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Figure 1: We use a two-stage simplified model imitation learning approach to produce realistic physics-based brachiation
motions. The learned control policies can traverse challenging handhold sequences and can demonstrate emergent pumping
behavior to build momentum for large gaps.

ABSTRACT
Brachiation is the primary form of locomotion for gibbons and
siamangs, in which these primates swing from tree limb to tree
limb using only their arms. It is challenging to control because of
the limited control authority, the required advance planning, and
the precision of the required grasps. We present a novel approach
to this problem using reinforcement learning, and as demonstrated
on a finger-less 14-link planar model that learns to brachiate across
challenging handhold sequences. Key to our method is the use of
a simplified model, a point mass with a virtual arm, for which we
first learn a policy that can brachiate across handhold sequences
with a prescribed order. This facilitates the learning of the policy
for the full model, for which it provides guidance by providing
an overall center-of-mass trajectory to imitate, as well as for the
timing of the holds. Lastly, the simplified model can also readily
be used for planning suitable sequences of handholds in a given
environment. Our results demonstrate brachiation motions with
a variety of durations for the flight and hold phases, as well as
emergent extra back-and-forth swings when this proves useful.
The system is evaluated with a variety of ablations. The method
enables future work towards more general 3D brachiation, as well
as using simplified model imitation in other settings. For videos,
supplementary material and code, visit:
https://brachiation-rl.github.io/brachiation.
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1 INTRODUCTION
Brachiation is the form of locomotion that consists of moving be-
tween tree branches or handholds using the arms alone [Fleagle
1974; Preuschoft and Demes 1985]. Gibbons and siamangs make this
seem effortless and are among the world’s most agile brachiators.
Brachiating movements can be classified into two types: continu-
ous contact brachiation, characterized by the animal mantaining
contact at all time with a handhold such as a tree branch, and rico-
chetal brachiation, which involves a flight phase between successive
grasp [Bertram et al. 1999; Wan et al. 2015]. These two modes of
brachiation are analogous to walking and running, respectively,
with ricochetal brachiation used at faster speeds.

Machine learning techniques such as deep reinforcement learn-
ing (RL) have been previously applied to legged, aerial, and under-
water locomotion [Luo et al. 2020; Min et al. 2019; Won et al. 2018;
Xie et al. 2020]. Despite the apparent similarity to these types of
locomotion, brachiation is unique in a number of ways. First, the
choice of handholds is often discrete, i.e., the choice of particular
branches, and therefore unlike the continuous terrain usually avail-
able for legged locomotion. This offers apparently fewer features
to control, i.e., less control authority, while at the same time neces-
sitating high spatial precision to effect a grasp. Second, advance
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planning of the motion across a sequence of handholds becomes
more important because of the momentum that may be needed to
reach future handholds. Lastly, brachiation offers the possibility
of very efficient horizontal motion; an ideal point mass can follow
alternating pendulum-like swings and parabolic flight phases with
no loss of energy [Bertram et al. 1999].

In our work, we present a fully learned solution for simulating a
14-link planar articulatedmodel. Similar to previous work on brachi-
ation, our model uses a pinned attachment model as a proxy for
the grasping mechanics. The learned control policy demonstrates
ricochetal brachiation across challenging sequences of handholds
that, to the best of our knowledge, is the most capable of its kind.

Our primary contributions are as follows:

• We present an effective learning-based solution for planar brachi-
ation. The learned control policies can traverse challenging se-
quences of handholds using ricochetal motions with significant
flight phases, and demonstrate emergent phenomena, such as
extra back-and-forth swings when needed.

• We propose a general two-stage RL method for leveraging simpli-
fied physical models. RL on the simplified model allows for fast
and efficient exploration, quickly producing an effective control
policy. The full model then uses imitation learning of the mo-
tions resulting from the simplified-model for efficient learning
of complex behaviors.

2 RELATEDWORK
Our work sits at the intersection of physics-based character ani-
mation, the study of brachiation, and a broad set of methods that
leverage abstract models in support of motion planning and control.

2.1 Brachiation
Due to the fascinating and seemingly effortless nature of brachi-
ation, there exists a long history of attempts to reproduce this
often-graceful type of motion, both in simulation and on physical
robots. The key challenge lies in developing control strategies that
are well suited to the underactuated and dynamic nature of the
task.

