Semantic Retrieval at Walmart

Alessandro Magnani
Walmart Global Technology
Sunnyvale, USA
alessandro.magnani@walmart.com

Sachin Yadav
Walmart Global Technology
Bangalore, India
Sachin.Yadavl@walmart.com

Sijie Chen
Walmart Global Technology
Sunnyvale, USA
Sijie.Chen0@walmart.com

Tony Lee
Walmart Global Technology
Sunnyvale, USA
tony.lee@walmart.com

ABSTRACT

In product search, the retrieval of candidate products before re-
ranking is more critical and challenging than other search like
web search, especially for tail queries, which have a complex and
specific search intent. In this paper, we present a hybrid system
for e-commerce search deployed at Walmart that combines tra-
ditional inverted index and embedding-based neural retrieval to
better answer user tail queries. Our system significantly improved
the relevance of the search engine, measured by both offline and
online evaluations. The improvements were achieved through a
combination of different approaches. We present a new technique
to train the neural model at scale. and describe how the system was
deployed in production with little impact on response time. We
highlight multiple learnings and practical tricks that were used in
the deployment of this system.

CCS CONCEPTS

« Information systems — Retrieval models and ranking.

KEYWORDS

product search, semantic search, e-commerce search, neural search

“Work done while at Walmart.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD °22, August 14-18, 2022, Washington, DC, USA.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9385-0/22/08....$15.00
https://doi.org/10.1145/3534678.3539164

Feng Liu
Walmart Global Technology
Sunnyvale, USA
fliu@walmart.com

Praveen Reddy Suram
Walmart Global Technology
Bangalore, India
praveen.suram@walmart.com

Min Xie
Instacart
San Francisco, USA
min.xie@instacart.com

Suthee Chaidaroon®
Santa Clara University
Santa Clara, USA
schaidaroon@scu.edu

Ajit Puthenputhussery
Walmart Global Technology
Sunnyvale, USA
ajit.puthenputhussery@walmart.com

Anirudh Kashi*

University of Southern California
Los Angeles, USA
kashia@usc.edu

Ciya Liao
Walmart Global Technology
Sunnyvale, USA
ciya.liao@walmart.com

ACM Reference Format:

Alessandro Magnani, Feng Liu, Suthee Chaidaroon, Sachin Yadav, Praveen
Reddy Suram, Ajit Puthenputhussery, Sijie Chen, Min Xie, Anirudh Kashi,
Tony Lee, and Ciya Liao. 2022. Semantic Retrieval at Walmart. In Proceedings
of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD ’22), August 14-18, 2022, Washington, DC, USA. ACM, New
York, NY, USA, 9 pages. https://doi.org/10.1145/3534678.3539164

1 INTRODUCTION

Search is one of the most important channels for customers to
discover products on an e-commerce website such as Walmart.com.
Given our huge catalog which contains millions of products, helping
users find relevant products for their queries is a very challenging
problem [32]. Existing literature on information retrieval focuses
mostly on web search [25]. While product search shares many
common challenges with web search, there are many unique aspects
of product search. Like other search, product search usually involves
two steps: the first step is to retrieve all relevant products from the
catalog that form the recall set; these candidate products then go
through a re-rank step to identify which products are the best to
return to the customer.

One major difference with web search is that the retrieval step
in product search is a more critical and challenging problem [3, 5,
18]. This is because product titles (the main search-able text) are
generally much shorter than web documents. Also, while many web
documents may contain the same information, a specific product
from a seller rarely has a duplicate. Retrieving a specific product
while matching on shorter text is a challenging problem.

Traditionally, retrieval is based on text match between queries
and documents, utilizing a heuristic score function like Okapi
BM25 [25] and an inverted index [1] like Apache Lucene!. Text

!http://lucene.apache.org

https://orcid.org/0000-0003-0345-9629
https://doi.org/10.1145/3534678.3539164
https://doi.org/10.1145/3534678.3539164
http://lucene.apache.org

KDD ’22, August 14-18, 2022, Washington, DC, USA.

match between queries and documents suffers from vocabulary mis-
match [23], which can be more problematic in product search [14,
32, 33]. For example, synonyms and hypernyms are difficult to
handle [34]. Many existing works aim to solve this problem by
incorporating knowledge graph [40] or having a dedicated query
understanding component [6]. However, these approaches need
a huge amount of domain expertise, and the cost of maintaining
these components is high, since the catalog and product vocabulary
frequently change in e-commerce.

More recently, neural retrieval systems have been proposed [14,
33] and deployed in production systems [43, 44] and have shown
great success in bridging the vocabulary gap. However, neural
systems are limited by the fact that the embedding size cannot be
too large due to latency concerns. This is problematic when dealing
with rare tokens [23].

In this paper, we describe the hybrid system used in production
at Walmart.com and how it overcomes the individual limitations
of traditional text-match retrieval and neural retrieval. We demon-
strate the benefit of such a system for tail queries and highlight
the learnings we had in the process of bringing the system to pro-
duction. These include various challenges related to training the
model, as well as engineering challenges in deploying the model
to production while keeping the cost-to-serve low. We describe a
solution that strikes a good balance between retrieval performance
and model complexity in the context of product search.

The novelty of the paper are as follows:

e We deploy a hybrid search system on an e-commerce site
with both inverted index and neural retrieval to handle high
traffic of tail queries.

e We propose a novel method of selecting negative examples
for training a large neural retrieval model and an approxi-
mate metric to evaluate the performance.

o We extensively explore the retrieval performance of a neural
system across multiple dimensions, including model archi-
tecture, data preparation, and practical considerations.

e We report lessons learned and practical findings from de-
veloping and deploying the hybrid search system in the e-
commerce website that serves millions of online customers
daily.

