝑠1), . . .] (1) , . . . |𝑎𝑡 ∼ 𝜇 (𝑎𝑡 |𝑠𝑡)}
containing trajectories collected over an unknown behavioral policy
𝜇, find the target policy 𝜋∗ such that the expected accumulative return
starting from the initial stage over the entire horizon is maximized, i.e.,

𝜋∗ = argmax
𝜋
E𝑠,𝑎∼𝜌𝜋 ,𝑟∼𝑅 [𝐺𝜋

0]; (2)

here, 𝜌𝜋 is the state-action visitation distribution under policy 𝜋 .

The deep actor-critic RL framework [39] can be leveraged to
solve (2). Other value-based RL methods such as conservative Q-
learning [36] and implicit Q-learning [33] could also be considered;
however, actor-critic methods can in general reduce the variance of
gradient estimations and result in faster convergence [19, 45, 64].
Here, we specifically consider the deterministic version of actor-
critic [39], instead the one producing stochastic policies [24], as it
would be easier to demonstrate the effectiveness of deterministic
policies in clinics, as well as via OPE methods introduced below.
Details on the deep actor-critic algorithm [39] are provided in Ap-
pendix C.1.

2.3 Offline Policy Evaluation for DBS
OPE allows the use of experience replay buffer to estimate the ex-
pected return of RL policies, without the need of deploying them
to the environment directly. Fig. 3 illustrates the use case of OPE in
the context of DBS clinical testing. Specifically, during phase 𝐼 and
𝐼 𝐼 , offline RL uses all trajectories collected historically to train RL
policies following different hyper-parameters etc. Then, in phase
𝐼 𝐼 𝐼 , OPE can be used to estimate and rank the expected return of
these policies, where the top-performing ones can be deployed
during the next clinic visit (phase 𝐼𝑉). Consequently, OPE can effec-
tively reduce the number of testing sessions needed, so the policies
that show promise attaining better performance can be thoroughly
tested within the short time frame. Also, it can demonstrate the
effectiveness of the policies to be deployed in clinics.

The goal of OPE can be defined as follows.

Problem 2 (Offline Policy Evaluation). Consider a target
policy 𝜋 , and off-policy trajectories E𝜇 = {(𝑠0, 𝑎0), (𝑠1 , 𝑎1), . . . |𝑎𝑡 =
𝜇 (𝑠𝑡)}, collected following a behavioral policy 𝜇 ≠ 𝜋 , over an MDP
M. The OPE goal is to estimate the expected return of the target
policy 𝜋 , i.e., E𝑠,𝑎∼𝜌𝜋 ,𝑟∼𝑅 [𝐺𝜋

0].

Figure 4: Setup of the developed DBS clinical testing pro-
cedure. A total of three data streams are collected: (1) the
LFPs and stimulation amplitudes are recorded over time;
the logged trajectories are used to evaluate the performance
of deployed RL controllers, as well as training data for fur-
ther fine-tuning; (2) patient feedback including results from
bradykinesia tests and a rating on the scale between 1-10;
(3) patient tremor severity captured by wearable devices.

Most existing OPE methods, such as [10, 14, 16, 29, 42, 54, 61,
62, 65], are heavily based on importance sampling (IS) and could
result in inconsistent estimations due to the high variance of the
IS weights [10, 42]. On the other hand, model-based OPE methods
have shown strengths in estimating the expected returns more ac-
curately [14, 20], by directly capturing the MDP transitions and
rewards. The variational encoding-decoding based deep latent MDP
model (DLMM) introduced in [20] is shown to be effective evalu-
ating controlpolicies for a computational BG model. Specifically,
DLMM is derived following the variational inference framework
from [32]. The basics of DLMM are provided in Appendix C.2, and
we refer the readers to [32] for basics of variational inference. In
Sec. 5, we extend it toward the clinical use case considered in this
work, to allow for including the QoC metrics that can be only
evaluated once in each session, such as the bradykinesia results,
patient ratings, and tremor severity, which will be available as
illustrated in Fig. 4.

3 DBS SETUP USED IN CLINICAL TRIALS
We build on the research-only Medtronic’s Summit RC+S sys-
tem [59] to enable testing of RL-based controllers in clinical trials.
The overall architecture of the RC+S-based system we developed is
illustrated in Fig. 2. Specifically, Medtronic provides the code and
communication APIs (Summit program), which enable the stimula-
tion amplitude of the pulses delivered by the internal pulse genera-
tor (IPG) to be adapted over time. The Summit program is devel-
oped using the C# language under the .NET framework, which we

Offline Learning of Closed-Loop Deep Brain Stimulation Controllers for Parkinson Disease Treatment ICCPS ’23, May 9–12, 2023, San Antonio, Texas

extended to execute RL policies leveraging the provided Summit re-
search development kit (RDK), requiring the use of a Windows OS.

Thus, a research tablet is used for the execution of the developed
DBS controllers; the desired stimulation amplitude is computed
for each control cycle (every 2 seconds) and sent to the IPG over
BluetoothTM, using proprietary communication and security pro-
tocols. On the other hand, the IPG transmits to the controller the
LFPs captured from the BG, from which the beta amplitude of the
LFPs, denoted by 𝑃𝛽 , is calculated and used as a quality of con-
trol (QoC) metric as well as potential control feedback signals (i.e.,
inputs to the RL controller). Each clinical trial session lasts 5-20
minutes depending on the schedule of the visit, and multiple con-
trollers can be tested across different sessions. All the computed
𝑃𝛽 and stimulation amplitudes applied over time are logged for fu-
ture training and evaluation purposes, as summarized in Fig. 4. For
the developed system design, we obtained the FDA’s Investigative
Device Exception (IDE) G180280, which has allowed us to perform
human experiments according to an Institutional Review Board
(IRB) protocol approved by Duke University Medical Center.

In addition to 𝑃𝛽 , three other QoC metrics are collected from
every patient at the end of each session. Specifically, near the end
of each session, the patient is asked to perform 10 seconds of hand
grasps (rapid and full extension and close of all fingers) maneu-
ver [55] to evaluate the severity of the possible bradykinesia caused
by PD. Such hand motions are captured by a leap motion sensor by
Ultraleap [8]. Then, the elapsed time between any two consecutive
open fist is captured and recorded by the sensor, after which the
grasp frequency can be calculated as

𝑄𝑜𝐶𝑔𝑟𝑎𝑠𝑝 =
1

1
𝑁−1

∑𝑁−1
𝑖=1 𝑡 (𝑖,𝑖+1)

; (3)

here,𝑁 is the total number of open fists throughout the 10 s test, and
𝑡 (𝑖,𝑖+1) is the time spent between the 𝑖-th and 𝑖 + 1-th grasp. Further,
at the end of each session, the patient provides a score between
1-10, with 10 indicating the highest level of satisfaction with the
treatment received in the past session, and 1 being the lowest, i.e.,

𝑄𝑜𝐶𝑟𝑎𝑡𝑒 ∈ [1, 10] ⊂ Z+ . (4)

The grasp frequency and rating for each session are also recorded,
which corresponds to the patient feedback stream in Fig. 4.

Throughout all sessions, an Apple watch is worn by the patient at
their wrist, where the Apple’s movement disorders kit [53] is used
to analyze the accelerometry movements, classifying the patient’s
tremor severity as no-tremor, slight, mild, moderate and strong
every 1 minute, following StrivePD’s implementation [9]. At the
end of each session, an overall tremor severity is recorded as the
fraction of time the patient experiencing mild (𝑇𝑚𝑖𝑙𝑑), moderate
(𝑇𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒) or strong (𝑇𝑠𝑡𝑟𝑜𝑛𝑔) tremor over the entire session with
length 𝑇𝑠𝑒𝑠𝑠𝑖𝑜𝑛 , i.e.,

𝑄𝑜𝐶𝑡𝑟𝑒𝑚𝑜𝑟 =
𝑇𝑚𝑖𝑙𝑑 +𝑇𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒 +𝑇𝑠𝑡𝑟𝑜𝑛𝑔

𝑇𝑠𝑒𝑠𝑠𝑖𝑜𝑛
× 100%. (5)

The three data streams are collected from all trial sessions after
each clinical visit. Moreover, each time a patient may come into
the clinic with slightly different PD conditions (e.g., pathology
progression over time), medication prescriptions, activity levels
etc.; thus, our goal is to capture impact of such changes by the data

collection process, in order to facilitate the training and testing the
offline RL and OPE frameworks for DBS.

4 OFFLINE RL DESIGN OF DBS
CONTROLLERS

In this section, we employ offline RL for learning control policies
for DBS clinical trials, starting from the formulation of an MDP
M capturing the underlying neurological dynamics in the BG, and
the policy distillation technique that allows for reducing the com-
putational time and resource needed to evaluate the RL policies
(represented by DNNs).

