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Graph Neural Pre-training for Recommendation with Side
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Leveraging the side information associated with entities (i.e. users and items) to enhance recommendation
systems has been widely recognized as an essential modeling dimension. Most of the existing approaches
address this task by the integration-based scheme, which incorporate the entity side information by combining
the recommendation objective with an extra side information-aware objective. Despite of the growing progress
made by the existing integration-based approaches, they are largely limited by the potential conflicts between
the two objectives. Moreover, the heterogeneous side information among entities is still under-explored in
these systems. In this paper, we propose a novel pre-training scheme to leverage the entity side information by
pre-training entity embeddings using the multi-graph neural network. Instead of jointly training with two
objectives, our pre-training scheme first pre-trains two representation models under the entity multi/single
relational graphs constructed by their side information, and then fine-tunes their embeddings under an existing
general representation-based recommendation model. Our proposed multi-graph and single-graph neural
networks can generate within-entity knowledge-encapsulated embeddings, while capturing the heterogeneity
from the entity side information simultaneously, thereby improving the performance of the underlying
recommendation model. An extensive evaluation of our pre-training scheme fine-tuned under four general
representation-based recommender models, namely, MF, NCF, NGCF and LightGCN, shows that effectively
pre-training embeddings with both the user’s and item’s side information can significantly improve these
original models in terms of both effectiveness and stability.
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1 INTRODUCTION

The goal of recommender systems is to assist users in filtering out non-relevant information
and selecting a personalized set of interesting items to maximize the users’ satisfaction. Modern
recommendation models achieve this goal by learning representation vectors (i.e. embeddings) of the
two entities (i.e. users and items) that capture the users’ interests and items’ attractiveness [79, 80],
so that the learned embeddings can be used to accurately predict which items a user might choose
in the future, e.g., by computing the dot product or a multilayer perceptron (MLP) [48] of the users’
and items’ embeddings. Typically, recommendation models are collaborative in nature, learning
the users’ interests and items’ attractiveness through users’ ratings, clicking or other interactive
knowledge crossing the two entities, which we refer to as the cross-entity knowledge. For example,
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the NGCF [62] model leverages the high-order connectivity between users and items (i.e. the
interaction signal in the user-item interactive graph) to enhance the recommendation performance.
However, these cross-entity interactions are typically sparse [47]. Therefore, a number of side
information-aware recommendation models [6, 34, 40, 54] have been designed to alleviate the
sparsity issue by integrating the rich side information of users and items such as the users’ age
groups and the items’ textual descriptions. Such side information about entities can be used to learn
the within-entity knowledge to further enhance the recommendation performance. For instance,
movies with the same features (e.g. same genres and actors) may attract the same users, and such
feature relations between movies are a type of knowledge within the side information of movies.
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Fig. 1. Box-and-whisker diagrams for the NDCG performances of the MF [48] and LightGCN [14]
models on the Epinions and Foursquare datasets.

To leverage the side information associated with users and items, many approaches have been
proposed, most of which follow the conventional integration scheme, which encodes the side informa-
tion simultaneously with the training of user-item interactions [6, 40, 43]. These integration-based
approaches normally optimize a loss function consisting of two components, i.e. the recommenda-
tion loss and one (or even more) additional side information-aware loss(es), where a hyperparameter
is usually used to control the importance of each loss component [6, 34, 61, 81]. It is often difficult
to find one single adequate solution to optimise all of the loss components since different tasks
might conflict with each others [31]. Intuitively, if two users share an interest in the same type of
side information but without having a similar purchase behaviour, the two loss components may
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have different optimisation directions, making the combined loss hard to optimise and requiring
a trade-off between the two objectives. However, it requires tremendous efforts to tune one (or
more) hyperparameter(s) to find a good trade-off solution between the two objectives [34, 81].
Moreover, entity side information is typically heterogeneous, meaning that it may consist of many
different feature types (e.g. age, gender and education level) and be represented by different data
types (e.g. binary-values, categorical-values or real-values). These types of side information usually
play different roles when contributing to the generation of each entity’s representation and need to
be jointly modeled to capture their heterogeneous semantics. However, existing side information-
aware models usually use one or more fixed hyperparameter(s) [33, 34] to control the importance of
all different types of side information. Alternatively, they follow the paradigm of multi-task learning
by using a constant value to balance the sum of the main loss and the side information-aware
loss [28, 59], thereby leading to a lack of generalization and/or reduced performance robustness.

Furthermore, while there have been many powerful neural network-based recommendation
models proposed in recent years [14, 15, 48, 62], most of these models are unable to give stable
recommendation results. Indeed, as we can see from Figure 1, with the different random initialisa-
tion of the model’s parameters, high variances can be observed in the performances of both the
conventional model (i.e. MF [48]) and the deep neural network-based model (i.e. LightGCN [14])
over different embedding dimensions in both the Epinions and Foursquare datasets, demonstrating
the lack of stability of these models. In this paper, we argue that a better initialization of the model’s
parameters encapsulating the entity side information could alleviate this issue, and allows the
underlying recommendation model to find a stable local optimal recommendation solution.

To address the aforementioned issues, we propose a novel pre-training scheme for leveraging the
side information in recommender systems, namely, we first pre-train the embeddings of entities
using their side information, and then fine-tune the pre-trained embeddings using an existing
recommendation model. Specifically, we explore two types of graph-structured data to capture the
interdependent relationships among the entities, and propose two pre-training models based on
Graph Neural Networks (GNNs), namely, the Single-P model and the Multi-P model. The Single-
P model learns the entity embeddings on the single-relational graphs using Graph Convolutional
Networks [25], while the Multi-P model learns entity embeddings on multi-relational graphs using
Composition-based Multi-Relational Graph Convolutional Networks [53]. With the expressive
power of GNNs that recursively propagate messages and aggregate features over neighbours,
our pre-training models are able to encode the within-entity context knowledge from the side
information of users and items. Note that our proposed pre-training scheme is a general framework
to pre-train entity embeddings with side information in recommender systems. Once these embed-
dings are obtained, they can be applied to existing general representation-based recommenders to
enhance their effectiveness and stability. We deploy our pre-trained embeddings into four existing
representative general recommender models, i.e., MF [48], NCF [15] NGCF [62] and LightGCN [14],
to validate the effectiveness of our proposed pre-training scheme.

The contributions of this work can be summarized as follows!:

(1) We introduce a novel pre-training scheme for leveraging side information by first pre-training
the entity embeddings using entity side information and then fine-tuning them using an existing
recommender model.

(2) We propose two pre-training models using graph neural networks, namely, the Single-P
and the Multi-P models, which learn entity embeddings based on the single-relational and the
multi-relational graphs, respectively, where both types of graphs are constructed from the entity

1 Our source code is available at https://github.com/pretrain/pretrain.
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side information. Both of our models can be deployed to fine-tune and enhance existing general
representation-based recommender systems.

(3) An extensive empirical evaluation of our pre-training model - through the fine-tuning of four
existing recommender models on three real-world datasets — shows that our pre-training scheme
can significantly enhance those four models in terms of both the recommendation performance
and the model stability.

The remainder of this paper is organized as follows. In §2, we position our work in the literature.
§3 introduces all relevant notions used in this paper and formally defines the task. §4 describes our
pre-training scheme and details the two proposed pre-training models. The experimental setup and
the results of our empirical experiments are presented in §5 and §6 respectively, followed by some
concluding remarks in §7.

2 RELATED WORK

In this section, we give a brief introduction about four bodies of related works: recommendation
models, integrating side information for recommendation, graph neural networks and graph neural
recommendation models.

