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Abstract

Contributing to the toolbox for interpreting election results, we evaluate the robustness of
election winners to random noise. We compare the robustness of different voting rules and
evaluate the robustness of real-world election winners from the Formula 1 World Championship
and some variant of political elections. We find many instances of elections that have very
non-robust winners and numerous delicate robustness patterns that cannot be identified using
classical and simpler approaches.

1 Introduction

Voting is a convenient and powerful framework to aggregate preferences. It has many real-world
applications ranging from political elections, through evaluation panels deciding on which research
projects to fund, and televoting in TV shows, to aggregating the results of sport competitions.
Interestingly, independent of the application, one regularly, and emotionally, debated matter is by
“how much” the winning candidate had won the election. Remarkably, studies have found that there
are more extremely close elections than one might intuitively expect. For instance, there is a list of
313 political elections on Wikipedia where the election was decided by less than 0.1% of all voters
[18]. Moreover, Mulligan and Hunter [23] reported that in state elections in the United States one
in every 15.000 voters casts a decisive vote. Motivated by this, there is a rich body of theoretical
literature on the likelihood that elections are decided by a single vote [1, 3, 11, 16, 17, 21, 22, 33].

But what is the relevance of close elections beyond being a topic people like to argue about?
The main underlying assumption here is that the recorded votes in the election capture reality
only approximately. For instance, it might be the case that some voters cast their votes in a rush
or without having enough information available to them, voters were unable to participate in the
election, or votes were incorrectly recorded due to technical errors (which indeed happen sometimes
[24, 31]). If an election is detected to be close, various counter-measures can be taken: For instance,
it is possible to do a recount or to audit the election results [25, 27–29], to continue discussions
about the election issue, or to collect further votes. Even if one assumes that the election result is
“correct”, by how much a candidate won also influences its legitimacy and credibility, in particular
considering that voters might change their mind over time. To sum up, a reliable estimate for the
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lead of an election winner has the potential to increase the fairness and transparency of elections, as
it allows for a better interpretation of election results and the initiation of possible countermeasures.

But what does it mean for an election to be close? In political elections, Plurality voting is
often used. Here, each voter awards one point to its most preferred candidate and the candidate
with the most points wins. For Plurality (and also for arbitrary scoring-based rules) a natural and
common measure to assess the closeness of an election is the difference between the score of the
election winner and the candidate finishing in the second place. A more fine grained version of this
notion is the margin of victory, which is defined as the minimum number of voters that need to
change their votes to change the election outcome [10, 13, 19, 32]. However, both of these concepts
are too “coarse” in certain situations. To illustrate this, consider an election E containing 50 times
the vote a � b � . . . and 49 times the vote b � · · · � a, and an election E′ containing 50 times the
vote a � · · · � b and 49 times the vote b � a � . . . (we write a � b to indicate that a is preferred to
b and “. . . ” to indicate that we rank all remaining candidates in some arbitrary ordering). While in
both elections the score difference and margin of victory under Plurality is one, examining the votes
more closely, the situation in these two elections is quite different: In E, in order for b to win the
election, only one of 50 voters needs to slightly change its mind (by swapping its two most preferred
candidates). In contrast, in E′, in order for b to win the election, at least one of 50 voters needs
to drastically change its mind by ranking its previously last-ranked candidate in the first position
(plus there are 49 voters where a can easily gain a point). To sum up, both the score difference
and the margin of victory do not take into account that small changes are more likely than large
ones. Further, both measures suffer from the drawback that they focus on the worst case (e.g., for
the margin of victory it does not make a difference whether there is only one specific voter that can
change the election outcome by modifying its vote or whether multiple voters have this power) and
not on the average case, which is probably the practically more relevant one.

In this paper, following the works of Boehmer et al. [4] and Baumeister and Hogrebe [2], we study
a more fine-grained robustness measure: We analyze how the winning probabilities of candidates
behave if we start to perturb the election by performing some swaps of adjacent candidates in some
votes. How quickly the winning probability of the original election winner decreases as we move
further and further away from the original election sheds some light on this winner’s robustness.
Herein, we assume that changes are equiprobable and, thus, affect each voter and each part of the
vote with the same probability. Moreover, we assume that the probability of replacing a vote by a
new one is anti-proportional to the swap distance between the two. For this, we make use of the
famous Mallows noise model [20] (see Section 3 for a detailed description of our approach). One can
thus interpret our approach as a tool to measure the robustness of election winners against random
equiprobable noise.

Recently, Boehmer et al. [4] conducted some experiments on the winning probabilities of can-
didates under Plurality and Borda on synthetic elections if elections are perturbed. Their results
indicate that some elections have extremely non-robust winners and that a winning-probability
based approach offers a different and more nuanced view on the robustness of election winners than
established, simpler measures. In this work, we aim for comparing the robustness of different voting
rules and conducting an in-depth analysis of the robustness of winners in real-world elections.

1.1 Related Work

Closest works related to ours are the papers of Baumeister and Hogrebe [2] and Boehmer et al. [4].
Both study the computational complexity of computing the winning probabilities of candidates if
we replace each vote with one sampled from some distribution. Among other models, Baumeister
and Hogrebe [2] considered a Mallows-based approach as used in this paper from a theoretical
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perspective: For some given φ ∈ [0, 1], each vote v is replaced by a vote sampled from a Mallows
distribution with center vote v and dispersion parameter φ, i.e., a vote v′ is sampled with probability
proportional to φκ(v,v

′) (the swap distance κ(v, v′) between v and v′ is the number of swaps of
adjacent candidates that are needed to transform v into v′). Boehmer et al. [4] studied the related
computational problem of counting elections at some given swap distance from a given initial election
where some given candidate wins (see Section 3 for details). In fact, Baumeister and Hogrebe
[2] showed these two problems to be equivalent from the computational perspective. Together,
Baumeister and Hogrebe [2] and Boehmer et al. [4] proved strong (parameterized) intractability
results for these problems for Plurality and Borda.

