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ABSTRACT
Model-based reinforcement learning has been widely studied for

controller synthesis in cyber-physical systems (CPSs). In particular,

for safety-critical CPSs, it is important to formally certify system

properties (e.g., safety, stability) under the learned RL controller.

However, as existing methods typically conduct formal verification

after the controller has been learned, it is often difficult to obtain

any certificate, even after many iterations between learning and

verification. To address this challenge, we propose a framework that

jointly conducts reinforcement learning and formal verification by for-
mulating and solving a novel bilevel optimization problem, which is

end-to-end differentiable by the gradients from the value function

and certificates formulated by linear programs and semi-definite

programs. In experiments, our framework is compared with a base-

line model-based stochastic value gradient (SVG) method and its

extension to solve constrained Markov Decision Processes (CMDPs)

for safety. The results demonstrate the significant advantages of our

framework in finding feasible controllers with certificates, i.e., bar-

rier functions and Lyapunov functions that formally ensure system

safety and stability.

KEYWORDS
Reinforcement learning, certification, barrier function, Lyapunov

function, linear programming, semi-definite programming.

1 INTRODUCTION
Applying machine learning techniques in cyber-physical systems

(CPSs) has attracted much attention. In particular, reinforcement

learning (RL) has shown great promise [46], such as in robotics [21]

and smart buildings [50, 52], where RL trains control policy by max-

imizing the value function of the goal state [42]. However, there is

still significant hesitation in applying RL to safety-critical applica-

tions [20, 56] of CPSs, such as in autonomous vehicles [26, 27, 49],

because of the uncertain and potentially dangerous impact on sys-

tem safety [47, 54, 55]. It is thus important to find RL-learned con-

trollers that are certified, i.e., under which critical system properties

such as safety and stability can be formally guaranteed. And a com-

mon approach to guarantee these properties is to find corresponding

certificates for them, e.g., a barrier function for safety [34] and a

Lyapunov function for stability [29].

∗
Both authors contributed equally to this research.

In this work, we focus particularly on learning certified con-

trollers with RL for CPSs that can be modeled as ordinary differ-

ential equations (ODEs) with unknown parameters, a common

scenario in practice. Traditionally, this is typically done in a two-

step ‘open-loop’ process: 1) first, model-based reinforcement learn-

ing (MBRL) is conducted to learn the system model parameters

and the controller simultaneously, and then 2) based on the identi-

fied dynamics, formal verification is performed to find certificates

for various system properties by solving optimization problems.

However, with such an open-loop paradigm, it is often difficult to

find any feasible certificates even after many iterations of learning

and verification steps, and the failed verification results are not

leveraged sufficiently in the learning of a new controller. Thus, in-

tegrating controller synthesis and certificate generation in a more

holistic manner has received increasing attention recently.

Pioneering works on control-certificate joint learning mainly

focus on systems with known models, i.e., explicit models without

any unknown parameters [5, 9, 24, 28, 36, 37, 44, 45]. Those meth-

ods typically collect samples from the system space, transform the

certificate conditions into loss functions, and solve them via super-

vised learning methods. However, they cannot be directly used to

address systems with unknown parameters, and the certificates ob-

tained in those works are often tested/validated via sampling-based

approaches without being formally verified.

Moreover, for safety properties, methods that are based on solv-

ing constrained Markov Decision Processes (CMDPs) are popular in

the safe RL literature [40, 41, 43]. However, these methods typically

try to achieve safety by restricting the expectation of the cumu-

lative cost for the system’s unsafe actions to be under a certain

threshold, which can only be regarded as soft safety constraints as

the system may still enter the unsafe region.

Contribution of our work: To address these challenges, we propose

a certified RL method with joint differentiable optimization
and verification for systems with unknown model parame-
ters. As shown in Fig. 1, our approach seamlessly integrates RL opti-

mization and formal verification by formulating and solving a novel
bilevel optimization problem, which generates an optimal controller

together with its certificates, e.g., barrier functions for safety and/or

Lyapunov functions for stability. Different from CMDP-based meth-

ods, we address hard safety constraints where the system should

never enter an unsafe region.

The upper-level problem in our bilevel optimization tries to

learn the controller parameters 𝜃 and the unknown system model
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parameters 𝛼 byMBRL; while the lower-level problem tries to verify

system properties by searching for feasible certificates via SDP or

LP with a slack variable 𝑐 . Note that we propose LP relaxation in

addition to SDP because while SDP may be more efficient for low-

dimensional/low-degree systems, LP provides better scalability for

higher-dimensional systems. When the lower-level problem fails to

find any feasible certificate for given 𝜃 and 𝛼 from the upper-level

MBRL problem, it will return the gradient of the slack variable 𝑐

over the control parameter 𝜃 , to guide the exploration of new 𝜃 . Our

framework is end-to-end fully differentiable by the gradients from

the value function in upper MBRL and from the certificates in lower

SDP and LP and can be viewed as a ‘closed-loop learning-verification
paradigm where the failed verification provides immediate gradient

feedback to the controller synthesis. We conducted experiments on

linear and non-linear systems with linear and non-linear controller

synthesis, demonstrating significant advantages of our approach

over model-based stochastic-value gradient (SVG) and its extension

to solve CMDPs for safety. Our approach can find certificates for

safety and stability in most cases based on identified dynamics and

provide better results of those two properties in simulations.

SDP or LP with slack 
variable c for certificates 
(barrier and/or Lyapunov 

functions)

Controller with 
configurable parameters 𝜽

System model with 
unknown parameters 𝜶

Verification

Controller with 
learned 𝜽;
System model 
with learned 𝜶

Gradient 𝜵𝜽𝒄 if 
verification fails; 
Certificates 
when succeed

Action
State;
Reward

MBRL

Figure 1: Overview of our joint differentiable optimization
and verification framework for certified RL. Our approach
integrates RL-based control optimization with formal veri-
fication in a closed-loop manner, by formulating and solv-
ing a bilevel optimization problem. The upper-level prob-
lem learns the controller parameters𝜃 and the systemmodel
parameters𝛼 withMBRL,while the lower-level problemver-
ifies system properties by searching for feasible certificates
via SDP or LP with a slack variable 𝑐. The framework is end-
to-end differentiable.

In the rest of the paper, Section 2 discusses related works. Sec-

tion 3 formulates the problem to address. Section 4 presents our

proposed approach, and Section 5 shows the experimental results.

Section 6 concludes the paper.

2 RELATEDWORKS
Certificate-based verification in our work is related to the literature

on barrier function safety [34] and Lyapunov stability [29], which

provide formal guarantees on the safe control of systems to avoid

unsafe states and on the system stability around an equilibrium

point, respectively. In classical control, finding barrier or Lyapunov

functions is challenging [32] and often requires considerable ex-

pertise and manual effort [7] through optimization. Our approach,

in contrast, automatically searches for certificates and provides

gradient feedback from the failed searches to the learning process,

to guide the exploration of control parameters for increasing the

chance of finding feasible certificates.

Regarding safety in particular, our work aims at addressing hard
safety constraints, by ensuring that the system never enters an

unsafe region with formal guarantees [10, 15, 16], both during and

after training. In contrast, in the popular CMDP-based methods [40,

41, 43], the agent aims to maximize the expected cumulative reward

while restricting the expectation of cumulative cost for their unsafe

interactions with the environment under a certain threshold. Since

the agent can still take unsafe actions with some cost, the safety

constraints in CMDPs can be regarded as addressing soft safety
constraints without formal guarantees. There are also works that

ensure safety by addressing stability [3] in RL, but we consider these

two properties as different in this work, where safety is defined

based on the reachability of the system state.

In terms of optimization techniques, our work leverages SVG [14]

in MBRL and is a first-order, end-to-end differentiable approach

with the computation of the analytic gradient of the RL value func-

tion. Our work also conducts convex optimization for the certifi-

cation. As such an optimization problem may not be feasible to

solve, our approach tries to ‘repair’ it via a slack variable, which

is differentiable to control parameters. This is related to but differ-

ent from the approach in [2], which tries to repair the infeasible

problems by modifying program parameters. Finally, as a differen-

tiable framework, our approach is related to safe PDP [17], which,

different from ours, requires an explicit dynamical model with no

unknown parameters and an initial safe policy.