4.1 Modeling the BG as an MDP
We now define the elements of an MDPM = (S, 𝑠0,A,P, 𝑅,𝛾).

State Space S and the Initial State 𝑠0. As discussed in Sec. 2.1
and 3, our DBS controller supports calculation of 𝑃𝛽 from LFPs,
and the changes in 𝑃𝛽 can be used as a biomarker for PD-levels for
some patients. Thus, we consider the MDP state, at a discrete time
step 𝑡 , as a historical sequence of 𝑃𝛽 sampled at a fixed intervals,
captured by𝑚 ∈ Z+, over a sliding queue of size𝑊 ∈ Z+, i.e.,

𝑠𝑡 =
[
𝛽 (𝑡−(𝑊 −1)𝑚) , 𝛽 (𝑡−(𝑊 −2)𝑚) , ..., 𝛽 (𝑡−2𝑚) , 𝛽 (𝑡−𝑚) , 𝛽 (𝑡)

]
. (6)

Here, 𝛽 (𝑡) ’s are the 𝑃𝛽 evaluated at the elapsed time 𝑡 since the
clinical trial starts,𝑚 is configurable in our system design (Fig. 2),
and we used 𝑚 = 2 corresponding to calculating 𝑃𝛽 every 2 𝑠 ,
resulting in 20 𝑠 time-windows for𝑊 = 10 elements in the queue;
finally, 𝑠𝑡 ∈ R𝑊 is the state at 𝑡-th (discrete) step of the MDP. The
initial state 𝑠0 is considered to be the 𝛽 sequence collected right
before the clinical trial starts, i.e., from 𝑡 = −(𝑊 − 1)𝑚 to 𝑡 = 0.

Action Space A. The amplitude of DBS stimulation pulses can
be changed in pre-defined (discrete) time steps, i.e., every 2 seconds
for the developed controllers. We consider the actions 𝑎𝑡 as the
percentage of the cDBS amplitude determined by clinicians; i.e.,
𝑎𝑡 ∈ [0, 1] ⊂ R, where 𝑎𝑡 = 0 and 𝑎𝑡 = 1 correspond to no-DBS
and stimulation with the same amplitude as in cDBS, respectively.

Transition Dynamics P : S × A → S. Every time after the
stimulation amplitude is adjusted following𝑎𝑡 , the system computes
the latest 𝛽 (𝑡+𝑚) using the LFPs sent back from the IPG; this leads
to the MDP state at the (t+1)-th (discrete) step as

𝑠𝑡+1 =
[
𝛽 (𝑡−(𝑊 −2)𝑚) , 𝛽 (𝑡−(𝑊 −3)𝑚) , . . . , 𝛽 (𝑡) , 𝛽 (𝑡+𝑚)

]
, (7)

i.e., the left-most element in (6) is pushed out, with 𝛽 (𝑡+𝑚) appended
to the right-end. Note that we define the MDP states 𝑠𝑡 and actions
𝑎𝑡 over discrete time steps, 𝑡 ’s, instead the elapsed time 𝑡 , for the
conciseness of equations and presentations below. Now, the MDP
transitions are captured to directly follow 𝑠𝑡+1 ∼ P(𝑠𝑡 , 𝑎𝑡).

Reward Function 𝑅 : S × A → R. Following from the setup of
the DBS system (Sec. 3), we define the rewards as

𝑅(𝑠𝑡 ,𝑎𝑡 ,𝑠𝑡+1)=
{
𝑟𝑎 −𝐶1 · 𝑎𝑡 , if 𝛽 (𝑡+𝑚) < 𝜉𝛽 ;
𝑟𝑏 −𝐶1 · 𝑎𝑡 , if 𝛽 (𝑡+𝑚) ≥ 𝜉𝛽 ; (8)

specifically, if the beta amplitude received at the (𝑡 + 1)-th step,
𝛽 (𝑡+𝑚) , is less than some threshold 𝜉𝛽 , then a non-negative reward
𝑟𝑎 is issued along with the term −𝐶1 ·𝑎𝑡 (𝐶1 > 0,𝐶1 ∈ R) penalizing

ICCPS ’23, May 9–12, 2023, San Antonio, Texas Qitong Gao et al.

over-usage of large stimulation amplitudes (for better energy effi-
ciency). On the other hand, if 𝛽 (𝑡+𝑚) is greater than the threshold
𝜉𝛽 , a negative reward 𝑟𝑏 will be used to replace 𝑟𝑎 above.

Remark 4.1. The reward functions used for RL training do not
consider the QoC metrics that are available not at every step of the
control execution (i.e., every 2 𝑠) but only at the end of each clinical
session, i.e.,𝑄𝑜𝐶𝑔𝑟𝑎𝑠𝑝 , 𝑄𝑜𝐶𝑟𝑎𝑡𝑒 , 𝑄𝑜𝐶𝑡𝑟𝑒𝑚𝑜𝑟 from (3), (4), (5). The rea-
son is that the horizon𝑇 is usually large and the their coverage can be
very sparse. Instead, these QoC metrics serve as great measurements
quantifying how well the policies perform, which are thus leveraged
by the OPE techniques introduced in Sec. 5.

For the introduced MDPM, we leverage the offline RL frame-
work introduced in Sec. 2.2 to search for the target policy 𝜋∗. Fol-
lowing from Problem 1, it requires an experience replay buffer E𝜇
that consists of historical trajectories collected over some behav-
ioral policy 𝜇. At the beginning of offline RL training, exploration of
the environment is deemed more important than exploitation [28].
Hence, a controller that generates random actions uniformly from
[𝐵, 1] is used to constitute E𝜇 at earlier stage of clinical trials, where
𝐵 is the lower bound from which the random 𝑎𝑡 can be generated,
for the sake of patient’s safety and acceptance.

Once the RL policies can attain satisfactory overall performance, i.e.,
quantified as achieving significantly improved QoCs (introduced in
Sec. 3) compared to the random controller above, we consider includ-
ing into E𝜇 the trajectories obtained from such RL policies. From
this point onward, the replay buffer E𝜇 will be iteratively updated
and enriched with the RL-induced trajectories after each trial. Con-
sequently, the behavioral policy 𝜇 can be considered as a mixture of
random control policy and several RL policies deployed in past tri-
als in general. With E𝜇 being defined, the objective for training RL
policies, (20), can be optimized using gradient descent [19, 20, 39].

4.2 Policy Distillation
Our system design (Fig. 2) is set to process various tasks in each
2 𝑠 stimulation (i.e., control) period, facilitating communication
between the research tablet and IPG, computing 𝑃𝛽 from LFPs,
evaluating the RL controller, data logging, and other basic function-
alities that ensure the safety and functionality of DBS. Hence, it
was critical to reduce the overall computation requirements, such
that each task meets the required timings, as well as prolong the
battery lifetime. As introduced in Sec. 2.2, the RL policies are pa-
rameterized as DNNs; although a forward pass of a DNN would not
require as much computational resources as for training (through
back-propagation), it may still involve hundreds of thousands of
multiplication operations. For example, consider the recommended
DNN size as in [39], it takes at least 120,000 multiplications to eval-
uate a two-layer NN with 400 and 300 nodes each. Hence, we inte-
grate into our system the model/policy distillation techniques [26],
allowing smaller sized NNs to be used to parameterize RL policies.

We build on a similar approach as in [56], originally proposed to
reduce the size of DNNs used in deep Q-learning [46], which only
works for a discrete action space. In particular, our extension allows
for the use in the deterministic actor-critic cases considered in this
work. Consider the original policy (teacher) 𝜋𝜃𝑎 parameterized by
a DNN with weights 𝜃𝑎 . We train a smaller-sized DNN (student)
with weights 𝜃𝑎 to learn 𝜃𝑎 ’s behavior, by minimizing the mean

Figure 5: Architecture of the new deep latent sequential
model (DLSM). The conditional dependencies between the
variables from the posterior and sampling distributions are
shown in dashed and solid lines, respectively.

squared error
min
𝜃𝑎

| |𝜋𝜃𝑎 (𝑠𝑡) − 𝜋𝜃𝑎 (𝑠𝑡) | |
2, (9)

for all state samples contained in the experience replay 𝑠𝑡 ∈ E𝜇 . We
also consider augmenting the data used to optimize (9) to smooth
out the learning process. We introduce synthetic states, 𝑠𝑡 ’s, where
each 𝑠𝑡 is generated by adding noise to each dimension of a state
sample 𝑠𝑡 that is originally in E𝜇 ; the noise is sampled from a
zero-mean Gaussian distribution, 𝜖𝑡 ∼ N(0, 𝜎2) with 𝜎 being a
hyper-parameter.