The problem of Boehmer et al. [4] can be phrased as the counting variant of the Swap Bribery
problem. In Swap Bribery, we are given an election, a designated candidate p, and a budget k,
and the question is whether we can perform k swaps of adjacent candidates in some votes to make
p an election winner. Bribery problems in elections have been introduced by Faliszewski et al. [14]
and have been extensively studied since then (see the overview of Faliszewski and Rothe [15]). The
idea to use swap bribery for evaluating the robustness of election winners is due to Shiryaev et al.
[26] (and has also been used in other contexts [6, 7, 9]): In the Destructive Swap Bribery
problem we want to prevent a given candidate from winning the election by performing as few
swaps as possible. The minimum cost of a successful destructive swap bribery can then act as a
robustness measure (however, like the margin of victory and score difference, this measure is focused
on the worst case). Boehmer et al. [4] observed that for Borda and Plurality the minimum cost of
a destructive swap bribery might be disconnected from their winning-probability based approach
(see Section 3).

1.2 Our Contributions

The main goal of this paper is to better understand the robustness of election winners against random
equiprobable noise. In particular, we analyze what makes an election winner robust and how this
is influenced by the voting rule used. We address this goal in multiple steps, thereby significantly
extending the experimental work of Boehmer et al. [4], who only considered the robustness of
winners under the Plurality and Borda voting rules in synthetic elections: In Section 3, we present
our approach for measuring the robustness of election winners and compare it to the approach used
by Boehmer et al. [4]. In essence, our measure is very similar but easier to handle and compute.
In Section 4, we compare the robustness of different voting rules on synthetic data. Generally
speaking, out of the considered rules, Copeland tends to produce the most robust winners, then
comes Borda, then Bucklin, then STV, and Plurality produces the least robust winners. In Section 5,
we analyze the robustness of real-world elections from two different sources, i.e., the Formula 1
World Championship and some form of political elections. We identify many elections with winners
that are remarkably sensitive to random equiprobable noise. For example, in some editions of the
Formula 1 World Championship the original winner loses with 22% probability if we make only an
expected number of 5 random swaps of adjacent candidates in the whole election.

Furthermore, throughout the whole paper, we observe in different places that our approach
allows one to identify patterns that are invisible when considering simpler robustness measures such
as the score difference, and that the non-robustness of winners can be of different types. Moreover,
we describe how our approach can be used to distinguish between tied election winners, thereby
serving as a potential tie-breaking mechanism.
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2 Preliminaries

Elections An election is a pair (C, V ) where C = {c1, . . . , cm} is a set of candidates and V =
(v1, . . . , vn) is a collection of votes. Each vote is a strict total order over all candidates. We write
v : c1 � c2 to denote that v prefers c1 to c2, and for a candidate c ∈ C we say that v ranks c in the
ith position if v prefers exactly i−1 candidates to c. In Section 5, we allow for top-truncated votes,
i.e., strict total orders over subsets of candidates. The implicit meaning of a top-truncated vote is
that the voter prefers all the ranked candidates to all the unranked ones. For a top-truncated vote,
we refer to the number of candidates the voter ranks as the vote length.

Voting Rules A voting rule is a function that maps an election to a subset of candidates that
tie as winners of this election. A scoring vector is a vector s = (s1, . . . , sm) with si ∈ R for all
i ∈ [m] and s1 ≥ s2 ≥ · · · ≥ sm. A positional scoring rule is defined by a scoring vector s: Each
voter awards si points to the candidate it ranks in the ith position for each i ∈ [m].1 All candidates
with the maximum summed score win. Two rules that are of particular importance in our analysis
are Plurality, which corresponds to the scoring vector (1, 0, . . . , 0), and Borda, which corresponds
to the scoring vector (m− 1,m− 2, . . . , 1, 0).

Under the Copeland voting rule, we compute a score for each candidate and all candidates with
the highest score win. A candidate c gets a point for each candidate d ∈ C \ {c} for which more
than half of the voters prefers c to d and loses a point for each candidate d ∈ C \ {c} where more
than half of the voters prefers d to c.

Under the Bucklin voting rule, for each candidate let ic be the minimum i ∈ [m] such that more
than half of the voters rank c in one of the first i positions. The candidate for which ic is smallest
wins. If multiple candidates have the minimum ic, say i∗, then the candidate(s) that appear in the
most votes in one of the first i∗ positions win.

Under the single transferable vote (STV) voting rule, we are given a strict total order �t of the
candidates as the tie-breaking order. In each round, we delete the candidate with the minimum
Plurality score. If multiple candidates have the minimum Plurality score, then the candidate that
is ranked last in �t is deleted. The last remaining candidate is the winner of the election. Because
we actively apply a tie-breaking rule for STV, there are no tied winners under STV.

Swap Distance Given two votes v and v′ over the same candidate set, their swap distance
κ(v, v′) is the number of candidate pairs on whose ordering v and v′ disagree (equivalently, this is
the minimum number of swaps of adjacent candidates that are needed to transform v into v′). Note
that the maximum swap distance between two votes overm candidates is m(m−1)

2 . The swap distance
between two elections E = (C, V ) and E′ = (C, V ′) where V = (v1, . . . , vn) and V ′ = (v′1, . . . , v

′
n) is∑n

i=1 κ(vi, v
′
i).

