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ABSTRACT

Counterfactual explanations (CFEs) highlight what changes to a model’s input would have changed
its prediction in a particular way. CFEs have gained considerable traction as a psychologically
grounded solution for explainable artificial intelligence (XAI). Recent innovations introduce the
notion of computational plausibility for automatically generated CFEs, enhancing their robustness by
exclusively creating plausible explanations. However, practical benefits of such a constraint on user
experience and behavior is yet unclear. In this study, we evaluate objective and subjective usability of
computationally plausible CFEs in an iterative learning design targeting novice users. We rely on a
novel, game-like experimental design, revolving around an abstract scenario. Our results show that
novice users actually benefit less from receiving computationally plausible rather than closest CFEs
that produce minimal changes leading to the desired outcome. Responses in a post-game survey reveal
no differences in terms of subjective user experience between both groups. Following the view of
psychological plausibility as comparative similarity, this may be explained by the fact that users in the
closest condition experience their CFEs as more psychologically plausible than the computationally
plausible counterpart. In sum, our work highlights a little-considered divergence of definitions of
computational plausibility and psychological plausibility, critically confirming the need to incorporate
human behavior, preferences and mental models already at the design stages of XAI approaches. In
the interest of reproducible research, all source code, acquired user data, and evaluation scripts of the
current study are available: https://github.com/ukuhl/PlausibleAlienZoo

1 Introduction

Explaining one’s behavior to another person is a critical element in human social interaction. We depend on explanations
to improve our understanding, ultimately building a stable mental model as basis for prediction and control [30]. The
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need to effectively explain not just human action, but also the behavior of automated systems and their underlying
machine learning (ML) models, has received increasing attention in recent years. This development gave rise to the
increasing interest in explainable artificial intelligence (XAI) as a research field. Consequently, the XAI community has
seen a veritable surge of technical accounts on how to realize explainability for ML [29].

Motivated by a seminal review by Miller advocating a user-centered focus on explainability, counterfactual explanations
(CFEs) gained particular prominence as a supposedly useful, human-accessible solution [50, 36]. CFEs provide what-if
feedback to the user, i.e., information on what changes in the input elicit a change of an automated decision (i.e., “if you
had worn a mask, you would not have gotten ill”). However, the emerging body of work on CFEs, and explainability of
ML models more generally, shows an alarming tendency to take the quality of the suggested explanation modes at face
value [23, 52]. A recent review of counterfactual XAI studies reveals that only one on three studies concern themselves
with user-based evaluations, often with limitations concerning statistical power and reproducibility [36].

The lack of user-based evaluations affects not only assessments of CFEs as such, but more specifically also the evaluation
of different conceptualizations for this kind of explanations. The prevailing approach in the current literature is to
compare different CFE approaches exclusively in terms of their robustness and theoretical fairness [6, 53, 71], passing
over the role of the user as eventual target. Thus, in-depth evaluations of user experiences, elucidating the usability of
CFE variants, are yet to be done.

The current work marks a step towards closing this fundamental research gap, focusing on the concept of plausibility.
While technical descriptions of plausible CFEs approaches exist [64, 62, 5], no user study to date has directly
investigated potential benefits of enforcing an additional plausibility constraint. Thus, we perform a well-powered user
study analyzing the performance of novice users when receiving closest CFEs exclusively defined via their proximity to
the decision boundary, compared to computationally plausible CFEs as feedback in an iterative learning design [4, 5].

2 Counterfactual Explanations as a Psychologically Grounded Solution for XAI

A major challenge for XAI is the lack of a common, straight-forward and universally applicable definition of what
constitutes a good explanation. To complicate matters, the effectiveness of an approach may depend on the reason for
explaining [1], as well as pre-existing knowledge and experiences of users at the receiving end [68].

In search of truly human-usable explanation modes, the XAI community recognized the need to bridge the gap
between psychology and computer science in order to draw inspiration from how humans explain in their daily social
interactions [50]. A central insight from classical psychological literature is that human explanations are typically
contrastive: They emphasize (explicitly or implicitly) why a specific outcome occurred instead of another [50, 43, 45,
31].

This contrastive nature relates to the more general human tendency to reflect upon past events by generating possible
alternatives, i.e., counterfactual thinking [59]. Empirical evidence demonstrates that humans show this what-if mentality
spontaneously [27], and increasingly when facing negative outcomes or unexpected results [61]. In their functional
theory of counterfactual thinking, Roese and Epstude suggest a crucial role of counterfactual thoughts to guide to
formation of future intentions, thus regulating subsequent behavior [60, 24]. This evidence is the root for the common
supposition in XAI that explanations formulated as counterfactuals are naturally intuitive, easy to understand, and
helpful for users, often discounting the need for user evaluations [66, 17, 28, 5].

Decades of philosophical and psychological research has concerned itself with the question of how humans generate
counterfactuals. Lewis’ seminal work on the topic builds on a theory of possible worlds, postulating that counterfactual
statements trigger a comparison between the actual circumstances and a conceivable world in which the counterfactual
statement occurred [41]. Embedding this view into a cognitive framework of counterfactual thought, the mental
models theory emphasizes the human ability to entertain two parallel representations of reality: The factual conditional,
corresponding to the true state of the world, and the concurrent non-factual possibility, temporarily assumed to be
true [13, 11, 33, 70]. Insights from neuroimaging support this notion, demonstrating that counterfactual thinking
extends mere hypothetical deliberation by recruiting additional representational processes in the brain [38].