A starting point is to first study brachiation in nature, such as via
a detailed film study [Fleagle 1974]. Among other insights, they note
that the siamang is able to limit lateral motion of the center of mass
between handholds, in part due to extensive rotation at the wrist,
elbow, and shoulder. A benefit of longer arms for reduced energetic
costs of brachiation can also be found [Preuschoft and Demes 1985].
A more recent study [Michilsens et al. 2009] notes that “compared
with other primates, the elbow flexors of gibbons are particularly
powerful, suggesting that these muscles are particularly important
for a brachiating lifestyle.” We note that the limited lateral motion
and strong elbow flexors correspondwell to the capabilities afforded
by sagittal-plane point-mass models.

One of the earliest results for brachiation capable of varying
height and distance uses an intricate heuristic procedure and man-
ually structured motion phases, as applied to a two-link robot with
no flight phases [Saito 1992; Saito et al. 1994]. A loosely compara-
ble approach is proposed for a 3-link planar model, restricted to
horizontal motions [Zhang and Wong 1999]. A point mass model

can be shown to produce solutions with zero energetic cost for
both continuous contact and ricochetal brachiation, for horizontal
brachiation with regular spacing of handholds [Bertram et al. 1999].
The solutions are based on circular pendular motion, alternating
with parabolic free flight phases in the case of ricochetal motion.
It is found that natural gibbon motion is even smoother than the
motions predicted by this model, particularly for handhold forces.
Several results successfully developed horizontal continuous brachi-
ation strategies for a two-link robot [Nakanishi et al. 2000] and
motions for a three-link model as demonstrated on a humanoid
robot [Kajima et al. 2004]. Zero-energy costs are later demonstrated
for a five-link model [Gomes and Ruina 2005].

Methods and results since 2015 have continued to make addi-
tional progress. Non-horizontal ricochetal brachiation is demon-
strated for a 2-link primate robot [Wan et al. 2015] and uses an
analytic solver for the boundary conditions of each swing and a
Lyapunov-based tracking controller. A method is developed for
planar brachiation on flexible cables [Farzan et al. 2018], for a 3-link
model and corresponding robot. Amultiple shootingmethod is used
to plan open-loop feedforward commands. Brachiation control of a
3-link robot is also designed and demonstrated using iLQR [Yang
et al. 2019], for animated sequences of single swings. A pendulum
model and a planar articulated model are described in the PhD
work of Berseth [Berseth 2019], based on a finite-state-machine
control structure. While demonstrating potential, the results are
based on a "grab anywhere" model and produce controllers with
limited capabilities and realism. The control for a transverse (side-
ways) ricochetal brachiation has also been investigated recently,
for a 4-link arms, body, and tail model [Lin and Yang 2020].

Our work differs from the bulk of the above work in the fol-
lowing ways. We demonstrate the ability to learn planar ricochetal
brachiationwithminimal manual engineering, and that can traverse
handhold sequences with significant variation. We demonstrate
emergent behaviors, such as additional back-and-forth swings as
may be needed to proceed in some situations. Our approach lever-
ages the benefits of learning with a simplified model, showing that
the simplified-model control policies can provide highly-effective
guidance for learning with the full articulated-body model. The
learned control policies anticipate upcoming handholds, and can
be readily integrated with a simple motion planner.

2.2 Physics-based Character Skills
Physics-based worlds require simulated characters that are capable
of many skills, including the ability to move through all kinds of
environments with speed and agility. Significant progress has been
made for over thirty years, although it is only recently that we have
begun to see approaches that demonstrate scalability, in particu-
lar with regard to being able to imitate a wide variety of motion
capture clips with a physics-based human model, e.g., [Bergamin
et al. 2019; Chentanez et al. 2018; Merel et al. 2018; Park et al. 2019;
Peng et al. 2018; Wang et al. 2020; Won et al. 2020]. Recent work
has also demonstrated the ability to learn bipedal locomotion that
are capable of navigating difficult step sequences, with learning
curricula and in the absence of motion capture data [Xie et al. 2020].
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2.3 Learning with Simplified Models
Simplified physical approximations are a standard way to create
models that are tractable to simulate and control, particularly for
legged locomotion and brachiation. A common strategy is to first
create amotion plan using the simplifiedmodel, e.g., a spring-loaded
inverted pendulum [Poulakakis and Grizzle 2009] or centroidal dy-
namics models, e.g., [Green et al. 2021; Tsounis et al. 2020; Xie et al.
2021], and then treat this as a reference motion to be tracked on-
line [Siciliano et al. 2008]. Both the motion planning and tracking
problems have commonly been solved using model-based trajectory
optimization (TO) or model-free reinforcement learning (RL) meth-
ods. In what follows below, we will use a ‘plan+tracking’ notation
to loosely categorize combinations of motion planning and track-
ing of the resulting motion plan. There also exists an abundance of
literature on pure TO and RL solutions, which we place outside the
scope of our discussion, although for evaluation purposes, we do
consider an RL-only baseline method.