(Normalized) Mallows Distribution For a set C of m candidates, the Mallows distribution
[20] is parameterized by a central strict total order v∗ over C and a dispersion parameter φ ∈ [0, 1].
It assigns to each strict total order v over C a probability Dv

∗,φ
Mallows(v) that depends on the swap

distance between v and v∗. Specifically, we have: Dv
∗,φ

Mallows(v) =
1
Zφ

κ(v,v∗) with normalizing constant
Z = 1 ·(1+φ) ·(1+φ+φ2) · · · · ·(1+ · · ·+φm−1). For φ = 0, vote v∗ has probability one and all other
voters have probability zero. For φ = 1, all votes are drawn with the same probability. Note that

1For top-truncated votes in an election with m candidates, we still use the original scoring vector containing m
entries. A voter which ranks j ∈ [m] candidates then awards si points to the candidate it ranks in the ith position
for each i ∈ [j].
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we use the Mallows distribution in two different ways. On the one hand, as part of our robustness
measure, we use it to perturb a given vote v′, which typically means that we replace v′ by a vote
sampled from Dv

′,φ
Mallows. On the other hand, we use it as a model to generate elections in which case

we create an election by drawing multiple votes from Dv
∗,φ

Mallows where v
∗ is the lexicographic ordering

of candidates.
Unfortunately, as argued by Boehmer et al. [5], the dispersion parameter φ is not easy to inter-

pret. Moreover, elections with different numbers of candidates sampled from Mallows distributions
with the same fixed value of φ are in some sense of a fundamentally different nature. That is why
we use the normalization of Mallows model proposed by Boehmer et al. [5]: Here, the Mallows
distribution is parameterized by a normalized dispersion parameter norm-φ ∈ [0, 1], which is inter-
nally converted to a value of φ, such that the expected swap distance between a sampled vote and
the central vote is norm-φ · m(m−1)

4 . Again, norm-φ = 0 leads to v∗ being sampled all the time
(the expected swap distance is zero) and for norm-φ = 1 all votes have the same probability (the
expected swap distance is m(m−1)

4 ). However, here, norm-φ = 0.5 leads to a distribution that is in
some sense in the middle between these two extremes, as the expected swap distance between the
sampled and central vote is m(m−1)

8 . Moreover, one value of norm-φ leads to the same expected
relative number of swaps for different numbers of candidates, which will be vital for our purposes.

Thus, using norm-φ instead of φ basically leads to a rescaling of the considered range of per-
turbation. That is, there is a one-to-one mapping of values of norm-φ and values of φ. However,
as argued above, norm-φ is much easier to use and allows for a more natural interpretation and
comparison of results.

Pearson Correlation Coefficient The Pearson correlation coefficient (PCC) is a measure of a
linear correlation between two quantities, where 1 means perfect linear proportional correlation, 0
means no linear correlation and −1 means perfect linear anti-proportional correlation.

3 Assessing Winner Robustness

In this section, we describe how we asses the robustness of election winners by computing the
candidate’s probabilities to win the election if voters partly and randomly change their preferences.
In this section, to validate our approach, we briefly mention the results of some experiments which
we conducted on a diverse collection of 800 synthetic elections with 100 voters and 10 candidates
collected by Szufa et al. [30] (this dataset has also been also used by Boehmer et al. [4]).

Our approach relies on the Mallows model, which is typically considered as a natural way to
add random noise to an election. To model this, we replace each vote v from the election with a
vote sampled from the Mallows distribution with central vote v and some normalized dispersion
parameter norm-φ ∈ [0, 1]. Specifically, for an election E = (C, V ), a candidate c ∈ C, and
norm-φ ∈ [0, 1], we let PE,c(norm-φ) be the probability that candidate c is a winner of an election
that results from replacing each vote v ∈ V with a vote sampled from Dv,norm-φMallows . We refer to
PE,c(norm-φ) as c’s winning probability at norm-φ and to 1−PE,c(norm-φ) as c’s loosing probability,
i.e., the probability that c is not a winner. Notably, for norm-φ = 1 each vote has the same
probability under the Mallows distribution and, thus, each election has the same probability of
being sampled. This implies that, assuming votes are complete, all candidates have the same
probability of being a winner at norm-φ = 1. In the following, we say that a winner is robust if
PE,c(norm-φ) does not “quickly” decrease. We often visualize the winning probabilities of different
candidates as line plots. In those plots, each line represents one candidate and depicts its winning
probability PE,c(norm-φ) (y-axis) for different values of norm-φ (x-axis). We only depict the range
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norm-φ ∈ [0, 0.5] as for larger values of norm-φ the sampled elections have less and less similarities
to the given one. We depict two example plots in Figure 1. The election displayed in Figure 1a is
sampled from the Mallows model with norm-φ = 1 (so each vote had the same probability of being
sampled). This is also clearly visible in the plot: The winning probability of the initially winning
red candidate quickly decreases. In Figure 1b, we show a more structured election (sampled from
the Mallows model with norm-φ = 0.6), where the winning probability of the initially winning red
candidate stays high even if substantial random noise is introduced.

Comparing our approach to previous works, Boehmer et al. [4] followed a related path by com-
puting for a given election E = (C, V ) and candidate c ∈ C the probability QE,c(r) that c is a
winner of an election at swap distance r from E. PE,c(norm-φ) and QE,c(r) are indeed closely
related because PE,c(norm-φ) is a weighted average over QE,c(r) for different values of r, as shown
by Baumeister and Hogrebe [2]. From a computational perspective, computing QE,c(r) (and thus
PE,c(norm-φ)) exactly is equivalent to solving an instance of #Swap-Bribery (simply take the
number of elections at swap distance r from E where c wins and divide it by the total number of
elections at swap distance r).