When humans generate counterfactuals, they show remarkable regularities in terms of which aspects of the past they
reconstruct. Humans tend to modify events that are recent [49, 12], exceptional, while also regarding the optimal
counterfactual outcome [34, 22], and controllable events when undoing of fictitious outcomes [25]. Further, authors like
to note that humans produce plausible rather than implausible counterfactuals [14, 20].

However, despite being a commonly-used notion in psychology, plausibility is difficult to define precisely. Variable
interpretations of what constitutes a plausible counterfactual exist, referring to different partially overlapping concepts.
Kahneman and Tversky refer to hypothetical events as plausible if they are easy to imagine [34]. Lewis supposes that
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plausible counterfactuals come from worlds that are minimally different from reality [41]. Building up on this idea of
comparative similarity, empirical research shows perceived plausibility of a counterfactual event to be proportional to
the perceived similarity between said counterfactual and the factual state [65, 19].

In addition to such a similarity-based definition, plausibility is often used synonymously with concepts of likeliness
or probability [56, 18]. De Brigard et al. demonstrate that manipulations of counterfactual plausibility in terms of
their likeliness changes their neural representation [18]. Their findings may indicate greater affective evaluation for
counterfactuals that carry greater subjective likelihood, and thus, plausibility. In their plausibility analysis model, Connell
and Keane expand on the idea of plausibility as probability and highlight the pivotal role of pre-existing domain
knowledge, postulating that a scenario may only be plausible if it fits well to prior knowledge [16].

Thus, while it is difficult to pinpoint exactly what makes a counterfactual psychologically plausible, we may recognize
pivotal roles of concepts like comparative similarity and probability. Following the user-centered focus on explainability
proposed by Miller [50], incorporating these concepts would be an important step towards automatic generation of
plausible, and thus more human-friendly and usable, CFE.

3 Computation of Closest CFEs and Plausible CFEs

Wachter et al. introduce a CFE ~xcf ∈ Rd of an ML model h : Rd → Y as an optimization problem [69] :

argmin
~xcf ∈Rd

`
(
h(~xcf), y

′)+ C · θ(~xcf, ~x) (1)

where ~x ∈ Rd denotes the original input, the regularization θ(·) penalizes deviations from the original input ~x (weighted
by a regularization strength C > 0), y′ ∈ Y denotes the requested output/behavior of the model h(·) under the
counterfactual ~xcf, and `(·) denotes a loss function penalizing deviations from the requested prediction.

Thus, computing CFEs translates to finding minimal perturbations to a model’s input that alter the final prediction to a
desired outcome. Given the regularization term θ(·), generated CFEs based on this definition remain as close to the
original input ~x as possible. Thus, we will refer to them as closest CFEs for the remainder of this work.

As one of the first approaches to model CFEs for classical ML, Equation 1 is the forerunner of more powerful, model
specific variations, as well as many methods for solving these optimization problems [67, 3, 35]. However, it is
important to note that closest CFEs do not necessarily yield plausible or even realistic counterfactuals. As a matter of
fact, closest CFEs may look like adversarials, introducing slight changes in the input that go unnoticed by a human
observer despite altering the model’s output [54]. Whether a computed closest CFEs corresponds to such an adversarial
depends on the model, loss function and regularization, diminishing their suitability as explanation technique [40].
Expanding the original definition in Eq. (1) by an additional plausibility constraint circumvents these issues:

argmin
~xcf ∈Rd

`
(
h(~xcf), y

′)+ C · θ(~xcf, ~x) s.t. ~xcf ∈ P (2)

where P denotes the set of all plausible CFEs.

Similar to the modeling of closest CFEs in Equation 1, different realizations of these computationally plausible CFEs
have been proposed [46, 57, 4]. One particular instance are density based approaches [4] that restrict a counterfactual
~xcf to regions of high density (e.g., estimated from the training data). In the current work, we follow an alternative
approach when providing computationally plausible CFEs and limit the set of possible counterfactuals to the training
data as a representative set of feasible examples [57].

4 Do Novice Users Profit from Computational Plausibility in an Abstract Domain?

The guiding question of the current work is whether computationally plausible CFEs have an advantage over closest
CFEs in helping users to learn from an ML model. To assess this question, we rely on an interactive iterative learning
task, where users repeatedly choose input values for an ML model. In a separate study, we successfully demonstrate the
added benefit of providing closest CFEs compared to no explanation given this experimental framework [37].

In the current work, users receive either computationally plausible or closest CFEs, highlighting how changes in the
user’s previous input would have lead to better results. The main advantage of this approach is that the interplay
between repeated user action and corrective feedback enables us to assess user understanding at each stage of the
process objectively through task performance.

We find it conceivable that implementing a plausibility constraint indeed improves user performance. Specifically,
we assume that repeated exposure to items representative of the training set enables humans to build a more accurate
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Plausible Alien Zoo Game
(6 blocks á 2 trials)

Structure of 1 block:

Post-Game Survey

1st trial in block (user input)

time

2nd trial in block (user input)

Progress scene

Progress scene

Feedback scene 
(CFE presentation)

Pre-feedback scene

Multiple choice items:
1. Which plants were relevant to increase pack size?
2. Which plants were not relevant to increase pack size?