Our work is also related to the joint learning of controller and

verification by leveraging neural networks to represent certifi-

cates [5, 9, 18, 24, 28, 36–38, 44, 48]. These approaches first translate

the certificate conditions into loss functions, sample and label data

points from the system state, and then learn the certificate in a

supervised learning manner. However, they require a known sys-

tem dynamics model or safe demonstration data, and cannot be

directly applied to systems models with unknown parameters or

without safe data, which is the case our approach addresses via

the RL process. Moreover, the neural network-based certificates

generated by these approaches are often tested/validated through

sampling-based methods and are not formally verified, while our

approach provides formal and deterministic guarantees once the

certificate is successfully obtained.

3 PROBLEM FORMULATION
We consider a continuous CPS whose dynamics can be expressed

as an ordinary differential equation (ODE):

¤𝑥 = 𝑓 (𝑥,𝑢;𝛼), (1)

where 𝑥 ∈ 𝑋 ⊂ R𝑛 is a vector denoting the system state within

the state space 𝑋 and 𝑢 ∈ 𝑈 ⊂ R𝑚 is the control input variable.

𝑓 : R𝑛 × R𝑚 → R𝑛 is a locally Lipschitz-continuous function

ensuring that there exists a unique solution for the system ODE.

Without loss of generality, 𝑓 is a polynomial function, as common

elementary functions, such as sin(𝑥), cos(𝑥),
√
𝑥, 1

𝑥 , 𝑒
𝑥 , ln(𝑥) and

their combinations, can be equivalently transformed to polynomials

[25]. 𝛼 ∈ R |𝛼 | ∈ [𝛼, 𝛼] is a vector denoting the unknown system
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model parameters, which are within a lower bound 𝛼 and an upper

bound 𝛼 . The system has an initial state set 𝑋0 ⊂ 𝑋 , an unsafe state

set 𝑋𝑢 ⊂ 𝑋 , and a goal state set 𝑋𝑔 ⊂ 𝑋 . Without loss of generality,

𝑋𝑔 is assumed as the origin point in this paper. These sets are

semi-algebraic, which can be expressed as: 𝑋0 = {𝑥 |𝜉𝑖 (𝑥) ≥ 0, 𝑖 =

1, · · · , 𝑠}, 𝑋𝑢 = {𝑥 |𝜁𝑖 (𝑥) ≥ 0, 𝑖 = 𝑠 + 1, · · · , 𝑠 + 𝑞}, 𝑋 = {𝑥 |𝜓𝑖 (𝑥) ≥
0, 𝑖 = 𝑠 + 𝑞 + 1, · · · , 𝑠 + 𝑞 + 𝑟 }. The partial derivatives 𝑓𝑥 and 𝑓𝑢
can be computed with the parameters 𝛼 . We abbreviate partial

differentiation or gradient using subscripts, e.g,
𝜕𝑓 (𝑥,𝑢;𝛼)

𝜕𝑥

Δ
= 𝑓𝑥 with

gradient or derivative in front.

Such a continuous system can be controlled by a feedback de-

terministic controller 𝜋 (𝑥 ;𝜃 ) = 𝜃 · 𝑤𝜃 (𝑥) : 𝑋 → 𝑈 , which is

parameterized by vector 𝜃 ∈ R |𝜃 | and monomial basis𝑤𝜃 (𝑥). Note
that𝑤𝜃 (𝑥) can contains non-linear terms. Given any time ∀𝑡 ≥ 0,

the controller 𝜋 reads the system state 𝑥 (𝑡) at 𝑡 , and computes

the control input as 𝑢 = 𝜋 (𝑥 (𝑡);𝜃 ). Overall, the system evolves by

following ¤𝑥 = 𝑓 (𝑥, 𝜋 (𝑥 ;𝜃 )) with 𝜋 .
A flow function 𝜑 (𝑥 (0), 𝑡) : 𝑋0 × R+ → 𝑋 maps any initial state

𝑥 (0) to the system state 𝜑 (𝑥 (0), 𝑡) at time 𝑡,∀𝑡 ≥ 0. Mathematically,

𝜑 satisfies 1) 𝜑 (𝑥 (0), 0) = 𝑥 (0), and 2) 𝜑 is the solution of the

¤𝑥 = 𝑓 (𝑥,𝑢). Based on the flow definition, the system safety and

stability properties and their corresponding certificates, e.g., barrier

function and Lyapunov function, are defined as follows.

Definition 3.1. (Infinite-time Safety Property) Starting from
any initial state 𝑥 (0) ∈ 𝑋0, the system defined in (1) is considered as
meeting the safety property if and only if its flow never enters into
the unsafe set 𝑋𝑢 : ∀𝑡 ≥ 0, 𝜑 (𝑥 (0), 𝑡) ∉ 𝑋𝑢 .

This safety property can be formally guaranteed if the controller

𝜋 can obtain a barrier function as:

Definition 3.2. (Exponential Condition basedBarrier Func-
tion [22]) Given a controller 𝜋 (𝑥 ;𝜃 ), 𝐵(𝑥 ; 𝛽𝐵) is a safety barrier
function parameterized by vector 𝛽𝐵 ∈ R |𝛽 | with 𝜆 ∈ R if:

𝐵(𝑥 ; 𝛽𝐵) ≤ 0,∀𝑥 ∈ 𝑋0,

𝐵(𝑥 ; 𝛽𝐵) > 0,∀𝑥 ∈ 𝑋𝑢 ,
𝜕𝐵

𝜕𝑥
· 𝑓 (𝑥, 𝜋 (𝑥);𝛼) − 𝜆𝐵(𝑥 ; 𝛽𝐵) ≤ 0,∀𝑥 ∈ 𝑋 .

Remark 3.3. (Shielding-based One-Step Safety) Another pos-
sible way to ensure safety is to check during run-time a pre-defined
shield for the system and stop the system when finding a hazard
affront. Note that such shielding mechanism is reactional. It tries to
protect the system from danger by only looking one step forward,
which may degrade the overall performance, as shown in the exper-
iments. Moreover, the system could still be led towards the unsafe
region after several steps when taking the current action and has to
be stopped eventually. In contrast, if can be found, a barrier function
guarantees infinite-time safety.

Definition 3.4. (Stability Property) Starting from any initial
state 𝑥 (0) ∈ 𝑋0, the system defined in (1) is stable around the goal
set𝑋𝑔 if there exists aKL function 𝜏 [19] such that for any 𝑥 (0) ∈ 𝑋0,
∥𝜑 (𝑥 (0), 𝑡)∥𝑋𝑔

≤ 𝜏 (∥𝑥 (0)∥𝑋𝑔
, 𝑡),where ∥𝑥 ∥𝑋𝑔

= inf𝑥𝑔 ∈𝑋𝑔

𝑥 − 𝑥𝑔,
with ∥·∥ denoting the Euclidean distance.

This stability property can be formally guaranteed if there exists

a Lyapunov function for 𝜋 as:

Definition 3.5. (Lyapunov Function)𝑉 (𝑥 ; 𝛽𝑉 ) (𝛽𝑉 ∈ R |𝛽 |) is
a Lyapunov function of controller 𝜋 (𝑥 ;𝜃 ) if:

𝑉 (𝑥 ; 𝛽𝑉 ) ≥ 0, 𝑥 ∈ 𝑋,
𝜕𝑉

𝜕𝑥
· 𝑓 (𝑥, 𝜋 (𝑥 ;𝜃 );𝛼) ≤ 0, 𝑥 ∈ 𝑋 .

Considering the safety and stability certificates, the problem we

address in this paper can be defined as a certified control learning

problem:

Problem 3.6. (Certified Control Learning) Given a continuous
system defined as in (1), learn the unknown dynamical parameters 𝛼
and a feedback controller 𝜋 (𝑥 ;𝜃 ) so that the system formally satisfies
the safety property and/or the stability property with barrier function
𝐵(𝑥 ; 𝛽𝐵) and/or Lyapunov function 𝑉 (𝑥 ; 𝛽𝑉 ) as certificates.

4 OUR APPROACH FOR CERTIFIED
DIFFERENTIABLE REINFORCEMENT
LEARNING

In this section, we present our certified differentiable reinforcement
learning framework to solve the Problem 3.6 defined above. We first

introduce a novel bilevel optimization formulation for Problem 3.6

in Section 4.1, by treating the learning of the controller and the

system model parameters as an upper-level MBRL problem and

formulating the verification as a lower-level SDP or LP problem.