Unfortunately, from the results of Boehmer et al. [4] and Baumeister and Hogrebe [2] it follows
that solving #Swap-Bribery and, thus, computing PE,c(norm-φ) is intractable. This is why we
resort to a sampling approach: To compute PE,c(norm-φ) for some E = (C, V ), we sample an
election by replacing each vote v ∈ V by a vote sampled from Dv,norm-φMallows . We repeat this multiple
times and record for each candidate the fraction of sampled elections in which c is a winner.2 To
quantify the robustness of a non-tied election E, we use the 50%-winner threshold introduced by
Boehmer et al. [4], which is the smallest value of norm-φ such that the winning probability of the
winner of E is smaller than 50%.3 The 50%-winner threshold thus quantifies how fast the winning
probability of the initial winner declines when we move further and further away from the initial
election and can be easily used to compare the robustness of election winners in different elections.
Of course, instead of considering the 50%-winner threshold, one could also consider the x%-winner
threshold (i.e., the smallest value of norm-φ such that the winning probability PE,c(norm-φ) of the
winner c of E is smaller than x%) for other values of x. However, for all considered voting rules,
the 50%-winner threshold is strongly correlated with the 25%-winner and 75%-winner threshold on
the diverse synthetic dataset of Szufa et al. [30] (the PCC is typically between 0.85 and 0.95). As
fixing a single value is advantageous for clarity, we picked the 50%-winner threshold, since it has a
special appeal as it quantifies the perturbation level until which the initial winner is stronger than
all other candidates combined.

The main reason why we use PE,c(norm-φ) instead of QE,c(r), as done by Boehmer et al. [4], is
2By default, for each election we computed PE,c(norm-φ) for norm-φ ∈ {0, 0.1, . . . , 1}. For each value of norm-φ, we

did so by sampling 500 elections and recording for each candidate the fraction of these elections where it is a winner.
To evaluate whether 500 elections are sufficient here, we also reran some of our experiments with 4000 elections
sampled for each value of norm-φ and found that the results only marginally changed (in particular, in all elections,
the 50%-winner threshold changed by at most 0.1, which is the smallest observable change). For all visualized
elections, we used a finer resolution by computing PE,c(norm-φ) for norm-φ = 0.0025 · i for i ∈ {0, 1, 2, . . . , 200} by
sampling for each value of norm-φ 10 000 elections.

3For STV, we cannot simply compute PE,c(norm-φ) by sampling some elections and recording in how many of
them c is a winner, because deciding whether some candidate is a winner under STV in some given election is NP-hard
[12]. Thus, a tie-breaking rule needs to be specified. To deal with this issue, for each run of STV on some election, we
sample a strict total order �t over all candidates uniformly at random from the set of all strict total orders and break
ties according to �t. This in particular implies that as we do 500 runs at norm-φ = 0, i.e., we apply STV 500 times
to the initial election with different tie-breaking orders, multiple candidates may have a non-zero winning probability
in the initial election. We consider as the initial winner the candidate having the highest winning probability at
norm-φ = 0 and for elections where no candidate has a winning probability over 50% at norm-φ = 0, we set the
50%-winner threshold to 0.
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Figure 1: We plot PE,c(norm-φ) (y-axis) for the Plurality
voting rule as a function of norm-φ (x-axis) for the four
most successful candidates.
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STV reverse 50%
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Figure 2: Average 50%-winner thresh-
old of different voting rules for
elections sampled from the Mallows
model with varying norm-φ where
each sampled vote is reversed with
some probability.

that to compute QE,c(r) we need to sample elections that are exactly at a given swap distance from
E. Unfortunately, this sampling procedure is non-trivial and for more than 20 candidates already
takes quite some time to compute [4]. In contrast to this, the approach used in this paper is much
faster. Furthermore, as already argued above, both PE,c(norm-φ) and QE,c(r) are conceptually
closely related. In particular, each value of norm-φ corresponds to making some expected number
of swaps of adjacent candidates; of course, there is naturally some variance around this average.
However, typically, for some fixed norm-φ, for all swap distances with a non-negligible probability
of getting sampled for this norm-φ, in sampled elections at this distance the winning probabilities
of candidates are typically quite similar (the only exception are very small values of norm-φ). To
further analyze the relationship between PE,c(norm-φ) and QE,c(r), we computed the PCC of the
50%-winner threshold output by the two approaches on the synthetic dataset of Szufa et al. [30].
For Plurality, Borda, Copeland, Bucklin, and STV, the correlation is 0.991, 0.982, 0.987, 0.989, and
0.989 respectively. So, overall, for both approaches the 50%-winner thresholds are very strongly
correlated.

Finally, note that if we consider an election containing some top-truncated vote v (such votes
appear in our real-world data), then we do not adjust our procedure and still replace v by a vote
sampled from the Mallows distribution with v as the central vote and the given normalized dispersion
parameter. This means that candidates that do not appear in the vote in the original election will
never be added to it. We proceed in this way because otherwise we would need to make some
(artificial) assumptions about the insertion probabilities of the non-ranked candidates. Moreover,
in most of our applications, non-ranked candidates are not included in some vote “by design”. For
instance, in our political elections not all parties nominate a candidate in each voting district.
Note also that in elections with top-truncated votes, winners can be both particularly robust and
particularly non-robust: If the winner appears in all votes and all other candidates only appear in
few votes, then the winner will still be the (by far) most probable winner for any value of norm-φ,
as even if each vote is replaced with a uniformly at random sampled one, the winner is most likely
to have the strongest standing in the election. In contrast, top-truncated votes also open up the
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possibility for very non-robust winners: Consider as an example a Plurality election consisting of
two candidates c and d, where x voters rank c in the first position (and do not rank d at all) and
x + 1 voters rank d in the first position and c in the second position. Then d wins the election;
however, in each election at swap distance r > 0, c wins.

4 Comparing the Robustness of Different Voting Rules on Mallows
Elections

In this section, we conduct a comparison of the robustness of different voting rules using synthetic
elections generated from a variant of the Mallows model.