2.1 Recommendation Models

Recommender systems are essential tools that help resolve the information overload, which have
attracted much interest in both academia and industry. Among the various methodologies in
the evolution of recommender systems, the representation-based methods, which learn latent
embeddings for users and items, have been shown to be the most effective and popular ones
in the literature because of their capability of capturing complex user preferences and items’
popularity [15, 48]. Moreover, with the recent development of various deep neural networks,
such as Convolution Neural Networks (CNNs) [76], Recurrent Neural Networks (RNNs) [23, 37],
Attention Networks [22, 77] and Graph Neural Networks (GNNs) [14, 38, 62], more and more
deep neural network-based recommendation models are being proposed to cope with various
recommendation scenarios, such as temporal-aware [37, 78], social-aware [33, 72, 74], knowledge-
aware [17, 61] and entity-context-aware [64] recommendation, making the learned embeddings
capture more contextual information. In particular, traditional collaborative filtering methods
cannot deliver satisfactory recommendations in the presence of various critical issues such as the
data sparsity issue in the datasets and the cold start problem when recommending items to new
users. To address this data sparsity issue, existing works have leveraged the self-supervised learning
method in order to generate enough augmented samples [18, 27, 68]. Another line of research
focusing on exploiting the side information of users and items has been widely recognized as an
important modeling dimension to address these issues [6, 67]. The main focus of our present work
is to provide a general scheme to integrate such widely available heterogeneous side information
of both users and items into general representation-based recommender system.

2.2 Integrating Side Information for Recommendation

Indeed, before the prevalence of deep neural network-based recommendation methods, there have
been many variants of the Matrix Factorization-based methods, such as the sparse linear methods
with side information (SSLIM) [40], the hierarchical Bayesian matrix factorization method [43] and
factorization machine [11, 46], which adopt the integration scheme that incorporates the entity side
information by combining the recommendation loss function with an extra side information-aware
loss. Even in recent years, this line of research still pervades many works in the literature. For
example, xLightFM [20] is proposed to tackle the high memory-consumption issue of factorization
machine [46] and its variants [7, 11] by using the quantization-based [30] and neural architecture
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search [44] method. Moreover, the HIRE model proposed by Liu et al. [34] uses a weighted matrix
factorization to encode both flat and hierarchical forms of side information into the users’ and
items’ representations, while combining the recommendation loss and two side information-aware
losses. Although the HIRE [34] model can effectively incorporate two types of features, it needs
to explicitly design different objectives for different types of features. Another line of research
examined the integration of side information using deep neural networks, such as the stacked
denoising auto-encoder [58] and the marginalized denoising auto-encoder [29]. More recently,
many recommendation models have explored using Variational auto-encoders (VAEs) [42, 66, 69],
which jointly encode user ratings and side information during the training, in order to overcome
the (often) high-dimensionality of side information. However, most of these methods only consider
one type of relation from the entity features, namely they treat all the feature columns equally,
thereby ignoring the variance in the feature types’ importance to the recommendation performance.
Moreover, most of the existing methods [19, 20, 34, 46] adopt the integration scheme, which
needs a trade-off between the recommendation loss function and the side information-aware loss,
thereby restricting the model design and making it hard to deploy into other more effective general
recommender systems. Instead, in this paper, we propose a general scheme for pre-training entity
embeddings using the entity side information, such that these embeddings can be fine-tuned by an
existing representation-based recommender system.

2.3 Graph Neural Networks

GNNs are powerful frameworks for learning representations of graph-structured data. They have
shown superior performances not only in the network analysis task [2, 25, 39, 55, 63, 70] but also in
other domains, such as natural language processing [36, 71, 82], recommender systems [14, 62, 65]
and molecular design [21]. Recently, various graph learning technique [2, 9, 41, 45] have been
proposed to further boost the accuracy and efficiency of existing GNNs. For example, GRL [9]
is more robust against the removal of vertexes by using the graph reconstruction technique so
that it gains enhanced expressive power compared with existing GNNs. Moreover, contrastive
learning and pre-training techniques are both incorporated in [41, 45] to generate additional views
for each node in order to learn more generalized graph representations. Although effective, most
of the existing GNNs focus on learning representations of nodes on simple graphs that contain
nodes and relations of a single type. The Graph Convolutional Network (GCN) [25] model and its
variants [12, 39, 55, 63] are probably the most popular models for handling this type of networks.
However, real-world networks are normally organized with multiple types of relations (e.g. links in
social networks can denote both friendships and co-worker relationships), which are commonly
modeled through multi-graphs [49, 53]. Since these multi-graphs can capture more comprehensive
information and richer semantics than the simple graphs, they have been widely used in many tasks
that mine knowledge graphs, such as lexical word networks [52, 60] and biomedical knowledge
graphs [3]. Relational-GCN [49] and Compositional-GCN [53] are two generalizations of the GCN
model for handling multi-graphs. Inspired by the promising performance and generalizability of
GNNs with multiple relations, we propose to use a multi-graph neural network to capture the
within-entity knowledge based on the entity side information, where heterogeneous features of
users and items are explored for pre-training the entity embeddings.

2.4 Graph Neural Recommendation Models

Inspired by the wide variety of applications in many fields, graph neural networks have also
been widely applied in many recommendation models, showing promising results on various
recommendation benchmarking datasets [14, 32, 61, 64]. Among which, NGCF [62] can be regarded
as an early implementation of the GCN model for the recommendation task. Building on NGCF,
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LightGCN [14] obtains a better performance and a higher efficiency by removing redundant neural
operations and networks from NGCF. Recently, GF-CF [50] has been proposed to further enhance
the performance by incorporating the graph filtering method. However, GF-CF is not an embedding-
based model, hence it cannot be adapted to our proposed scheme. Other variants of LightGCN
including SGL [65] and UltraGCN [38] have also achieved a competitive performances, however
they incorporate memory-consuming data augmentation methods, which will be more challenging
if side information is also considered. Most of the existing graph-based recommenders [5, 14, 62, 65]
consider the user-item interactions in a recommendation task as a user-item graph, and use the
power of GNNs to capture the higher-order dependencies among the entities, resulting in an
enhanced recommendation performance. Many prior works also exploited using GNNs to model
various cross-entity knowledge (i.e. interactions across different types of entities) [32, 64] and
within-entity knowledge (i.e. relations within a type of entity) [33, 73]. However, all of the existing
recommendation models discussed above are either unable to effectively leverage the entity side
information, or are unable to effectively encode the heterogeneous within-entity knowledge from
the side information in a general manner. In this paper, we provide a general scheme for leveraging
the heterogeneous entity side information using a novel graph neural pre-training scheme, as
detailed in the following sections.

3 PRELIMINARIES

In this section, we introduce the notations used across the whole article and formally define our
research task.

3.1 Notations

Throughout this paper, regular letters are used to denote scalars (e.g. n is the number of users),
while calligraphy typeface alphabets are used to denote sets (e.g. ‘V is the set of nodes in a graph).
Matrices and vectors are denoted by bold letters with uppercase letters representing matrices and
lowercase letters (or uppercase letters with a subscript) representing vectors (e.g. F, is the user
feature matrix and H,, is represented as the latent vector of a user i.).

Let R € R™" be the user-item feedback matrix of n users and m items. In general, the entries
of R can be either binary-valued (i.e. through implicit feedback such as the click and purchase
behaviours) or real-valued (i.e. through explicit feedback such as the rating scores). However, not all
of the values can be observed and the observed values may also contain noise. While the observed
entries at least reflect the real users’ interests on items, most of the entries are typically missing
due to the natural sparsity of negative feedback.