We connect these two sub-problems with a slack variable based on

certification results. We then solve the bilevel optimization problem

with the Algorithm 1 introduced in Section 4.2, which leverages the

gradients of the slack variable and the value function in RL, and in-

cludes techniques for variable transformation, safety shielding, and

parameter identification. Finally, we conduct theoretical analysis

on the soundness, incompleteness and optimality of our approach

in Section 4.3.

4.1 Bilevel Optimization Problem Formulation
In this section, we introduce a novel and general bilevel optimiza-

tion problem for the certified control learning framework and then

its specific extension to SDP and LP.

In general, we can formulate a constrained optimization problem

for the certified control learning defined in Problem 3.6 as:

max

𝜃,𝛼
E𝑓 ,𝑥 (0) ∈𝑋0

[V(𝑥 (0))],

s.t. I𝑖 (𝑥 ;𝜃, 𝛼, 𝛽) ≥ 0,

E 𝑗 (𝑥 ;𝜃, 𝛼, 𝛽) = 0.

(2)

Here,V(𝑥 (0)) is the value function on the initial state 𝑥 (0) ∈ 𝑋0

in RL. I𝑖 (𝑥 ;𝜃, 𝛼, 𝛽), E 𝑗 (𝑥 ;𝜃, 𝛼, 𝛽) are the inequality and equality

constraints encoded from barrier certificate and Lyapunov func-

tion via various relaxation techniques (such as SDP and LP that

are later introduced), with 𝜃 ∈ R |𝜃 | , 𝛼 ∈ R |𝛼 | , 𝛽 ∈ R |𝛽 | as the
vector of controller parameters, unknown system parameters, and

parameters for certificates, respectively. As RL builds on the discrete-

time MDPs, we need to discretize continuous dynamics 𝑓 to com-

pute E[V(𝑥 (0))] by simulating different traces with the controller.

Specifically, in RL,V(𝑥) satisfies the Bellman equation as:V(𝑥) =
𝑟 (𝑥, 𝜋 (𝑥)) + 𝛾V ′(𝑥 ′), where 𝑟 is a reward function at the state-

action pair (𝑥, 𝜋 (𝑥)), encoding the desired learning goal for the
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controller, 𝑥 ′ is the next system state,V ′ is the value function of

𝑥 ′, and constant factor 𝛾 < 1.

Such a constrained optimization problem in RL is often infeasi-

ble, where the infeasible certification results cannot directly guide

the control learning problem. To leverage the gradient from the

verification results and form an end-to-end differentiable framework,

the above problem can be modified to our bilevel optimization
problem by introducing a slack variable 𝑐 ∈ R+. Specifically, the
upper problem tries to solve:

max

𝜃,𝛼
E[V(𝑥 (0);𝜃, 𝛼)] − 𝜆(𝑐∗ (𝜃, 𝛼))2 − ∥𝛼 − 𝛼0∥2,

where 𝑐∗ (𝜃, 𝛼) is the solution to a lower-level problem:

min

𝛽
𝑐,

subject to


I𝑖 (𝑥 ;𝜃, 𝛼, 𝛽) + 𝑐 ≥ 0,

E𝑖 (𝑥 ;𝜃, 𝛼, 𝛽) ≤ 𝑐,
E𝑖 (𝑥 ;𝜃, 𝛼, 𝛽) ≥ −𝑐,
𝑐 ≥ 0,

(3)

where 𝛼0 ∈ R |𝛼 | is the unknown ground truth value of the un-

known system model parameter vector and needs to be estimated

in learning. 𝜆 ≥ 0 is a penalty multiplier. Overall, the lower-level

problem tries to search for a feasible solution for the certificates

while reducing the slack variable 𝑐 . The upper-level problem tries

to maximize the value function in RL, reduce the penalty from

the lower-level slack variable, and learn the uncertain parameters.

Once the lower optima 𝑐∗ = 0, we can obtain a feasible solution

for the original constrained problem (2) and therefore generate a

certificate. In this way, by differentiating the lower-level problem,

the gradient 𝑐∗
𝜃
of 𝑐∗ with respect to 𝜃 can be combined with the

gradient of MBRL in the upper-level problem, and the entire bilevel

optimization problem is fully differentiable.

4.1.1 SDP Relaxation for Bilevel Formulation.

Definition 4.1. (Sum-of-Squares) A polynomial 𝑝 (𝑥) is a sum-
of-squares (SOS) if there exist polynomials 𝑓1 (𝑥), 𝑓2 (𝑥), · · · , 𝑓𝑚 (𝑥)
such that 𝑝 (𝑥) = ∑𝑚

𝑖=1
𝑓𝑖 (𝑥)2 . In such case, it is easy to get 𝑝 (𝑥) ≥ 0.

For the positivity of SOS, the three conditions in a barrier func-

tion as defined in Definition 3.2 can be relaxed into three SOS pro-

grammings based on the Putinar’s Positivstellensatz theorem [30]:

− 𝐵(𝑥) −
𝑠∑︁
𝑖=1

𝜎𝑖 (𝑥) · 𝜉𝑖 (𝑥) ∈ Σ[𝑥],

𝐵(𝑥) −
𝑠+𝑞∑︁
𝑖=𝑠+1

𝜎𝑖 (𝑥) · 𝜁𝑖 (𝑥) ∈ Σ[𝑥],

− 𝜕𝐵
𝜕𝑥
· 𝑓 (𝑥, 𝜋 (𝑥)) + 𝜆𝐵(𝑥) −

𝑠+𝑞+𝑟∑︁
𝑖=𝑠+𝑞+1

𝜎𝑖 (𝑥)𝜓𝑖 (𝑥) ∈ Σ[𝑥] .

Here, 𝜎𝑖 ∈ Σ[𝑥] ≥ 0, 𝑖 = 1, · · · , 𝑠 + 𝑞 + 𝑟 . Σ[𝑥] denotes the SOS ring
that consists of all the SOSs over 𝑥 . 𝜉𝑖 (𝑥) ≥ 0, 𝜁𝑖 (𝑥) ≥ 0,𝜓𝑖 (𝑥) ≥ 0

are the semi-algebraic constraints on 𝑋0, 𝑋𝑢 , and 𝑋 , respectively.

Note that in above formulation, barrier parameter 𝛽 is the decision

variable while controller parameter 𝜃 and dynamics parameter𝛼

are fixed. If such SOS programmings can be solved, i.e., a feasible

barrier function 𝐵(𝑥) exists, the system is proved to be always safe

under the controller 𝜋 and identified 𝛼 .

Similarly, a Lyapunov function can be formulated into two SOS

programmings as the following, and if a solution is obtained, the

system stability can be guaranteed:

𝑉 (𝑥) −
𝑟∑︁
𝑖=1

𝜎𝑖 (𝑥) ·𝜓𝑖 (𝑥) ∈ Σ[𝑥],

− 𝜕𝑉
𝜕𝑥
· 𝑓 (𝑥, 𝜋 (𝑥)) −

2𝑟∑︁
𝑖=𝑟+1

𝜎𝑖 (𝑥) ·𝜓𝑖 (𝑥) ∈ Σ[𝑥] .

Next, we are going to show how to transform an SOS into an

SDP, which is used in our framework. Given a polynomial ℎ(𝑥) in
SOS with the degree bound 2𝐷 , we have:

ℎ(𝑥 ;𝜃, 𝛼, 𝛽) ∈ Σ[𝑥] ⇐⇒ℎ(𝑥 ;𝜃, 𝛼, 𝛽) = 𝑤 (𝑥)𝑇𝑄 (𝜃, 𝛼, 𝛽)𝑤 (𝑥),
𝑄 (𝜃, 𝛼, 𝛽) ⪰ 0.

Here,𝑤 (𝑥) = (1, 𝑥1, · · · , 𝑥𝑛, 𝑥1𝑥2, · · · , 𝑥𝐷𝑛 ) is a vector of monomials,

and𝑄 is a 𝑑𝑄 ×𝑑𝑄 positive semi-definite matrix, where 𝑑𝑄 =
(𝐷+𝑛
𝐷

)
,

called Gram matrix of ℎ(𝑥) [35].
The problem in (2) can then be written as:

max

𝜃,𝛼
E[𝑉 (𝑥 (0))],

s.t. ℎ𝑖 (𝑥 ;𝜃, 𝛼, 𝛽) = 𝑤 (𝑥)𝑇𝑄𝑖 (𝜃, 𝛼, 𝛽)𝑤 (𝑥),
𝑄𝑖 (𝜃, 𝛼, 𝛽) ⪰ 0.