Setup For different voting rules, for norm-φ = 1
15 · i with i = 0, . . . , 15, we sampled 500 elections

with 10 candidates and 100 voters from the Mallows model with lexicographic central order and
normalized dispersion parameter norm-φ. We reversed each sampled vote with probability x% for
x ∈ {0, 30, 50}. The intuitive meaning of this model is that the electorate is split into two groups
and the “ground truth” (the central vote in the Mallows model) of one group is the reversed “ground
truth” of the other. Subsequently, for each sampled election E, for norm-φ = {0, 0.1, 0.2, . . . , 1}, we
estimated PE,c(norm-φ) using 500 samples.4

Results In Figure 2, we compare the robustness of five voting rules. The results draw a mixed
picture: For reversion probability 0% which means that we simply consider elections sampled from
the Mallows model, all voting rules become less robust as norm-φ grows (which is also quite intuitive,
as the votes in the sampled elections become more and more different from each other). Moreover,
there is a clear ranking of the voting rules in terms of their robustness independent of norm-φ:
Copeland and Borda produce the most robust results. Bucklin is the third most robust rule, then
STV, and Plurality is the least robust rule. The results highlight that rules are most robust if they
take into account the “full election” without local focus, as this prevents the existence of strong
“hidden” contenders.5

Notably, the robustness difference between the rules is largest for norm-φ = 1: For Plurality
and STV the average 50%-winner threshold here is around 0.2, while for the other three rules it is
around 0.4. This large gap is quite remarkable, as these are in some sense the elections containing
the least structure and information.

When we start to reverse the sampled votes with some probability, winners become less robust
(which is quite intuitive, as in case we reverse half of the votes, in expectation the first and last
candidate from the central vote are equally strong). For Plurality and STV for norm-φ ∈ [0, 0.8],
if we reverse votes with some probability, then the average 50%-winner threshold is simply shifted
down by some constant value compared to the 50%-winner threshold if we do not reverse any votes.

4As reported by Boehmer et al. [5] real-world elections are typically “close” to some elections generated from the
Mallows model. We reverse votes with some probability because the resulting elections are more interesting from a
robustness perspective, as they illustrate the different behavior of voting rules.

5An example of such a “hidden” contender for both Bucklin and Plurality is the candidate b from the election E
from the introduction (where there are 50 votes with a � b � . . . and 49 votes with b � · · · � a), as in this election
candidate b wins under both rules as soon as one of the first 50 voters swaps b and a. Moreover, due to the “local”
nature of the rules, a cannot easily gain additional points, as a is ranked last in all votes where it is not ranked first,
and for Plurality it only matters who is ranked in the first position and for Bucklin in this election it only matters
who is ranked in one of the first two positions. In contrast to this, under Borda, a is also able to gain points if it is
ranked in the last position (so there exist single swaps by which a can gain points which it has maybe lost by other
swaps).
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In contrast to this, for the other three voting rules, the robustness of elections for norm-φ = 0 and
norm-φ = 1 becomes more and more similar as we increase the reversion probability (see the dotted
line in Figure 2 for reversion probability 30% and the dashed line for reversion probability 50%).
For reversion probability 50%, for these rules, elections with norm-φ = 1 are even slightly more
robust than the ones for norm-φ = 0.

To explain this different behavior of the voting rules, let us focus for a moment on elections
sampled from the Mallows model with norm-φ = 0, central vote c1 � · · · � cm, and 50% reversion
probability: In these elections, around half of the votes, say x, are c1 � · · · � cm and the other
half, say y, are cm � · · · � c1. If x > y, then c1 is the (strict) majority winner and thus the winner
under Bucklin, Copeland, Plurality, and STV. It is also easy to see that c1 is the Borda winner.
However, the robustness of c1 for the different rules varies substantially. For illustrative purposes,
we just compare STV and Copeland. For STV, note that initially either c1 or cm is ranked in the
first position in every vote (and both appear roughly the same number of times in the first position).
Thus, also after some swaps are performed, it is likely that c1 and cm are the last two non-eliminated
candidates when computing the STV winner. Accordingly, the election boils down to a pairwise
comparison between c1 and cm. For cm to win this comparison, it needs to be in front of c1 in some
votes where it was initially behind c1. This requires m − 1 specific swaps per vote, as in all such
votes v1 is initially ranked in the first and cm is ranked in the last position. In contrast to this,
for Copeland, in the initial election c1 has score 9 and c2 has score 7 (because c2 wins the pairwise
comparison against all candidates except c1). Thus, for c1 to lose the election, c2 only needs to win
the pairwise comparison against c1, which can be achieved by performing a single swap in x− y of
the votes where c1 is ranked in the first and c2 in the second position.

Having explained the different behaviors of voting rules if we reverse votes, let us remark that
from a normative perspective it seems to be more reasonable to expect that a winner in an election
generated from the Mallows model with norm-φ = 0 and 50% reversion probability is not too
robust. In the end, these elections will always only be decided by the (small) difference between the
number of reversed and non-reversed sampled votes. So from this perspective, Borda, Bucklin, and
Copeland are advantageous here, despite (and in fact because) they are less robust.

5 Experiments on Real World Data

We analyze the robustness of real-world election winners. For this, we not only use the original
election data but also the original voting rule. We address the following four questions: Q1. How
sensitive are election winners to equiprobable noise swaps in different types of real-world elections?
Q2. Are there real-world elections where very few random swaps change the election outcome with
high probability? Q3. Do the winning probabilities of candidates behave similarly in all “close”
elections? Q4. Can the robustness of winners to random swaps be assessed via alternative (simpler)
measures?