To facilitate the description of graph neural networks, we use V to denote the set of nodes in
a graph. If the graph contains only one type of edges, then we call it a single-graph, or simply
a graph; while a graph containing multiple edge types is normally called a multi-graph. We use
G = (V,&,X) to denote a single-graph, where & is a tuple set with (u,0) € & being an edge
between nodes u,v € V and X € R!V is the d-dimensional feature metric of nodes. Then
we denote a multi-graph G’ by G’ = (V, &', R, X), where R is the set of edge types, each edge
(u,0,r) € &' represents that the relation r € R exists from node u to v.

3.2 Task Definition

Given the feedback matrix R, a typical recommendation task aims to predict the preference scores
for all the user-item pairs. To address such a task, the general representation-based recommendation
models typically learn latent embeddings for the users and items such that these latent entity
embeddings can be used to reconstruct the given feedback matrix R. Then, these learned embeddings
can be in turn used to calculate the preference scores of the unseen user-item pairs. In particular,
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Table 1. Main Notations Used in this Article

Notation Description
R the matrix of implicit feedback data
u,v the latent embeddings of users and items
F, the feature matrix of users
F, the feature matrix of items
X the feature matrix of all nodes
L the loss
Vv the set of nodes
& the set of edges
R the set of edge types
Gu, G, the single/multi-graph of users
Go. G, the single/multi-graph of items
G a graph (or multi-graph)
Rine the inverse relation
T the self-loop relation
Z, the embedding of relation r
B, the basis vector
¢ the composition operator
Wi the relation-type specific parameter
Wo, Wi, Ws the trainable weights
l the number of neural layers
d the dimension of embeddings
b the number of basis vectors

User Side Information
®e¢ Age: 20

“® Married: False

Occupation: Student

ﬁ Type: Book
Price: $19.9

Title: The art of programing

Item Side Information

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

i |
i

i !
i same same age |!
3 occupatio group 3
! i
! i
i

‘ :
same same i
director genre i
i

i

i

|

|

|

i

i

i

i

i

i

i

i

i

Users
Interactions

Initialization| _Fne-tuning
»|_Recommender
= & N
Y

\

4 <4
v,, U,

R,

Pre-training

Fine-tuning

Fig. 2. An overview of our graph neural pre-training/fine-tuning scheme. Our pre-training model
constructs relational graphs based on the feature of entities, and pre-trains the embeddings of entities

by using Multi-P or Single-P.

such methods try to learn a model 6 to obtain the embeddings of users and items:

RS uyv,

(1)

where U € R™ and V € R™*¢ are the embeddings of users and items with d being the embedding

dimension.
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Usually, recommender systems use randomly initialised users and items’ embeddings, i.e. U and
V [62], respectively. As we have shown in the introduction section, these random initialised embed-
ding have a strong impact on the model effectiveness and robustness. In real-world recommender
systems, users and items are often associated with features, also called side information, such as
the age groups of users and the textual descriptions/names of items. The different values of side
information across different entities characterise the differences between entities, which is a type
of within-entity knowledge. We use F,, and F, to denote the feature matrices of the users and items,
respectively. We later show that these types of features can be transformed into feature edges in
multi-graphs. Then, the corresponding recommendation task is to learn a model 6:

0
F.F,R—U,V. @)

4 METHODOLOGY

We first introduce our pre-training scheme for recommender systems (§4.1), and detail two pre-
training models, namely Single-P for single-graph pre-training (§4.2) and Multi-P for multi-graph
pre-training (§4.3). We then describe the fine-tuning process using the existing recommender
models (§4.6) and discuss connections between our scheme and the existing works in §4.7.

4.1 The Pre-training Scheme for Recommendation

In this paper, we argue that a suitable initialization of the entity embeddings encapsulating the
entity side information is critical to help recommenders learn a stable and enhanced local optimal
solution for the existing recommender systems. We propose to learn such an initialization of
entity embeddings by exploiting knowledge from the entity side information. To this end, we
propose a general pre-training scheme for leveraging the entity side information using graph neural
networks. The overall scheme is illustrated in Figure 2. Our pre-training scheme consists of two
processes: pre-training and fine-tuning. During pre-training, a graph neural network is used to learn
an initialization of the entity embeddings based on both the side information of users and items (i.e.
F, and F,) and the feedback matrix R. On the other hand, in the fine-tuning process, an existing
recommendation model leverages the pre-trained embeddings as an embedding initialization and
fine-tunes these embeddings by using the feedback matrix R only.

In order to learn the user-item preferences from the cross-entity contextual interactions between
users and items, many recent models, such as NGCF [62] and LightGCN [14], have explored
encoding the collaborative signals from the graph-structure interactions, showing promising
performances. However, these methods only investigate the mutual interactions between users
and items, ignoring the within-entity contextual knowledge, i.e. the collaborative signal within
each type of entities, which can be acquired from the entity side information. To capture such
within-entity contextual knowledge, we propose to use GNNs to pre-train the entity representations
using the side information of both the users and items, so that the independent knowledge of each
type of entities can be captured from the entity relations. Hence, extracting the relations from the
entity side information is a crucial step for the pre-training process, since it determines how much
information we can obtain from the entity features and how important such information can help
to improve a recommendation model. To extract user-user and item-item relationships from their
entity features (i.e. the users’ and items’ respective features), we propose to build two different types
of feature graphs, i.e. the single-relational graphs and the multi-relational graphs, by constructing
both the homogeneous and heterogeneous links between the entity pairs, respectively. We then
explore how entity relations from various entity features affect the recommendation performance.
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4.2 Pre-training on Single-Graphs

We construct two single-graphs, i.e. G, and G,, from the features of users and items respectively, by
considering the similarities between users and items as the homogeneous edges, and calculate the
edge weights using the cosine similarities between each pair of entities. For example, we construct
a user single-graph G, = (Vy, &4, Ay, Xy,) by taking all the users as the set of nodes V,, and all the
user pairs as the set of edges &, in the graph. For each (i, j) € &,, we calculate the edge weight A;;

Fui' uj

using the cosine similarity of their feature vectors (i.e. F, and F,,): A;j = TR, T X, e R™d ig

an initial node feature matrix of the graph, the values of which are initialized from the uniform
distribution U/ (—0.01, 0.01). For brevity, in the following, we only describe the encoding process for
the user single-graph G,,, since the item single-graph G, is constructed and processed in a similar
fashion.

The Single-P model. To obtain the pre-trained embeddings of entities (i.e. users and items)
and to exploit the potential correlation among entities based on their single-graphs, three GCN
layers [25] are applied to encode the entity embeddings according to their relations. The key point
of GCN is to propagate the feature information through neighbourhoods of nodes in each iteration
during training. The detailed framework of the Single-P model is illustrated in Figure 3. Specifically,
given a graph G,,, the GCN model adopts the following propagation rule:

H = o (4B W), )
where A, = D" (A, +1 )5_% is the symmetric normalized adjacency matrix?, Wlfl) is the weight
matrix of the [*/ layer, and o(-) denotes an activation function (e.g. the ReLU function). H,il) is the
hidden node representation in the [’ h layer with H,EO) = X,. As mentioned earlier in this section, we

use the uniform distribution to initialize X,,, which means that H,SO) also starts with this uniform
distribution. In particular, we initialize the entity embeddings using the entity side information by
training over the side information encapsulated in A instead of directly incorporating an initial
embedding consisting of the entity side information.

2 D is defined as D;; = 2 (Ay + I);ij, where I is the identity matrix.
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To facilitate the later description of our proposed model, Eq. (3) can also be formulated in the
message passing form [53]:

H, =¢ > wi R, @
(ui,u;) €64V (ui,u;)
where Wlflfl) is the layer-wise parameter and here we only consider the undirected relation and
the self-loop relation. The final output embeddings of the maximum depth in the GCN layers, i.e.
U= H,El), are the pre-training embeddings to be fed into the pre-training loss function. Similarly,
the item embeddings are obtained by V = Hz(,l), where Hzgil) =0 (Z(o,»,uj)esvu(ui,v,-) Wlflfl)Hzgjfl) ),
which is aligned with Eq. (4).
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Fig. 4. Anillustration describing the input features, multi-relational graphs and output entity embed-
dings of Multi-P.

