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ABSTRACT
Data quantization is an effective method to accelerate neural net-
work training and reduce power consumption. However, it is chal-
lenging to perform low-bit quantized training: the conventional
equal-precision quantization will lead to either high accuracy loss
or limited bit-width reduction, while existing mixed-precisionmeth-
ods offer high compression potential but failed to perform accurate
and efficient bit-width assignment. In this work, we propose DY-
NASTY, a block-wise dynamic-precision neural network training
framework. DYNASTY provides accurate data sensitivity informa-
tion through fast online analytics, and maintains stable training
convergence with an adaptive bit-width map generator. Network
training experiments on CIFAR-100 and ImageNet dataset are car-
ried out, and compared to 8-bit quantization baseline, DYNASTY
brings up to 5.1× speedup and 4.7× energy consumption reduction
with no accuracy drop and negligible hardware overhead.
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Figure 1: Mixed-precision quantization in NN training

1 INTRODUCTION
Neural networks(NN) have been widely adopted in many fields,
including computer vision[1], speech recognition[2], and natu-
ral language processing[3]. However, training NN usually needs
large computing power, which requires high-cost cloud servers and
makes it infeasible to train on low-power edge devices. Researchers
have been studying various methods for NN training acceleration,
such as exploiting data pruning algorithm[4] and developing more
efficient hardware accelerators[5].

As NN training is usually carried out with 32-bit float point
data, low-bit network quantization can be an effective way for NN
training acceleration. There are 3 ways for NN quantization: post-
training quantization[6], quantization aware training[7], and fully-
quantized training[8]. The first 2 methods only quantize network
inference data and do not accelerate training process, and they
usually need to train auxiliary NN or use methods like evolutionary
search, leading to even longer training time[9]. Meanwhile, fully-
quantized training aims at online quantization of all training data,
which can significantly reduce the computation cost needed for
training.

Early works on fully-quantized training adopt an equal bit-width
for the entire network[8], which leads to either high accuracy loss
or limited bit-width reduction. Later works utilize mixed-precision
training to provide better acceleration while maintaining network
accuracy. Some works like [10] assign different bit-widths to each
network layer, and state-of-the-art quantization results are acquired
through block-wise mixed-precision training[11]. As shown in
Fig. 1, block-wisemixed-precision training divides training data into
small blocks, and quantizes them into different bit-widths. Whether
layer-wise or block-wise, mixed-precision training is challenging in
how to perform online precision assignment for each layer/block of
data. Some of the existing works use data quantization sensitivity
acquiring algorithms such as calculating Hessian eigenvalue and
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trace[10, 12], which are too complicated for hardware implementa-
tion; other works utilize heuristic methods like greedy search[11],
which does not generate accurate bit-width distribution.

To address the aforementioned weakness, we propose DYNASTY
(DYNamicAnalytics of SensitiviTY), a block-wise dynamic-precision
NN training framework. By using analytics methods, DYNASTY
performs fast dynamic data bit-width assignment, and achieves
average 2-bit quantization with minimum accuracy drop. Key con-
tributions of the work are concluded as follows:
• A software-hardware co-designed block-wise fully-quantized
mixed-precision NN training framework named DYNASTY.
It provides a block-float-point quantized training algorithm
with 0-8 bits dynamic block precision, and extends an on-
line bit-width assignment module to the NN acceleration
hardware architecture.
• A Relative Quantization Sensitivity Analytics algorithm. By
applying relaxed Lagrange duality, it transforms the NP-hard
bit-width searching problem into 𝑂(𝑁 ) complexity, provid-
ing fast but still accurate online data quantization sensitivity
analysis.
• An Adaptive Bit-Width Map Generator that maps data sen-
sitivity to bit-width. It performs online tuning of algorithm
hyperparameter to maintain stable average bit-width, and
employs bit-width map temporal smoothing to furtherly
enhance network accuracy.
• Experiments on our algorithm show 5.1× training speedup
with no accuracy drop on CIFAR-100, and 1.9× speedup with
0.39 % accuracy drop on ImageNet, compared to 8-bit quanti-
zation baseline. Our hardware architecture shows minimum
overhead on die area (+1.4 %) and brings at most 78.8 % en-
ergy consumption reduction.