5 OPE OF DBS CONTROLLERS INCLUDING
PATIENT FEEDBACK AND TREMOR DATA

As discussed in Remark 4.1, besides the reward function introduced
in Sec. 4.1, for OPE we employ QoC metrics 𝑄𝑜𝐶𝑔𝑟𝑎𝑠𝑝 , 𝑄𝑜𝐶𝑟𝑎𝑡𝑒 ,
and 𝑄𝑜𝐶𝑡𝑟𝑒𝑚𝑜𝑟 defined in (3), (4), (5), respectively, which are only
available at the end of each session. As these well-capture perfor-
mance (i.e., therapy effectiveness) of the considered policy, for OPE
we additionally consider the end-of-session rewards defined as

𝑟𝑒𝑛𝑑 = 𝑅𝑒𝑛𝑑 (𝑠0, 𝑎0, 𝑠1, 𝑎1, ..., 𝑠𝑇−1, 𝑎𝑇−1, 𝑠𝑇)
= 𝐶2 ·𝑄𝑜𝐶𝑔𝑟𝑎𝑠𝑝 +𝐶3 ·𝑄𝑜𝐶𝑟𝑎𝑡𝑒 −𝐶4 ·𝑄𝑜𝐶𝑡𝑟𝑒𝑚𝑜𝑟 , (10)

with 𝐶2, 𝐶3, 𝐶4 > 0 real constants. Without loss of generality, we
slightly modify the total return under policy 𝜋 (from Problem 2) as

𝐺𝜋
0 = 𝑟𝑒𝑛𝑑 +

∑︁𝑇

𝑡=0
𝛾𝑡𝑟𝑡 , (11)

where 𝑟𝑡 and 𝑟𝑒𝑛𝑑 follow from (8) and (10), respectively.
As discussed in Sec. 2.3, the DLMM introduced in [20], falls short

in dealing with long horizons and predicting the end-of-session re-
wards 𝑟𝑒𝑛𝑑 . To address these limitations, in this sectionwe introduce
the deep latent sequential model (DLSM) that directly enforces the
transitions over the LVS. The overall model architecture is shown in
Fig. 5. First, the latent prior 𝑝𝜓 (𝑧0) is defined only over the initial la-
tent variable at step 𝑡 = 0, 𝑧0, which follows a multivariate Gaussian
distribution with zero mean and identity covariance matrix.

Then, the encoder (approximated posterior) is defined over each
trajectory (from 𝑡 = 0 to 𝑇) as

𝑞𝜙 (𝑧0:𝑇 |𝑠0:𝑇 , 𝑎0:𝑇−1) = 𝑞𝜙 (𝑧0 |𝑠0)
𝑇∏
𝑡=1

𝑞𝜙 (𝑧𝑡 |𝑧𝑡−1, 𝑎𝑡−1, 𝑠𝑡) . (12)

Offline Learning of Closed-Loop Deep Brain Stimulation Controllers for Parkinson Disease Treatment ICCPS ’23, May 9–12, 2023, San Antonio, Texas

Further, the second term 𝑞𝜙 (𝑧𝑡 |𝑧𝑡−1, 𝑎𝑡−1, 𝑠𝑡), which enforces the
transitions between 𝑧𝑡−1 and 𝑧𝑡 conditioned on (𝑎𝑡−1, 𝑠𝑡) and en-
ables the encoder to capture the dynamical transitions in the LVS,
can be obtained iteratively following

𝑧
𝜙

0 ∼ 𝑞𝜙 (𝑧0 |𝑠0), ℎ𝜙𝑡 = 𝑓𝜙 (ℎ
𝜙

𝑡−1, 𝑧
𝜙

𝑡−1, 𝑎𝑡−1, 𝑠𝑡), 𝑧𝜙𝑡 ∼ 𝑞𝜙 (𝑧𝑡 |ℎ
𝜙
𝑡);
(13)

here, 𝑞𝜙 (𝑧0 |𝑠0) and 𝑞𝜙 (𝑧𝑡 |ℎ
𝜙
𝑡) are parameterized by multivariate

diagonal Gaussian distributions, each with mean and covariance
determined by a feedforward DNN [6]; moreover, ℎ𝜙𝑡 is the hid-
den state of a recurrent DNN, such as long short-term memory
(LSTM) [27], capturing the historical transitions among 𝑠𝑡 , 𝑎𝑡 and
𝑧
𝜙
𝑡 for all past steps up until 𝑡 − 1 within each trajectory.
The decoder (sampling distribution) is responsible for interacting

with the target policies to be evaluated, from which the expected re-
turns can be estimated as the mean return obtained by the simulated
trajectories. Specifically, the decoder is defined as follows, i.e.,

𝑝𝜓 (𝑧1:𝑇 , 𝑠0:𝑇 ,𝑟0:𝑇−1, 𝑟𝑒𝑛𝑑 |𝑧0) = 𝑝𝜓 (𝑟𝑒𝑛𝑑 |𝑧𝑇)·
𝑇∏
𝑡=0

𝑝𝜓 (𝑠𝑡 |𝑧𝑡)
𝑇∏
𝑡=1

𝑝𝜓 (𝑧𝑡 |𝑧𝑡−1, 𝑎𝑡−1)𝑝𝜓 (𝑟𝑡−1 |𝑧𝑡); (14)

here, 𝑝𝜓 (𝑟𝑒𝑛𝑑 |𝑧𝑇) estimates the end-of-session rewards given the
latent variable at 𝑡 = 𝑇 , 𝑧𝑇 ; 𝑝𝜓 (𝑠𝑡 |𝑧𝑡), 𝑝𝜓 (𝑟𝑡−1 |𝑧𝑡) reconstruct
the states and rewards; 𝑝𝜓 (𝑧𝑡 |𝑧𝑡−1, 𝑎𝑡−1) enforces the transitions
over the latent variables, 𝑧𝑡 ’s, conditioned on the actions; and
𝑧0 ∼ 𝑝𝜓 (𝑧0) is sampled from the prior. As a result, each simulated
trajectory can be generated by the decoder following

ℎ
𝜓
𝑡 = 𝑓𝜓 (ℎ

𝜓

𝑡−1, 𝑧
𝜓

𝑡−1, 𝑎𝑡−1), 𝑧𝜓𝑡 ∼ 𝑝𝜓 (𝑧𝑡 |ℎ
𝜓
𝑡), 𝑠

𝜓
𝑡 ∼ 𝑝𝜓 (𝑠𝑡 |𝑧

𝜓
𝑡),

𝑟
𝜓

𝑡−1 ∼ 𝑝𝜓 (𝑟𝑡−1 |𝑧𝜓𝑡), 𝑎𝑡−1 ∼ 𝜋 (𝑎𝑡−1 |𝑠𝜓𝑡−1), 𝑟
𝜓

𝑒𝑛𝑑
∼ 𝑝𝜓 (𝑟𝑒𝑛𝑑 |𝑧𝑇);

(15)

here,ℎ𝜓𝑡 is the hidden state of a recurrent DNN;𝑝𝜓 (𝑧𝑡 |ℎ
𝜓
𝑡), 𝑝𝜓 (𝑠𝑡 |𝑧

𝜓
𝑡),

𝑝𝜓 (𝑟𝑡−1 |𝑧𝜓𝑡) and 𝑝𝜓 (𝑟𝑒𝑛𝑑 |𝑧𝑇) are multivariate diagonal Gaussians
with means and covariances determined by four feedforward DNNs
separately. Hence, 𝑠𝜓𝑡 ’s and 𝑟

𝜓

𝑡−1’s can be sampled iteratively fol-
lowing the process above, using the actions obtained from the
target policy 𝑎𝑡−1 ∼ 𝜋 (𝑎𝑡−1 |𝑠𝜓𝑡−1) accordingly, which constitute
the simulated trajectories; and 𝑟𝜓

𝑒𝑛𝑑
is sampled at the end of each

simulated trajectory.
The theorem below derives an ELBO for the joint log-likelihood

log 𝑝𝜓 (𝑠0:𝑇 , 𝑟0:𝑇−1, 𝑟𝑒𝑛𝑑), following the above DLSM architecture.