Likert-scale items:

3. “I understood the feedback.”
4. “I needed support to understand the feedback.”
5. “Feedback helped me.”
6. “I was able to use the feedback.”
7. “Please select 'I prefer not to answer’.”
8. “I found inconsistencies in the feedback.”
9. “Most people would quickly learn to work with the feedback.”
10. “Feedback was presented timely and efficiently.”

Demographic information:
• Gender
• Age

Task performance (pack size)†
Decision time†

Self-reports‡
Demographic data

a b

Figure 1: General overview of study procedure. (a) The Alien Zoo game is an iterative design with blocks containing
two trials calling for user input, and finishing with a feedback scene that provides either closest or computational
plausible CFEs computed on user’s previous input. (b) After 6 blocks, users enter a post-game survey collecting
self-report information from participants. Likert-scale items adapted from [32]. Catch item marked in light gray. The
lower part of both subfigures shows measures evaluates from respective parts; † objective measure, ‡ subjective measure.

mental model of the underlying data distribution. To obtain general insights about the usability of different types of
CFEs as such, we recruited novice users and designed the task around an abstract scenario. This approach has the
additional advantage to mitigate any difference in domain knowledge and possible misconceptions about the task setting,
potentially confounding task performance [68]. Thus, we formulated the following three hypotheses.

Hypothesis 1. We expect computationally plausible CFEs to be more helpful to users tasked to discover unknown
relationships in data than closest ones, both objectively and subjectively. Specifically, we anticipate that participants in
the plausible condition a) show greater learning success, b) become more automatic and thus quicker in the task, and c)
are able to explicitly identify relevant and irrelevant input features.

Hypothesis 2. We expect a group difference in terms of subjective understanding. We predict that users will differ in
how far they find CFEs useful, and in how far they can utilize them, with an advantage of computationally plausible
CFEs. Furthermore, we posit that users imagine computationally plausible CFEs to be more helpful for other users.

Hypothesis 3. We evaluate users’ understanding of the explanations themselves, their need for support to understand,
and their evaluation of timing and efficacy of CFE presentation. As structure and presentation mode of CFEs is kept
constant across conditions, we expect not to find any differences. This analysis tests the comparability of conditions, a
key feature in any experimental user design.

Finally, we do not formulate a prediction whether groups will differ in uncovering inconsistencies in the explanations
presented. This will be investigated in an additional exploratory analysis.

5 Experimental Design

To assess Hypotheses 1–3, we use a novel iterative learning design revolving around an abstract scenario. Figure 1
conveys the overall two-part structure of the study.
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5.1 The Alien Zoo Scenario

We developed a game-like experimental design, the Alien Zoo [37]. It relies on a web-based interface to provide global
access for users from diverse backgrounds, facilitating large-scale participant recruitment. For a detailed account of the
framework’s conception and the rationale behind the corresponding design choices, see Kuhl et al. [37].

In the Alien Zoo scenario, participants imagine themselves as zookeepers for aliens. To feed to the aliens, participants
may choose from different plants. However, it is not clear what plants make up a nutritious diet. Thus, participants need
to find how to best feed the aliens. Participants go through several feeding cycles, choosing a combination of plants.
After each cycle, the pack of aliens either decreases (given a bad combination of plants) or increases (given a good
combination). In regular intervals, participants receive a summary of their past choices, together with feedback on what
choice would have led to a better result (i.e. a CFE).

Assessing performance of real users in an abstract task setting, this use case corresponds to a human grounded
evaluation [23]. Further, our setting falls under the “explaining to discover” category for explainability defined by Adadi
and Berrada, investigating whether providing CFEs to novice users improves their understanding of relationships in a
yet unknown dataset [1].

5.2 Post-Game Survey

A post-game survey collects self-report information from participants. Besides explicitly asking participants to point
out which plants were relevant and irrelevant for the task, we use an adapted version of the System Usability Scale [32],
designed to measure the quality of explanations elicited by an explainable ML system. Participants answer a series of
Likert-scale items, assessing how users feel about using our system with a focus on perceived understandibility and
usability of CFEs. The survey closes with asking for participants’ gender and age as potential confounding variables.
Figure 1b gives a complete overview of all items in the survey part, in the order participants encounter them.

5.3 Constructs and Measurements

We measure understanding and usability of explanations in terms of two objective behavioral variables and several
subjective self-reports (Figure 1 bottom).

Regarding task performance, we assess the development of pack size in the Alien Zoo game over trials. This value
indicates the extent of user’s understanding of relevant and irrelevant features in the underlying data set, as a solid
understanding leads to better feeding choices.

Second, we measure time needed to reach a feeding decision over trials (henceforth referred to as decision time). As
we assume participants to become more automatic in making their plant choice, we expect this practice effect to be
reflected as decreased decision time [44].

We acquire self-reports via the post-game survey, assessing different aspects of participant’s system understanding. The
first two survey items ask users to identify plants they think are relevant and irrelevant for task success. Replies from
these items allow us to measure to which extent users in different groups formed explicit knowledge of the underlying
data structure. Further, users indicate in how far they find the explanations useful, to which degree they can make use
of them, and in how far they imagine the presented CFEs to be helpful for other users, too. These items assess user’s
subjective understanding.

Finally, three self-report measures check for potential confounds. These are items that ask users to indicate their
understanding of the explanations as such, whether they feel the need for support for understanding, and their evaluation
of timing and efficacy of CFE presentation. Given that structure and presentation mode of CFEs is kept constant for
both groups, differences would uncover unexpected variation in terms of answer style, a potential confounding variable.