2 PRELIMINARY & RELATEDWORKS
2.1 Quantized NN Training Basics
While NN inference requires only one forward pass computation,
training involves three different stages: forward, backward and
weight update. Each stage includes multiply-accumulate(MAC) op-
erations on different data: for the forward stage, they are activations
and weights; for the backward stage, they are activation gradients
(also called errors) and weights; and for the backward stage, they
are activations and activation gradients.

Researchers have found training quantization to be more chal-
lenging than inference. Xiao Sun et al. [13] point out that quantiza-
tion saturation can be severe in training due to the large dynamic
range of gradient data in the backward stage. Later work[14] fur-
therly discover that different network layers show widely different
ranges of gradients across training epochs.

To better suit these different data distributions, either hand-
crafted quantization formats for different layers and stages need to
be carefully designed as having been done in [13, 14], or better we
employ mixed-precision quantization that adaptively adjusts the
quantization method for different parts of data in networks.

2.2 Mixed-Precision NN Training
Early works of mixed-precision fully-quantized training such as
HAWQ[10] and AdaQS[15] only calculate a relative ordering of the
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Figure 2: Proposed block-wise dynamic-precision NN train-
ing framework

importance of each data block. They require empirically assigning
bit-width to each block, making their method design include trial
and error and hard to be accurate.

A better way to get bit-width distribution is through analytics
methods, where the bit-width distribution solving is formulated as
an optimization problem to minimize impacts brought by quantiza-
tion noise. ActNN[11] proposes to define the mean square of weight
gradients as the optimization target, but this optimization is hard
to solve and they have to use greedy search for a heuristic result.
HAWQ-V3[16] needs to solve an integer linear programming prob-
lem, and MPQCO[17] formulates it into a multiple-choice knapsack
problem, both of which are NP-hard to solve.

3 BLOCK-WISE DYNAMIC-PRECISION NN
TRAINING FRAMEWORK

3.1 Quantization Training Framework
Figure 2 depicts the overall framework of our system, where the DY-
NASTY module extends an NN accelerator for block-wise dynamic-
precision training. Input data of all training stages are quantized by
Block-Float-Point(BFP) format, which divides data into 4×4 blocks1.
Data in each block have mantissa quantized into a same bit-width,
and they also share a single 8-bit exponent. Two strategies are used
for mantissa bit-width assignment: in each training stage, one of
the input data is statically quantized to 8-bit mantissa; sensitivity
analytics is performed for the other input data, whose mantissa is
dynamically quantized into 0-8 bits according to the bit-width map
generated by the DYNASTY module.

The DYNASTY module is in charge of the dynamic bit-width
assignment, and consists of two sub-modules. The first sub-module,
named Relative Quantization Sensitivity Analytics, receives
the current quantization range together with data gradients, and
generates a relative quantization sensitivity value for each block.

1Block division is along𝐶𝑖𝑛 and𝐶𝑜𝑢𝑡 dimensions for weight andweight gradients,𝐶𝑖𝑛

and 𝐵𝑎𝑡𝑐ℎ dimensions for activations, and𝐶𝑜𝑢𝑡 and 𝐵𝑎𝑡𝑐ℎ dimensions for activation
gradients.
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Figure 3: An example of per-layer relative sensitivity dis-
tribution. Red markers represent the mean sensitivity per
layer, and different colored squares represent the propor-
tion of different sensitivity ranges in each layer.

This analytics happens at the end of the training of each mini-batch.
This sub-module will be detailed in Section 3.2. The second sub-
module, the Adaptive Bit-Width Map Generator, works at the
end of each training epoch. It maps the sensitivities into a bit-width
distribution and maintains stable training. This mapping happens
at the end of each training epoch. Details of this sub-module will
be provided in Section 3.3.