To make ℎ(𝑥) = 𝑤 (𝑥)𝑇𝑄𝑤 (𝑥), we need to list all the equations for

coefficients in each monomial. Given an upper bound of degree 2D

of the polynomialℎ(𝑥), let𝑎 = (𝑎1, 𝑎2, · · · , 𝑎𝑛), 𝑏 = (𝑏1, 𝑏2, · · · , 𝑏𝑛),
𝑑 = (𝑑1, 𝑑2, · · · , 𝑑𝑛), (𝑎𝑖 , 𝑏𝑖 , 𝑑𝑖 ∈ N) be the 𝑛-dimensional vec-

tors indicating the degree of 𝑥 = (𝑥1, 𝑥2, · · · , 𝑥𝑛). Let ℎ(𝑥) =∑
| |𝑎 | |1≤2𝐷 ℎ𝑎𝑥𝑎 , where | | · | |1 is the 1-norm operator andℎ𝑎 (𝜃, 𝛼, 𝛽)

is the coefficient of 𝑥𝑎 =
∏𝑛

𝑖=1
𝑥
𝑎𝑖
𝑖
. Let 𝑄 = 𝑄𝑏𝑑 , where {𝑄𝑏𝑑 } rep-

resents the entry corresponding to 𝑥𝑏 and 𝑥𝑑 in the base vector

𝑤 (𝑥). Then, by equating the coefficients for all the monomials, we

have

ℎ(𝑥 ;𝜃, 𝛼, 𝛽) = 𝑤 (𝑥)𝑇𝑄 (𝜃, 𝛼, 𝛽)𝑤 (𝑥) ⇐⇒

∀||𝑎 | |1 ≤ 2𝐷,ℎ𝑎 (𝜃, 𝛼, 𝛽) =
∑︁

𝑏+𝑑=𝑎
𝑄𝑏𝑑

as the equality constraints. Along with 𝑄 ⪰ 0, the problem in (2)

can now be written as an SDP problem:

max

𝜃,𝛼
E[V(𝑥 (0))],

s.t. ℎ𝑖𝑎 (𝜃, 𝛼, 𝛽) =
∑
𝑏+𝑑=𝑎𝑄

𝑖
𝑏𝑑
,∀||𝑎 | |1 ≤ 2𝐷, 𝑄𝑖 (𝜃, 𝛼, 𝛽) ⪰ 0.

(4)

Therefore, the bilevel optimization problem in (3) can be written

as the following problem with SDP formulation:

max

𝜃,𝛼
E[V(𝑥 (0);𝜃, 𝛼)] − 𝜆(𝑐∗ (𝜃, 𝛼))2 − ∥𝛼 − 𝛼0∥2,
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where 𝑐∗ (𝜃, 𝛼) is the solution to a lower-level problem:

min

𝛽
𝑐,

subject to


ℎ𝑖𝑎 (𝜃, 𝛼, 𝛽) ≤

∑
𝑏+𝑑=𝑎 𝑄

𝑖
𝑏𝑑
+ 𝑐,∀||𝑎 | |1 ≤ 2𝐷,

ℎ𝑖𝑎 (𝜃, 𝛼, 𝛽) ≥
∑
𝑏+𝑑=𝑎 𝑄

𝑖
𝑏𝑑
− 𝑐,∀||𝑎 | |1 ≤ 2𝐷,

𝑄𝑖 (𝜃, 𝛼, 𝛽) ⪰ 0,

𝑐 ≥ 0,

(5)

where for barrier function, 𝑖 = (1, 2, 3), and for Lyapunov function,

𝑖 = (1, 2).

4.1.2 LP Relaxation for Bilevel Formulation. In addition to SDP, to

improve scalability for higher-dimensional/higher-degree systems,

we introduce the Handelman Representation [39] to encode the

bilevel optimization formulation into an LP problem.

Theorem 4.2. (Handelman) If 𝑝 is strictly positive over a com-
pact and semi-algebric set 𝐾 = {𝑥 |𝑓𝑗 (𝑥) ≥ 0}( 𝑗 = 1, · · · ,𝑚), then 𝑝
can be represented as a positive linear combination of the inequalities
𝑓𝑗 :

𝑝 (𝑥) =
𝑛∑︁

𝑘=1

𝜆𝑘

𝑚∏
𝑗=1

𝑓𝑗 (𝑥)𝑛𝑘,𝑗 , for 𝜆𝑘 > 0 and 𝑛𝑘,𝑗 ∈ N.

Theorem 4.2 is proved in [13]. Based on it, finding the gen-

eral Handelman Representation of a function 𝑝 (𝑥) within a semi-

algebraic set 𝐾 defined by inequalities

∧𝑚
𝑖=1

𝑓𝑗 ≥ 0 is as follows.

(1) Fix the demand degree 𝐷 .

(2) Generate all possible positive power product polynomials

upto degree𝐷 in the form 𝑝𝑎 =
∏𝑚

𝑗=1
𝑓
𝑎 𝑗

𝑗
, where each𝑎 𝑗 ∈ N

and

∑𝑚
𝑗=1

𝑎 𝑗 = ∥𝑎∥
1
≤ 𝐷 , and thus 𝑝𝑎 ≥ 0 and we have

𝑃𝑃 = {𝑝𝑎 | ∀∥𝑎∥1 ≤ 𝐷}.
(3) Express 𝑝 (𝑥) = ∑

𝑝𝑎 ∈𝑃𝑃 𝑐𝑠𝑝𝑎 and equate the known polyno-

mial 𝑝 with the set of power products from the last step to

get the linear equality constraint involving 𝑐𝑠 .

(4) If 𝑐𝑠 exists, then 𝑝 (𝑥) ≥ 0 is proved.

According to Theorem 4.2, Definition 3.2, and Krivine-Vasilescu-

Handelman’s Positivstellensatz [23], barrier function can be relaxed

into following three LP constraints:

𝐵(𝑥) =
∑︁

𝑑𝑒𝑔 (𝑝𝛿
𝜉
) ≤𝐷

𝜆𝛿𝑝
𝛿
𝜉
, −𝐵(𝑥) >

∑︁
𝑑𝑒𝑔 (𝑝𝜔

𝜁
) ≤𝐷

𝜆𝜔𝑝
𝜔
𝜁
,

𝜕𝐵

𝜕𝑥
· 𝑓 (𝑥, 𝜋 (𝑥 ;𝜃 );𝛼) − 𝜆𝐵(𝑥) >

∑︁
𝑑𝑒𝑔 (𝑝𝜏

𝜓
) ≤𝐷

𝜆𝜏𝑝
𝜏
𝜓
,

𝜆𝛿 , 𝜆𝜏 , 𝜆𝜔 ≥ 0.

Here, 𝑝𝛿
𝜉
, 𝑝𝜏

𝜓
, and 𝑝𝜔

𝜁
are all power products of polynomials on the

initial space, state space, and unsafe space as 𝜉𝑖 (𝑥) ≥ 0, 𝜁𝑖 (𝑥) ≥ 0,

and 𝜓𝑖 (𝑥) ≥ 0. Thus, according to Theorem 4.2, the positivity of

each barrier certificate property can be ensured from the above

formulation. Similarly, the Lyapunov function can be encoded into

the following equations for stability properties.

𝑉 (𝑥 ; 𝛽𝑉 ) >
∑︁

𝑑𝑒𝑔 (𝑝𝛾
𝜓
) ≤𝐷

𝜆𝜖𝑝
𝛾

𝜓
,

− 𝜕𝑉
𝜕𝑥
· 𝑓 (𝑥, 𝜋 (𝑥 ;𝜃 );𝛼) >

∑︁
𝑑𝑒𝑔 (𝑝𝛾

𝜓
) ≤𝐷

𝜆𝜈𝑝
𝛾

𝜓
,

𝜆𝜖 , 𝜆𝜈 ≥ 0.