2 RELATED WORK

Neural information retrieval (NIR) has been a popular topic in the
search community recently. It leverages a set of sub-topics such as
unsupervised learning of text embeddings like word2vec [26], deep
Siamese [4] models based on query logs like CLSM [33] and DSSM
[14], and query document interaction-based models like kernel
pooling [39]. A good summary of the field can be obtained in [27].
In [23] the authors consider the tradeoff between sparse and dense
retrieval and propose a multi embedding approach.

Multiple companies have described their production systems
leveraging semantic retrieval. In [42], a two-tower neural model
is trained using a mixed negative sampling in addition to batch
random negatives. Baidu [44] described a production system that
leverages multiple model pre-training strategies. In [13, 22] Face-
book presented a system that combines an inverted index with
semantic retrieval; the presented architecture includes multiple

Alessandro Magnani et al.

product features like images and titles. Taobao [43] proposed a
way to better learn relevance from user engagement data. Sears
used embeddings to represent products for a recommendation sys-
tem [2]. In [29], Amazon presented a retrieval system based on a
bag-of-words model; similar to our system, semantic retrieval was
used in combination with a standard inverted index system. In [10]
a residual-based learning framework was used to learn embeddings
that compensate for shortcomings of the inverted index. In our
approach the two systems are created separately.

Negative item selection. Multiple papers have investigated the
problem of selecting negative samples to be used during train-
ing. Several works considered caching embeddings for the entire
dataset [11, 41]. In [41], an iterative approach was suggested to find
negative samples. We follow a similar approach, and extend it to
improve the results in the common situation where not all relative
items are known for a query. In [12], a streaming negative cache
was used, but it cannot work for dual encoder training.

Multiple embeddings. There are also approaches where queries
and items are represented by multiple embeddings for retrieval and
ranking [8, 15, 20, 23, 24]. SPLADE [7] produces a sparse represen-
tation at the token level that improves storage requirements, and
COIL [9] produces a token-level representation only for matching
between query and document.

Training strategies. In [19], they showed for a question-answering
task how a simple training strategy can effectively beat a state-of-
the-art system. In [31], they used a teacher cross-interaction model,
to help the training and selection of true negatives.

3 ARCHITECTURE

We propose a hybrid architecture that leverages the advantages of
both traditional inverted index and neural retrieval. A traditional
inverted index is still state of the art for retrieving documents with
rare tokens [23] such as product ids and model numbers. Moreover,
our production inverted index has capabilities like facet navigation
and category filtering, which are hard to replicate using semantic re-
trieval alone. On the other hand, semantic retrieval helps bridge the
vocabulary gap especially for tail queries; it helps with synonyms,
misspellings, and other query variants that users type. Semantic
retrieval also helps to better understand the semantics of longer
queries that might contain a nuanced intent from the user.

The overall architecture is shown in Figure 1. When a user types
a query, it is directed to the Query Planner to generate a query
plan for inverted-index retrieval as well as a query embedding
vector sent to the ANN Fetcher. The query embedding is then sent
to an approximate nearest neighbor (ANN) index to retrieve the
items with the closest embeddings. The ANN index contains the
embeddings of all the products currently available in our catalog.
When new products become available, a dedicated pipeline feeds the
product information to the product embedding model to generate
the embeddings. The embeddings are then stored in the updated
ANN index.

Both the inverted index and ANN index retrieve a set of products
which are merged to become the recall set. Finally, the retrieved
items are ranked by our re-ranking system to produce the final list
of products to be shown to the customers.

Semantic Retrieval at Walmart

It is important to note that the semantic retrieval and inverted
index are independently optimized. In this paper, we focus our at-
tention on the semantic retrieval part and on some of the challenges
of merging the two systems.

We discuss the semantic model in Section 4, the re-ranking model
and its features in Section 6, and implementation details of the
overall system in Section 7.

4 SEMANTIC MODEL

The semantic model architecture is a two tower structure as shown
in Figure 2. Each tower produces an embedding for query and
product respectively. The score of a query and product pair is the
cosine similarity of the embeddings. We experimented with the
inner product of the embedding as well (see Section 9).

The product information consists of a title, description, and a
number of attribute values. Attribute values are, for example, color,
brand, material. Attributes are not always available for all products.
We experimented with different number of attributes in Section 8.

There are two main classes of model used. The first one is a
traditional bag of words model [16, 29] (BoW) and the second is
based on a BERT [35] architecture. The BERT based model is far
superior for this application and it will be our main focus. We report
the performance of the BoW model as a baseline.

4.1 Models

We have experimented with different transformer architecture by
leveraging HuggingFace pre-trained models repository 2. Specifi-
cally we have used the BaseBERT with 12 layers and 1024 embedding
size and DistilIBERT with 6 layers and 768 embedding size. We re-
port below on the performance of different model architectures. We
use the pre-trained tokenizer, and all training is done by starting
with the pre-trained model. Our experiments use identical towers
(Siamese network). For most experiments, we use the embedding
vector corresponding to the special token "[CLS]".

In our experiments in Section 8, titles provide most of the sig-
nal for retrieval. We use a baseline model with only title as input.
We then added more attributes to the input. Each attribute is con-
catenated to the title by using a prefix which is an unused token
selected specifically for the attribute. For example, when adding
the color red to a product, the input looks like "[title tokens] [color
token] red". This technique allows the model to determine which
attributes have been concatenated. We experiment with four com-
mon attributes (product category, brand, color and gender) and
with a longer list of 26 attributes including the basic ones.