4.3 Pre-training on Multi-Graphs

In the existing side information-aware models [6, 29, 58], different types of features associated with
users and items contribute equally to the latent relationships between entities. However, in the
real-world scenario, the features of users and items are typically heterogeneous, with different
types of features having different usefulness for enhancing a recommender’s performance. For
example, users are normally associated with different types of features (e.g. age, gender and
education level), which clearly characterize different aspects of the users’ preferences [34]. To
distinguish the importance of different feature types, we pre-train the entity embeddings through
message propagation over the different feature types of the entities by using a multi-graph neural
network [53].

Since the entity features can be real-valued, we first need to categorize such real-valued features
into some groups, such that all the features of entities are sparsely categorized. Next, we can regard
each feature category value as an edge type, and create an edge of this type between a pair of
entities if they share the same feature value. In particular, to extract the heterogeneous relations
between entities, we construct two multi-graphs for the users and items, i.e. G, and G,, respectively.
For example, to construct the user multi-graph g; = (Vi 8;, R, X,,), we take all the users as the
set of nodes V,, and the feature category values as the set of relations R,, in the graph. For any
pairs of nodes i, j € V,, we create an edge if the two users share the same feature category value
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(e.g. if both are in the age group 25-35). X, is set to be the random initialized user embeddings. The
item multi-graph G, is constructed in a similar fashion. We use Figure 4 to illustrate the overall
framework of the Multi-P model.

The Multi-P model. Given a multi-graph, e.g. the user multi-graph Qu = (V,, 8;, Ru, Xu), we
first extend &, and R,, with the corresponding inverse edges and relations:

éu =8; U {(vu r_l) | (u,0,7) € 8;} U{(uw,u, T) | u e V,),
R, =R, URm U (T}, (5)

where RI"0 = {r‘l | re 7{,,} denotes the inverse relations (i.e. (v,u,r™ 1) = (u,v,7)) and T indicates
the self-loop. Then, inspired by Composition-GCN [53], the node embeddings are propagated
through edges based on the following propagation rule:

1 - - -
H) =0 > W/l((r)l)qS(H,ﬁj Yz} ”) , (6)

(ui,uj,r) Egu

where [ is the number of layers, Z, = ZZ:1 ayr By is the relation embedding with {By, By, ..., Bp}
being a set of learnable basis vectors and ay, is the basis-specific learnable scalar weight. b is a
hyperparameter corresponding to the number of basis vectors. ¢(-) is the composition operator
defined as: ¢ (es, e,) = e; — e,, which is inspired by the TransE model [1]. W)f(l;)l) € Réxdo jg o
relation-type specific parameter, where W), are given below:

Wo, re Ru

Wi =W, re RL"U (7)
Ws, r=T (self —loop)

where Wp, W; and Wg are all trainable weights.

Then the output embeddings of the final layer are taken as pre-training embeddings (i.e. U = H,El)
). We use the Binary Cross-Entropy (BCE) loss [15] described below as the objective function. The
item embeddings are obtained similarly to Eq. (6).

4.4 Pre-training Loss

For most graph neural networks, the embeddings can be learned by the reconstruction of the graph
structure or the labels of the corresponding entities [25]. Therefore, for both our Single-P and
Multi-P models, we pre-train the user and item embeddings with a rating/interaction-based loss, in
order to encapsulate the potential information between entities for recommendation. Specifically,
with the embeddings of both users and items learned from the multi-relational or single-relation
graphs, we construct our pre-training loss using the Binary Cross-Entropy (BCE) loss function [15]:

LPT = - Z Ri,j . 10g (ﬁi,j) + (1 - Ri,j) . log (1 - I}i,j) +n ||9||2, (8)
R;;€R

where R; ;j is the predicted score calculated by the embedding dot product R; j =U!"-V;, © denotes
all parameter embeddings and 1 denotes the regularization weight. Two explicit entity biases are
also used for calculating the scores, following [48].

4.5 Complexity Analysis

The complexity of our pre-training scheme highly depends on the complexity of the underlying
graph neural models. For example, our Single-P holds a complexity of O (Id|&| + 1d?|V]) [25],
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which is the same as the GCN model. The complexity of our Multi-P modelis O ((Id? + bd + b|R])|E]),
which is similar to the complexity of the Composition-GCN model [53], where [ denotes the number
of layers, b is the number of learnable basis vectors, d is the embedding dimension, and |R] is the
number of relation types. The number of edges |&| in the entity graphs (multi-graphs) typically
accounts for the largest complexity in the Multi-P model, and if the entities contain dense features,
the number of edges |&| could be much larger than the number of interactions (e.g. the generated
user multi-relational feature graph of the Movielens-1M dataset contains around 2.7 million edges).
Some variants of these neural models, such as FastGCN [4] and ClusterGCN [8], could enhance
the efficiency of our scheme but at the possible cost of reducing effectiveness. Once the entity
embeddings are pre-trained, they can be reused and fine-tuned by many existing recommenders to
enhance their effectiveness and stability. We leave the investigation of the impact and added-value
of these existing variants for future work.

4.6 Fine-tuning with Existing Recommenders

Most of the modern recommenders are trained based on gradient-based optimization methods,
which usually obtain locally-optimal solutions. Due to the non-convexity of their objective functions,
parameter initialization plays an important role for the convergence and performances of these
recommendation models [10, 15]. Most of the existing recommendation models initialize their
embeddings using a uniform distribution [57], a normal distribution [48] or the Xavier uniform
distribution [14, 62]. Due to the randomness of the generated embeddings and the lack of prior
knowledge, these models often fall into some poor locally-optimal solutions, resulting in high
instabilities, as illustrated in Figure 1.

To address this issue, we propose to initialize the entity embeddings of an existing recommenda-
tion model from the output embeddings of our pre-training model, then we further fine-tune these
embeddings with the recommendation model’s own optimizer. Specifically, we first pre-train both
the embeddings of users and items by our proposed Multi-P or Single-P models until convergence,
then feed these pre-trained embeddings into an existing recommendation model as the parameter
initialization to train the recommendation model with the interactions/ratings only. The training
frameworks of the pre-training and fine-tuning processes are summarized in Algorithm 1 and
Algorithm 2, respectively. During the fine-tuning stage, the training objective is chosen depending
on the underlying base model. For example, in this paper, we integrate our pre-trained embeddings
into four existing recommender models, i.e., MF [48], NCF [15] NGCF [62] and LightGCN [14],
where two training objective functions are used in these models, i.e. the BCE loss and the Bayesian
Personalized Ranking (BPR) loss. Specifically, the MF, NGCF and LightGCN models optimize the
pairwise BPR loss, which is formulated as follows:

Lt == Ino(R; - Rip) +pll6]°, )
while the NCF model is trained based on the BCE loss:
.EFT = - Z Ri,j . log (Ri,j) + (1 — Ri,j) . 10g (1 — IAQ,;]-) +7n ”@”2 N (10)

where R; ; denotes the predicted scores for the observed interactions, and R;, denotes the predicted
scores for the unobserved interactions.

4.7 Discussion

The idea of pre-training embeddings for recommender systems has already been investigated
in the literature. For example, to avoid saddle points and poorly performing local minima, both
NCF [15] and CMN [10] apply the Generalized Matrix Factorization (GMF) as a pre-training model
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Algorithm 1: The pre-training process

Input: Rating matrix R; Feature matrices F,, and F,; Multi-graphs Q; and g; or
Single-graphs G, and G,.