To answer these questions, we consider two types of real-world elections: sports elections and
political elections. In Section 5.1 we analyze the robustness of winners of the Formula 1 World
Championship. After that, in Section 5.2, we turn to high-stake political elections. As voters in
large political elections typically do not reveal their full preferences, we focus on first-past-the-post
elections where voters are partitioned into districts and each district sends one representative to
the parliament, and we study the robustness of the party winning the most seats in such Plurality
elections.

To assess candidates’ winning probabilities for different perturbation levels we used the same
procedure as in the previous section. As described in Section 3, for each election E = (C, V )
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years scoring vector
2010-2018 s2018 = (25, 18, 15, 12, 10, 8, 6, 4, 2, 1, 0, . . . , 0)
2003-2009 s2009 = (10, 8, 6, 5, 4, 3, 2, 1, 0, . . . , 0)
1991-2002 s2002 = (10, 6, 4, 3, 2, 1, 0, . . . , 0)
1981-1990 s1990 = (9, 6, 4, 3, 2, 1, 0, . . . , 0)†

Table 1: Scoring vectors used in different editions of the Formula 1 World Championship. † :
Between 1981 and 1990, computing the final score of a candidate, instead of summing up its points
from all races, only the 11 highest scores were taken into account.

we computed PE,c(norm-φ) for norm-φ ∈ {0, 0.1, . . . , 1}. For each value of norm-φ, we did so by
sampling 500 elections where each vote v ∈ V is replaced by a vote drawn from Dv,norm-φMallows and
recording for each candidate the fraction of these elections where it is a winner.

5.1 Formula 1

We consider the 38 editions of the Formula 1 World Championship between 1981 and 2018, where
in each year, between 20 to 47 drivers competed in between 15 to 21 races.6 Each driver gets a
certain number of points from each race depending on its finishing position, and the candidate with
the highest number of points wins (this can be interpreted as applying a positional scoring rule to
the corresponding election). Over the years, different scoring vectors were used. We present them
in Table 1.

5.1.1 General Overview of Results (Q1&Q2)

Generally speaking, it is surprising how fragile the victory of numerous Formula 1 world champions
was: The average 50%-winner threshold in our dataset is only 0.367, and eight elections have a 50%-
winner threshold below 0.1. Going into more detail, in Figure 3, we visualize eight elections of special
interest. Figures 3a to 3f all display generally quite close election: In all six the losing probability
of the initial winner is already above 10% at norm-φ = 0.0025. In 2007, where norm-φ = 0.0025
corresponds to making on average 5 random swaps in the whole election, the losing probability of
the original winner is even 22%. This is remarkable recalling that these elections are not artificial
examples but come from the real world and recalling that we focus on random swaps, implying that
there is also a very high chance that none of the top candidates are involved in a random swap, in
which case the initial winner still wins. In the 2007 election, where the score of the red candidate
is initially one higher than the score of the blue and the black candidate, a possible explanation for
the observed general non-robustness is that the scoring vector s2009 = (10, 8, 6, 5, 4, 3, 2, 1, 0, . . . , 0)
was used. Thus, swapping down the red candidate in one vote or swapping up the black or blue
candidate in one vote can suffice to make the red candidate lose the election, as a single swap can
change scores by two. In fact, taking a closer look, even in 20 out of the 357 elections at swap
distance 1 of this election the red candidate is not a winner. This means that even if we just make
a single random swap the loosing probability of the red candidate is already 5.6%.

6In the corresponding election, we have one candidate for each driver and one voter for each race ranking the
drivers according to the finishing position of the driver in this race. Drivers who did not participate in a race or did
not finish it do not appear in the respective vote. The elections were collected by Boehmer and Schaar [8].

7Remarkably, this means that the average 50%-winner threshold here is lower than the average 50%-winner
threshold of our considered rules on most of the Mallows elections analyzed in Section 4. This is even more remarkable
recalling that the voting rules used in Formula 1 elections are rather on the robust side, as each voter awards points
to many different candidates.
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Figure 3: Eight Formula 1 elections. We plot PE,c(norm-φ) (y-axis) as a function of norm-φ (x-axis)
for the four most successful candidates. For each candidate, the first legend entry displays the score
of the candidate in the election according to the used voting rule and the second entry displays its
Borda score.

5.1.2 Different Types of Close Elections (Q3)

While all six elections from Figures 3a to 3f were really close in the sense that few random swaps can
have a crucial influence on the outcome, the (non)-robustness of the winners in these six elections
still comes with quite different flavors. In Figures 3a and 3b, the blue candidates overtakes the
initially winning red candidate already at norm-φ = 0.0275 and afterwards consistently has a
higher winning probability; in such elections one could say that the winner won more by luck or
accident than by merit, as in most elections close to the original election a different candidate
wins. Let us focus for a moment on the 1994 Formula 1 World Championship with scoring vector
s2002 = (10, 6, 4, 3, 2, 1, 0, . . . , 0), which consists of 16 races and was decided by one point (Figure 3a).
What stands out is that the red candidate won 8 of the 16 races and came in second in 2 races,
but either did not participate or did not complete the other 6 races. Thus, if we perform a single
random swap involving the red candidate, then in 8 cases he loses 4 points, in 2 cases he loses 2
points and in 2 cases he gains 4 points. Thus, for 10 out of 12 swaps involving the red candidate,
the blue candidate wins the election after performing the swap (note, however, that only 7.4% of
all swaps involve one of the top-two candidates). Accordingly, the general non-robustness of the red
candidate here is due to the fact that the red candidate is much more likely to lose points instead
of gaining more if few random swaps are performed.