A prominent example of a TO+TO approach can be found in the
control of the Boston Dynamics Atlas robot [Kuindersma 2020],
where the planning TO uses a long horizon and solves from scratch,
and the tracking TO performs online MPC-style solvers over a short
horizon and leverages the planning TO results to warm start the
optimization. Another TO+TO example first plans legged locomotion
with a sliding-based inverted pendulum, which then initializes a
more detailed TO optimization with contact locations and a cen-
troidal model [Kwon et al. 2020], and, lastly, maps this to a full
body model using momentum-mapped inverse kinematics. Much
recent work in imitation-based physics-based animation and robot-
ics could be categorized as fixed+RL, where captured motion data
effectively serves as a fixed motion plan, e.g., [Peng et al. 2018] and
related works.

Quadruped control policies have been developed using both
TO+RL and RL+TO approaches, e.g., [Gangapurwala et al. 2021] and
[Gangapurwala et al. 2020; Xie et al. 2021], respectively. A recent
RL+RL approach uses a simplified model (and related policy) that is
allowed to sample in state space rather than action space [Sontakke
and Ha 2021]. This allows it to behave more like a motion planner
and assumes that the result can still provide a useful motion plan to
for the full model to imitate. The method demonstrates the ability
to avoid a stand-in-place local minima for a simulated quadruped,
which may arise due to sparse rewards. Our work develops an
RL+RL approach for the challenging control problem of brachiation.
In our case, both the simplified and full MDPs work directly in a
physically-grounded action space. We demonstrate the benefit of
this two-level approach via multiple baselines and ablations.

3 ENVIRONMENTS
3.1 Simplified Model
Our simplified model treats the gibbon as a point mass equipped
with a virtual extensible arm. The virtual arm is capable of grabbing
any handhold within the annular area defined by a radius 𝑟 ∈
[𝑟min, 𝑟max], with 𝑟min=10 cm, and 𝑟max=75 cm. We note that while
the 𝑟max is greater than the arm length of the full model (60 cm),
the simplified model is intended to be a proxy for the center of mass
of the gibbon, and not the shoulder.

Table 1: Physical Properties of Full GibbonModel. The waist
joint link mass and length includes the torso and the head.
Others include only the direct child link.

Joint Max. Torque (Nm) Link Mass (kg) Link Length (cm)

Waist 21 3.69 31
Shoulder 35 0.74 26
Elbow 28 0.74 26
Wrist 0 0.40 8
Hip 14 0.37 12
Knee 14 0.31 12
Ankle 7 0.47 8

The simplified model dynamics consist of two alternating phases.
The swing phase starts when the character performs a grab when
one of its hands is at (or nearby) to the target handhold. During
this phase, the character can apply a force along the direction of
the grabbing arm, either to pull towards or push away from the
current handhold. The swing phase dynamics is equivalent to a
spring-and-damper point-mass pendulum system. The character
can influence the angular velocity by shortening or lengthening the
swing arm of the pendulum. The flight phase is defined as the period
when neither hand is grabbing. During this phase, the character’s
trajectory is governed by passive physics, following a parabolic
trajectory. The control authority that remains during a flight phase
comes from the decision of when to grab onto the next handhold, if
it is within reaching distance. The control parameters are described
in detail in Section 3.4.

The minimum and maximum arm length are enforced by apply-
ing a force impulse when the length constraint is violated during a
swing phase. We implement the physics simulation of the simplified
environment in PyTorch [Paszke et al. 2019], which can be trivially
parallelized on a GPU.