Theorem 5.1 (ELBO forDLSM). An ELBO of the joint log-likelihood
log 𝑝𝜓 (𝑠0:𝑇 , 𝑟0:𝑇−1, 𝑟𝑒𝑛𝑑) can be obtained as

L𝐸𝐿𝐵𝑂 (𝜓, 𝜙) = E𝑧𝑡∼𝑞𝜙
[∑︁𝑇

𝑡=0
log 𝑝𝜓 (𝑠𝑡 |𝑧𝑡) +

∑︁𝑇

𝑡=1
log𝑝𝜓 (𝑟𝑡−1 |𝑧𝑡)

+ log𝑝𝜓 (𝑟𝑒𝑛𝑑 |𝑧𝑇) − 𝐾𝐿
(
𝑞𝜙 (𝑧0 |𝑠0) | |𝑝 (𝑧0)

)
−
∑︁𝑇

𝑡=1
𝐾𝐿

(
𝑞𝜙 (𝑧𝑡 |𝑧𝑡−1, 𝑎𝑡−1, 𝑠𝑡) | |𝑝𝜓 (𝑧𝑡 |𝑧𝑡−1, 𝑎𝑡−1)

)]
(16)

≤ log𝑝𝜓 (𝑠0:𝑇 , 𝑟0:𝑇−1, 𝑟𝑒𝑛𝑑); (17)

here, the first three terms are the log-likelihood of the decoder to
reconstruct 𝑠𝑡 , 𝑟𝑡−1 and 𝑟𝑒𝑛𝑑 correctly, and the two terms that follow

regularize the transitions captured by the encoder over the LVS, with
𝐾𝐿(·| |·) being the Kullback–Leibler (KL) divergence [35].

The proof of Theorem 5.1 can be found in Appendix F. Empiri-
cally, similar to the DLMM [20], the ELBO can be evaluated using
the trajectories from the experience replay E𝜇 , by replacing the
expectation as the mean over all trajectories, after which the objec-
tive max𝜓,𝜙 L(𝜓, 𝜙) can be achieved using gradient descent [31]
following the algorithm in Appendix D. Moreover, the reparame-
terization trick [32] is used, which allows for the gradients to be
back-propagated when sampling from Gaussian distributions with
means and covariances determined by DNNs. Details on reparame-
terization can be found in [20, 32].

6 CLINICAL EVALUATIONS
Using our closed-loop DBS system presented in Sec. 3, we evaluated
the developed RL-based control framework in clinical trials on four
PD patients, at Duke University Medical Center. In particular, we
evaluated and compared four different types of controllers: cDBS,
RL, RL with policy distillation (i.e., distilled RL), and no-DBS (i.e.,
without stimulation). The electrodes of the DBS device were placed
in STN and GPi brain regions for all four participants; LFPs were
sensed from STN and stimuli were delivered to both STN and GP.

Each participant also has had different PD symptoms and severity;
their characteristics are summarized in Appendix E. All trials were
conducted under close supervision of clinical experts, strictly fol-
lowing the process approved by the Duke University Medical Cen-
ter IRB protocol complying with the obtained FDA IDE (G180280).
Further, all participants provided informed written consent.

6.1 Therapy Efficacy and Energy-Efficiency of
the RL Control Policies

We follow the offline RL and policy distillation methodology intro-
duced in Sec. 4 to train and update (distilled) RL policies iteratively
over time. Specifically, each participant had monthly clinical visit,
where during each day of trials a total of 2-4 RL policies would be
tested. A cDBS session was placed in between any two RL sessions
as a control group. A small number of no-DBS sessions, with DBS
stimulation fully off, were also tested, to validate our choice of the
employed QoCs metrics – i.e., whether they significantly change
when the participants are not stimulated.

After each trial day was completed, the trajectories collected
from all the sessions were added to the experience replay buffer
E𝜇 unique to each participant. Between two consecutive visits of
each participant, her E𝜇 was used to fine-tune the top-performing
policies determined from the last trial (using smaller learning rates
between [10−7, 10−5]) or to train new policies from scratch (with
learning rates between [10−5, 10−3]); such policies were then tested
in the next visit. We followed [39] and used two-layer NNs with
400 and 300 nodes each to parameterize the RL policies; moreover,
a distilled version (student) of each corresponding full-sized RL
policy (teacher) were trained as introduced in Sec. 4.2, with each
represented as a two-layer NN with 20 and 10 nodes. The constants
in (8) were set to 𝑟𝑎 = 0, 𝑟𝑏 = −1,𝐶1 = 0.3 for all participants.

In each testing session, to evaluate the overall performance of the
employed control policy, a total of 5 metrics were considered: the en-
ergy used by the IPG for stimulation, the mean beta amplitude over

ICCPS ’23, May 9–12, 2023, San Antonio, Texas Qitong Gao et al.

Figure 6: Quality of control (QoC) results from all clinical trials across participants. Wilcoxon rank-sum tests [43] between
cDBS and each of the other controllers are used to test the null hypothesis that two sets of measurements are drawn from
the same distribution, resulting in the 𝑝-values reported above. The null hypothesis is rejected when consider the stimulation
energy consumed by both RL controllers, illustrating that they lead to significant energy reduction compared to cDBS. For all
other QoCs, the null hypothesis is accepted in majority cases, showing that both RL controllers can in general attain similar
control efficacy to cDBS. The controllers that lead to the acceptance/rejection of the null hypothesis in the desired direction
are highlighted with asterisks and bold 𝑝-values.

cDBS RL Distilled RL No-DBS

Participant 1 84 97 97 36
Participant 2 145 80 182 52
Participant 3 135 115 115 39
Participant 4 124 119 98 48

Table 1: Overall time, in minutes, spent toward testing each
type of controller in clinical trials. Each testing session
lasted 5-20 minutes, and no-DBS sessions were usually 5-
min long to minimize the discomfort participants may ex-
perience.

the session, and the 3 QoCs introduced in Sec. 3; for 𝑄𝑜𝐶𝑔𝑟𝑎𝑠𝑝 , we
captured the grasp frequencies of the hand that best correlates with
the PD symptom for the participant (see Appendix E for details).

Fig. 6 summarizes the obtained results, and Table 1 documents
the total amount of time each controller was tested in clinic.Wilcoxon
rank-sum tests [43] between cDBS and each of the other controllers
were used to test the null hypothesis – if two sets of measurements
were drawn from the same distribution (i.e., that the controllers per-
form similarly over the considered metrics); from this, 𝑝-values can

be calculated. The 𝑝-values accepting/rejecting the null hypothesis
in the desired direction are highlighted in Fig. 6. Specifically, it
can be observed that, compared to cDBS, the RL policies and their
distilled version can save significant (20%-55%) stimulation energy
across participants; as 𝑝 < .05 achieved for all participants, which
rejected the null hypothesis.

When considering the other 4metrics, there exist a greatmajority
of results with 𝑝 ≥ .05, accepting the null hypothesis and indicating
that both RL controllers attain control (i.e., therapy) efficacy similar
to cDBS. In contrast, for the no-DBS sessions, the null hypothesis
is rejected in most cases. Specifically, 𝑝 < .05 attained by no-DBS
over the mean beta amplitude, for all participants, show that beta
amplitudes can change significantly when sufficient DBS is received
or not, which justify our choice of using the beta amplitudes to
constitute MDP states. This also shows that the RL policies can
follow the reward function (from Sec. 4.1) to effectively optimize the
control strategies, with beta amplitudes also playing an important
role. Consequently, the results show that both full and distilled
RL policies can significantly reduce the stimulation energy, while
achieving non-inferior control efficacy compared to cDBS.

Offline Learning of Closed-Loop Deep Brain Stimulation Controllers for Parkinson Disease Treatment ICCPS ’23, May 9–12, 2023, San Antonio, Texas

RL Policy
(400×300 NN)

Distilled RL Policy
(20×10 NN)

Mean of Computation Time 4.78 ms 2.98 ms
Std of Computation Time 32.26 ms 1.72 ms
Table 2: Computation time of the original RL versus the dis-
tilled RL policy.

RL Distilled RL Random Controller

Battery Runtime (m) 227 ± 5 220 ± 6 247 ± 4
Table 3: Overall battery runtime of the DBS systemwhen the
RL, distilled RL or random controllers were used.

6.1.1 Computational Complexity and Overall Energy Consumption.
We also study the additional computation time and battery con-
sumption of the DBS system due the use of full-sized RL policies
or their distilled version. A Surface Go with an Intel Pentium Gold
4415Y CPU and 4GB RAM was used as the research tablet in Fig. 4.
The computation time was quantified as the time needed to run a
single forward pass of the NN that represents the RL policy. We
evaluate the forward passes for both types of RL policies 200 times;
Table 2 summarizes themean and standard deviation of the obtained
computation times. As can be seen, the distilled RL policy can be
evaluated significantly faster than its counterpart.

Moreover, we quantify the overall battery consumption of the
entire DBS system as the time for which the tablet or the IPG battery
drains from 100% to 10% (whichever comes first). We compare the
battery runtime among the full RL and distilled RL, as well as a
random controller that sets the IPG to stimulate with an arbitrary
amplitude in each control cycle. Each experiment was repeated 3
times, resulting in the statistics in Table 3 showing that the two
RL-based controllers do not drastically shorten the runtime of the
DBS system; i.e., the energy used for RL-based control does not
dominate the overall energy used by the DBS system.