Output: Pre-trained embeddings U, V.

Initialise embeddings U, V and other learnable parameters ©;

while not convergent do

Lpr =0;

for each training instance in G, and G, (or Qu and Q;) do
| Propagate information according to Eq. (6);

end

for each training instance in R do
| Compute epoch loss V.L according to Eq. (8);

end

Lpr & Lpr +V.L;

Update ©,U, V;

end

Algorithm 2: The fine-tuning process

Input: Rating matrix R; Pre-trained embeddings U, V; A general recommender g.
Output: The recommended list S for each user.
Inherit U V to initialise g;
Initialise other learnable parameters @;
while not convergent do

Lrr = 0;

for each training instance in R do

| Compute epoch loss V.L according to Eq. (9) or Eq. (10);

end

Lt — Lir + VL

Update ©, U, V;
end
Do recommendation to find the recommended list S based on U and V;

to initialize the embedding weights of users and items. In particular, the embedding vectors of users
and items in GMF are simply obtained by training from the weighted output of the embedding dot
product using the interaction matrix:

A

Ru,u =Wo (Uu © VV) s (11)

where © denotes the element-wise product of vectors, o is an activation function and W is the
trainable parameter. However, these models are unable to leverage the within-entity knowledge
from the heterogeneous entity features. We note that our pre-training model using the graph
neural network can be seen as a generalization of the GMF model, since our Multi-P model can be
reduced to the GMF model by removing all the links of the constructed multi-graphs and setting
the maximum depth of the multi-graph neural network to be 1. More recently, Hao et al. [13]
exploited how to use GNN to conduct pre-training for downstream tasks, inspired by the GNN
pre-training [16]. However, their proposed models only leverage the graph structure, which lacks
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the ability to incorporate heterogeneous side information about the entities, compared with our
proposed scheme.

In relation to the graph neural-based recommender systems, the most relevant works to our
Multi-P model is the Multi-GCCF model [51], which, similarly, considers the user-to-user and
item-to-item relations as graphs and uses a graph convolution network to train the embeddings of
the two entities. However, the entity graphs in Multi-GCCF are constructed from the rating/click
matrix, rather than from the entity side information. Hence, the heterogeneous relations from the
entity side information cannot be captured by the Multi-GCCF model.

5 EXPERIMENTAL SETUP

In this section, we first introduce the research questions that we aim to answer in this paper
(§5.1). Next, we present the datasets used for conducting the experiments as well as the relevant
pre-processing procedures to prepare the datasets including all interaction data and different types
of side information (§5.2). Finally, we present the experimental settings and describe the used
baselines (§5.3).

5.1 Research Questions

We aim to answer the following research questions:

RQ1. Do our pre-trained models help existing recommendation systems obtain better performances?
RQ2. Do our pre-trained models outperform the existing state-of-the-art recommenders that use
side information?

RQ3. Are the performance improvements gained through our pre-training models due to the
within-entity knowledge?

RQ4. Does the pre-training process help to improve the stability of the existing models?

RQ5. Does the pre-training process help to alleviate the classical cold-start problem?

RQ6. How do the embeddings dimension and different ranking cut-offs affect the recommendation
performances of the pre-trained recommenders?

Table 2. Statistics of the datasets.

Dataset # Users # Items # Interactions # User/Item
Features
Foursquare 2,060 2,876 27,149 2,108/47
Movielens-1M 6,040 3,704 1,000,209 21/18
Epinions 5,598 4,064 542,741 10/10

5.2 Datasets

To evaluate the effectiveness of our introduced pre-training scheme, we use three datasets, namely
Foursquare®, Movielens-1M*, and Epinions®. Table 2 shows their statistics. For the Movielens-1M
dataset, the users’ features (i.e. side information) are “gender”, “age” and “occupation”, while the
items’ features are the 18 different genres. For the Foursquare dataset, we use the tags provided by
online users as features for the restaurants, while we represent each user as a bag-of-words feature

3 https://sites.google.com/site/yangdingqi/home/foursquare-dataset 4 https://grouplens.org/datasets/movielens/
5 http://cseweb.ucsd.edu/~jmcauley/datasets.html
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vector from his/her own reviews (stopwords are removed). Similarly, for the Epinions dataset, we
represent both users and items with bag-of-words feature vectors from their associated reviews
with stopwords removed, selecting the 10 most frequent words to represent both users and items.
Among the three datasets, there is only one real-valued feature, namely ages in the Movielens-1M
dataset, which needs to be pre-processed into one-hot representations by a categorization operation.
Specifically, the users’ age feature in the Movielens-1M dataset is categorized into 8 age groups,
each with a step of 10 years. Then an one-hot vector is used to represent the users’ age feature.
Below, we summarise how to construct the single-relational graph and the multi-relational graph
for our proposed Multi-P and Single-P models, respectively.

Single-relational graph construction. To construct a single-relation graph for Single-P, we
first need to build the one-hot vectors for each user and item. Taking the Movielens-1M dataset
as an example, we know that there are 18 different genres for all movies; therefore, each movie is
represented as a binary vector of size 1x18. If one movie is labelled as a comedy movie, its vector
will have 1 at the corresponding column of “comedy” and 0 elsewhere if no other labels are given.
Hence, the feature matrix F, of the Movielens-1M dataset has a size of 3704x18. Next, we compute
cosine similarities between each pair of the users’ one-hot vectors or each pair of the items’ one-hot
vectors so that we obtain cosine similarities between each user pair and each item pair. Such a
single relational graph will have a size of 3704x3704 containing all similarity values. Finally, this
single-relational graph can be used as an input for the proposed Single-P model. We follow a
similar procedure to compute the single-relational graph for users.

Multi-relational graph construction. To construct a multi-relational graph for Multi-P, we also
follow a similar procedure to build the one-hot vectors for each user and item so as to compute the
feature matrices F, and F,,. Instead of using the cosine similarity to capture the similarity values
between each entity, the input of Multi-P is a series of graphs, where each graph contains all
entities possessing one specific type of side information. Therefore, if we take again the Movielens-
1M dataset as an example, the input of Multi-P for items will be 18 different graphs, where each
graph has a size of m X m. Here, the value of m depends on how many entities are involved
in the multi-relational graph. Different with the graphs used by Compositional-GCN [53], our
multi-relational graphs incorporate more types of edges and relations.

Table 3. Summary of all baselines and our proposed schemes.

Model Side information Pre-training Graph-based
MF X X X
NCF X X X
NGCF X X 4
LightGCN X X 4
HIRE v X X
cVAE 4 X X
SSLIM v X X
SGL X X 4
PT-GNN X v/ 4
SimGCL X X 4
Single-P v v v
Multi-P v v 4
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5.3 Experimental Settings

We use the leave-one-out splitting [15, 47, 48] method to split the interactions of each dataset into
training, validation and testing sets. To speed up the evaluation, we adopt the sampled metrics [15,
48, 62], which randomly sample a small set of the non-interactive items as negative items (rather
than take all the non-interactive items as negatives) of the validation and testing sets, and evaluate
the metric performance on this smaller set. Here, we sample 100 negative items for each user in
the testing sets for evaluation [15, 22, 48]. However, different from prior works [15, 48] that only
use one oracle testing set per dataset with the sampled negative items, we construct 10 different
testing sets with different sampled negative items for each dataset using different random seeds, in
order to reduce the evaluation bias on some specific testing negatives [26]. Hence, the reported
performance of each run is based on the average of the 10 testing sets. Three ranking evaluation
metrics, namely the Normalised Discounted Cumulative Gain (NDCG), Recall and Mean Average
Precision (MAP) metrics, are applied for evaluating the performances of our evaluated models.