3.2 Relative Quantization Sensitivity Analytics
To perform fast online data analysis and dynamically identify which
data is more important and need larger quantization bit-width than
others, the Relative Quantization Sensitivity Analytics module is
designed to calculate data quantization sensitivity based on their
quantization range and corresponding gradients. We first establish
an optimization problem based on the minimization of first-order
mean square loss noise. Then we propose to solve the optimization
by relaxed Lagrange duality method and get the sensitivity values.

3.2.1 Optimization Problem Based On First-Order Mean Square
Loss Noise. Quantization brings noise to network training process,
leading to less stable training and lower network accuracy. An
ideal bit-width assignment should minimize this noise and bring
minimum perturbation to the train loss. We propose to use the
first-order mean square loss noise(∆𝐿2) to quantify this perturba-
tion. The math formula of ∆𝐿2 caused by weight quantization is
shown as Eq. (1). It is calculated as the mean square value of first-
order loss noise caused by each quantized data. And we use 𝑆𝑖 to
denote the ratio of loss noise to quantization levels in each data
block. In Eq. (1), ∆𝑊𝑖, 𝑗 is the gradient of the 𝑗th weight of the 𝑖th
block; 𝜎𝑖, 𝑗 is the quantization noise of corresponding data; 𝑁 is the
total number of data blocks; 𝐵 is the number of values inside each
block; 𝑏𝑖 is the quantization bit-width of the mantissa of the 𝑖th
block of weights; and 𝑒𝑖 is the exponent of each block so that 2𝑒𝑖 is
the corresponding quantization range. Note that, ∆𝐿2 brought by
activation quantization can also be calculated in the same way, and
we omit its formula here for simplicity. With our formulation, ∆𝐿2

is calculated from the quantization range of each block and their
corresponding gradient values, both of which are already known
during NN training.

∆𝐿2 =
1
𝑁𝐵

𝑁∑︁
𝑖=1

𝐵∑︁
𝑗=1

(
∆𝑊𝑖, 𝑗 · 𝜎𝑖, 𝑗

)2 =
2

3𝑁𝐵

𝑁∑︁
𝑖=1

𝑆𝑖

(
2−𝑏𝑖

)2

𝑆𝑖 =
(2𝑒𝑖 )2

16

𝐵∑︁
𝑗=1

∆𝑊 2
𝑖, 𝑗

(1)

The full optimization is shown as Eq. (2). Aside from ∆𝐿2 as our
optimization target function, we also specify the optimization con-
straints. The 𝛼 denotes the desired average computation bit-width,
which is the𝑇𝑖 weighted average of block bit-width 𝑏𝑖 , where𝑇𝑖 rep-
resents the amount of computation associated with corresponding
data. Bit-width lower bound 0 and upper bound 𝛽 are also specified.

arg min
𝒃

𝑓 (𝒃) = ∆𝐿2 (2a)

subject to
∑𝑁
𝑖=1𝑇𝑖𝑏𝑖∑

𝑇𝑖
≤ 𝛼 (2b)

𝑏𝑖 ∈ Z (2c)
0 ≤ 𝑏𝑖 ≤ 𝛽 (2d)

3.2.2 Problem Solving for Relative Quantization Sensitivity. Opti-
mization in Eq. (2) is a mixed integer convex programming problem.
It is NP-hard to solve and too complicated for hardware implemen-
tation. Thus we propose to relax the restriction in Eq. (2c) to the R
set, and then apply Lagrange duality to this problem. This leads to
the solution shown in Eq. (3). The bit-width is calculated from value
𝒓 and a hyperparameter 𝜆. 𝒓 is easy to compute based on Eq. (3b).
It is positively correlated with 𝑆𝑖 and negatively correlated with
𝑇𝑖 , and only requires 𝑂(𝑁 ) time complexity for weights and activa-
tions of the entire network. 𝒓 tells the relative bit-width between
data blocks, and we call it the relative quantization sensitiv-
ity. Though we still do not know the value of 𝜆, we successfully
transform the searching of bit-width of N different blocks
into the searching of only a single hyperparameter. We call
𝜆 the global quantization coefficient.