6.2 Evaluation of the OPE Methodology
For each participant, a DLSM was trained following the methodol-
ogy introduced in Sec. 5, and then used as a synthetic environment
to interact with 6 policies trained using the deep actor-critic method
(Sec. 4) with different hyper-parameters, over the buffer E𝜇 specific
to the patient; these policies can in general lead to varying perfor-
mance. Then, for each policy, the mean of total returns (11) over all
simulated trajectories can be calculated, and was used to estimate
the policy’s expected return from Problem 2. The constants in (10),
balancing the scale of the QoCs (i.e., grasp frequency, rating and
tremor severity) were set to𝐶2 = 𝐶3 = 𝐶4 = 10 for patients 2-4 who
can experience bradykinesia and pronounced tremor with insuffi-
cient DBS; in contrast, the symptoms of participant 1 are considered
subtle, so we set𝐶2 = 𝐶3 = 𝐶4 = 25 to better distinguish if sufficient
DBS is provided; see Appendix E for details on patient characteris-
tics as well as the dosage of PD medications.

DLSM’s performance was compared against the classic IS [54],
as well as a state-of-the-art IS-based OPE method, dual-DICE [47].
Three metrics were considered to evaluate the performance of OPE,
including mean absolute error (MAE), rank correlation, and re-
gret@1, following from [14]. MAE evaluates the absolute error

Figure 7: DLSM in general achieves higher ranks, lower re-
gret@1’s and lower MAEs, compared to DICE and IS. Each
method is trained and evaluated with 3 different random
seeds, with the standard deviations shown by the error bars.

between the total return estimated by OPE, versus the actual re-
turns, i.e., mean total return recorded from clinical trials. Rank cor-
relation quantifies the alignment between the rank of policies over
OPE-estimated returns and the actual returns. Regret@1 quantifies
the percentage loss, over the total actual returns, one would get by
picking the policy with maximum OPE-estimated return, against
the actual best-performing policy, showing if the OPE methods can
identify the best-performing policy correctly. Their mathematical
definitions can be found in Appendix G.

The obtained results are summarized in Fig. 7. As shown, the
DLSM in general achieved significantly higher rank and lower
regret, as well as non-inferior MAE, over DICE and IS.

7 CONCLUSION
In this paper, we introduced an offline RL and OPE framework to
design and evaluate closed-loop DBS controllers using only histor-
ical data. Moreover, a policy distillation method was introduced
to further reduce the computation requirements for evaluating RL
policies. The control efficacy and energy efficiency of the RL con-
trollers were validated with clinical testing over 4 patients. Results
showed that RL-based controllers lead to similar control efficacy
as cDBS, but with significantly reduced stimulation energy. The
computation times for the RL and distilled RL controllers were
compared, showing that the distilled version executed significantly
faster; future work will focus on further reducing execution times
of the distilled RL controllers to match capabilities of implanted de-
vices. Finally, the DLSM is trained to estimate the expected returns
of RL policies, which outperforms existing IS-based OPE methods,
in terms of rank correlations, regrets and MAEs.

REFERENCES
[1] Mattia Arlotti, Manuela Rosa, et al. 2016. The adaptive deep brain stimulation

challenge. Parkinsonism & related disorders 28 (2016), 12–17.
[2] Mattia Arlotti, Lorenzo Rossi, et al. 2016. An external portable device for adaptive

deep brain stimulation (aDBS) clinical research in advanced Parkinson’s Disease.
Medical engineering & physics 38, 5 (2016), 498–505.

[3] Alim Louis Benabid. 2003. Deep brain stimulation for Parkinson’s disease.
Current opinion in neurobiology 13, 6 (2003), 696–706.

[4] Aleksandar Beric, Patrick J Kelly, et al. 2001. Complications of deep brain stimu-
lation surgery. Stereotactic and functional neurosurgery 77, 1-4 (2001), 73–78.

[5] M Beudel and P Brown. 2016. Adaptive deep brain stimulation in Parkinson’s
disease. Parkinsonism & related disorders 22 (2016), S123–S126.

ICCPS ’23, May 9–12, 2023, San Antonio, Texas Qitong Gao et al.

[6] Christopher Bishop. 2006. Pattern recognition and machine learning. Springer.
[7] Peter Brown, Antonio Oliviero, et al. 2001. Dopamine dependency of oscillations

between subthalamic nucleus and pallidum in Parkinson’s disease. Journal of
Neuroscience 21, 3 (2001), 1033–1038.

[8] A H Butt, E Rovini, et al. 2018. Objective and automatic classification of Parkinson
disease with Leap Motion controller. Biomedical engineering 17, 1 (2018), 1–21.

[9] Witney Chen, Lowry Kirkby, et al. 2021. The role of large-scale data infrastructure
in developing next-generation deep brain stimulation therapies. Frontiers in
Human Neuroscience 15 (2021), 717401.

[10] Bo Dai, Ofir Nachum, et al. 2020. Coindice: Off-policy confidence interval esti-
mation. arXiv preprint arXiv:2010.11652 (2020).

[11] LonnekeMLDe Lau andMoniqueMBBreteler. 2006. Epidemiology of Parkinson’s
disease. The Lancet Neurology 5, 6 (2006), 525–535.

[12] Günther Deuschl, Carmen Schade-Brittinger, et al. 2006. A randomized trial of
deep-brain stimulation for Parkinson’s disease. New England Journal ofMedicine
355, 9 (2006), 896–908.

[13] Kenneth A Follett, Frances M Weaver, et al. 2010. Pallidal versus subthalamic
deep-brain stimulation for Parkinson’s disease. New England Journal ofMedicine
362, 22 (2010), 2077–2091.

[14] Justin Fu, Mohammad Norouzi, et al. 2020. Benchmarks for Deep Off-Policy
Evaluation. In ICLR.

[15] Ge Gao, Qitong Gao, et al. 2022. A Reinforcement Learning-Informed Pattern
Mining Framework for Multivariate Time Series Classification. In International
Joint Conference on Artificial Intelligence (IJCAI).

[16] Ge Gao, Song Ju, Markel Sanz Ausin, and Min Chi. 2023. Hope: Human-centric
off-policy evaluation for e-learning and healthcare. In AAMAS.

[17] Qitong Gao, Ge Gao, Min Chi, andMiroslav Pajic. 2023. Variational Latent Branch-
ing Model for Off-Policy Evaluation. In International Conference on Learning
Representations (ICLR).

[18] Qitong Gao, Davood Hajinezhad, et al. 2019. Reduced Variance Deep Reinforce-
ment Learning with Temporal Logic Specifications. In ICCPS. ACM.

[19] Qitong Gao, Michael Naumann, et al. 2020. Model-Based Design of Closed
Loop Deep Brain Stimulation Controller using Reinforcement Learning. In 2020
ACM/IEEE 11th Int. Conf. on Cyber-Physical Systems (ICCPS). IEEE, 108–118.

[20] Qitong Gao, Stephen L Schmidt, et al. 2022. Offline Policy Evaluation for Learning-
based Deep Brain Stimulation Controllers. In 2022 ACM/IEEE 13th International
Conference on Cyber-Physical Systems (ICCPS). IEEE, 80–91.

[21] Qitong Gao, Dong Wang, et al. 2022. Gradient Importance Learning for Incom-
plete Observations. In International Conference on Learning Representations.

[22] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. 2017. Deep
reinforcement learning for robotic manipulation with asynchronous off-policy
updates. In Int. Conf. on robotics and automation (ICRA). IEEE, 3389–3396.

[23] A. Guez, R. D. Vincent, M. Avoli, and J. Pineau. 2008. Adaptive Treatment of
Epilepsy via Batch-mode Reinforcement Learning. In AAAI. 1671–1678.

[24] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In ICML. PMLR, 1861–1870.

[25] J. Habets, M. Heijmans, et al. 2018. An update on adaptive deep brain stimulation
in Parkinson’s disease. Movement Disorders 33, 12 (2018), 1834–1843.

[26] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, and others. [n. d.]. Distilling the
knowledge in a neural network. ([n. d.]).

[27] SeppHochreiter and Jürgen Schmidhuber. 1997. Long short-termmemory. Neural
computation 9, 8 (1997), 1735–1780.

[28] S. Ishii, W. Yoshida, and J. Yoshimoto. 2002. Control of exploitation–exploration
meta-parameter in reinforcement learning. Neural networks 15 (2002), 665–687.

[29] Nan Jiang and Lihong Li. 2016. Doubly robust off-policy value evaluation for
reinforcement learning. In ICML. PMLR, 652–661.

[30] Ilija Jovanov, Michael Naumann, et al. 2018. Platform for model-based design
and testing for deep brain stimulation. In ICCPS.

[31] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[32] Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

[33] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. 2022. Offline Reinforcement
Learning with Implicit Q-Learning. In ICLR.

[34] A.A. Kühn, A. Kupsch, GH. Schneider, and P Brown. 2006. Reduction in sub-
thalamic 8–35 Hz oscillatory activity correlates with clinical improvement in
Parkinson’s disease. Euro. J. of Neuroscience 23, 7 (2006), 1956–1960.