4.2 Loss function

We used a sampled softmax loss where for each query we have
both relevant and irrelevant products with a corresponding score.
As described in section 5.2, selecting negative items is essential for
good performance. We also notice that allowing multiple relevant
products during training helps. Since there are, in general, many
relevant products for a given query, we sample a few relevant
products for each epoch.

Zhttps://huggingface.co/models

KDD ’22, August 14-18, 2022, Washington, DC, USA.

N exp (cos (qi, pj) /o)
lossi =) Sijlog W
0ss ZJ: o Z;V exp (cos (gi, pj) /o)

Equation 1 shows the loss contribution of query i, where N is
the number of products under consideration, S;; is the score of
product j for query i, and gj, p; are the embedding for query i
and product j respectively. o is a temperature factor that is trained
together with all the model parameters. Other loss functions have
been evaluated including pointwise and pairwise losses, but the
softmax loss outperforms them and is very robust during training.
The number of products considered for each query is N = 20. There
is a trade-off between N and the batch size. Increasing N reduces
the batch size and therefore also the in-batch negatives.

We will discuss in Section 5 how the scores S;; are selected and
how the products are selected in more detail.

5 DATA

The training of the model is performed on engagement data col-
lected at Walmart.com over a one year period. The data contains
the top 2 million queries based on number of impressions. For each
query, we consider the products that were shown to the customers,
and construct labels based on the corresponding number of pur-
chases, clicks, and impressions. Note that we do not account for
presentation bias, since in a retrieval model, the order in which
items are returned is not relevant. In our experience correcting
for presentation bias adds more complexity for a negligible perfor-
mance improvement.

5.1 Labeling

For each query and product pair we assign a score S;; between 0
and 10. Since the loss is insensitive up to a multiplicative factor,
the range of score can be selected arbitrarily. Query-product pairs
with purchases are assigned the highest scores between 10 and 8.
Products that only received clicks are assigned scores between 7
and 5, and if products only received impressions scores between
4 and 2. We assigned scores of 0 to negative items as described in
section 5.2.

Ordered products are assigned a score based on a smoothed
orders+a
impressions+a

smoothing factor. The product with the highest order rate receives

a score of 10, while the product with the lowest order rate receives

a score of 8 following equation S = (10 — 8) %m +8. A

similar approach is used for products that received only clicks.

Although this labeling strategy is arbitrary, it has been shown
to be effective in practice. In particular differentiating the scores
of items that have been purchased from items that have only been
clicked is in our experience essential to create effective retrieval
models. This is consistent with [29] even though we use a different
loss.

estimation of their order rate rate = where « is the

5.2 Negative item selection

The selection of negative items is necessary to help the model
discern a relevant title among millions of products. We used two
sources of negative products: random products from within a batch

https://huggingface.co/models

KDD ’22, August 14-18, 2022, Washington, DC, USA.

Query ———» Query Planner

Y

v

Query embedding
Recall Federation Framework

Alessandro Magnani et al.

ANNM Service

AMNM Fetcher

¥

ANN Result Cache ANM Index

A 4

CQuery Embedding

Model

Solr Fetcher

h 4

Solr

Query embedding Solr+ANN items

Rerank

Y

Embedding
Datastore

Build ANM Indax

Item Embedding

Item
Model

Item
Database

Figure 1: The system architecture of hybrid retrieval system

Score

Projection Layer Projection Layer
BERT Embedding BERT Embedding
[CLS]Query[SEF] [CLS] Title [SEP1] Attribute 1 [SEP2] Attribute 2 [SEP]

Figure 2: The model architecture

during training and hard negatives selected offline for a given
trained model.

5.2.1 In batch negatives. Selecting negative items from a batch is
a common technique that reduces the computation because the
embeddings are already computed for all the products in the batch.
Since for memory constraints, it is not possible to select all products
in a batch as negative, we experimented with two ways of sampling
them. The first approach is a random selection. The second approach
is to perform a hard in batch selection [22]. This approach focuses
on only the hardest samples in a training batch. For a given query
in a batch the negatives are generated by using all the products
from other queries in the batch as a pool and selecting only the
ones which receive the highest cosine similarity.

5.2.2 Hard negative search. Out of the several negative construc-
tion approaches available, we used ANCE [41] to which we added
novel strategies that cause the model to retrieve more relevant
results, thereby boosting the recall metric. Unlike in the original
paper [41] where the relevant items are known, in the e-commerce
setting, there can be many relevant products for a given query. For

example, a query like "red shoes" can have hundreds of relevant
products. Since it is impractical to editorially evaluate all of them,
we introduce a set of different heuristics to overcome this limitation.

The procedure to generate hard negatives is as follows: 1) Gener-
ate top-k results for each query in training corpus using a partially
trained model 2) Select negatives from top-k results based on a
selection strategy (see below) 3) inject the hard negatives into the
training corpus and resume training 4) repeat the steps 1-3.

We explored three strategies to select negatives out of the top-k
results.

o PT match: For each item in the top-k results of a given query,
if the item is not in the training data and matches the product
type (PT) attribute of the top-m items in the training data, it
is removed from the set of negative candidates.

Token match: The negative candidates generated using this
strategy are more strict. We take PT match candidates as an
input to this and for each candidate item find its overlap with
query tokens. If the overlap score is below threshold ¢, we
keep the item; otherwise discard it. We have experimented
with different thresholds and found that ¢t=0.5 gave best
results.

Student-Teacher: We trained a separate model (Teacher) wherein
the query tokens can directly attend to product tokens. The
teacher model is a MonoBERT-based [38] single encoder
network that concatenates query and the product informa-
tion together as input. The top-k items are generated via
this model, and the above PT match filter is applied to get
the final negative candidates that are then injected into the
embedding model (Student).