5.4 Implementation, ML Model and Data Set

The back end of the system is written in Python3, using the sklearn package [55] for the ML part. The front end employs
the JavaScript-based Phaser 3, an HTML5 game framework1. We use a decision tree regression model for predicting
the growth rate given the plants selected by the user. Decision trees approximate the data distribution with a collection
of if-then-else rules, consecutively splitting the data [63]. We choose a decision tree because computing counterfactuals
for this model is fairly simple [3]. Yet, it is powerful enough to model our synthetic data set sufficiently well. The
current implementation uses the Gini splitting rule of CART [10], with a maximum tree depth of 4. The decision tree

1https://phaser.io/
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corresponding to the ground truth model is build once in the beginning and remains the same for all users during the
study.

We use the code provided by the CEML package [2] for computing CFEs.2 In the interest of reproducible research, all
source code, acquired user data, and evaluation scripts of the current study are available.3 The underlying data set used
for tree building consists of 5 integer features (i.e., the plants used for feeding) and 1 continuous output variable (i.e.,
the growth rate used as factor for computing the new pack size). We generated this data according to the following
scheme: The growth rate scales linearly with plant 2, iff plant 4 has a value of 1 or 2 OR plant 5 is not smaller than 4.
Growth rate may take a value between 0 and 2, used as a factor for pack size in the previous round to compute the new
pack size. The initial full data set contains all possible plant – growth rate combinations 100 times, yielding 3 276 800
data points. For final model training, we sample a subset of 10 922 data points from this full set to introduce sparsity,
thus ensuring that computed closest and computationally plausible CFE diverge. Note that our implementation prevents
pack size from shrinking below 2.

5.5 Participants

The study ran in early November 2021 on Amazon Mechanical Turk (AMT). After piloting, we recruited a total of 100
participants for final assessment, following an a priori sample size estimation [39]. A first data quality check revealed
corrupted data for four participants due to logging issues. Thus, we acquired four additional data sets. All participants
gave informed electronic consent by providing clickwrap agreement prior to participation. All participants received
a reward of US$ 4 for participation. The ten best performing users received an additional bonus of US$ 2. Game
instructions informed participants about the possibility of a bonus to motivate compliance with the experimental task [7].
The study was approved by the Ethics Committee of Bielefeld University, Germany.

5.6 Experimental Procedure

After accepting the task on AMT, participants are forwarded to our web server hosting the alien zoo game. They first
encounter a page informing them about purpose, procedure and expected duration of the study, their right to withdraw,
confidentiality and contact details of the primary investigator. Users may decline to participate by closing this window.
Otherwise, they indicate their agreement via button press, opening a new page. Unbeknownst to the user, they are
randomly assigned to either the closest or the plausible condition when they indicate agreement.

The succeeding page provides detailed instructions to the game. Specifically, it shows images of the aliens, as well as
the selection of plants they may choose to feed from. Written instructions detail that it is possible to choose up to six
leaves per plant in whatever combination seems desirable, and that choosing healthy or unhealthy combinations leads to
increases or decreases in pack size, respectively. Further instructions emphasize the user’s task to maximize the number
of aliens, so-called shubs, with the best players qualifying for a monetary bonus. Participants are also informed that
they will receive feedback on what choice would have led to a better result after two rounds of feeding. Users begin the
game by clicking a “Start” button, appearing with a delay of 20s at the end of the page.

Upon hitting “Start”, participants encounter a padlock scene where they can make their feeding choice (Figure 2, top
left image). The right side of the screen displays leaves from all plant types next to upward/downward arrow buttons. In
the first feeding round, the top of the page shows written information that clicking on the upward arrows increases the
number of leaves per plant, while clicking the downward arrows has the reverse effect. In each succeeding feeding
round, the top of the page shows the current pack size, the pack size in the previous round, and the choice made in the
previous round. The page additionally shows a padlock with the current number of animated shubs. Each participant
starts of with a pack of 10 aliens. After making their choice, participants continue by clicking a button stating “Feeding
time!” in the bottom right corner of the screen.

Upon committing their choice, a progress scene displaying the current choice of plants and three animated aliens
is shown. Meanwhile, the underlying ML model uses the user input to generate the new growth rate and pack size,
together with either a closest or a computationally plausible CFE. After 3s, the padlock scene appears again to show the
results of their last choice. Following odd trials, the user may make a new selection. After even trials, a single “Get
feedback!” button replaces the choice panel on the right-hand side of the screen. Hitting the feedback button forwards a
user to an overview scene displaying the feeding choices in the last two runs, the resulting changes in pack size and
the counterfactuals that indicate what choices would have led to better results. When users made a choice that led to
maximal increase in pack size such that no counterfactual could be computed, they are told that they were close to an
optimal solution in that round. Users may move on to the next round by hitting a “Continue!” button appearing after

2https://github.com/andreArtelt/ceml
3https://github.com/ukuhl/PlausibleAlienZoo
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This is your first run.
Please make your first selection with the buttons
on the right.
Submit by hitting ‘Feeding time!’.

Feeding time!

Feeding in progress…

Feeding in progress…Your pack now consists of 13 Shubs.
Before, it was 10. Last feeding choice:

Feeding time!

Your pack now consists of 20 Shubs.
Before, it was 13. Last feeding choice:

Get feedback! Continue!

In round 1, you selected:

Result: Before: x 10 After: x 13

Your result would have been better if you had selected:

In round 2, you selected:

Result: Before: x 13 After: x 20

Congrats! You were close to an optimal solution in this round!