We can conduct the same constraints generation for LP as SDP by

equating the coefficients of all the possible monomials. Let 𝜆𝑖𝑝
𝑎
𝑖

denote the coefficient of monomial 𝑥𝑎 =
∏𝑛

𝑖=1
𝑥
𝑎𝑖
𝑖
, 𝑎 = (𝑎1, · · · , 𝑎𝑛),

and thus ℎ𝑖𝑎 (𝜃, 𝛼, 𝛽) = 𝜆𝑖𝑝𝑎𝑖 . Then the bilevel optimization problem

in (3) can be written as the following problem with LP formulation:

max

𝜃,𝛼
E[V(𝑥 (0);𝜃, 𝛼)] − 𝜆(𝑐∗ (𝜃, 𝛼))2 − ∥𝛼 − 𝛼0∥2,

where 𝑐∗ (𝜃, 𝛼) is the solution to a lower-level problem:

min

𝛽
𝑐,

subject to


ℎ𝑖𝑎 (𝜃, 𝛼, 𝛽) ≤ 𝜆𝑖𝑝𝑎𝑖 + 𝑐,∀||𝑎 | |1 ≤ 𝐷,
ℎ𝑖𝑎 (𝜃, 𝛼, 𝛽) ≥ 𝜆𝑖𝑝𝑎𝑖 − 𝑐,∀||𝑎 | |1 ≤ 𝐷,
∀𝜆𝑖 ≥ 0,

𝑐 ≥ 0.

(6)

Remark 4.3. Note that both SOS and Handelman relaxations are
incomplete, meaning that it is possible that a polynomial 𝑝 (𝑥) is
positive but cannot be expressed by SOS or Handelman representations.

4.2 Algorithm for Solving the Bilevel
Optimization Problem

We develop the following Algorithm 1 to solve the bilevel optimiza-

tion problem by SDP and LP. The inputs to Algorithm 1 include

the system model (with unknown parameters), the step length, a

shielding set for ensuring the system safety during learning (more

details below), and the form of polynomials for the certificates and

the controller. The outputs include the learned controller and its cer-

tificates (barrier and/or Lyapunov function). There are four major

modules in Algorithm 1, including variable transformation for sys-

tem model, shielding-based safe learning, parameter identification,

and gradient computation for RL and certificates, as below.

Variable Transformation: If the system model contains non-

polynomial univariate basic elementary functions such as sin(𝑥),
cos(𝑥), exp(𝑥), log(𝑥), 1/𝑥,

√
𝑥 or their combinations, we can equiv-

alently transform them into polynomial terms with additional vari-

ables [25]. For example if ¤𝑥 = sin(𝑥), we can let𝑚 = sin(𝑥), 𝑛 =

cos(𝑥), andwe then have ¤𝑥 =𝑚, ¤𝑚 = cos(𝑥) ¤𝑥 = 𝑛𝑚, ¤𝑛 = − sin(𝑥) ¤𝑥 =

−𝑚2
as a polynomial system.

Shielding-based Safe Learning for Training: We compute a

shielding set S to ensure system safety during learning, by stopping
the current learning process if the system is within S (line 5 in

Algorithm 1). Specifically, we can construct S offline, based on the

definition that the system may enter the unsafe state set 𝑋𝑢 in the

next step when it is in S, i.e., S = {𝑥 |min𝛼 min𝑥𝑢 ∈𝑋𝑢
∥𝑥 ′ − 𝑥𝑢 ∥ =

0} s.t. 𝛼 ≤ 𝛼 ≤ 𝛼 . Here, 𝑥 is the current state and 𝑥 ′ is the predicted
next state based on some𝛼 ∈ [𝛼, 𝛼] for the discretized systemmodel

𝑓 𝑑 (by applying zeroth-order hold to the continuous system model
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Algorithm 1 End-to-end MBRL with Certification

1: Input: Nominal dynamics ¤𝑥 = 𝑓 (𝑥,𝑢;𝛼) and its discretized

form 𝑓 𝑑 , with unknown system model parameters 𝛼 ∈ [𝛼, 𝛼],
step length 𝑙 , shielding set S, barrier function form 𝐵(𝑥) =
𝛽𝐵 · 𝑤𝐵 (𝑥) (𝛽𝐵 unknown), Lyapunov function form 𝑉 (𝑥) =
𝛽𝑉 ·𝑤𝑉 (𝑥) (𝛽𝑉 unknown), and controller form 𝜋 = 𝜃 ·𝑤𝜃 (𝑥)
(𝜃 unknown).

2: 𝜃 = 0, 𝛽𝐵 = 0, 𝛽𝑉 = 0.

3: Conduct variable transformation if the system model contains

non-polynomial terms.

4: repeat
5: Sample trajectory with 𝜃 ; stop early if state 𝑥 ∈ S.
6: V ′𝑥 ′ = 0,V ′𝜃 ′ = 0.

7: for 𝑡 = 𝑇 down to 0 with trajectory do
8: 𝛼 ← 𝛼 + 𝛾 Δ𝑥

𝛿𝑡
; computer gradients V𝑥 ,V𝜃 as in Eq. (7).

9: Solve lower-level SDP or LP; compute 𝑐∗, 𝛽∗; compute gradi-
ent 𝑐∗

𝜃
as in Eq. (8).

10: 𝜃 ← 𝜃 + 𝑙 (V𝜃 − 2𝜆𝑐∗ · 𝑐∗
𝜃
), increase 𝜆.

11: until 𝑐∗ = 0

12: Output: 𝜋 (𝑥 ;𝜃 ), 𝐵(𝑥 ; 𝛽𝐵),𝑉 (𝑥 ; 𝛽𝑉 ).

𝑓 ). During the learning process, when the system is within the

shielding set S, the current learning process will stop and start over
again. Note that we compute the set with the entire interval of 𝛼

and it only provides one-step safety as explained in Remark 3.3. Also

note that the shielding set is for ensuring safety during learning.

Regardless of whether we use it, the controller we obtained after
learning, if it exists with the generated barrier function based on

the identified dynamics, is always guaranteed to be infinite-time
safe as defined in Definition 3.1.

Parameter Identification for System Model: To learn the un-

known parameters of the system model during RL, we can compute

the state difference between any two adjacent control time steps

and then compute the approximated gradient for parameters 𝛼 .

For instance, for a one-dimensional system ¤𝑥 = 𝛼𝑥 , we can per-

form 𝛼 ← 𝛼 + 𝛾 · [𝑓 𝑑 (𝑥 (𝛿𝑡), 𝜋 (𝑥 (𝛿𝑡));𝛼) − 𝑥 (𝛿𝑡)]/𝛿 , where 𝛾 is

the learning rate and 𝑓 𝑑 is the discretized system model from the

continuous system model 𝑓 , as long as the sampling period 𝛿 is

small enough according to the Nyquist–Shannon sampling theo-

rem. In the experiments, we observe that 𝛼 always converges to

its ground truth with the learning (i.e., ∥𝛼 − 𝛼0∥2 → 0), albeit we

cannot guarantee the convergence. Note that the safety or stability

guarantee is established on the identified system parameters, and

we have the following remark.

Remark 4.4. (Parameter Identification Error and Certifica-
tion) The certification is built on the identified system parameters.
However, due to the errors from the discretization and gradient ap-
proximation, the final identified parameters may be closed to the
ground truth value but not the same (the ground truth value is in fact
assumed as unknown in this paper). However, if the identification er-
ror can be quantified, it can then be viewed as a bounded disturbance
to the system. In which case our approach can be easily extended to
such disturbed systems as barrier functions can be built on uncer-
tain parameters [34] and parametric Lyapunov function can also be
synthesized for LTI systems [11].

Next, we introduce two gradients that can be computed end-to-

end to solve the bilevel problem.

Computing the Value Function Gradient in MBRL: As men-

tioned above, by applying zeroth-order hold to the continuous

system model 𝑓 , we can obtain the discrete-time model 𝑥 (𝑡 + 1) =
𝑓 𝑑 (𝑥 (𝑡), 𝜋 (𝑥 (𝑡))). Note that 𝑓 𝑑 contains the unknown system pa-

rameters 𝛼 , which are updated at run-time. By differentiating the

Bellman equationV(𝑥) = 𝑟 (𝑥, 𝜋 (𝑥)) + 𝛾V ′(𝑓 𝑑 (𝑥, 𝜋 (𝑥))) [14], we
can obtain the value function gradients V𝑥 ,V𝜃 with respect to the

state 𝑥 and the controller parameters 𝜃 :

V𝑥 = 𝑟𝑥 + 𝑟𝑢𝜋𝑥 + 𝛾V
′
𝑥 ′ (𝑓

𝑑
𝑥 + 𝑓 𝑑𝑢 𝜋𝑥 ),

V𝜃 = 𝑟𝑢𝜋𝜃 + 𝛾V
′

𝑥
′ 𝑓

𝑑
𝑢 𝜋𝜃 + 𝛾V

′

𝜃
,

(7)

where every subscript is a partial derivative. E[V(𝑥 (0))] will be
increased by updating𝜃 with the direction as gradientV𝜃 (𝑥 (0)). For
the implementation, we can collect a trajectory {𝑥 (0), 𝑢 (0), 𝑟 (0),
· · · , 𝑥 (𝑇 ), 𝑢 (𝑇 ), 𝑟 (𝑇 )} of the discrete-time system by the controller,

let V ′𝑥𝑇 = 0,V ′𝜃 = 0 and roll back to the initial state 𝑥 (0), and
obtain the gradient V𝜃 (𝑥 (0)) based on equation (7).