We evaluate the effectiveness of our pre-training scheme by comparing it with ten existing state-
of-the-art recommendation models. Among the baselines, four are general (representation-based)
recommendation models, which are also used for the subsequent fine-tuning:

e MF [438]: This is the conventional matrix factorization model, which can be optimized by the
Bayesian personalized ranking (BPR [47]) or the BCE losses.

o NCF [15]: This is a neural recommendation method, which learns the user and item embeddings
while integrating the GMF & MLP models to capture their non-linear feature interactions.

e NGCEF [62]: NGCF is devised to employ a multi-layer GCN on the user-item interaction graph to
propagate the collaborative signals across multi-hops user-item neighbourhoods.

e LightGCN [14]: Building on NGCF, LightGCN has fewer redundant neural components compared
with the NGCF model, which makes it more efficient and effective.

The other three baselines are recommenders that use an integration scheme to incorporate side
information of both users and items:

e HIRE [34]: This is a side information-aware recommendation model, which combines the flat
and hierarchical side information to alleviate the challenge brought by the heterogeneity of the
side information.

e cVAE [6]: cVAE is a side information-aware recommendation model that uses the variational
auto-encoder to encode the entity side information into entities for enhancing the performance.

o SSLIM [40]: This is a classical sparse linear recommender, which can use both the users and
items’ side information. In particular, we choose the binary representation to remain consistent
with our feature representations.

In addition, we incorporate three other baselines, which use different methods to enhance their
corresponding graph-based recommenders:

e SGL [65]: SGL uses self-supervised learning, including the node dropout, edge dropout and
random walk augmentation techniques to generate multiple representations of users and items
based on the structure of the graph. In addition, SGL has the ability to explore hard negative
samples.

e PT-GNN [13]°: PT-GNN uses the pre-trained GNN model to enhance the embeddings of the
cold-start users or items. The pre-training task of PT-GNN consists in directly reconstructing the
cold-start user/item embeddings by mimicking the meta-learning setting via episode-based train-
ing Vinyals et al. [56]. In [13], many state-of-the-art baseline models (including LightGCN [14],
GraphSAGE [12] and GAT [55]) have been shown to be enhanced by PT-GNN. We choose the

% In [13], no explicit name has been given for the proposed graph pre-training model. For simplicity, we use PT-GNN to
denote the model.
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variant using GraphSAGE as one of our baselines due to its competitive overall performance. In
the following, for simplicity, we use PT-GNN to denote the variant using GraphSAGE.

o SimGCL [75]: This is arecently proposed graph contrastive recommender with a high effectiveness
and flexibility. SimGCL can enhance the contrastive representations of users and items by
introducing a regulated noise sampled from the uniform distribution instead of relying on any
graph augmentation techniques.

Furthermore, we compare our proposed pre-training scheme with variants, consisting of pre-
training only and multi-task learning:

o Single-P (pre. only) & Multi-P (pre. only): These two models only use the users and items’ em-
beddings learned during the Single-P or Multi-P pre-training stages to make recommendations.
By comparing these two variants with the models pre-trained by our proposed scheme, we can
directly observe the obtained improvements.

® MTL,single-p & MTL pulti-p: These two variants use multi-task learning to train Single-P or
Multi-P together with a baseline recommender, instead of following our proposed scheme. These
two variants use Lpr + f* Lpr as the overall training loss, where f is a constant and the detailed
equations of Lpr and Lpr can be found in Section 4.3 and Section 4.6, respectively.

We apply our two pre-training models on the four existing widely used representation-based
baselines, namely MF, NCF, NGCF and LightGCN. We use Single-P and Multi-P to denote the two
pre-training models, respectively, while MF,pui-p stands for a model, pre-trained by Multi-P and
fine-tuned with MF. To summarise, we use Table 3 to indicate which model uses side information,
pre-training and graph-based techniques, respectively.

We adopt the Adam [24] optimizer in both Multi-P and Single-P as well as the four fine-tuning
baselines. To determine the values of all hyperparameters, we randomly sample one interaction
for each user as the validation set and tune the hyperparameters on it for all of the models. In
particular, we tune the pre-training models (i.e. Multi-P and Single-P) by varying the learning
rate in {10_2, 1073, 10_4} and the regularization weight 7 in {10_2, e 10_5}. The learning rates of
the baseline models are also tuned according to the suggested ranges from the original papers. The
depths for all GNNs of the graph-based recommenders (i.e. NGCF, LightGCN, SGL and SimGCL)
and the pre-training models are kept to 3 with each layer having a size of 64, while the dropout
ratios of all GNNs vary among {0.3,0.4, ..., 0.8} as suggested in the existing literature [14]. We set
the maximum number of training epochs to 500; the batch size to 1000 and the latent dimension to
64 for all models. Moreover, we use an early stopping strategy, i.e., we apply a premature stopping
if NDCG@10 on the validation data does not increase for 50 successive epochs. Note that the
embedding dimension d is a hyperparameter for both the pre-training models and the fine-tuning
models (i.e. the baseline models). For a fair comparison, we set this hyperparameter to 64, since
most of our experimental models can almost achieve their best performances for this dimension
size across our three datasets. To make a fair comparison between our proposed scheme and those
three baselines, i.e., HIRE, cVAE and SSLIM, which also incorporate the side information of both
users and items, we train the baselines using the same side information used by our proposed
scheme for pre-training. For our Multi-P model, the number of learnable basis vectors b is set to
10, which is empirically tuned from the set {5, 7, 10, 20} by using the validation set for all datasets.’
For those two multi-task learning model variants, i.e., MTL,gingle-p & MTL puli-p, We tune the
hyperparameter  among {0.1, 0.5, 1} following [65].

7 Note that a more thorough tuning of this parameter may further improve the recommendation performances, but we did
not observe a clear performance trend over different b values in our experiments, and under this setting we have already
obtained excellent performances that can be used to draw our conclusions.
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6 RESULTS AND ANALYSIS

In this section, we report the results obtained from four main experiments aimed at answering
the research questions listed in §5.1. In particular, we first address RQ1 by analysing whether
both Single-P and Multi-P can help to improve the four existing representative recommenders.
Then, we further compare the performances of these models with three competitive recommenders,
which incorporate different graph-based techniques and three recommenders that leverage both the
users’ and items’ side information (RQ2). We provide an ablation study where we randomly drop
{20%,40%,60%,80%} of the entity features during the pre-training process in order to seek an answer
to RQ3. To answer RQ4, we conduct experiments over different random seeds, and analyze the
standard deviations of these models’ performances. To address RQ5, we conduct an analysis, where
we compare the best performing pre-trained models (i.e. Light GCN,single-p and LightGCN, multi-p)
with PT-GNN and LightGCN across different groups of users to examine whether our proposed
scheme can help to alleviate the cold-start problem. Finally, to answer RQ6, we provide a detailed
analysis of the performances of the pre-training models on different embedding dimensions and
different cut-offs for the recommended items.
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Fig. 5. Performance comparison of the four selected existing recommenders with Single-P and
Multi-P pre-training processes. We use = to denote a significant difference between the performances
of the baselines and their pre-trained variants, according to the paired t-test with the Holm-Bonferroni
correction for p<0.01.
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Table 4. Performance comparison of recommenders with side information. The best and second best
performances are marked in boldface or underlined, respectively. We use = to denote a significant
difference between the performances of the side information-aware baselines and the best proposed
model, according to the paired t-test with the Holm-Bonferroni correction for p < 0.01.