Figure 2: Exemplary user journey through the first block of the Alien Zoo game. Bold arrows indicate temporal
succession of respective scenes. The figure highlights the iterative nature of the game with repeated user input and
end-of-block presentation of CFEs. Note that plant counters are set to 0 at the beginning of each padlock scene. The
figure displays the state after the exemplary user inserted their current choice. For this manuscript, font size in images
of scenes was increased to improve visibility.

10s on the right-hand side of the screen. This delay forces users to spend some time with the information to study it.
Upon continuing, users make their new choice in a new padlock scene.

The study runs over 12 feeding rounds (trials) with feedback interspersed after each second trial. To ensure attentiveness
of users during the game, we included two additional attention trials. After feeding rounds 3 and 7, users face a
new page requesting to type in the current number of aliens in their respective packs. Immediate feedback informs
participants whether their entry was correct or not, and reminds users to pay close attention to all aspects of the game at
any given time. Subsequently, the next progress scene appears and the game continues.

The game part of the study is complete after 12 trials. The experimental procedure concludes with a survey assessing
user’s explicit knowledge on what plants were and were not relevant for improvement (items 1 and 2), as well as an
adapted version of the System Causability Scale [32] evaluating the subjective quality of explanations. The study closes
with two items assessing demographic information on gender and age. The final page thanks users for their participation
and provides a unique code to insert in AMT to prove that they completed the study and qualify for payment. Further,
participants may choose to visit a debriefing page with full information on study objectives and goals.
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Table 1: Demographic information of participants.
Before quality assurance measures (N = 100) After quality assurance measures (N = 74)
closest plausible U valuea p value closest plausible U valuea p value

N 50 50 .. .. 40 34 .. ..

Genderb 17f/33m 22f/26m/ 1108 .339 13f/27m 18f/15m/ 554.4 .116
1nb/1na 1nb

Age (Mdn)c 25–34y 25–34y 1234 .950 25–34y 35–44y 712.5 .718
a non-parametric Wilcoxon-Mann-Whitney U test
b f = female, m = male, nb = non-binary / gender non-conforming, na = no gender information disclosed
c Mdn = median age band (options: 18-24y, 25-34y, 25-34y, 35-44y, 45-54y, 55-64y, 65y and over)

On average, participants needed 13m:43s (± 00m:23s SEM) from accepting the HIT on AMT to inserting their unique
payment code.

5.7 Statistical Analysis, Sample Size Calculation and Data Quality Measures

We perform all statistical analyses using R-4.1.1 [58], using CFE variant (closest or computationally plausible) as
independent variable. Changes in performance over 12 trials measure learning rate per group (lme4 v.4_1.1-27.1) [8].
In the model testing for differences in terms of user performance, the dependent variable is number of aliens generated.
In the assessment of user’s reaction time, we use trialwise decision time as dependent variable. The final models
include fixed effects of group, trial number and their interaction. The random-effect structure includes a by-subjects
random intercept. Such linear mixed effects models account for correlations of data drawn from the same participant
and missing data [21, 51]. The analysis of variance function of the stats package in base R serves to compare model
fits. η2p values denote effect sizes (effectsize v.0.5) [9]. Computations of pairwise estimated marginal means follow
up significant main effects or interactions, with respective effect sizes reported in terms of Cohen’s d. All post-hoc
analyses reported are Bonferroni corrected to account for multiple comparisons.

We evaluate data gathered from the post-game survey depending on question type. For the first two items assessing
user’s explicit knowledge of plant relevance, we test data for normality of distributions using the Shapiro-Wilk test,
followed up by the non-parametric Wilcoxon-Mann-Whitney U test in case of non-normality, and the Welch two-sample
t-test otherwise for group comparisons. We follow the same approach to compare age and gender distributions. We
also compare user’s explicit knowledge of plant relevance to the expected value given random response patterns using
the non-parametric one-sample Wilcoxon signed rank test for each group separately, and report Bonferroni corrected
results. To analyze group differences of ordinal data from the Likert-style items, we rely on the non-parametric
Wilcoxon-Mann-Whitney U test. We report effect sizes for all survey data comparisons as r.

As a web-based study, we run the risk that some participants attempt to game the system to collect the reward without
providing proper answers. Thus, we implement a number of data quality checks that were planned a priori. We identify
speeders based on the decision time, flagging users that spent less than 2s in the padlock scene in 4 or more trials.
We flag participants that fail to respond with the correct number of aliens in both attention trials during the game.
Furthermore, we included a catch item in the survey (1b, item 7), flagging inattentive users. Finally, we identify
straight-lining participants who keep choosing the same plant combination despite not improving in at least three blocks,
or answer with only positive or negative valence in the survey. To uphold a high threshold for data quality, we follow a
conservative approach of excluding participants that were flagged for at least one of these reasons.

6 Results

From the initial 100 participants, we exclude data from participants who qualified as speeders (n = 2), failed both
attention trials during the game (n = 5), gave an incorrect response for the catch item in the survey (n = 3), or
straight-lined during the game (n = 4) or in the survey (n = 12), leaving data from 74 participants for final analysis
(Table 1).