𝑏𝑖 = max(0,min(𝑟𝑖 − 𝜆, 𝛽)) (3a)

𝑟𝑖 =
1
2

log2
𝑆𝑖

𝑇𝑖
(3b)

An example of 𝒓 distribution during training of ResNet-18 is
shown as Fig. 3. We can see that the desired bit-width distribution
should be different across network layers. Data in several layers
requires much larger bit-widths than others, including weights in
the first, the last, and the 3 shortcut layers, and activation in the
last layer. Bit-width distribution inside each layer is also different,
and activations’ bit-widths tend to be more spread out and reside
in larger ranges than weights’. These observations suggest that
manually setting bit-width can hardly suit the data requirement,
and online bit-width assignment based on data sensitivity is needed.

However, though Eq. (3b) uncovers the relative bit-widths be-
tween data blocks, it still does not give us the absolute bit-width
of each block of data. Two problems remain to be solved. The first
is how to search the value of 𝜆. The second is that the sensitivi-
ties of some blocks are unstable across training epochs, leading to
bit-width fluctuating periodically as shown in Fig. 4, which brings
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Figure 4: Data bit-width fluctuation reduces network accu-
racy.
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0.4 % to 1 % network accuracy drop in our experiment. Both of these
problems are addressed in Section 3.3.

3.3 Adaptive Bit-Width Map Generator
The Adaptive Bit-Width Map Generator aims to solve the remaining
problems mentioned in Section 3.2 and maps the relative sensitivi-
ties 𝒓 of each block to their exact quantization bit-widths.

3.3.1 Dertermine the Value of 𝜆. To find the exact global quantiza-
tion coefficients 𝜆, we develop an adaptive quantization coefficient
adjustment algorithm to dynamically determine the coefficient dur-
ing training. In theory, if we ignore these upper and lower bounds
constraints in Eq. (3a), an approximate of 𝜆 can be easily deduced
as 𝜆 = ∑

𝑖 𝐵𝑖 − 𝑁𝛼 , where 𝑁 is the number of blocks. With ex-
periments, we discover that in the initial training of a network,
differences in the importance of data in the network are not much
and seldomly make 𝑏𝑖 reach the lower or upper bound, thus 𝜆 is a
good estimation of the initial 𝜆 value.

However, as shown in Fig. 5, using only 𝜆 leads to the average
bit-width becoming larger than desired as training continues, es-
pecially for activation data. To prevent 𝜆 drifting away from the
desired value, we design Algorithm 1, which tunes 𝜆 with linear
interpolation using the last 𝜆 value as the start point of the interpo-
lation. The number of interpolation iterations 𝐿 is empirically set
to 3. By using this method, average bit-width can be maintained
stably at the target bit-width, as the blue lines show in Fig. 5.

3.3.2 Prevent Bit-Width Fluctuatation. To solve the bit-width fluc-
tuation problem, we propose a bit-width map temporal smoothing

Algorithm 1 Global Quantization Coefficient Tuning
Input: 𝜆𝑖𝑛 : the last global quantization coefficient

𝒓 : relative sensitivity
𝛼 : target averaged quantization bit-width

Output: 𝜆𝑜𝑢𝑡 : the tuned global quantization coefficient
Parameter: 𝐿: number of interpolation iterations
1: begin
2: 𝜆𝑜𝑢𝑡 = 𝜆𝑖𝑛
3: 𝜆0, 𝜆1 ← min(𝒓) − 𝛼,max(𝒓) − 𝛼
4: for 𝑙 = 1 to 𝐿 do
5: 𝑏0 ← 1

𝑁

∑
𝑖 max(min(𝑟𝑖 − 𝜆0, 𝛽) , 0)

6: 𝑏1 ← 1
𝑁

∑
𝑖 max(min(𝑟𝑖 − 𝜆1, 𝛽) , 0)