We will compare these three approaches in the result section.

5.3 Reducing the model size

The initial embedding size was 768 for which the best recall was
obtained in our offline evaluations. This embedding size creates a
fairly large storage footprint for the ANN index (Section 7.1) and

Semantic Retrieval at Walmart

item embedding (Section 6). Due to system-level limitation, item
embedding storage is updated through a publish-subscribe based
messaging pipeline that does not accept partial updates. Reducing
the size of embedding is beneficial as it allows the item embedding
and the ANN index to be refreshed more frequently. The cost for
updating the ANN index, which depends on the storage size of the
input, is also taken into account.

We therefore investigated two different strategies to reduce the
size of the embeddings. In the first approach, we added a linear
projection layer to reduce the embedding size to 368, 256, 128, and 64.
In the second approach we used a transformer architecture that has
a smaller embedding size. We specifically picked the MiniLM [36]
architecture with 12 layers and an embedding size of 368 and the
XtremeDistil [28] architecture with 6 layers and an embedding size
of 368. In both cases, the implementation and the checkpoint were
provided by Huggingface [37]. As shown in the result Section 8,
the linear projection is very effective in reducing the size of the
embedding with very little performance cost.

5.4 Multi Embeddings

E-commerce queries often have multiple interpretations. For exam-
ple, the query "apple” could refer to the fruit or to the electronics
brand. For this reason, we explore the possibility of having multiple
embeddings to represent a query or product. For a query, this means
to generate m embeddings, and make m calls to the ANN service.
Denoting q? as the dth embedding of the ith query, the product

score is max (cos(q?,pj)) ford € 1...m.Following [23], we let the

m embeddings correspond to the first m tokens. This is a natural
extension of using the embedding corresponding to the first token
"[CLS]". For multiple embeddings on the product side, like in [23],
there are n embeddings, and we therefore store in the ANN service
n times the number of products.

5.5 Freezing token embeddings

We also experimented with a different setup where the token em-
beddings are kept frozen to preserve the learning of the pretrained
model. The hypothesis is that the pretrained model which has been
trained on a much larger dataset, can better preserve its learning if
the embeddings are not changed.

5.6 Different pooling

The last experiments are regarding the pooling mechanism on top of
the BERT model. We tried three different options. The first one uses
the output of the [CLS] token. The second uses the average of the
embeddings coming from all tokens. The third uses the maximum
per component across all tokens.

6 RE-RANK STAGE

In this section, we describe how the two recall sets from the inverted
index and semantic retrieval are merged and ranked. A key aspect
of e-commerce search is the presence of useful ranking features that
capture the different query and product attributes. The features
used in the ranking model can be organized into the following
groups:

KDD ’22, August 14-18, 2022, Washington, DC, USA.

o Query Features: These features capture the different attributes
and properties learnt from the query. For example, query
attributes like product type, brand, query length.

o Item Features: These features capture the different product
attributes as well as engagement features computed at the
product level. For example, title attributes, title length, user
ratings, user reviews, product sales, product department, etc.

e Query-Item Features: These features capture the relations
related to the query-item pair. For example, BM25 text match
score, query-item engagement, query-item attribute match
score.

Figure 1 also shows the re-rank architecture with the query-
product BERT embedding feature. The query is encoded to the
query embedding at runtime. The item embedding for all the items
in the catalog are pre-generated and saved to the item embedding
datastore. For all the items from both the inverted index and ANN,
the corresponding item embeddings are fetched from the item em-
bedding datastore.

At the re-rank layer, the cosine similarity between query and
item embeddings is included as a query-item feature. The re-rank
model, which is a Gradient Boosted Decision Tree (GBDT) model,
ranks all items in the merged list.

7 IMPLEMENTATION

In this section we discuss some of the engineering considerations
and challenges in implementing the hybrid retrieval system in
production.

7.1 ANN service

One major challenge for online neural product retrieval is the trade-
off among accuracy, speed, and memory. Brute force algorithms that
retrieve the exact k closest vectors of a query vector from millions
of item vectors with respect to a pre-defined distance cannot be
used in the production setup due to their high time complexity.
Some amelioration can be obtained by first compressing the data
size so that it may be easier for the vectors to be fed into memory.
Such techniques include but are not limited to locality sensitive
hashing (LSH), quantization, and product quantization (PQ). For
faster retrieval, not all indices will be scanned when a query is
executed. Candidate vectors are usually split into multiple clusters,
and only vectors in the closest few clusters will be scanned - if not
further reduced by other pruning methods.

Tools and services that support approximate nearest neighbor
(ANN) search have emerged in the past few years. One popular tool
among developer communities and has the potential to be produc-
tionized is FAISS®. However, to reduce the cost of maintenance and
to minimize the system level risk, as the real traffic might surge
during certain periods of time, we use a managed ANN service
available commercially.

As with all other ANN algorithms, hyperparameter tuning is
necessary to achieve the desired recall quality within an acceptable
level of latency, storage, and computation cost. Our experiments
show that with normalized vectors of dimension 256, the ANN
services can yield 99% for recall@20, evaluated against the full
nearest neighborhood search, with an average latency around 13 ms;

Shttps://ai.facebook.com/tools/faiss/

https://ai.facebook.com/tools/faiss/

KDD ’22, August 14-18, 2022, Washington, DC, USA.

Alessandro Magnani et al.

d256 embedding d768 embedding Model serving variation P99 latency
Recall@20 [Latency | Storage Recall@20 [Latency [Storage increased
97.44% 6.5 ms 95.65% 6.7 ms BERT 6-layer +100.0%
98.22% 81ms | 100% 97.74% 89ms | 300% BERT 2 layer 1 97.33%
98.94% 12.8 ms 98.84% 12.9 ms BERT 2-layer (custom lookup implemen- | + 50.26%

Table 1: The recall@20, latency and storage of the embedding
of 256 and 768 dimensions.

for normalized vectors of dimension 768, the services can achieve
a similar recall@20 but with three times the storage space. This
implies a much higher cost of running the system and justify the
decision to decrease the embedding size.