6.1 Do Computationally Plausible CFEs Facilitate Learning?

Hypothesis 1 postulates that users in the plausible condition outperform users in the closest condition. To statistically
assess this hypothesis, we compare data from participants in both groups in terms of pack size produced over time,
decision time, and matches between ground truth and indicated plants. Figure 3a shows the development of average
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Figure 3: Development of (a) mean pack size per group by trial, (b) mean decision time per group by trial, and (c)
mean number of matches between user judgments and ground truth for survey items assessing relevant plants and
irrelevant plants, respectively. Shaded areas in (a), (b), and error bars in (c) denote the standard error of the mean.
Asterisks denote statistical significance (p < .05 (*), p < .01 (**), and p < .001 (***), respectively. Asterisks in (c)
denote statistical significance from expected value for random behavior.

pack size as well as average decision time per group. Strikingly, the data suggests that participants in the closest, not
the plausible, condition performed better. This effect is confirmed by the significant interaction of factors trial number
and group (F(11,792) = 2.119, p = .017, η2p = 0.029) in the corresponding linear mixed effects model. The follow-up
analysis reveals significant differences between groups in trial 11 (t(472) = 4.040, p = .012, d = 0.693) and trial 12
(t(472) = 2.530, p <.001, d = 1.101). Additionally, there is a highly significant main effect of trial number (F(11,792) =
7.585, p <.001, η2p = 0.095), but no significant main effect of group (F(11,72) = 2.586, p = .112, η2p = 0.035).

Participants in both groups showed a marked decrease in decision time over the curse of the study, already apparent
after the first trial (Figure 3b). The significant main effect of factor trial number (F(11,792) = 14.818, p <.001, η2p =
0.171) confirms this observation. Corresponding post-hoc analyses show significant differences between trial 1 and
all other trials (all t(792) >5.900, p <.001, d >1.200), between trial 3 and 4 (t(792) = 3.765, p = .012, d = 0.621), and
between trials 4 and 5 (t(792) = 3.395, p = .048, d = 0.560). Neither the main effect of factor group (F(11,72) = 0.235,
p = .630, η2p = 0.003), nor the interaction between factors trial number and group (F(11,792) = 0.897, p = .543, η2p =
0.012) reach significance.

In terms of mean number of matches between user judgments of plant relevance for task success and the ground truth,
users in both groups performed comparably both for relevant (closest: mean number of matches = 2.850 ± 0.198 SE;
plausible: mean number of matches = 3.206 ± 0.178 SE; U = 781, p = .255, r = .054) and irrelevant plants (closest:
mean number of matches = 3.125 ± 0.157 SE), plausible: mean number of matches = 3.177 ± 0.217 SE; U = 721.5, p
= .643, r = .054). While groups do not differ in terms of matches between user judgments of plant relevance, we find
significant differences between mean group responses compared to the expected value given random responses (i.e.,
expected mean number of matches = 2.500): Users in the computationally plausible group have significantly more
matches than random for both items (relevant plants: W = 481, p = .005, r = .550; irrelevant plants: W = 459.5, p =
.020, r = .483). Users in the closest group have significantly more matches than random when identifying irrelevant (W
= 659.5, p = .002, r = .544), but not relevant (W = 536.5, p = .331, r = .274) plants.

Thus, we cannot verify our hypothesis that computationally plausible CFEs facilitate learning. On the contrary, the
development of pack size between the groups points to the opposite effect of closest CFEs being more beneficial for
users than computationally plausible ones.

6.2 Do Computationally Plausible CFEs Increase User’s Subjective Understanding?

To assess hypothesis 2, we analyze participant judgments on relevant survey items. Visual assessment suggests that
there is little variation in terms of user responses between groups (Figure 4a), confirmed by our statistical assessment.
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Figure 4: Overview of user judgments in post-game survey per group, adapted from [32]. (a) depicts user replies in
survey items relevant for hypothesis 2, (b) depicts user replies in survey items relevant for hypothesis 3, and (c) depcits
replies relevant for our last exploratory analysis. Distributions did not differ significantly between groups for any of the
items (all p >.05).

Groups do not statistically differ when judging whether presented CFE feedback was helpful to increase pack size
(closest condition: M = 3.700 ± 1.285 SE; plausible condition: M = 3.636 ± 0.242 SE; U = 656, p = .968, r = .005).
Likewise, we do not detect significant group differences in terms of subjective usability (closest condition: M = 3.775 ±
0.216 SE; plausible condition: M = 3.606 ± 0.230 SE; U = 603, p = .513, r = .077). In addition, there is no significant
difference between groups for estimated usefulness of explanations for others (closest condition: M = 3.750 ± 0.208
SE; plausible condition: M = 3.647 ± 0.206 SE; U = 637, p = .631, r = .056).

6.3 Does Mode of Presentation have an Impact?

As postulated in hypothesis 3, we do not observe group differences between conditions in terms of understanding the
explanations as such (Figure 4b). A considerable proportion of both groups responds positively about understanding the
feedback, not differing significantly in their responses (closest condition: M = 3.975 ± 0.184 SE; plausible condition:
M = 4.118 ± 0.162 SE; U = 773.5, p = .200 r = .149). In terms of needing support for understanding, both groups reply
with a similar response pattern (closest condition: M = 3.200 ± 0.230 SE; plausible condition: M = 3.147 ± 0.257 SE;
U = 667, p = .890 r = .016). Similarly, user judgments on timing and efficacy of CFE presentation are consistently high
across groups (closest condition: M = 4.100±0.175 SE; plausible condition: M = 4.147±0.170 SE; U = 680.5, p = 1 r
= .000).