In contrast to Figures 3a and 3b, in Figures 3c and 3d, the red candidate starts to have roughly
the same winning probability as some other candidate(s) at small norm-φ, however with increasing
norm-φ the situation does not change. In such elections, it seems that the red candidate’s victory
was very fragile and that the top-two candidates are in fact of equal quality. Lastly, in Figures 3e
and 3f, while the red candidate already starts to have a significant loosing probability at small
norm-φ, its winning probability until norm-φ = 0.5 is always clearly the highest. In such elections
it seems that the red candidates victory is a bit fragile but still “justified” and grounded on solid
support.
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5.1.3 Relationship Between Winner Robustness and Candidate Scores (Q4)

Motivated by the observation that in all six considered close elections the score difference between
the winner and the runner-up is between one and five and thus, in general, quite low, we now
discuss the capabilities of the difference of the score of the election winner and runner-up to judge
the robustness of winners. In general, there clearly is some correlation: The PCC of the score
difference and the 50%-winner threshold in the Formula 1 elections is 0.66 and, in particular,
with increasing score difference, on average, winners get substantially more robust. However, the
correlation is not strong and there also exist elections where there is a clear difference: For instance,
in 2010 (Figure 3g), the score difference is six but the 50%-winner threshold is still only 0.0475 (and
thus, in particular much lower than in 2016 (Figure 3f) where the score difference is five). In 2014
(Figure 3h), the score difference is 42 and thus quite high, which is also reflected in a 50%-winner
threshold of 0.4325. However, remarkably, the initial winner’s loosing probability is already 1% at
norm-φ = 0.0175 and 10% at norm-φ = 0.04, indicating that the election was much closer than
what is suggested by the large score difference. Further, note that in 1988 (Figure 3b), where the
red candidate seems to have won more by luck or accident than by merit, the score difference is
three, whereas in 2008 (Figure 3e), where the red candidate still dominates all other candidates in
terms of winning probabilities even if many swaps are performed, the score difference is only one.

A different possible approach to identify (different types of) close elections could be to consider
the candidates’ Borda score. The hope here is that the Borda score captures the general strength of
the candidate in the election (which is not necessarily captured in the Formula 1 score, as here only
points for finishing in one of the first positions are awarded). Generally speaking, the Borda score
correlates with our classification of the six close elections from Figures 3a to 3f (see Section 5.1.2):
In particular, if the Borda score of one candidate is significantly higher than the scores of all other
candidates, then this candidate will be the most probable winner for medium and large values
of norm-φ. However, also the Borda score has some clear limitations: In 1988 (Figure 3e), the
blue candidate has a lead of 4 Borda points, while in 1981 (Figure 3c) its lead is 9 Borda points;
nevertheless, in 1988 the blue candidate quickly becomes the most probable winner, which does not
happen in 1981.

5.2 Political Elections

After we have seen that sports elections regularly have non-robust winners, we now turn to a
different type of election, political elections, mainly focusing on Q1&Q2. As in large political
elections full preferences of voters are typically unknown, we study a specific type of political
election: Several countries around the world use first-past-the-post voting in elections of different
representative bodies. In these elections, the voters are typically partitioned into constituencies, with
each constituency having its distinct candidates. Each constituency then sends the candidate with
the highest number of votes to the representative body (and the representative body only consists of
these candidates). We analyze the robustness of the strongest party in representative bodies elected
by first-past-the-post elections. For this, we identify each candidate running in some constituency
by its party. Then, we create one vote for each constituency ranking in the ith position the party of
the candidate finishing in the ith position in this constituency (in all elections we considered, there
are never two candidates from the same party running in one constituency). Now the Plurality score
of a party in the constructed election is the number of seats the party gets in the representative body
and the Plurality winner is the party with the highest number of seats. Which party has won the
most seats in a representative body is of great practical importance, as these parties are typically
responsible for leading the formation of a new government and in some elections also decide on who
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Figure 4: Six Poland elections. We plot PE,c(norm-φ) as a function of norm-φ for the four most
successful candidates. The legend displays the Plurality score and Borda score of each candidate in
this order.

should fill the most important political role (e.g., in UK general elections the winning party usually
decides on who should be the Prime minister). Thus, if the robustness of the winning party is low,
then one might want to consider a recount of the ballots or if the winner’s robustness is low in some
polls, then parties have additional motivation to mobilize as many voters as possible.

We observe that such political elections seem to be very robust with the 50%-winner threshold
typically being above 0.7 and are thus in particular much more robust than the Formula 1 elections
considered in Section 5.1 and most of the synethetic elections analyzed in Section 4. Nevertheless,
also non-robust winners regularly occur, highlighting the relevance of searching for them.

5.2.1 Polish Local Elections

We analyze local council elections for different Polish cities from 2014. In 2014, in all cities with
up to 100 000 inhabitants a first-past-the-post system was used. For this, all cities with up to
20 000/50 000/100 000 inhabitants where divided into 15/21/23 constituencies. Our dataset consists
of elections from 1317 cities (we did not include elections with an average vote length below 3) each
containing on average 8.6 candidates. Notably, out of the 1317 elections 124 are tied. We generated
the elections based on data provided by the Jagiellonian Center for Quantitative Research in Political
Science.

Concerning the elections’ robustness, in a large majority of the non-tied elections the winners
are very robust; the average 50%-winner threshold is 0.78 which is very high: In fact, only seven
elections have a 50%-winner threshold below 0.2 and only 98 have a 50%-winner threshold below
0.5. Overall, this is good news indicating that the considered type of political election is typically
quite robust to random noise and that one does not have to worry about winners winning more by
accident or luck than by merit.