Table 1 reports the recall-latency trade-off for a few combinations
of hyperparameters on the ANN service.

7.2 Runtime Implementation

The in-house search engine accepts queries from customers. If a
query is eligible for neural retrieval (i.e. a tail query), the query
planner sends its embedding vector, which is the output of the
query encoder, to the ANN index. The results of the ANN index
are cached with a preset time-to-alive (TTL) to reduce latency and
cost.

The recall federation framework retrieves products from both
the ANN index and the inverted index, and then de-duplicates and
merges the product sets before sending them to the rerank phase.

7.3 Query modeling latency and consideration

In real production scenarios, a large portion of queries submitted
by users are not predictable and hence cannot be vectorized offline
beforehand to reduce the overall runtime latency. For simple models
such as the Bag-of-Words (BoW) model, the computation is fast and
usually does not raise any concern. However, the power of such
simple models is also limited for this application. In contrast, BERT-
based models describe in section 4 and their variations have drawn
a lot of attentions to their capacity in semantic understanding, as
well as to its application in solving search ranking problems, and
have shown in our experiments there much higher performance
along multiple metrics. Unfortunately, BERT-based models also
require more computation resources and may increase response
time of the runtime system.

We integrate the BERT-based query encoder as part of our query
understanding module. We found that with the same capacity of
computing clusters with CPUs, the 6-layer Distilled BERT model
almost doubled the P99 latency of the query understanding module.
Our original plan was to reduce the number of layers from 6 to 2.
However, we found that the latency was not reduced linearly with
the number of layers and the contribution of the token embedding
lookup was substantial.

Our model is exported from Torch checkpoints into ONNX*
format and is served in a Java codebase. The embedding lookup
operation implementation in the ONNX backend seems to be highly
inefficient. Therefore, in our experiments, we tried to move this
embedding lookup to Java hashmap and to feed the model with

“4https://github.com/onnx/onnx

tation)
BERT 2-layer (custom lookup imple- | + 30.14%
mentation, fixed input shape)

Table 2: Impact on latency of the query understanding mod-
ule

gathered token embedding matrices. Furthermore, we found that
setting a dynamic query length was causing extra latency. For this
reason, we opted for fixing the maximum length of the query and
using padding. As shown in Table 2, this improve latency even
further.

The impact of different model variations on the latency of our
query understanding module are logged in Table 2, with the original
BERT 6-layer model normalized as 100%.

To further minimize the latency impact, we deployed the models
to individual computing clusters with GPUs for remote serving.
Using servers with 4 cores of Nvidia Tesla T4 GPU, we managed
to eliminate the extra latency introduced by our 6-layer Distilled
BERT model on top of our existing query understanding module.

8 EXPERIMENTS AND RESULTS

All modeling effort has been performed using a dataset of 2 million
queries collected over a period of one year from Walmart.com
logs. The dataset was divided between a training and validation
dataset of size 90% and 10% respectively. The test dataset contains
140 thousand queries disjoint from both training and validation
for which a set of relevant items has been identified using user
engagement and editorial feedback.

The training was performed using PyTorch [30] and Hugging-
Face. Adam [21] was used to train with a learning rate of 107°. The
batch size was 40, and the number of products during training for
each query was set to 20.

8.1 Offline Metrics

We evaluate the models using a recall metric which measures the
percentage of relevant products retrieved for a golden dataset. The
golden dataset contains a set of relevant products for 140 thousand
queries out of a set of around 7 million products. Since scoring
all products for a given query is not possible, only a subset of the
relevant products is known.

It has been clear that the recall metric alone does not fully capture
the performance of the semantic search. We noticed that the model
could have a relatively high recall while at the same time retrieving a
set of completely unrelated products. This is in part due to the small
user engagement available for some products as well as the presence
in the catalog of products with noisy titles. For this reason, we
define a new metric that tries to measure the approximate number
of irrelevant products. Since in e-commerce, each product has a
product category associated with it (e.g. dining chairs, toothpaste),

https://github.com/onnx/onnx

Semantic Retrieval at Walmart

KDD ’22, August 14-18, 2022, Washington, DC, USA.

Model [Recall@40 [Cat Recall@40 Model [Recall@40 [Cat Recall@40
Inverted Index 0% 0% Siamese DBERT 6-layer 768 0% 0%
BoW 256 -7.3% - (+random negatives)
Siamese BERT 12-layer 768 +8.25% - Siamese DBERT 6-layer 768 +0.87% +18.21%
Siamese BERT 6-layer 1024 +10.12% - (+PT match filter negatives)
Siamese DBERT 6-layer 768 +12.33% -18.33% Siamese DBERT 6-layer 768 +2.86% +14.08%
Siamese DBERT 6-layer 768 + | +18.22% -16.83% (+PT match + token match filter
(product cat., brand, color, gender) negatives)
Siamese DBERT 6-layer 768 + | +16.34% -16.78% Siamese DBERT 6-layer 768 -0.12% +14.93%
description + 25 other attributes (+teacher student negatives)
Table 3: Offline model performance by number of layers and Siamese DBERT 6-layer 768 +5.15% +20.47%
embedding size, with random negatives (+PT match + token match filter
negatives + in-batch hard nega-
tives)

we make the simplifying assumptions that all relevant products for
a query should have the same product category of at least one of the
relevant products in the golden dataset. This is the same assumption
made in our approach to select negative items in Section 5.2. The
metric that we call category recall, is defined as the percentage of
products in the recall set that has the same product category of at
least one product in the golden dataset. Clearly, this is not a perfect
metric because often there could be more product categories that
are relevant for a query and not all of them are represented in the
golden dataset. Moreover, product category can often be incorrectly
assigned adding noise to this metric. Nevertheless, we have found
this metric very useful in driving our modeling effort and capable of
capturing what our manual inspection had found. During training,
we compute the recall metric only on the batch as a proxy for the
overall recall, and we use it to terminate the training.