Computing theCertificationGradient:To solve the bilevel prob-
lem in an end-to-end manner, the slack variable 𝑐∗ should be dif-

ferentiable to the controller parameters 𝜃 as it connects the two

sub-problems. The lower-level SDP or LP belongs to the disciplined

parameterized programming problem where the optimization vari-

ables are 𝑐, 𝛽 and the parameters are 𝜃 . And the lower-level problem

defined in (3) can be viewed as a function mapping of 𝜃 to the op-

timal solution (𝑐∗, 𝛽∗), e.g., F : 𝜃 → (𝑐∗, 𝛽∗). According to [1],

function F can be expressed as the composition R ◦ 𝑠 ◦ C, where
C represents the canonical mapping of 𝜃 to a cone problem (𝐴, 𝑒),
which is then solved by a cone solver 𝑠 and returns (𝑐∗, ¯𝛽∗). Finally,
the retriever R translates the cone solution (𝑐∗, ¯𝛽∗) to the original

solution (𝑐∗, 𝛽∗). Thus, according to the chain rule, we have

𝑐∗
𝜃
= R (𝑐∗, ¯𝛽∗) · 𝑠 (𝐴,𝑒) · C𝜃 (8)

as a part of the gradient in the upper-level objective. Overall, the

controller is updated as 𝜃 ← 𝜃 + 𝑙 (V𝜃 − 2𝜆𝑐∗ · 𝑐∗
𝜃
). As the termi-

nation condition in Algorithm 1, 𝑐∗ = 0 indicates that the original

constrained problem has a feasible solution 𝛽∗ given the current 𝜃 ,

meaning that there exists a certificate for the learned controller.

4.3 Theoretical Analysis on Optimality
Proposition 4.5. (Soundness)Our approach is sound as the final

learned controller is formally guaranteed to hold the barrier certificate
for safety and Lyapunov function for stability, based on the identified
parameters in the system model.

Take the SDP relaxation as an example, the soundness is easy to

check as the slack variables 𝑐 of the learned controller is reduced

to 0 and thus the solution of the bilevel optimization problem (5) is

a solution to problem (4). And it is similar for the LP relaxation.

Remark 4.6. (Incompleteness) Our approach is incomplete as
we cannot guarantee our approach will always be able to search a
controller with a barrier certificate and Lyapunov function. This is
due to 1) the incompleteness of the SDP and LP relaxation approaches
we utilized, 2) the limited controller parameter space we optimize on,
and 3) the gradients of RL and slack variable affect each other.
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However, with some mild assumptions, we can provide the fol-

lowing completeness analysis for our framework. Here we take

the SDP relaxation of the bilevel problem as an example, and the

analysis can also be applied to the LP-based bilevel problem.

Proposition 4.7. (Stationary Point) Suppose that there exists
a step length 𝑙 satisfying the Wolfe conditions [51] for the value
gradient V𝜃𝑘 and the verification gradient 𝑐∗

𝜃𝑘
at the 𝑘-th update.

Then Algorithm 1 will reach a stationary point for problem (5).

E[V(𝑥 (0);𝜃, 𝛼)]−𝜆(𝑐∗ (𝜃, 𝛼))2 can be viewed as an unconstrained
optimization problem over 𝜃 . For this problem, since we can com-

pute its closed-form gradient asV𝜃 and 𝑐∗
𝜃
, we can choose the step

length 𝑙 by the Wolfe conditions, which lead problem (5) to a sta-

tionary point when given a 𝜆. The proof of Proposition 4.7 can be

adapted from the general analysis in [31] and is shown below.

Reaching a stationary point does not necessarilymean that 𝑐∗ = 0

in problem (5) and thus does not necessarily lead to a solution of (4).

However, with stronger assumptions, we can guarantee 𝑐∗ = 0 (and

thus a solution of (4)) as follows in Theorem 4.8. The proof of this

theorem is also adapted from [31] and shown below.

Theorem 4.8. (Global Solution) Suppose that 𝜃𝑘 is the exact
global maximizer of the objective function in problem (5) at the 𝑘-th
update iteration, and that 𝜆𝑘 →∞. Then every limit point 𝜃∗ of the
sequence {𝜃𝑘 } is a global solution of (4).

Proof for Proposition 4.7: Let 𝑔(𝜃𝑘 ) = −E[V(𝑥 (0);𝜃𝑘 , 𝛼)] +
𝜆𝑘𝑐

2 (𝜃𝑘 ), which is the negative value of the objective in the bilevel

problem (5) and needs to be minimized. Let 𝑝𝑘 = −𝑔𝜃𝑘 denote the

line search direction as the gradient. According to the second Wolfe

condition with two constant numbers 0 < 𝑑1 < 𝑑2 < 1, we have

(𝑔𝜃𝑘+1 − 𝑔𝜃𝑘 )
𝑇 𝑝𝑘 ≥ (𝑑2 − 1)𝑔𝑇

𝜃𝑘
𝑝𝑘 .

Assume that the gradient 𝑔𝜃 of 𝑔(𝜃 ) is Lipschitz continuous, which
implies that there exists a constant value 𝐿 such that

𝑔𝜃𝑘+1 − 𝑔𝜃𝑘
𝜃𝑘+1 − 𝜃𝑘

=
𝑔𝜃𝑘+1 − 𝑔𝜃𝑘

𝑙𝑘𝑝𝑘
≤ 𝐿,

(𝑔𝜃𝑘+1 − 𝑔𝜃𝑘 )
𝑇 𝑝𝑘 ≤ 𝑙𝑘𝐿∥𝑝𝑘 ∥2,

where 𝑙𝑘 is the step length. Combine the two inequalities, we have

𝑙𝑘 ≥
𝑑2 − 1

𝐿

𝑔𝑇
𝜃𝑘
𝑝𝑘

∥𝑝𝑘 ∥2
.

According to the first Wolfe condition, we can obtain

𝑔(𝜃𝑘+1) ≤ 𝑔(𝜃𝑘 ) − 𝑑1

1 − 𝑑2

𝐿

(𝑔𝑇
𝜃𝑘
𝑝𝑘 )2

∥𝑝𝑘 ∥2
,

𝑔(𝜃𝑘+1) ≤ 𝑔(𝜃𝑘 ) − 𝑑
𝑔𝜃𝑘 2

,

where 𝑑 =
𝑑1 (1−𝑑2)

𝐿
. We can then extend the inequality to the initial

value as

𝑔(𝜃𝑘+1) ≤ 𝑔(𝜃0) − 𝑑
𝑘∑︁
𝑖=0

𝑔𝜃𝑖 2

.

Since we are considering the episodic RL and 𝑐∗ is bounded from

the lower-level SDP, function 𝑔 is bounded, and thus there is a

positive number 𝑁 such that

∞∑︁
𝑘=0

𝑔𝜃𝑘 2

< 𝑁 =⇒ lim

𝑘→∞

𝑔𝜃𝑘  = 0,

which indicates that the solving the problem (5) with Algorithm 1

eventually reaches a stationary point. □

Proof for Theorem 4.8: Problem (4) can be viewed as a con-

strained problem with constraint 𝑐 (𝜃 ) = 0. Suppose that
¯𝜃 is a

global solution of problem (4) with 𝑐 ( ¯𝜃 ) = 0 (meaning that there

exists a feasible certificate), and name the objective function of

problem (5) max𝜃,𝛼 E[V(𝑥 (0);𝜃, 𝛼)] − 𝜆(𝑐∗ (𝜃, 𝛼))2 − ∥𝛼 − 𝛼0∥2 as

𝑔(𝜃 ), we then have

𝑔( ¯𝜃 ) ≥ 𝑔(𝜃 ) ∀𝜃, 𝑐 (𝜃 ) = 0.