6.4 Exploratory Analysis

More than half of all users in both groups do not report to having detected any inconsistencies in the CFEs provided
(closest condition: M = 2.675 ± 0.166 SE; plausible condition: M = 2.853 ± 0.207 SE; U = 743, p = .480, r = .082).

7 Discussion

In this work, we investigate effects of implementing a plausibility constraint on computed CFEs for ML models on
user performance in an iterative learning task in an abstract domain. The employed constraint limits the set of possible
solutions to the training data. We measure understanding and usability of explanations in terms of two objective
behavioral variables, i.e., task performance and decision time, and several subjective self-reports. Our results reveal a
range of valuable insights with important implications for XAI in application.
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First, we cannot verify our initial supposition that computationally plausible CFEs facilitate learning in the current
setting. Intriguingly, we observe the opposite effect: users in the closest condition generated larger pack sizes than users
in the computationally plausible condition. A likely reason for this observation may be that the current study revolves
around an abstract scenario of feeding aliens. Given psychological interpretations of plausibility as probability [56,
18], simply restricting CFEs to items from the training set cannot help participants that lack an informed mental
representation of the current state of this alien world. For a novice user at the onset of the study, any counterfactual is
equally likely.

We may turn to the definition of psychological plausibility as comparative similarity [41, 65] for a possible explanation
why users in the closest group showed significantly superior performance. Classically, CFEs are penalized if they
deviate from the requested prediction [69], resulting in closest CFEs that differ minimally from the user’s input.
This concept resembles the view that psychologically plausible counterfactuals come from worlds that are minimally
different from reality [41]. Empirical evidence highlighting the close relation between perceived plausibility and
perceived similarity between counterfactual and factual state supports this notion [65, 19]. In contrast, the computational
plausibility constraint rejects CFEs that are not part of the training set, even if they are minimal. Consequently, users
in the plausible condition encounter larger differences between provided explanations and their input, at odds with
the idea of plausibility as comparative similarity. Conversely, users in the closest condition might have experienced
their CFEs as more psychologically plausible than the computationally plausible version. Further, upon seeing closest
CFEs, users might get a feeling of “just missing”, inducing negative affect that strongly motivates improvement [48,
47]. Additionally, the larger discrepancies between factual and counterfactual state in the plausible condition might
increase the mental load on users, potentially hampering learning. Future studies need to disentangle contributions of
these factors.

Intriguingly, our results are at odds with empirical findings indicating that CFEs for intelligent systems do not improve
user’s task performance [42, 68]. Lim et al. assessed the effectiveness of different explanation modes for context-
aware systems [42]. In their study, performance of users receiving counterfactual style what-if -explanations was
indistinguishable from that of users getting no explanations what-so-ever. In contrast, users in our study indeed show
learning after receiving CFEs. Interestingly, their task resembles ours in so far that they also employed an abstract
domain: users chose values of non-specific features (labelled A, B and C), relating to a non-specific prediction (a or b).
However, while also dealing with an abstract task (i.e., feeding aliens), our users have a tangible goal (i.e., make the
pack grow). Further, we refrain from separating learning and testing as in Lim et al., where users went through an initial
evaluation section receiving explanation after explanation. Our design is far more interactive, with different rounds
of user action and feedback. This is in line with evidence from educational science, suggesting that learner’s level of
engagement relates to learning outcome, with interactive activities granting deepest understanding [15]. Thus, including
goal-directed and interactive settings may potentially be vital facets of effective usability studies. We suggest that future
research designs need to pay special attention to these aspects in order to accurately evaluate XAI approaches.

Beyond task performance, we quantify learning success in terms of user’s decision time and their ability to explicitly
state which plants were relevant. Both measures do not reveal significant group differences. In terms of user’s decision
time, both groups show significant speed-up already after Trial 1 (Figure 3a). This initial time decrease likely reflects
how participants learn to work with the game interface efficiently. Increased reaction time as a marker of learning is a
classical insight from experimental psychology [44], indicating that both groups did indeed learn in the current setting.
It is possible that the complex task we devised with its elaborate game-like setting was not sensitive enough or too short
to pick up in subtle group differences usually linked to more simple, extensive reaction time experiments.

Users in the closest group show superior performance, however, they are not able to state more explicitly which plants
were relevant or irrelevant for the given task. With this, our study replicates a recent observation that objective measures
(i.e., task performance) do not necessarily correlate with self-reports reflecting system understanding [68]. Participants
in both groups made three out of five correct choices on average (Figure 3c), in part significantly exceeding the number
expected in case of random behavior. Thus, both groups showed some–yet imperfect–explicit understanding of the
underlying system. Potentially, users may rely on their initial mental model of the appropriate alien diet, allowing them
to make advantageous feeding choices relatively quickly. However, in this initial stage, it may still be insufficient to
allow clear and explicit differentiation between relevant and irrelevant features at the end of the study.