7: 𝑏 ← 1
𝑁

∑
𝑖 max(min(𝑟𝑖 − 𝜆, 𝛽) , 0)

8: if 𝑏 > 𝛼 then
9: 𝑡 ←

(
𝑏 − 𝛼

)
/

(
𝑏 − 𝑏1

)
10: 𝜆0, 𝜆𝑜𝑢𝑡 ← 𝜆𝑜𝑢𝑡 , (1 − 𝑡) 𝜆𝑜𝑢𝑡 + 𝑡 · 𝜆1
11: else
12: 𝑡 ←

(
𝑏 − 𝛼

)
/

(
𝑏 − 𝑏0

)
13: 𝜆𝑜𝑢𝑡 , 𝜆1 ← (1 − 𝑡) 𝜆𝑜𝑢𝑡 + 𝑡 · 𝜆0, 𝜆𝑜𝑢𝑡
14: end if
15: end for
16: end

method: at every epoch, an exponential moving average is per-
formed on the bit-width map, shown as Eq. (4). This prevents sud-
den changes in data bit-width caused by any calculation error. The
smooth factor 𝛾 is empirically set to 0.5.

(4)𝑏𝑖,smoothed = 𝛾 · 𝑏𝑖,last + (1 − 𝛾 )𝑏𝑖,new

Note that, during the first training epoch when we have not
got the value of 𝜆, we assign 4 bits to every block as the initial
bit-width map. And for hardware simplicity, we perform rounding
on the bit-width map to only use 0,2,4,6,8 as possible quantized
bit-widths. Specially, when a block is quantized to 0 bit, we skip the
computation of this block. The smoothed bit-width map is then sent
to the accelerator computing cores for dynamic data quantization.

4 HARDWARE ARCHITECTURE
Support of variable bit-width operation has been realised through
NN accelerators with bit-serial-based computation array[5, 18].
These accelerators get linear speedup as the operation bit-width
shrinks. The DYNASTY hardware architecture extends such accel-
erators with online bit-width assignment ability.

Fig. 6 shows the hardware architecture of the DYNASTY module.
The use of 16 parallel sensitivity analytics units makes it capable of
calculating the sensitivities and generating bit-width map for 16
blocks, i.e. 256 weights or activations in one cycle. Note that, the
DYNASTY module is running in parallel with the main array of
the accelerator. A recovery remainder-based divider is used in the
Bit-Width Map Generator, but since there is only one divider, and
the divisions only happen at the end of each training epoch, it does
not bring much area and power overhead.
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5 EXPERIMENTAL RESULTS
5.1 Experiment Setup
In our experiments, we train ResNet-18 network[19] on the CIFAR-
100[20] and ImageNet[21] dataset. For both datasets, we adopt a
batch size of 128, and use SGD as the optimizer with an initial
learning rate of 0.1. For CIFAR-100, we train the network for 200
epochs; learning rate linear warming up is used in the 1st epoch; and
we perform learning rate decay at the 60th, 120th, and 160th epochs
with a decay factor of 0.2. For ImageNet, we train the network for
95 epochs; learning rate linear warming up is used in the first 5
epochs; and we perform learning rate decay at the 30th, 60th, and
80th epoch with a decay factor of 0.1.

We also perform training with 2 other methods aside from DY-
NASTY as our baseline. The first method is to train with float-32
format without quantization; the second is 8-bit quantized training
according to the work of Ron Banner et al. [22].

We implement the DYNASTY module in Verilog and get its area
and power information by synthesizing it in Synopsys Design Com-
piler with TSMC 65nm CMOS technology. The hardware metrics
of other modules in a full accelerator are taken from the UNPU
accelerator[18].

5.2 Algorithm Evaluation
5.2.1 Network Accuracy. Table 1 shows the validation accuracy
that DYNASTY getswith different quantization bit-width. OnCIFAR-
100, we achieve 4-bit quantization with no accuracy drop compared
to float-32 training; even with 2-bit quantization, we only get an
accuracy drop of 1.40 % compared to float-32 training and get better
accuracy than the 8-bit baseline. On ImageNet, while the accuracy
drop with 2-bit quantization is not small (6.25 %), the 4-bit training
experiment still reveals good accuracy with only 0.88 % accuracy
drop.