8.2 Offline model results

In this section, we report the results of our modeling effort based
on the two metrics described in Section 8.1. All the results are re-
ported with respect to a baseline model specified for each set of
experiments. We also report as baseline the performance of a simple
inverted index implementation where only the title of the product
is indexed. In Table 3, we report all the main findings with respect
to number of layers and embedding size. We observed that the
BoW model had lower offline numbers compared to inverted index
lookup. After switching to BERT based model, we were able to beat
the baseline by 8.25% in Recall@40 and switching to DistilBERT
model gave an extra lift of 4%. We experimented with including
product attributes, and got a further 6% boost after including at-
tributes like product category, brand, color and gender to the input
for a product. But, when we added even more product attributes
(like description etc.), we did not see any further improvement in
model performance. Notice how Category Recall@40 is dramati-
cally lower without the use of negatives.

In Table 4, the performance of different negative selection tech-
niques are shown. The first row corresponds to the best model in
Table 3. When we added hard negatives to the training data, de-
scribed in section 5.2, we observed 0.87% lift in Recall@40 and 18%
lift Category Recall@40 when using only product category match.
When combining that with token match, the improvement on recall
is 2.8%. On the other hand, our student-teacher negative selection

Table 4: Offline model performance for different negative
selection techniques

Model Recall40 Cat Recall@40
Siamese DBERT 6-layer 768 0% 0%
(baseline)

Siamese DBERT 6-layer 768 +0.75% -0.68%
(linear 368)

Siamese DBERT 6-layer 768 +0.18% -0.23%
(linear 256)

Siamese DBERT 6-layer 768 -4.23% -0.64%
(linear 128)

Siamese DBERT 6-layer 768 -17.48% -2.94%
(linear 64)

MinilM 12-layer 368 -12.39% -6.25%
XtremeDistil 6-layer 368 -18.28% -7.72.%

Table 5: Offline model performance for different embedding
size reduction

does not work as well as the other approaches. Finally, adding hard
in-batch negatives improved the recall by around 5%.

In Table 5 we show the results of the different embedding size
reductions described in section 5.3 The linear projection matrix
performs at a very similar performance than the original model
up to a size of 256 before dropping in performance. Moreover, at a
similar embedding size, a projection layer is superior to architecture
that have smaller sizes like the MiniLM. Therefore, 256 is the size
used in production.

Table 6 shows the results of the multiple embeddings using 3
embeddings. As we can see the multiple embedding doesn’t seem
to bring any advantage over a single embedding in our experi-
ments. Considering the higher cost of the solution, it has not been
implemented.

Table 7 shows that freezing the token embeddings during train-
ing provides a small improvement and seems to confirm the idea
that the model can better generalize. Finally Table 8 shows the
effect of different pooling approaches. The average pooling and
default pooling on [CLS] tokens have almost identical performance.
Max pooling has the worst performance.

KDD ’22, August 14-18, 2022, Washington, DC, USA.

Alessandro Magnani et al.

Model | Recall@40 | Cat Recall@40 Method NDCG@5 Lift | NDCG@10 Lift
DBERT 768 0% 0% (P-value) (P-value)

Multi embedding - query -3.9% -1.13% BERT Embedding

(37 768) with dimension 768

Multi embedding - product -2.69% -2.11% (offline hard negatives) +1.42% (0.09) l +2.88% (0.00)
(37 768) BERT Embedding

Table 6: Offline model performance for multiple query and
product embeddings

Model ‘ Recall@40 ‘ Cat Recall@40
Siamese BERT 6-layer 768 0% 0%
Siamese BERT frozen tokens +1.75% +1.21%

Table 7: Performance of model with frozen token embed-
dings.

Model ‘ Recall@40 ‘ Cat Recall@40
[CLS] pooling 0% 0%

Average Pooling -0.28% -0.01%

Max Pooling -9.34% -0.04%

Table 8: Performance of the Siamese DBERT 6-layer 768
model with different pooling.

8.3 Live Experiments

8.3.1 Manual Evaluation Results. We evaluated the performance
of our proposed architecture by using human assessors to evaluate
the top-10 ranking results of the proposed architecture and the
current production at Walmart. The candidate model uses an em-
bedding size of 256 and uses the "[CLS]" pooling. For a query, the
human assessors are shown the product image, title and price of
the product along with the product link in Walmart website. They
rate the relevance of the product on a 3-point grading scale as not
relevant, relevant with missing attributes, and perfect match. The
queries are selected via random sample of the search traffic from
the tail segment. As shown in Table 9, the proposed architecture
significantly improves the relevance of tail queries. Note that BERT
embedding with dimension 256 performed similarly or even better
than dimension 768.