Going into more details, in Figure 4, six exemplary elections of special interest are shown. The
two elections from Ozorków (Figure 4a) and Wałcz (Figure 4b) were both decided by a single point
(seat) and are in general quite close with a 50%-winner threshold of 0.22 and 0.1, respectively.
Moreover, in both elections the initial winner has a 2% losing probability already at norm-φ =
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0.0025, which corresponds to making an expected number of around 0.37 swaps in the full election.
While it might sound counter-intuitive that a score difference of one can be overcome by making
0.37 swaps, note that this is due to the fact that the Mallows distribution has some variance in
the number of swaps that are performed. To explain why winners have a non-negligible loosing
probability already for small norm-φ in these elections, note that, for instance, in the election from
Ozorków (Figure 4a) consisting of 10 candidates and 15 voters, four voters rank the red candidate
in the first position and the blue candidate in the second position. As there are overall 87 different
swaps, it follows that after making a single random swap the losing probability of the red candidate
is 4

87 = 4.6%. This closeness highlights the importance of detecting such situations in order to be
able to double check the integrity of the results.

While such situations where already very few random swaps can change the election winner with
a non-negligible probability occur mostly in elections with a score difference of one, there are also
some (less) extreme examples with a larger score difference. For instance, in Oświęcim (Figure 4c),
the score difference is three but nevertheless, the loosing probability of the initial winner is already
1% at norm-φ = 0.015 and 10% at norm-φ = 0.06 (which corresponds to making an expected number
of 2.3, respectively, 9 swaps in the whole election). In contrast to the former three examples, there
are also elections with very robust winners, even several with just a score difference of one. The
election in Księżpol (Figure 4d) is an example; together with Figures 4a and 4b this election also
shows that only examining the Plurality scores is insufficient to judge the robustness of election
winners. This general disconnect is also reflected in a low PCC of 0.48 between the score difference
and the 50%-winner threshold on the whole dataset.

Examining the 124 tied elections, interestingly, our approach is able to identity different types
of ties: On the one hand, we have numerous tied elections where the winning probabilities of the
different initially winning candidates behave very similarly if more and more swaps are performed
(see Figure 4e for an example; this election is also quite interesting because the initially third-ranked
candidate seems to be particularly strong). On the other hand, in many of the tied elections, the
winning probability of one of the winners decreases much faster than for the other, indicating that
the later has a stronger general position in the election and is closer to uniquely winning the election
than the other candidate (see Figure 4f for an example). This indicates that ties in elections might
be of a different nature and that our approach might be a first possibility to better understand
and identify them. In the analyzed political elections, tie-breaking is of special importance because
usually one party is appointed to form a government.

5.2.2 UK General Elections

We now turn to national elections in the UK. In particular, we consider the twelve general elections
(of the House of Parliaments) in the UK which took place between 1974 and 2019. From this,
we obtained twelve elections with between 9 and 13 candidates and 635 and 659 voters. The
elections were created by us based on data from the official website of the house of commons,
commonslibrary.parliament.uk.

As in the Polish local elections, in general the robustness of winners is quite high in these
elections; the average score difference between the winner and the runner-up is with 118 also quite
high. In particular, only two out of the twelve analyzed elections have a 50%-winner threshold
below 0.9; both of them are from the year 1974. In this year, there was one election in February
and a reelection in October: The October election has a 50%-winner threshold of 0.5 and a score
difference of 42 (where only at norm-φ = 0.1 the winning probability of the initial winner drops
below 99%). Thus, in this election, the winner is still pretty robust. The February election is
much closer. This election consists of 635 votes over twelve candidates with an average vote length
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of 3.3; the Labor party won with 301 seats against the Conservative party with 297 seats. The
50%-winner threshold of this election is only 0.07, which corresponds to performing 88.7 swaps in
the whole election in expectation. However, even for norm-φ = 0.01, which corresponds to making
12.67 swaps in expectation, the losing probability of the Labor party is already 11.7%.8 The general
non-robustness of the Labor parties victory in this election is also reflected in the candidates’ Borda
scores, as the Borda score of the Conservative party is 95 points higher. To sum up, UK general
elections seem to be quite robust to our noise model; however, the February 1974 election constitutes
a clear outlier as the win of the Labor party in this election is fragile. In fact, the Labor party did
not win the absolute majority of seats in this election and, possibly as a consequence of the non-
robustness of their victory, coalition talks failed. After the Labor party governed for a short time as
a minority government, a reelection was initiated. In this reelection, the Labor party won again but
this times with a larger lead (also being robust to random swaps). The clear difference between the
two elections which happened in the span of 8months indicates that in political elections a significant
fraction of voters can change their mind shortly after an election. This additionally motivates the
study of the robustness of outcomes as an indicator for the likelihood that the outcome still reflects
the voter’s opinions even some time after the election, and also motivates that larger numbers of
random swaps can realistically happen.

6 Conclusion

In this paper, we have studied how robust election winners are to equiprobable random noise by
comparing different voting rules and computing and analyzing the robustness of real-world election
winners. As one of our highlights, we have identified many real-world election winners that are very
sensitive to random noise, indicating the these elections were extremely close. Moreover, we have
illustrated that our approach can detect a variety of different patterns and can differentiate between
seemingly very similar elections. For future work it would be interesting to dive deeper into the
capabilities and limitations of our approach, for instance, by further exploring the possibility to use
it as a tie-breaking mechanism.

While we have already tried to make our experiments relevant to practitioners, there is certainly
room for improvement: Because it is the (computationally) simpler and cleaner approach, we have
considered an unweighted model where each swap has the same probability. However, this might
not fully capture reality in all its facets: For instance, in the Formula 1 elections, one could argue
that the probability of swapping two drivers in a race should be anti-proportional to their difference
in finishing time. Moving from the unweighted to the weighted setting would also require collecting
the needed weighted data, which for some type of elections is also simply not available. From a
data collection point of view, it would also be beneficial to collect the full preferences of voters in
political elections (and not only top-choices as it is usually done) to analyze the robustness of large
scale real-world political elections. Poll stations are probably the most promising starting point
here.
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