[35] Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.
The annals of mathematical statistics 22, 1 (1951), 79–86.

[36] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. 2020. Conserva-
tive q-learning for offline reinforcement learning. In NeurIPS.

[37] Alexis M Kuncel and Warren M Grill. 2004. Selection of stimulus parameters for
deep brain stimulation. Clinical neurophysiology 115, 11 (2004), 2431–2441.

[38] Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. 2020. Stochastic
latent actor-critic: Deep reinforcement learning with a latent variable model.
Advances in Neural Information Processing Systems 33 (2020), 741–752.

[39] Timothy P Lillicrap, Jonathan J Hunt, et al. 2016. Continuous control with deep
reinforcement learning. ICLR (2016).

[40] Simon Little, Alex Pogosyan, et al. 2013. Adaptive deep brain stimulation in
advanced Parkinson disease. Annals of neurology 74, 3 (2013), 449–457.

[41] Simon Little, Elina Tripoliti, et al. 2016. Adaptive deep brain stimulation for
Parkinson’s disease demonstrates reduced speech side effects compared to con-
ventional stimulation in the acute setting. J Neurol Neurosurg Psychiatry 87, 12
(2016), 1388–1389.

[42] Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. 2018. Breaking the
Curse of Horizon: Infinite-Horizon Off-Policy Estimation. In NeurIPS.

[43] Henry B Mann and Donald R Whitney. 1947. On a test of whether one of
two random variables is stochastically larger than the other. The annals of
mathematical statistics (1947), 50–60.

[44] C Marras, JC Beck, et al. 2018. Prevalence of Parkinson’s disease across North
America. NPJ Parkinson’s disease 4, 1 (2018), 21.

[45] Volodymyr Mnih, Adria Puigdomenech Badia, et al. 2016. Asynchronous methods
for deep reinforcement learning. In ICML. 1928–1937.

[46] Volodymyr Mnih, Koray Kavukcuoglu, et al. 2015. Human-level control through
deep reinforcement learning. Nature 518, 7540 (2015), 529.

[47] Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. 2019. Dualdice: Behavior-
agnostic estimation of discounted stationary distribution corrections. NeurIPS
32 (2019).

[48] Vivek Nagaraj, Andrew Lamperski, and Theoden I Netoff. 2017. Seizure control
in a computational model using a reinforcement learning stimulation paradigm.
International J. of Neural Sys. 27, 07 (2017), 1750012.

[49] Michael S Okun. 2012. Deep-brain stimulation for Parkinson’s disease. New
England Journal of Medicine 367, 16 (2012), 1529–1538.

[50] Enrico Opri, Stephanie Cernera, et al. 2020. Chronic embedded cortico-thalamic
closed-loop deep brain stimulation for the treatment of essential tremor. Science
translational medicine 12, 572 (2020), eaay7680.

[51] Bahram Parvinian, Christopher Scully, et al. 2018. Regulatory considerations for
physiological closed-loop controlled medical devices used for automated critical
care: food and drug administration workshop discussion topics. Anesthesia and
analgesia 126, 6 (2018), 1916.

[52] J. Pineau, A. Guez, et al. 2009. Treating epilepsy via adaptive neurostimulation: a
reinforcement learning approach. Int. J. of Neural Sys. 19, 04 (2009), 227–240.

[53] Rob Powers, Maryam Etezadi-Amoli, et al. 2021. Smartwatch inertial sensors con-
tinuously monitor real-world motor fluctuations in Parkinson’s disease. Science
translational medicine 13, 579 (2021), eabd7865.

[54] Doina Precup. 2000. Eligibility traces for off-policy policy evaluation. Computer
Science Department Faculty Publication Series (2000), 80.

[55] Claudia Ramaker, Johan Marinus, Anne Margarethe Stiggelbout, and Bob Jo-
hannes Van Hilten. 2002. Systematic evaluation of rating scales for impairment
and disability in Parkinson’s disease. Movement disorders 17, 5 (2002), 867–876.

[56] Andrei A Rusu, Sergio G Colmenarejo, et al. 2016. Policy Distillation. In ICLR.
[57] David Silver, Guy Lever, et al. 2014. Deterministic policy gradient algorithms.
[58] Rosa Q So, Alexander R Kent, and Warren M Grill. 2012. Relative contributions

of local cell and passing fiber activation and silencing to changes in thalamic
fidelity during deep brain stimulation and lesioning: a computational modeling
study. Journal of computational neuroscience 32, 3 (2012), 499–519.

[59] Scott Stanslaski, Jeffrey Herron, et al. 2018. A chronically implantable neural
coprocessor for investigating the treatment of neurological disorders. IEEE
transactions on biomedical circuits and systems 12, 6 (2018), 1230–1245.

[60] Nicole C Swann, Coralie de Hemptinne, et al. 2016. Gamma oscillations in the
hyperkinetic state detected with chronic human brain recordings in Parkinson’s
disease. Journal of Neuroscience 36, 24 (2016), 6445–6458.

[61] Ziyang Tang, Yihao Feng, et al. 2019. Doubly Robust Bias Reduction in Infinite
Horizon Off-Policy Estimation. In ICLR.

[62] Philip Thomas and Emma Brunskill. 2016. Data-efficient off-policy policy evalua-
tion for reinforcement learning. In ICML. PMLR, 2139–2148.

[63] Joshua K Wong, Günther Deuschl, et al. 2022. Proc. the 9th Annual Deep Brain
Stimulation Think Tank: Advances in Cutting Edge Technologies, Artificial Intel-
ligence, Neuromodulation, Neuroethics, Pain, Interventional Psychiatry, Epilepsy,
and Traumatic Brain Injury. Frontiers in Human Neuroscience (2022), 25.

[64] Yuhuai Wu, Elman Mansimov, et al. 2017. Scalable trust-region method for deep
reinforcement learning using kronecker-factored approximation. In NeurIPS.

[65] Mengjiao Yang, Ofir Nachum, et al. 2020. Off-Policy Evaluation via the Regular-
ized Lagrangian. In NeurIPS, Vol. 33.

A NOTATION
Here, we define the notation used in the paper. The sets of reals,
integers, and positive integers, are denoted by R, Z, and Z+, respec-
tively. Further, 𝑥 ∼ 𝑝 (𝑥) denotes that random variable 𝑥 is sampled
from distribution 𝑝 (𝑥). We also use N(𝑥 ; 𝜇,Σ) to denote Gaussian

Offline Learning of Closed-Loop Deep Brain Stimulation Controllers for Parkinson Disease Treatment ICCPS ’23, May 9–12, 2023, San Antonio, Texas

distributions with mean 𝜇 and covariance matrix Σ over variable
𝑥 . For simplicity, we write 𝑥 ∼ N(𝜇,Σ) during sampling. The KL-
divergence between distributions 𝑝 (𝑥) and 𝑞(𝑥) is defined as

𝐾𝐿(𝑝 | |𝑞) = E𝑝
[
log

𝑞(𝑥)
𝑝 (𝑥)

]
. (18)

B AVAILABILITY OF DATA AND CODE
We plan to open-source the data collected from clinical testing, as
well as the implementation for training RL policies, in the future1,
to facilitate research in developing RL-based DBS controllers. The
RC+S system as well as its Summit code base are considered pro-
prietary, which may not be published online. The implementation
of our OPE method, DLSM, is built on our previous works [17, 20],
with code published at https://github.com/gaoqitong/vlbm.

C ADDITIONAL PRELIMINARIES
Below we introduce in details the preliminaries needed to supple-
ment Sec. 2.

C.1 Deep Actor-Critic RL
We now briefly introduce the deep actor-critic algorithm [39] and
refer the readers to [19, 20, 39] for more details. First, the state-
action value functions can be defined as follows.

Definition C.1 (State-Action Value Function). Given an
MDPM and policy 𝜋 , the state-action value function𝑄𝜋 (𝑠, 𝑎), where
𝑠 ∈ S and 𝑎 ∈ A, is defined as the expected return for taking action
𝑎 when at state 𝑠 following policy 𝜋 at stage 𝑡 , i.e.,

𝑄𝜋 (𝑠, 𝑎) = E𝑠∼S,𝑎∼A [𝐺𝑡 |𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎] . (19)

Two neural networks, with weights 𝜃𝑎 and 𝜃𝑐 , can be used to pa-
rameterize the policy (actor) 𝜋𝜃𝑎 (𝑠) : S → A and the Q-functions
(critic) 𝑄𝜃𝑐 (𝑠, 𝑎) : S × A → R, respectively. Finally, the target
policy 𝜋∗ = 𝜋𝜃 ∗𝑎 can be obtained by optimizing over

max
𝜃𝑎,𝜃𝑐

E𝑠,𝑎,𝑟,𝑠′∼E𝜇
[
𝑄𝜃𝑐

(
𝑠, 𝜋𝜃𝑎 (𝑠)

)]
; (20)

this can be achieved using gradient descent, over all the training
samples in the experience replay buffer E𝜇 [39].