8.3.2 Interleaving Results. We assessed the user engagement per-
formance of our proposed architecture compared with the current
production at Walmart using interleaving [17]. We evaluate two
different models that have the same DistillBERT architecture but in
one case they have a linear projection layer to an embedding size of
256. Interleaving is an online evaluation approach where each user
is presented with a combination of ranking results from both the
control and variation. We observe the add-to-carts (ATC) between
the control and variation ranking. The metric measured is ATC@40
which is the count of add-to-carts in the top 40 position between
control and variation ranking models. The results shown in Table
10 demonstrate the effectiveness of the proposed architecture in
improving the user engagement performance. We notice a similar

with dimension 256
(offline hard negatives +

in-batch hard negatives) | +2.02% (0.03)

| +2.84% (0.00)

Table 9: Human evaluation on the top-10 ranking results on a
random sample of tail search traffic queries by the proposed
architecture.

Method

BERT Embedding

with dimension 768
(offline hard negatives)
BERT Embedding

with dimension 256
(offline hard negatives +
in-batch hard negatives)

| ATC@40 Lift (P-value)

+0.41% (0.00)

+0.54% (0.00)

Table 10: Interleaving results on the top-40 ranking for the
proposed architecture.

pattern in interleaving results, where the BERT embedding with
dimension 256 performs better than dimension 768.

9 LESSONS LEARNED

Among the many things that we learned while creating this system,
we would like to highlight a few of them.

Inner product vs. cosine similarity. During the model training,
we experimented with inner product. The inner product is more
stable during training and does not require the temperature factor
o shown in Eq. 1. This removes the need to select o and in general
produces better results. Unfortunately, inner product was much
harder to optimize when creating the ANN index, compared to
cosine similarity. For this reason, we eventually focused on cosine
similarity only.

Blending features. Many text fields are generally available for each
product. These include different descriptions and many attributes.
There was a common belief that the description of the product
would help improve the recall performance. In all our experiments,
we could not extract any boost in performance. This is probably
because descriptions can contain a lot of irrelevant text that simply
adds noise.

Model complexity. As seen in the Section 8, for this application,
a very deep model or very large embedding size is not necessary
to achieve top performance. This is probably because queries and
product titles are not very complex from a semantic perspective.

REFERENCES

[1] Artem Babenko and Victor Lempitsky. 2014. The inverted multi-index. IEEE
transactions on pattern analysis and machine intelligence 37, 6 (2014), 1247-1260.

Semantic Retrieval at Walmart

[2] Bibek Behera, Manoj Joshi, Abhilash KK, and Mohammad Ansari Ismail. 2017.

[10

[11

[12

[13

[14

[18

[19

[20

[21

[22

[23

[24

[25

[26

[28

[29

]

]

]

]

]

)
]

]

]

]

Distributed Vector Representation Of Shopping Items, The Customer And Shop-
ping Cart To Build A Three Fold Recommendation System. arXiv preprint
arXiv:1705.06338 (2017).

Eliot Brenner, Jun Zhao, Aliasgar Kutiyanawala, and Zheng Yan. 2018. End-
to-End Neural Ranking for eCommerce Product Search: an application of task
models and textual embeddings. In eCom.

Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun, Cliff
Moore, Eduard Sackinger, and Roopak Shah. 1993. Signature verification using a
“siamese” time delay neural network. IJPRAI 7, 04 (1993), 669-688.

Huizhong Duan, ChengXiang Zhai, Jinxing Cheng, and Abhishek Gattani. 2013.
Supporting Keyword Search in Product Database: A Probabilistic Approach.
PVLDB 6, 14 (2013), 1786-1797.

Susan T. Dumais. 2016. Personalized Search: Potential and Pitfalls. In CIKM, 2016.
689.

Thibault Formal, Benjamin Piwowarski, and Stéphane Clinchant. 2021. SPLADE:
Sparse lexical and expansion model for first stage ranking. In SIGIR. 2288-2292.
Luyu Gao, Zhuyun Dai, and Jamie Callan. 2020. Modularized transfomer-based
ranking framework. arXiv preprint arXiv:2004.13313 (2020).

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL: Revisit Exact Lexical
Match in Information Retrieval with Contextualized Inverted List. arXiv preprint
arXiv:2104.07186 (2021).

Luyu Gao, Zhuyun Dai, Tongfei Chen, Zhen Fan, Benjamin Van Durme, and
Jamie Callan. 2021. Complement lexical retrieval model with semantic residual
embeddings. In European Conference on Information Retrieval. Springer, 146-160.
Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Ming-Wei Chang.
2020. Realm: Retrieval-augmented language model pre-training. arXiv preprint
arXiv:2002.08909 (2020).

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. 2020. Mo-
mentum contrast for unsupervised visual representation learning. In CVPR. 9729-
9738.

Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin,
Janani Padmanabhan, Giuseppe Ottaviano, and Linjun Yang. 2020. Embedding-
based retrieval in facebook search. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 2553-2561.
Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry P.
Heck. 2013. Learning deep structured semantic models for web search using
clickthrough data. In CIKM, 2013. 2333-2338.

Samuel Humeau, Kurt Shuster, Marie-Anne Lachaux, and Jason Weston. 2019.
Poly-encoders: Transformer architectures and pre-training strategies for fast and
accurate multi-sentence scoring. arXiv preprint arXiv:1905.01969 (2019).
Thorsten Joachims. 1998. Text categorization with support vector machines:
Learning with many relevant features. In ECML. 137-142.

Thorsten Joachims et al. 2003. Evaluating Retrieval Performance Using Click-
through Data.

Shubhra Kanti Karmaker Santu, Parikshit Sondhi, and ChengXiang Zhai. 2017. On
application of learning to rank for e-commerce search. In Proceedings of the 40th
international ACM SIGIR conference on research and development in information
retrieval. 475-484.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey
Edunov, Dangi Chen, and Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. arXiv preprint arXiv:2004.04906 (2020).