Since 𝜃𝑘 maximizes 𝑔(𝜃, 𝜆𝑘 ) for each iteration 𝑘 , we then have

𝑔(𝜃𝑘 , 𝜆𝑘 ) ≥ 𝑔( ¯𝜃, 𝜆𝑘 ), resulting in the following inequality:

E[V(𝑥 (0);𝜃𝑘 , 𝛼)] − 𝜆𝑘𝑐2 (𝜃𝑘 ) ≥ E[V(𝑥 (0); ¯𝜃, 𝛼)] − 𝜆𝑘𝑐2 ( ¯𝜃 )
= E[V(𝑥 (0); ¯𝜃, 𝛼)],

and thus,

𝑐2 (𝜃𝑘 ) ≤
E[V(𝑥 (0);𝜃𝑘 , 𝛼)] − E[V(𝑥 (0); ¯𝜃, 𝛼)]

𝜆𝑘
.

Suppose that 𝜃∗ is a limit point of the sequence {𝜃𝑘 }, so that there

exists an infinite sub-sequences K such that

lim

𝑘∈K
𝜃𝑘 = 𝜃∗ .

When 𝑘 →∞, we then have

𝑐2 (𝜃∗) = lim

𝑘∈K
𝑐2 (𝜃𝑘 ) ≤ lim

𝑘∈K
E[V(𝑥 (0);𝜃𝑘 , 𝛼)] − E[V(𝑥 (0); ¯𝜃, 𝛼)]

𝜆𝑘
.

For E[V(𝑥 (0);𝜃𝑘 , 𝛼)] and E[V(𝑥 (0); ¯𝜃, 𝛼)], since they follow

the same distribution on 𝑥 (0) ∈ 𝑋0, and we deal with the episodic

setting in RL, their difference is bounded. Because we have 𝜆𝑘 →∞
when 𝑘 →∞, so 𝑐 (𝜃∗) = 0, meaning that 𝜃∗ is the feasible solution
of the problem (4).

Moreover, follow the inequality of 𝜃𝑘 with 𝑘 →∞, we have
lim

𝑘∈K
E[V(𝑥 (0);𝜃𝑘 , 𝛼)] − 𝜆𝑘𝑐2 (𝜃𝑘 ) ≥ E[V(𝑥 (0); ¯𝜃, 𝛼)],

E[V(𝑥 (0);𝜃∗, 𝛼)] − 𝜆𝑘𝑐2 (𝜃∗) ≥ E[V(𝑥 (0); ¯𝜃, 𝛼)],
E[V(𝑥 (0);𝜃∗, 𝛼)] ≥ E[V(𝑥 (0); ¯𝜃, 𝛼)] .

Since 𝜃∗ is a feasible solution with 𝑐 (𝜃∗) = 0, whose objective is

not smaller than that of the global solution
¯𝜃 , we can conclude that

𝜃∗ is a global solution as well, as claimed in Theorem 4.8. □

5 EXPERIMENTAL RESULTS
Experimental Settings: As the focus of our work is to learn certi-

fied controllers that formally guarantee system safety and stability,

we will compare our approach with an SVG(∞) [14] based method

over a variety of benchmarks. For fair comparison, the SVG is

equipped with parameter identification and shielding during both
training and testing. For our approach, shielding is used only during
training but not needed at testing, as the safety is already guaran-

teed by the barrier function. For the safety property, the baseline

SVG is further extended to solve a CMDPwith a safety constraint on
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Table 1: Certification results by our approach with SDP and
LP, and the SVG-based method for four examples. 𝐵𝑑 de-
notes the successfully obtained barrier function with poly-
nomial degree 𝑑 for safety guarantees, 𝐿𝑑 denotes the suc-
cessfully obtained Lyapunov function with polynomial de-
gree 𝑑 for stability guarantee. ‘×’ means there does not ex-
ist any certificate as the controller is unsafe. ‘−’ means that
it fails to find a certificate with degree up to 6. We can see
that our approach (both SDP-based and LP-based) succeeds
in finding a certified controller in all cases while SVG cannot
in most cases.

Examples PJ Pendulum LK Att. Control

Ours (LP) 𝐵2 𝐿2 𝐿2, 𝐵6 𝐿2

Ours (SDP) 𝐵2 𝐿2 𝐿2, 𝐵4 𝐿2

SVG (CMDP) × − 𝐿2,− −

the system state’s Euclidean distance to the unsafe set being greater

than a threshold. This CMDP is solved by the standard penalty

method for its augmented Lagrangian problem. For the stability

property, we encode it in the reward function as the negative L2

norm to the origin point (target). We apply formal verification (i.e.,

search for barrier or Lyapunov function) at each iteration of the

SVG to check whether safety or stability can hold.

In our comparison, we carefully select benchmarks with 2-6

states from [4, 6, 15, 34]. It is worth noting that generating certifi-

cates for a dynamical system with a given controller is already an

NP-hard problem [33] in theory and difficult to solve in practice.

Current state-of-the-art works of learning-based controller syn-

thesis with certificate therefore mainly focus on low-dimensional

systems with fewer than 6 dimensional states [5, 8, 12, 24, 28, 37, 53].

Thus, we believe that the chosen benchmarks can well reflect the

advantages and limitations of our approach. We test the examples

on an Intel-i7 machine with 16GB memory.

Comparison on Safety and Stability: Table 1 summarizes the

certification results of our approach with SDP and LP and the SVG-

based method on four examples. We will discuss each of them in

details below.

PJ (Safety). We consider a modified example from [34], whose

dynamics is expressed as

¤𝑥1 = 𝛼1𝑥2, ¤𝑥2 = 𝛼2𝑥
3

1
+ 𝑢

where state 𝑥1, 𝑥2 ∈ [−100, 100], and 𝛼1, 𝛼2 ∈ [−1.5, 1.5]. The initial
and unsafe sets are 𝑋0 = {(𝑥1 − 1.5)2 + 𝑥2

2
≤ 0.25}, 𝑋𝑢 = {(𝑥1 +

0.8)2 + (𝑥2 +1)2 ≤ 0.25}. We focus on finding a linear controller and

barrier certificate for system safety in this example. Fig. 2 shows the

simulated system trajectories by the learned controllers from our

approach and from the SVG method with CMDP. It also shows the

0-level contour plot of the barrier functions from our approach. We

can see that the controller learned by the SVG after 100 iterations

is unsafe (entering the unsafe region in red and has to be stopped

by shielding) and thus having no safety certificate. Our approach

is safe during and after learning with shielding and the learned

barrier certificate.

2 1 0 1 2
2.5

2.0

1.5

1.0

0.5

0.0

0.5

Ours(SDP)
Ours(LP)
SVG w/ CMDP

Figure 2: Trajectories under the learned controllers fromour
approach with SDP and LP, and from SVG (with shielding at
testing) for the PJ example. Initial space 𝑋0 is in grey, and
unsafe region 𝑋𝑢 is in red. The barrier function 0-level plot
by ours with the SDP formulation is in black and with the
LP formulation is in purple.

0.50 0.25 0.00 0.25
1.0

0.5

0.0

0.5

1.0

1.5 Ours(SDP)
Ours(LP)
SVG

2 1 0 1 2 2
1

0
1

2
0.0
2.5
5.0
7.5
10.0

Lyapunov function

Figure 3: Trajectories on (𝜑, ¤𝜑) under the learned controllers
from our approach by SDP and LP, and from baseline SVG
for the Pendulum example. The right subplot shows the af-
filiated Lyapunov function obtained by SDP for the learned
controller in our approach.

Inverted Pendulum (Stability). We consider the inverted pendu-

lum example from the gym environment [4] by a non-linear con-

troller with sin𝜑 and cos𝜑 terms. The pendulum can be expressed

¥𝜑 = −𝑔
𝑙
𝑠𝑖𝑛(𝜑) − 𝑑

𝑚𝑙2
¤𝜑 + 𝑢

𝑚𝑙2
,

where 𝜑 is the angle deviation. System state (𝜑, ¤𝜑) ∈ {𝜑2 + ¤𝜑2 ≤ 2}.
𝑚 = 1, 𝑙 = 1, 𝑑 = 0.1. Unknown parameter 𝑔 ∈ [9, 10.5]. 𝑋0 =

{𝜑2 + ¤𝜑2 ≤ 1}. For the sin function, we conduct variable trans-

formation with 𝑝 = sin(𝜑) and 𝑞 = cos(𝜑), so that the dynamics

can be transformed into a 4D polynomial system. Fig. 3 shows the

trajectories from our approach (with SDP and LP) and from SVG,

along with the Lyapunov function generated by our approach with

SDP. The SVG fails to generate a Lyapunov function with polyno-

mial degree up to 6 during the entire learning, as shown in Table 1

while our approach succeeds with quadratic certificates by both

SDP and LP.
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3

2

1

0

1

2

3 Ours(SDP)
Ours(LP)
SVG w/ CMDP

0 1 2 3

6

4

2

0

2

Barrier function
Lyapunov function

Figure 4: Left: Trajectories on (𝑦, 𝑣𝑦) under the learned con-
trollers from ours and from SVG with CMDP for Lane Keep-
ing example. Right: Barrier and Lyapunov function values
generated by our approach with LP, along with trajectories.