Model Foursquare Movielens-1M Epinions

ode NDCG MAP NDCG MAP NDCG MAP
HIRE 0.5232* 0.4575" 0.0997* 0.0692* 0.0667* 0.0518*
cVAE 0.5326* 0.4438* 0.0678* 0.0453* 0.0532* 0.0410*
SSLIM 0.5894* 0.4691* 0.0655* 0.0441* 0.0533* 0.0401*
SGL 0.6051* 0.5691* 0.0739* 0.0485* 0.0710* 0.0484*
PT-GNN 0.6048" 0.5687* 0.0755* 0.0501* 0.0697* 0.0503*
SimGCL 0.6121* 0.5891* 0.0758* 0.0541* 0.0723* 0.0481*
MF, Single-p 0.6206 0.5901 0.0979 0.0646 0.0527 0.0434
MPF, Muttip 0.6249 0.5944 0.1019 0.0718 0.0587 0.0498
NGCF,single-p 0.6016 0.5683 0.0713 0.0450 0.0708 0.0454
NGCF, pulti-p 0.6138 0.5844 0.0752 0.0461 0.0719 0.0485
LightGCN, single-p 0.6162 0.5940 0.0952 0.0631 0.0717 0.0594
LightGCN, Murti-p 0.6364 0.6089 0.1068 0.0689 0.0792 0.0623
NCF,single-p 0.5677 0.4939 0.0870 0.0551 0.0620 0.0531
NCF, pultip 0.6021 0.5340 0.0913 0.0584 0.0691 0.0583
Single-P (pre. only)  0.5758 0.5093 0.0700 0.0431 0.0517 0.0421
Multi-P (pre. only)  0.5912 0.5235 0.0812 0.0481 0.0601 0.0510
MTL,ingle-p 0.6012 0.5093 0.0725 0.0453 0.0522 0.0431
MTL pmultip 0.6100 0.5337 0.0810 0.0482 0.0615 0.0530

6.1 Effectiveness of Pre-training

To validate the effectiveness of our pre-training scheme, we compare the performances of the
four selected recommender models (i.e. MF [48], NCF [15], NGCF [62] and LightGCN [14]) with
their pre-trained variants under the pre-training processes defined by our Multi-P and Single-P.
Figure 5 reports the recommendation performances comparison in terms of the NDCG, Recall and
MAP metrics at a rank cut-off of 10. From Figure 5, we can clearly observe that, over the three used
datasets, all the selected 4 recommender models exhibit significantly improved performances when
Multi-P is applied. Moreover, we can also see that a baseline pre-trained with our Multi-P can
always outperform the baseline pre-trained with Single-P. This is somewhat expected, as Multi-P
is trained using the multi-graphs constructed from the entities’ side information. Therefore, Multi-
P is capable of capturing the heterogeneous relations between entities within the side information,
in contrast to the Single-P, which can only leverage the similarity between each feature vector.

To conclude on RQ1, we have shown that our proposed Multi-P model can effectively leverage
various users and items’ side information, thereby enhancing the existing representation-based rec-
ommenders with significant performance improvements, consistent across the three used datasets,
three measures and four baselines.

6.2 Effectiveness of Integrating Side Information

Having shown that our proposed Multi-P is effective at enhancing the performances of the existing
recommenders through the leveraging of side information, we next examine whether these recom-
menders with our pre-training scheme perform better than the existing state-of-the-art models. To
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Table 5. Standard deviations (denoted std.) and means of the NDCG@10 performances over 50
random seeds. Lower standard deviation (in bold) means a better stability.

Model Foursquare Epinions

std. mean std. mean
MF 0.0197 0.5163 0.0127 0.0501
MF,§ingle-p 0.0046 0.6206 0.0049 0.0527
MF, Multi-p 0.0029 0.6249 0.0043 0.0587
NGCF 0.0237 0.5162 0.0108 0.0681
NGCF,single-P 0.0053 0.6016 0.0042 0.0708
NGCF, Multi-p 0.0044 0.6138 0.0038 0.0719
LightGCN 0.0209 0.5365 0.0092 0.0706
Light GCN,single-p 0.0050 0.6262 0.0039 0.0717
LightGCN. pmulti-p 0.0039 0.6264 0.0031 0.0792
NCF 0.0283 0.4621 0.0159 0.0591
NCFisingle-p 0.0091 0.5777 0.0079 0.0620
NCF.pmulti-p 0.0086 0.6021 0.0064 0.0691

answer this, we further compare the pre-trained models (i.e. MF,puiti-ps NCF1pulti-P,NGCF Multi-p
and LightGCN . puni-p) With their corresponding baselines pre-trained with Single-P as well as
three state-of-the-art recommenders where both side information of users and items are used. Table
4 reports the recommendation performances in terms of the NDCG and MAP metrics at rank cut-off
10 for each model across all three datasets. From Table 4, we observe that although the relative
performance ranking of systems is different across the used datasets, the three baselines (i.e. HIRE,
cVAE and SSLIM) do not achieve the highest performances on any of the used datasets. Specifically,
the LightGCN,py1ti-p model performs the best on both the Epinions and Foursquare datasets,
outperforming the NDCG@10 score of the HIRE side information-aware baseline by 18.7% (0.0667
— 0.0792) and 21.6% (0.5232 — 0.6364), respectively. For the Movielens-1M dataset, MF, pulti-p
achieves the best performance on the MAP metric, outperforming the HIRE model by 3.76% (0.0692
— 0.0718). Furthermore, we compare the pre-trained models with four variants that also use side
information: Single-P (pre. only), Multi-P (pre. only), MTL,gingle-p and MTL pui-p- Recall that
Single-P (pre. only) and Multi-P (pre. only) are two variants that only use the pre-training models
without fine-tuning; MTL,single-p and MTL puni-p are two variants that use multi-task learning
to train the models. From Table 4, we find that the variants using multi-task learning always out-
perform the two pre-training only variants. However, none of these variants can reach the best or
second best performances on all three used datasets, further demonstrating our proposed scheme’s
superiority. We also notice that models pre-trained by our proposed scheme cannot consistently
outperform the pre-training only variant. For example, the NCFsjng1e-p model is less effective than
the pre-training only variant Single-P (pre. only) on the Foursquare dataset. This suggests that
the performance of Single-P has decreased after being fine-tuned by the NCF model. Such an
observation is related to the well-known issue of training a deep neural network with a warm
restart [35] when a pre-trained model cannot even achieve the previous local optima during the
fine-tuning process. We leave such an issue to future work, for example investigating how to at
least maintain the previous local optima when fine-tuning a recommender system.
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In addition to comparing our proposed scheme with side information-based baselines, we incor-
porate another three baselines, which use different graph-based methods to enhance the recom-
mendation performance instead of relying on side information. Specifically, the SGL model uses the
graph self-supervised learning method, PT-GNN uses the graph pre-training method, and SimGCL
uses the graph contrastive learning method. By comparing the SGL, PT-GNN and SimGCL models
with our proposed scheme in Table 4, we observe that our proposed scheme can achieve the best
performances for all cases in terms of NDCG@10. This observation shows that using our proposed
pre-training scheme to integrate side information outperforms baselines that use other competitive
graph-based techniques.

Overall, to answer RQ2, we have shown that the four selected representative recommendation
models with our Multi-P pre-training scheme can outperform the other three baseline models that
also leverage entity side information using the integration scheme on all the three used datasets.

6.3 Ablation Study of Side Information

Having observed that all the evaluated existing baseline models are significantly improved by our
pre-training scheme, we now check whether these improvements are actually the result of using
the within-entity knowledge captured by our pre-training models (RQ3). To answer this question,
we conduct an ablation study to examine the effect of randomly removing entity features, thereby
revealing the connection between the performance improvements and the within-entity knowledge.
Specifically, we randomly drop different proportions ({20%, 40%, 60%, 80%}) of entity features during
the pre-training process, and evaluate the recommendation performances of the fine-tuned models
given these pre-trained embeddings. Figure 6 reports the obtained results. From Figure 6, we can
see that all the NDCG@10 performances of all fine-tuned models decrease as the features dropout
ratio increases from 0% (i.e. no dropped features) to 80% (80% of features are dropped) in all the
three datasets. This result suggests that randomly dropping entity features does hurt the overall
recommendation performance. This result also suggests that the performance improvements are
indeed gained from the entity features and our Single-P and Multi-P models are able to accurately
capture the within-entity knowledge from the entities’ side information.