Omar Khattab and Matei Zaharia. 2020. Colbert: Efficient and effective passage
search via contextualized late interaction over bert. In SIGIR. 39-48.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Yiqun Liu, Kaushik Rangadurai, Yunzhong He, Siddarth Malreddy, Xunlong Gui,
Xiaoyi Liu, and Fedor Borisyuk. 2021. Que2search: Fast and accurate query and
document understanding for search at facebook. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining. 3376-3384.

Yi Luan, Jacob Eisenstein, Kristina Toutanova, and Michael Collins. 2021. Sparse,
Dense, and Attentional Representations for Text Retrieval. Transactions of the
Association for Computational Linguistics 9 (2021), 329-345.

Sean MacAvaney, Franco Maria Nardini, Raffaele Perego, Nicola Tonellotto, Nazli
Goharian, and Ophir Frieder. 2020. Efficient document re-ranking for transform-
ers by precomputing term representations. In SIGIR. 49-58.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. 2008. Intro-
duction to information retrieval. Cambridge University Press.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
Estimation of Word Representations in Vector Space. CoRR abs/1301.3781 (2013).
Bhaskar Mitra and Nick Craswell. 2018. An Introduction to Neural Information
Retrieval. Foundations and Trends in Information Retrieval 13, 1 (2018), 1-126.
Subhabrata Mukherjee and Ahmed Awadallah. 2020. XtremeDistil: Multi-stage
distillation for massive multilingual models. arXiv preprint arXiv:2004.05686
(2020).

Priyanka Nigam, Yiwei Song, Vijai Mohan, Vihan Lakshman, Weitian Ding, Ankit
Shingavi, Choon Hui Teo, Hao Gu, and Bing Yin. 2019. Semantic product search.
In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge

(30]

®
=

[32

[33

(34

[36

[37

[38

[39

[41

[42

[43

[44

KDD ’°22, August 14-18, 2022, Washington, DC, USA.

Discovery & Data Mining. 2876-2885.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. In Advances in Neural Information Processing Systems 32, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Cur-
ran Associates, Inc., 8024-8035. http://papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-deep-learning-library.pdf

Yingqi Qu, Yuchen Ding, Jing Liu, Kai Liu, Ruiyang Ren, Wayne Xin Zhao, Daxi-
ang Dong, Hua Wu, and Haifeng Wang. 2021. RocketQA: An optimized training
approach to dense passage retrieval for open-domain question answering. In
NAACL-HLT.

Fatemeh Sarvi, Nikos Voskarides, Lois Mooiman, Sebastian Schelter, and Maarten
de Rijke. 2020. A Comparison of Supervised Learning to Match Methods for
Product Search. SIGIR Workshop on eCommerce (2020).

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014. A
Latent Semantic Model with Convolutional-Pooling Structure for Information
Retrieval. In CIKM, 2014. 101-110.

Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. 2014.
Learning semantic representations using convolutional neural networks for web
search. In Proceedings of the 23rd international conference on world wide web.
373-374.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In NeurIPS. 6000-6010.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou.
2020. Minilm: Deep self-attention distillation for task-agnostic compression of
pre-trained transformers. NeurIPS 33 (2020), 5776-5788.

Thomas Wolf et al. 2020. Transformers: State-of-the-Art Natural Language
Processing. In EMNLP.

Ji Xin, Rodrigo Nogueira, Yaoliang Yu, and Jimmy Lin. 2020. Early exiting BERT
for efficient document ranking. In Proceedings of SustaiNLP: Workshop on Simple
and Efficient Natural Language Processing. 83—-88.

Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. 2017.
End-to-end neural ad-hoc ranking with kernel pooling. In Proceedings of the 40th
International ACM SIGIR conference on research and development in information
retrieval. 55-64.

Chenyan Xiong, Russell Power, and Jamie Callan. 2017. Explicit Semantic Ranking
for Academic Search via Knowledge Graph Embedding. In WWW, 2017. 1271—
1279.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, Jialin Liu, Paul Bennett,
Junaid Ahmed, and Arnold Overwijk. 2020. Approximate nearest neighbor nega-
tive contrastive learning for dense text retrieval. arXiv preprint arXiv:2007.00808
(2020).

Ji Yang, Xinyang Yi, Derek Zhiyuan Cheng, Lichan Hong, Yang Li, Simon Xiaom-
ing Wang, Taibai Xu, and Ed H Chi. 2020. Mixed negative sampling for learning
two-tower neural networks in recommendations. In Companion Proceedings of
the Web Conference 2020. 441-447.

Shaowei Yao, Jiwei Tan, Xi Chen, Keping Yang, Rong Xiao, Hongbo Deng, and
Xiaojun Wan. 2021. Learning a Product Relevance Model from Click-Through
Data in E-Commerce. In Proceedings of the Web Conference. 2890-2899.

Lixin Zou, Shenggiang Zhang, Hengyi Cai, Dehong Ma, Suqi Cheng, Shuaigiang
Wang, Daiting Shi, Zhicong Cheng, and Dawei Yin. 2021. Pre-trained language
model based ranking in Baidu search. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery & Data Mining. 4014-4022.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	Abstract
	1 Introduction
	2 Related Work
	3 Architecture
	4 Semantic Model
	4.1 Models
	4.2 Loss function

	5 Data
	5.1 Labeling
	5.2 Negative item selection
	5.3 Reducing the model size
	5.4 Multi Embeddings
	5.5 Freezing token embeddings
	5.6 Different pooling

	6 Re-rank stage
	7 Implementation
	7.1 ANN service
	7.2 Runtime Implementation
	7.3 Query modeling latency and consideration

	8 Experiments and Results
	8.1 Offline Metrics
	8.2 Offline model results
	8.3 Live Experiments

	9 Lessons learned
	References