5.2.2 Training Convergence Speed Improvement. Figure 7 presents
the accuracy-time curve in the experiments. Note that, the training

Table 1: Network accuracy with different average quantiza-
tion bit-width

Dataset Method Average
Bit-Width∗

Top 1 Validation
Accuracy (%)

CIFAR-100

Float-Point All Float-32 76.54

Banner et al. 8 74.77 (−1.77)

DYNASTY

6 76.57 (+0.03)
4 76.55 (+0.01)
3 75.81 (−0.73)
2 75.14 (−1.40)

ImageNet

Float-Point All Float-32 68.77

Banner et al. 8 68.28 (−0.49)

DYNASTY

6 68.60 (−0.17)
4 67.89 (−0.88)
3 65.84 (−2.93)
2 62.52 (−6.25)

∗Average bit-width refers to the bit-width of dynamic
quantized training data.
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Figure 7: Training convergence speed improvementwithDY-
NASTY

speed for unquantized float-32 training is not compared here, as the
cores of the UNPU accelerator cannot handle float-32 operations.

Because the DYNASTY module runs in parallel with the ac-
celerator cores, we enjoy a linear speedup as the quantization bit-
width decreases. Compared to 8-bit training baseline, for CIFAR-100,
DYNASTY reaches the same validation accuracy (74 %) in 58.3 %,
38.9 %, 29.2 %, and 19.6 % training time with 6, 4, 3, 2-bit quantiza-
tion, respectively; because the better convergence than baseline,
the speedup (5.1× with 2-bit) is even higher than expectation (4×).
For ImageNet, DYNASTY needs 75.0 % and 52.5 % time to get 67 %
accuracy with 6 and 4-bit quantization, respectively.

5.3 Architecture Evaluation
Table 2 shows the area and power of the DYNASTY module com-
pared to othermodules in the accelerator.We can see that DYNASTY
brings no more than 1.4 % area overhead.

The average power consumption of DYNASTY varies with the
network scale and quantization bit-width as these factors affect the
duty cycle of the DYNASTY module, and we only show the value
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Table 2: Area and power overhead of DYNASTY

Module Area
(mm2)

Power Consumption
(mW@200MHz)

DYNASTY 0.219 10.3 (4-bit, ImageNet)
Main Accelerator 16 297

Banner et al. (8-bit)

DYNASTY (6-bit)

DYNASTY (4-bit)

DYNASTY (3-bit)

DYNASTY (2-bit)

Quantization Method
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Figure 8: Energy consumption reduction with DYNASTY

in a typical situation in Table 2. Details on the energy consump-
tion overhead can be seen in Fig. 8. DYNASTY brings at most 7.9 %
power consumption overhead to the accelerator, but this overhead
is overcome by the energy saving due to shorter training time with
lower-bit quantization. When targeting 74 % accuracy on CIFAR-
100, we get 40.0 %, 59.5 %, 69.2 %, and 78.8 % energy consumption
reduction when quantizing to average 6, 4, 3, and 2 bits. For Ima-
geNet, we also achieve 23.2 % and 45.7 % energy reduction with 6
and 4-bit quantization when targeting 67 % accuracy.

6 CONCLUSION
In this paper, we propose DYNASTY, a software-hardware co-
designed block-wise dynamic-precision neural network training
framework. We utilize an analytics method based on network first-
order mean square loss noise to efficiently generate data quanti-
zation sensitivity online, and develop an Adaptive Bit-Width Map
Generator to accurately map sensitivity to bit-width distribution
that maintains desired computation reduction and high network ac-
curacy at the same time. Experiments on CIFAR-100 and ImageNet
dataset are carried out, and compared to 8-bit quantization baseline,
we achieve up to 5.1× speedup and 4.7× energy consumption re-
duction with no accuracy drop and negligible hardware overhead.
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