6.4 Stability Analysis

In the previous sections, we have demonstrated the general applicability and effectiveness of
our introduced pre-training scheme. To address RQ4, we calculate the standard deviations of the
NDCG@10 performances of the baseline models (i.e. MF, NCF, NGCF and LightGCN) and their
enhanced variants by our Multi-P and Single-P models. Table 5 presents the obtained results on
the Foursquare and Epinions datasets. From the table, we observe that Multi-P markedly improves
the performances and stabilities of all the used baselines, with much smaller observed standard
deviations in each paired comparison of a baseline model with and without the use of the pre-
training scheme. Noticeably, although less effective than our Multi-P model, the Single-P model
can also bring a marked stability enhancement to all baselines, which demonstrates the superiority
of the graph pre-training scheme for recommender systems. To conclude, our proposed pre-training
scheme can enhance the performance of each of the representation-based recommender systems as
well as their stability, thereby alleviating the high variances issue observed in Figure 1.
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Fig. 6. Results of the baselines deploying the Multi-P and Single-P models over different dropout
ratio of entity features.

6.5 Cold-start Analysis

To answer RQ5, we evaluate the performances of LightGCN, PT-GNN, LightGCN_gjngle-p and
LightGCN pultip on the Foursquare and Epinions datasets® over different groups of users, re-
spectively. Specifically, following existing work [17, 33], we consider that the cold-start users

8 We only use the Foursquare and Epinions datasets because the Movielens-1M dataset has only users with more than 20
interactions. However, typically, users with more than 20 interactions can hardly be called as cold-start users.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2022.



Graph Neural Pre-training for Recommendation with Side Information 1:23

Table 6. NDCG@10 performances of our proposed scheme and those of the baselines across
different groups of users on the two used datasets.

Model Foursquare Epinions
Overall  Cold-start  Regular Overall  Cold-start  Regular
LightGCN 0.6012 0.5117 0.6238 0.0611 0.0532 0.0673
PT-GNN 0.6048 0.5334 0.6239 0.0697 0.0603 0.0700
LightGCN,single-p 0.6162 0.5458 0.6397 0.0717 0.0653 0.0731
LightGCN, pulti-p 0.6364 0.5529 0.6458 0.0792 0.0701 0.0802

are those users with fewer than 10 interactions and the regular users are those users with more
than 10 interactions. In Table 6, we report the NDCG@10 performances of the overall (i.e. all
users included), cold-start (i.e. cold-start users only) and regular groups (i.e. regular users only)
using all the evaluated models, respectively. In particular, we specifically choose PT-GNN as a
baseline since it is especially designed to improve the cold-start recommendation [13]. In addition,
we choose LightGCN and its two pre-trained variants LightGCN,sjngle-p and Light GCN purti-p
for their excellent overall performances as shown in Table 4. From Table 6, we observe that our
LightGCN,single-p and LightGCN, py1ti-p models consistently outperform the original LightGCN
model and the pre-training baseline, i.e. PT-GNN, on both used datasets across different groups
of users. It is worth noting that although PT-GNN markedly outperforms the LightGCN baseline
for the cold-start users on the Foursquare dataset (0.5117 — 0.5334) and on the Epinions dataset
(0.0532 — 0.0603), the improvements for the regular users are relatively marginal, especially for
the Foursquare dataset, where NDCG@10 is only improved from 0.6238 to 0.6239. On the contrary,
our proposed scheme can boost the recommendation performance for different groups of users
instead of only focusing on the cold-start users. The reason why our proposed scheme can consis-
tently improve the performance of the original model is that we use abundant side information
to construct the relational graphs. Since the side information is available for different groups of
users (sometimes the regular users have even more attributes), in general our proposed scheme
can evenly enhance the representations of users. In comparison, PT-GNN relies on the interaction
graph to construct the embeddings of the cold-start users, which might only benefit these cold-start
users instead of all users.

To conclude, we have shown that our proposed scheme is able to alleviate the cold-start problem,
while still ensuring an effective recommendation for all other users in comparison to strong
baselines.

6.6 Hyperparameter Analysis

To answer RQ6, we study how the embedding dimension affects the recommendation performance.
Figure 7 shows the performance comparison results of our pre-trained models (i.e. Light GCN_gingle-p.
NCFsingle-P» NCF Multi-p and Light GCN mulii-p) With their baselines (i.e. LightGCN and NCF). From
Figure 7, we observe that the size of the embedding dimension does affect the final recommendation
performances of all these evaluated models. We can also observe that when the size of the latent
dimensions is <40, all three models show relatively poor performances, which can be further
boosted when the dimension size increases; almost all models’ performances reach their highest
points when the dimensions are between 60 to 80. Recall that, for a fair comparison, we fixed
the embedding dimension to 64 for all the implemented models, which can be further justified
from these obtained results. Moreover, Figure 7 demonstrates that our pre-training scheme can
bring consistent improvements to the exiting models across different embedding dimensions. We
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also plot the performances evaluated by NDCG over different cut-offs (k) of the items ranking
in Figure 8. We can also see that both LightGCN purti-p and NCF puni-p consistently improve
over their baseline models for different cut-offs. In particular, we see that even for some low rank
cut-offs (e.g. k = {1,3,5}) or for deep cut-offs (e.g. k = 50) our Multi-P model can still enhance
the LightGCN and NCF models with a marked improvement, which means that our per-training
scheme can help improve the recommendation performance under different circumstances when
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different amount of items (i.e. cut-off values) are chosen to be exposed to the users.
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Fig. 7. The performance comparison over different dimensions on the Foursquare dataset.
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Fig. 8. The performance comparison over different cut-off values on the Foursquare dataset.

7 CONCLUSIONS

In this paper, we introduced a novel pre-training scheme for recommender systems to leverage the
entity side information in a general manner. In particular, we proposed two models for pre-training
the entity representations to capture the within-entity contextual knowledge, based on the graphs
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constructed from the entity side information. The extensive evaluation of our pre-training scheme
with the fine-tuning of four existing representation-based recommenders showed that effectively
pre-training the embeddings with both the users and items’ side information improved these existing
models in terms of both effectiveness (always significantly, see Figure 5) and stability (see Table 5).
Furthermore, compared to the existing state-of-the-art recommender baselines, which integrate
the same side information, our Multi-P model exhibited up to 7% improvement in NDCG@10 for
the Movielen-1M dataset, 21% improvement on the Foursquare dataset and 48.6% improvement on
the Epinions dataset (see Table 4). In addition, our Multi-P model consistently and significantly
outperformed recent baselines that incorporate self-supervised learning, graph contrastive learning
or graph pre-training techniques. Moreover, we have also shown through an in-depth analysis that
by leveraging the side information through pre-training, our Single-P and Multi-P models can
successfully alleviate the classical cold-start problem while ensuring effective recommendations
for all other users. We also showed that the Multi-P model, pre-trained using multi-graphs, can
always outperform the Single-P model, which suggests that more information is captured through
the use multi-graphs. Our pre-training scheme provides a general framework for leveraging side
information, which can be used to enhance a general representation-based recommendation model.
As future work, we aim to investigate using other types of graph neural networks in the pre-
training scheme. We will also explore whether the proposed pre-training scheme can benefit other
recommendation scenarios, such as in sequential and session-based recommendations.
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