C.2 Deep Latent MDP Model (DMLL)
The DLMM is trained to fit the transitions of the MDP 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)
and rewards 𝑟𝑡 = 𝑅(𝑠𝑡 , 𝑎𝑡), which consist of three components,
i.e., a latent prior, posterior and sampling distribution. The prior
𝑝𝜓 (𝑧𝑡) is parameterized by𝜓 , over the latent variable space (LVS)
Z ⊂ R𝑑 , where 𝑑 ∈ Z+ is the dimension. The prior represents
one’s belief over the latent distribution of the states (i.e., probability
density function over the latent variables) which is considered
unknown; thus, it is usually chosen to be a multivariate Gaussian
with zero mean and identity covariance. Then, the encoder (or
approximated posterior) 𝑞𝜙 (𝑧𝑡 |𝑠𝑡) is parameterized by 𝜙 , which is
responsible for encoding the MDP state 𝑠𝑡 ∈ S into the LVS, Z.
Note that the true posterior 𝑝𝜓 (𝑧𝑡 |𝑠𝑡) is intractable, since its density
function contains integration overZ which is deemed unknown;
we refer to [20] for more details. Lastly, the decoder (or sampling

1After finalizing a journal submission built on top of this work.

Algorithm 1 Train DLSM.
Input: Model weights𝜓,𝜙 , experience replay buffer E𝜇 , and learning rate

𝛼 .
Begin:
1: Initialize𝜓,𝜙
2: for 𝑖𝑡𝑒𝑟 in 1 : 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
3: Sample a trajectory [(𝑠0, 𝑎0, 𝑟0, 𝑠1), . . . , (𝑠𝑇−1, 𝑎𝑇−1, 𝑟𝑇−1, 𝑠𝑇)] ∼

E𝜇
4: 𝑧

𝜙

0 ∼ 𝑞𝜙 (𝑧0 |𝑠0)
5: 𝑧

𝜓

0 ∼ 𝑝𝜓 (𝑧0)
6: Run forward pass of DLSM following (13) and (15) for 𝑡 = 1 : 𝑇 ,

and collect all variables needed to evaluate the all terms within the
expectation in L𝐸𝐿𝐵𝑂 , which is denoted as L̃𝐸𝐿𝐵𝑂 .

7: 𝜓 ← 𝜓 + 𝛼∇𝜓 L̃𝐸𝐿𝐵𝑂

8: 𝜙 ← 𝜙 + 𝛼∇𝜙 L̃𝐸𝐿𝐵𝑂

9: end for

distribution) 𝑝𝜓 (𝑠𝑡+1, 𝑟𝑡 | 𝑧𝑡 , 𝑎𝑡) enforces the MDP transition from
𝑡 to 𝑡 + 1.

Hence, the DLMM can be used to interact with the policy 𝜋 and
generate simulated trajectories via

𝑧𝑡 ∼ 𝑞𝜙 (𝑧𝑡 |𝑠𝑡), 𝑠𝑡+1, 𝑟𝑡 ∼ 𝑝𝜓 (𝑠𝑡+1, 𝑟𝑡 |𝑧𝑡 , 𝑎𝑡); (21)

here, 𝑠𝑡 , 𝑠𝑡+1 and 𝑟𝑡 represent the states and rewards predicted from
DLMM. Consequently, the expected return of 𝜋 can be estimated
as 1

𝑀

∑𝑀
𝑖=1

∑𝑇
𝑡=0 𝛾

𝑡𝑟
(𝑖)
𝑡 , where 𝑀 is the total number of simulated

trajectories generated following the process above, and 𝑟 (𝑖)𝑡 is the
predicted reward at step 𝑡 in the 𝑖-th simulated trajectory. To train
DLMM, one can maximize the evidence lower bound (ELBO) of the
joint log-likelihood

∑𝑇
𝑡=0 log𝑝𝜓 (𝑠𝑡+1, 𝑟𝑡), where the derivation of

the ELBO for DLMM can be found in [20].
From (21), it can be observed that the predicted 𝑠𝑡+1, 𝑟𝑡 are condi-

tioned on 𝑧𝑡 ’s, which are dependent on the predicted state 𝑠𝑡 from
the last step. As a result, such an iterative process may not scale
well to environments with longer horizons and more complicated
dynamics, as the prediction error from all earlier steps are propa-
gated into the future steps. Moreover, this DLMM is not capable of
predicting the QoCmetrics that are only evaluated once at the end of
each session, including the bradykinesia results, patient ratings and
tremor severity as discussed in Sec. 3. To address such limitations,
we introduce a new latent modeling method in Sec. 5, which decou-
ples the dependencies between 𝑧𝑡 ’s and 𝑠𝑡 ’s by directly enforcing
the temporal transitions over latent variables, i.e., 𝑝 (𝑧𝑡+1 |𝑧𝑡 , 𝑎𝑡).

D ALGORITHM TO TRAIN DLSM
Here we introduce how to use gradient descent to maximize the
ELBO (16), resulting in Algorithm 1.For simplicity, we first illus-
trate with the case where the training batch only contains a single
trajectory, and then extend to the cases where each batch contain
𝑛 trajectories. In each iteration, a trajectory is sampled from the
experience replay buffer E𝜇 . Then, the initial latent state in the en-
coder is obtained following 𝑧𝜙0 ∼ 𝑞𝜙 (𝑧0 |𝑠0), while the initial latent
state for the sampling distribution is generated following the latent
prior 𝑧𝜓0 ∼ 𝑝𝜓 (𝑧0). The processes introduced in (13) can be used

to generate 𝑧𝜙𝑡 ’s iteratively given 𝑧𝜙0 . Similarly, 𝑠𝜓𝑡 , 𝑟
𝜓
𝑡 , 𝑧

𝜓
𝑡 can be

generated iteratively following (15). As a result, the log-likelihoods

https://github.com/gaoqitong/vlbm

ICCPS ’23, May 9–12, 2023, San Antonio, Texas Qitong Gao et al.

and KL-divergence terms within the expectation in L𝐸𝐿𝐵𝑂 , defined
in (16), can be evaluated using the variables above, after which𝜓, 𝜙
can be updated using the gradients ∇𝜓 L̃𝐸𝐿𝐵𝑂 ,∇𝜙 L̃𝐸𝐿𝐵𝑂 , respec-
tively, where L̃𝐸𝐿𝐵𝑂 refers to all the terms within the expectation
in L𝐸𝐿𝐵𝑂 . This algorithm is summarized in Alg. 1.

To extend to batch gradient descent, in line 3 of Algorithm 1, a
batch of 𝑛 trajectories, B(𝑛), will be sampled, i.e.,

B(𝑛) =
[[
(𝑠 (1)0 , 𝑎

(1)
0 , 𝑟

(1)
0 , 𝑠

(1)
1), . . . , (𝑠

(1)
𝑇−1, 𝑎

(1)
𝑇−1, 𝑟

(1)
𝑇−1, 𝑠

(1)
𝑇
)
]
, . . . ,[

(𝑠 (𝑛)0 , 𝑎
(𝑛)
0 , 𝑟

(𝑛)
0 , 𝑠

(𝑛)
1), . . . , (𝑠

(𝑛)
𝑇−1, 𝑎

(𝑛)
𝑇−1, 𝑟

(𝑛)
𝑇−1, 𝑠

(𝑛)
𝑇
)
]]
∼ E𝜇 .
(22)

Then, the processes illustrated in lines 4-6 in Algorithm 1 can be
executed in 𝑛 parallel threads, with each corresponding to a unique
trajectory in B(𝑛). Further, then, L̃𝐸𝐿𝐵𝑂 can be evaluated as

L̃𝐸𝐿𝐵𝑂 (𝜓, 𝜙) =
1
𝑛

∑︁𝑛

𝑖=1

[∑︁𝑇

𝑡=0
log𝑝𝜓 (𝑠

(𝑖)
𝑡 |𝑧

(𝑖)
𝑡)

+
∑︁𝑇

𝑡=1
log 𝑝𝜓 (𝑟

(𝑖)
𝑡−1 |𝑧

(𝑖)
𝑡)

+ log𝑝𝜓 (𝑟
(𝑖)
𝑒𝑛𝑑
|𝑧 (𝑖)
𝑇
) − 𝐾𝐿

(
𝑞𝜙 (𝑧

(𝑖)
0 |𝑠

(𝑖)
0) | |𝑝 (𝑧

(𝑖)
0)

)
−
∑︁𝑇

𝑡=1
𝐾𝐿

(
𝑞𝜙 (𝑧

(𝑖)
𝑡 |𝑧

(𝑖)
𝑡−1, 𝑎

(𝑖)
𝑡−1, 𝑠

(𝑖)
𝑡) | |𝑝𝜓 (𝑧

(𝑖)
𝑡 |𝑧

(𝑖)
𝑡−1, 𝑎

(𝑖)
𝑡−1)

)]
,

(23)

with 𝑠 (𝑖)𝑡 , 𝑎
(𝑖)
𝑡 , 𝑧

(𝑖)
𝑡 , 𝑟

(𝑖)
𝑡 , 𝑟

(𝑖)
𝑒𝑛𝑑

being the variables involved in one of
the threads above processing the 𝑖-th trajectory in B(𝑛).