Besides effects on task performance, we do not detect any statistically meaningful differences between the two groups
under investigation, predominantly affecting the evaluation of user judgments in the survey. It is clear that these
observations have to be taken with the care generally devoted to null effects, calling for cautious interpretation. Still,
regarding the general trends for individual survey items is informative. We cannot verify our second hypothesis, as
users did not differ depending on group in terms of subjective helpfulness and usability. Still, we note that the majority
of users in both groups respond with agreement or strong agreement in the respective items (Figure 4a). This supports
the notion that CFEs are indeed subjectively intuitive and usable for lay users, also when used in an abstract setting.
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A major challenge for effective user designs comparing different approaches is keeping conditions highly comparable,
with the sole exception of the experimental manipulation. User judgments of general understandability and presentation
mode of CFEs inspire confidence that we achieved this level of control with our Alien Zoo design. In fact, the respective
items elicit the highest user judgments out of all survey responses, with agreement values close to 90%. High agreement
across both groups leads us to conclude that mode of CFE presentation does not have an impact when comparing users
experience closest vs. plausible CFEs, validating our hypothesis 3. Thus, the Alien Zoo design does not just elucidate
benefits of providing CFEs compared to no explanation [37], it is also suitable for user evaluations of CFE methods, a
yet vastly understudied aspect in the field of XAI [36].

Finally, the majority of users indicate that they fail to find inconsistencies in the CFEs provided. Thus, we can rule out
that our code generated irregular or even contradictory explanations, confounding the observed group differences.

7.1 Limitations & Future Work

Several limitations warrant caution when interpreting our results beyond the scope of this work. Critical design choices
in any XAI evaluation include the reason for explaining, and the target group [1]. The current results may only be
generalized to cases with the same motivation for explaining (i.e., to ‘explore’) as well as the intended audience (i.e.,
novice users). Other motives and applications addressing more specific target groups call for independent studies.

We excluded data from 26 out of 100 participants to meet a priori quality criteria. Such participant attrition common,
especially in web-based studies. As smaller sample sizes always mean a loss of statistical power, we factored in this
issue in an a priori power analysis. Yet, the effect size of the significant interaction between factors trial number and
group remains relatively small. Hence, the results from this work await confirmation in larger follow-up studies.

None of the survey items revealed significant group effects, in line with a previous account of diverging trends between
objective measures and self-reports [68]. This may reflect a more general tendency in human evaluation of system
understanding. Alternatively, however, we may call into question the efficacy of instruments applied to assess user
experience. To date, there is no standard inventory for assessing subjective usability in XAI research. We adapted
the System Causability Scale [32] to determine subjective usability of presented CFEs. Yet, there is no large scale
validation of this measure. One potential shortcoming may be a lack of sensitivity to subtle group differences.

Moreover, the current scenario in its present condition may be difficult to translate to specific real-world applications.
The lack of realism offers full algorithmic recourse [35]: all changes are feasible (i.e., doable for the participant), and all
changes in features are independent (i.e., a user can change plant 1, and this will have no long-time effect on plant 2). In
real life scenarios, this is barely the case (e.g., a bank customer might never be able to get younger to get a loan; yearly
income also affects savings). Thus, our example is much more artificial, and we suggest applying iterative learning
designs in more realistic, real-world scenarios as an exciting avenue for future work.

Users in our study play an elaborate online game, with a detailed user interface, and several consecutive scenes.
Designed to be maximally engaging as to ensure participant compliance, the amount of information displayed may
overwhelm some participants. This could explain inferior performance of a small proportion of participants, like those
who disagree with the notion that feedback presentation was timely and efficiently.

Recent evidence suggests an added benefit of providing users with CFEs over no explanations to understand the behavior
of an unknown system [68]. The current work expands this insight by a direct comparison of two different approaches
for CFE computation. While our results suggests the suitability of our Alien Zoo design, further validation studies must
delineate potential shortcomings. For instance, a crucial validation step of the design itself concerns comparisons of
valid CFEs with no explanations or non-sensical ones.

Beyond such a fundamental investigation, the Alien Zoo design lends itself to be easily modified. Possible adaptations
may incorporate data with different dynamics, use other ML models, or compare other CFE approaches. Thus, the
design has tremendous potential to answer open questions in the domain of XAI. For instance, future work may explore
the impact of distinct psychometric properties on performance. A small-scale user study suggests an effect of individual
personality traits on user’s ability to make sense of an ML system’s output, and understanding the generation process,
respectively [26]. It remains to be shown how personal attributes relate to usability judgments of CFEs.

Further, it is conceivable that users may prefer to receive explanations on demand, rather than continuously at prescribed
intervals. There is abundant room for further progress in determining whether explicitly requesting CFEs may improve
task performance, and how users would make use of their control over the explanation intervals.

Finally, we successfully demonstrate usefulness of CFEs for the current task, indicating a certain degree of intuitiveness
or plausibility connected to them. Future investigations may tackle whether CFEs cause users to fall prey to a plausibility
fallacy, coming to trust biased or unfair ML models just because they are coupled with intuitive explanations.
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7.2 Conclusions

In this work, we present a controlled study comparing user performance and usability judgments of CFEs in an iterative
learning design. We focus on potential group effects driven by receiving either closest CFEs that are minimally different
from the user’s input, compared to computationally plausible ones, limited to instances found in the training data. We
develop an accessible game-like experimental design revolving around an abstract scenario, suitable for novice users.
Our design demonstrates learning in both groups, highlighting the power of interactive and goal-directed tasks for
user evaluations of CFE methods, a yet vastly understudied aspect in the field of XAI. Moreover, our findings suggest
that novice users benefit more from receiving closest than computationally plausible CFEs. This supports the view of
plausibility as comparative similarity rather than probability in cases where users lack an accurate mental model to
build on. In sum, our work emphasizes yet again that theoretical approaches proposing explanation techniques for ML
models and user-based validations thereof need to go hand in hand. Researchers designing XAI approaches need to
bear in mind human behavior, preferences and mental models, to build on a solid foundation to effectively benefit the
end user.
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