Lane Keeping (Safety and Stability). We consider a lane keeping

example [6], where we try to derive a linear controller with barrier

and Lyapunov certificate functions for both safety and stability.

The system can be expressed as ¤𝑥 = 𝐴𝑥 + 𝐵𝑢, where

𝐴 =


0 1 𝑣𝑥 0

0

−(𝐶𝛼𝑓 +𝐶𝛼𝑟 )
𝑚𝑣𝑥

0

𝑏𝐶𝛼𝑟−𝑎𝐶𝛼 𝑓

𝑚𝑣𝑥
− 𝑣𝑥 + 𝛼1

0 0 0 1

0

𝑏𝐶𝛼𝑟−𝑎𝐶𝛼𝑓

𝐼𝑧𝑣𝑥
0

−(𝑎2𝐶𝛼𝑓 +𝑏2𝐶𝛼𝑟 )
𝐼𝑧𝑣𝑥

+ 𝛼2


, 𝐵 =


0

𝐶𝛼 𝑓

𝑚
0

𝑎𝐶𝛼𝑓

𝐼𝑧


.

Here,𝑥 = (𝑦, 𝑣𝑦,𝜓𝑒 , 𝑟 )𝑇 is the system statewith lateral displacement

error 𝑦, lateral velocity 𝑣𝑦 , yaw angle error 𝜓𝑒 and yaw rate 𝑟 .

Control input 𝑢 represents the steering angle at the front tire. 𝑣𝑥
is the longitudinal vehicle velocity. 𝛼1 ∈ [−15, 5], 𝛼2 ∈ [−10,−1]
are the unknown parameters and other symbols are all known

constants. 𝑋0 = {∥𝑥 − 𝑥0∥2 ≤ 0.2}, 𝑋𝑢 = {∥𝑥 − 𝑥𝑢 ∥2 ≤ 1}, and
𝑋 = {∥𝑥 ∥2 ≤ 3}, where 𝑥0 = (0.4, 2, 0.5, 0)𝑇 and 𝑥𝑢 = (2, 2, 0, 1)𝑇 .
Fig. 4 shows the simulated system trajectories under the controllers

from our approach with SDP and LP, and from the SVG with CMDP.

It also shows the barrier function value and the Lyapunov function

value generated by our approachwith LP, alongwith the trajectories

over time. The SVG with CMDP can generate a quadratic Lyapunov

function for stability but fails to find a barrier function for safety,

as also shown in Table 1. LP succeeds with polynomial degree 6 for

barrier function and SDP succeeds with degree 4. Therefore, SDP

takes shorter time for each iteration in this example.

Attitude Control(Stability). The attitude control example [15] is

the most complex one we tested. It has 6D state and 3D control

0 10 20

0.4

0.2

0.0

0.2

0.4

0.6
1

0 10 20

0.2

0.1

0.0

0.1

0.2

0.3

2

0 10 20

0.10

0.05

0.00

0.05

0.10

0.15
3

0 10 20

0.5

0.0

0.5

1.0

1

0 10 20
0.2

0.0

0.2

0.4

2

0 10 20

0.10

0.05

0.00

0.05

0.10

0.15
3

Ours(SDP)
Ours(LP)
SVG

Figure 5: Trajectory on each dimension under the learned
controllers from SVG and our approach for Attitude Con-
trol.

input, which can be expressed as

¤𝜔1 = 𝛼1 (𝑢0 + 𝜔2𝜔3),
¤𝜔2 = 𝛼2 (𝑢1 − 3𝜔1𝜔3),
¤𝜔3 = 𝑢2 + 2𝜔1𝜔2,

¤𝜓1=0.5

(
𝜔2 (𝜓1𝜓2−𝜓3)+𝜔3 (𝜓1𝜓3+𝜓2)+𝜔1 (𝜓2

1
+1)

)
,

¤𝜓2=0.5

(
𝜔1 (𝜓1𝜓2+𝜓3)+𝜔3 (𝜓2𝜓3−𝜓1)+𝜔2 (𝜓2

1
+1)

)
,

¤𝜓3=0.5

(
𝜔1 (𝜓1𝜓3−𝜓2)+𝜔2 (𝜓2𝜓3+𝜓1)+𝜔3 (𝜓2

3
+1)

)
,

where the state 𝑥 = (𝜔,𝜓 ) consists of the angular velocity vector

in a body-fixed frame 𝜔 ∈ R3
and the Rodrigues parameter vector

𝜓 ∈ R3
.𝑢 ∈ R3

is the control torque. State space𝑋 = {𝑥 | | |𝑥 | |2 ≤ 2},
unknown dynamical parameters 𝛼1 ∈ [−1, 2], 𝛼2 ∈ [−0.5, 1.5].

Our approach can successfully find a cubic polynomial controller

with a quadratic Lyapunov function for stability with both SDP and

LP, while SVG cannot generate a Lyapunov function for the entire

learning process. Fig. 5 shows the simulated trajectories by learned

controllers from different approaches.

Timing Complexity of SDP and LP Relaxation: We first test

the timing efficiency of SDP and LP in each iteration for the exam-

ples introduced before, with the polynomial degrees for certificates

set as in Table 1, and the timing results are summarized in Table 2.

LP does not show a big advantage, but note that most certificate

functions are quadratic in Table 1.

Thus, to further test the scalability of SDP and LP for higher-

dimensional systems, we raise the degree of certificates from 2 up

to 6 in testing, with runtime shown in Fig. 6. We also show that the

total number of variables of LP is fewer than SDP’s in the Attitude

Control example in Table 3, especially for higher-dimensional sys-

tems. These demonstrate LP’s advantage in scalability, and we plan

to explore it further in future work for larger examples.
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Table 2: Averaged running time of each iteration by SDP and
LP in our approach, with the degree shown in Table 1. LP is
typically a bitmore efficient than SDP, except for generating
barrier certificate in the Lane Keeping example, where SDP
succeeds in polynomial degree 4 while LP needs degree 6.

PJ Pendulum Lane Keep Att. Control

SDP(s) 0.95(B) 1.03(L) 2.55(B), 0.45(L) 7.32(L)

LP(s) 0.58(B) 0.81(L) 14.8(B), 0.4(L) 6.52(L)

2 3 4 5 6
Degree

0

2

4

6

8

lo
g 2

(t)

7.32(s)
14.4(s)

53.8(s)

6.52(s)
12.8(s)

35.7(s)

205.0(s)

422.0(s)

0.58(s)

1.72(s)
2.75(s)

7.21(s)
11.1(s)

0.95(s) 1.57(s) 1.94(s)

4.47(s) 5.06(s)

PJ(SDP)
PJ(LP)
Attitude Control(SDP)
Attitude Control(LP)

Figure 6: Averaged running time of each iteration by LP and
SDP in PJ and Attitude Control examples under different de-
grees of certificate functions, shown in log

2
magnitude with

values on the plot. SDP reports timeout with degree 5 and 6
in Attitude Control, while LP can succeed. SDP is faster in
the low-dimensional PJ example while LP has better scala-
bility for the higher-dimensional systems.
Table 3: Number of variables in the Attitude Control exam-
ple under different degree of certificate functions.

Degree 2 3 4 5 6

SDP 475 4042 4168 26078 26502

LP 302 664 1380 2675 4849

6 CONCLUSION
In this paper, we present a joint differentiable optimization and

verification framework for certified reinforcement learning, by for-

mulating and solving a novel bilevel optimization problem in an

end-to-end differentiable manner, leveraging the gradients from

both the certificates and the value function. Experimental results

demonstrate the effectiveness of our approach in finding controllers

with certificates for guaranteeing system safety and stability.
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