E PARTICIPANT CHARACTERISTICS
Participant 1. Episodes of tremor only. Bradykinesia in the left

hand correlates with right STN beta amplitude. STN beta amplitudes
in both hemispheres correlate with stimulation amplitude. This
participant takes 2 tablets of Sinemet 25mg/100mg for each clinical
visit, one at 2 hrs before the testing begins (7am) and another in
the middle of the visit (around noon) respectively.

Participant 2. Very large amplitude tremor returns within sec-
onds of low amplitude DBS. Bradykinesia in right hand highly
correlated with left STN beta amplitude. Left STN beta amplitude
also correlated with DBS amplitude. This participant takes Flexeril
10mg, Selegiline 5mg and Pramipexole 0.125mg (1 tablet for each)
at 2 hrs before the testing begins.

Participant 3. Pronounced tremor (hands and jaw) returns within
seconds of low amplitude closed-loop DBS. Bradykinesia in right
hand correlates with left STN beta amplitude. Left STN beta am-
plitude is the most responsive to stimulation of the cohort. This
participant takes 2 tablets of Sinemet 25mg/100mg for each clinical
visit, one at 2 hrs before the testing begins (7am) and another in
the middle of the visit (around noon) respectively.

Participant 4. Pronounced tremor. Monopolar left STN DBS can
produce a dyskinesia in neck, so clinical settings have been a bipo-
lar configuration. Right hand bradykinesia correlated to left STN
beta power. This participant takes 1 tablets of Sinemet 25mg/100mg
at 2 hrs before the testing begins (7am).

F PROOF OF THEOREM 5.1
We now derive the evidence lower bound (ELBO) for the joint
log-likelihood distribution, i.e.,

log 𝑝𝜓 (𝑠0:𝑇 , 𝑟0:𝑇−1, 𝑟𝑒𝑛𝑑) (24)

= log
∫
𝑧1:𝑇 ∈Z

𝑝𝜓 (𝑠0:𝑇 , 𝑧1:𝑇 , 𝑟0:𝑇−1, 𝑟𝑒𝑛𝑑)𝑑𝑧 (25)

= log
∫
𝑧1:𝑇 ∈Z

𝑝𝜓 (𝑠0:𝑇 , 𝑧1:𝑇 , 𝑟0:𝑇−1, 𝑟𝑒𝑛𝑑)
𝑞𝜙 (𝑧0:𝑇 |𝑠0:𝑇 , 𝑎0:𝑇−1)

𝑞𝜙 (𝑧0:𝑇 |𝑠0:𝑇 , 𝑎0:𝑇−1)𝑑𝑧

(26)
≥E𝑧𝑡∼𝑞𝜙 [log𝑝 (𝑧0) + log 𝑝𝜓 (𝑠0:𝑇 , 𝑧1:𝑇 , 𝑟0:𝑇−1 |𝑧0) + log𝑝𝜓 (𝑟𝑒𝑛𝑑 |𝑧𝑇)

− log𝑞𝜙 (𝑧0:𝑇 |𝑠0:𝑇 , 𝑎0:𝑇−1)] (27)

=E𝑧𝑡∼𝑞𝜙
[

log 𝑝 (𝑧0) + log𝑝𝜓 (𝑠0 |𝑧0) + log 𝑝𝜓 (𝑟𝑒𝑛𝑑 |𝑧𝑇)

+
∑︁𝑇

𝑡=1
log𝑝𝜓 (𝑠𝑡 , 𝑧𝑡 , 𝑟𝑡−1 |𝑧𝑡−1, 𝑎𝑡−1)

− log𝑞𝜙 (𝑧0 |𝑠0) −
∑︁𝑇

𝑡=1
log𝑞𝜙 (𝑧𝑡 |𝑧𝑡−1, 𝑎𝑡−1, 𝑠𝑡)

]
(28)

=E𝑧𝑡∼𝑞𝜙
[

log 𝑝 (𝑧0) − log𝑞𝜙 (𝑧0 |𝑠0) + log𝑝𝜓 (𝑠0 |𝑧0) + log𝑝𝜓 (𝑟𝑒𝑛𝑑 |𝑧𝑇)

+
∑︁𝑇

𝑡=1
log

(
𝑝𝜓 (𝑠𝑡 |𝑧𝑡)𝑝𝜓 (𝑟𝑡−1 |𝑧𝑡)𝑝𝜓 (𝑧𝑡 |𝑧𝑡−1, 𝑎𝑡−1)

)
−
∑︁𝑇

𝑡=1
log𝑞𝜙 (𝑧𝑡 |𝑧𝑡−1, 𝑎𝑡−1, 𝑠𝑡)

]
(29)

=E𝑧𝑡∼𝑞𝜙
[∑︁𝑇

𝑡=0
log𝑝𝜓 (𝑠𝑡 |𝑧𝑡) + log𝑝𝜓 (𝑟𝑒𝑛𝑑 |𝑧𝑇)

+
∑︁𝑇

𝑡=1
log𝑝𝜓 (𝑟𝑡−1 |𝑧𝑡) − 𝐾𝐿

(
𝑞𝜙 (𝑧0 |𝑠0) | |𝑝 (𝑧0)

)
−
∑︁𝑇

𝑡=1
𝐾𝐿

(
𝑞𝜙 (𝑧𝑡 |𝑧𝑡−1, 𝑎𝑡−1, 𝑠𝑡) | |𝑝𝜓 (𝑧𝑡 |𝑧𝑡−1, 𝑎𝑡−1)

)]
.

(30)

Note that the transition from (26) to (27) follows Jensen’s inequality.

G OPE METRICS
Rank correlation. Rank correlationmeasures the Spearman’s rank

correlation coefficient between the ordinal rankings of the esti-
mated returns and actual returns across policies, i.e.,

𝜌 =
𝐶𝑜𝑣 (rank(𝑉 𝜋

1:𝑃),rank(�̂� 𝜋
1:𝑃))

𝜎 (rank(𝑉 𝜋
1:𝑃))𝜎 (rank(�̂� 𝜋

1:𝑃))
, where rank(𝑉 𝜋

1:𝑃) is the ordinal

rankings of the actual returns, and rank(𝑉 𝜋
1:𝑃) is the ordinal rank-

ings of the OPE-estimated returns.

Regret@1. Regret@1 is the (normalized) difference between value
of the actual best policy, against value of the policy associated with
the best OPE-estimated return, which is defined as (max𝑖∈1:𝑃 𝑉

𝜋
𝑖
−

max𝑗 ∈best(1:𝑃) 𝑉
𝜋
𝑗
)/max𝑖∈1:𝑃 𝑉

𝜋
𝑖

where best(1 : 𝑃) denotes the in-
dex of the best policy over the set of 𝑃 policies as measured by
estimated values 𝑉 𝜋 .

Mean Absolute error (MAE). MAE is defined as the absolute dif-
ference between the actual return and estimated return of a policy:
𝑀𝐴𝐸 = |𝑉 𝜋 −𝑉 𝜋 |; here,𝑉 𝜋 is the actual value of the policy 𝜋 , and
𝑉 𝜋 is the estimated value of 𝜋 .

	Abstract
	1 Introduction
	2 Preliminaries and Motivation
	2.1 The Need for Closed-Loop DBS
	2.2 Offline Reinforcement Learning
	2.3 Offline Policy Evaluation for DBS

	3 DBS Setup Used in Clinical Trials
	4 Offline RL Design of DBS Controllers
	4.1 Modeling the BG as an MDP
	4.2 Policy Distillation

	5 OPE of DBS Controllers Including Patient Feedback and Tremor Data
	6 Clinical Evaluations
	6.1 Therapy Efficacy and Energy-Efficiency of the RL Control Policies
	6.2 Evaluation of the OPE Methodology

	7 Conclusion
	References
	A Notation
	B Availability of Data and Code
	C Additional Preliminaries
	C.1 Deep Actor-Critic RL
	C.2 Deep Latent MDP Model (DMLL)

	D Algorithm to Train DLSM
	E Participant Characteristics
	F Proof of Theorem 5.1
	G OPE Metrics