3.2 Full Model
The full model is a planar articulated model of a gibbon-like charac-
ter that approximates themorphology of real gibbons, as reported in
[Michilsens et al. 2009], and is simulated using PyBullet [Coumans
and Bai 2022].

Our gibbon model consists of 13 hinge joints including shoul-
ders, elbows, wrists, hips, knees, ankles, and a single waist joint at
the pelvis. All joints have associated torques, except for the wrist
joints, which we consider to be passive. To capture the 3D motion
of the ball-and-socket joints in two dimensions, we model the shoul-
der joints as hinge joints without any corresponding joint limits.
This allows the simulated character to produce the under-swing
motions of real gibbons. Our gibbon has a total mass of 9.8 kg, an
arm-reach of 60 cm, and a standing height of 63 centimeters. We
artificially increase the mass of the hands and the feet to improve
simulation stability. The physical properties of our gibbon model
are summarized in Table 1.

The grab behavior in the full model is simulated using point-to-
point constraints. This allows us to abstract away the complexity
of modelling hand-object dynamics, yet still provides a reasonable
approximation to the underlying physics. In our implementation, a
point-to-point constraint is created when the character performs
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Figure 2: Overview of our simplified model imitation learning system. The simplified model allows for efficient exploration
and quickly produces physically-feasible reference trajectories for the full model to imitate.

a grab and the hand is within five centimeters of the target hand-
hold. The constraint pins the grabbing hand in its current position,
as opposed to the target handhold location, to avoid introducing
undesirable fictitious forces. At release, the constraint is removed.

3.3 Handhold Sequences Generation
Both the simplified and full characters operate in the same envi-
ronment, which contains handhold sequences. In a brachiation
task, the goal is to grab successive handholds precisely and move
forward. Successive handholds are generated from uniform dis-
tributions defined by the distance, 𝑑 ∼ 𝑈 (1, 2) meters, and pitch,
𝜙 ∼ [−15◦, 15◦], relative to the previous handhold.

3.4 Action Spaces
The simplified and full models both use a control frequency of 60
Hz and a simulation frequency is 480 Hz.

The action space for the simplifiedmodel consists of two values, a
target length offset and a flag indicating to grab or to release. At the
beginning of each control step, the target length offset is added to
the current arm length to form the desired target length. In addition,
the grab flag is used to determine the current character state. At
each simulation step, the applied force is computed using PD control
based on the desired target length. We clamp the maximum applied
force to 240 N, close to the maximum observed forces in real gibbon
reported in [Michilsens et al. 2009].

In the full model, the action space is analogous to that of the
simplified model, only extended to every joint. An action consists
of 15 parameters representing the joint angle offsets for each of the
13 joints and a flag indicating grab or release for each hand. The
applied torques in each joint are computed using PD control. We
set the proportional gain, 𝑘𝑝 , for each joint to be equal to its range
of motion in radians and the derivative gain to be 𝑘𝑝/10.

3.5 State Spaces
Both environments have a similar state space, composed of infor-
mation of the character and information on the future handholds
sequence to grab.

In the simplified environment, the character state is three di-
mensional consisting of the root velocity in world coordinates and
the elapsed time since the start of the current swing phase. The
elapsed time information is necessary to make the environment
fully observable since the environment enforces a minimum and a
maximum grab duration (§4.4). We normalize the elapsed time by
dividing by the maximum allowable grab duration. A zero indicates
that the character is not grabbing and a one indicates it has grabbed
for the maximum amount of time.

The character state for the full model is a 45D vector consisting
of root velocity, root pitch, joint angles, joint velocities, grab arm
height, and grab states. The torso is used as the root link. The
root velocity (R2) is the velocity in the sagittal plane. Joint angles
(R26) are represented as cos(𝜃 ) and sin(𝜃 ) of each joint, where 𝜃 is
the current angle. Joint velocities (R13) are the angular velocities
measured in radians per second. Grab arm height (R) is the distance
between the free hand and the root in the upward direction, which
can be used to infer whether the next target is reachable. Lastly,
the grab states (R2) are Boolean flags indicating if each hand is
currently grabbing.

In both environments, the control policy receives task informa-
tion pertinent to the handhold locations in addition to the character
state. In particular, the task information includes the location of
the current handhold and the 𝑁 upcoming handholds in the char-
acter’s coordinate frame. We experiment with different values of 𝑁
in Section 5.1.

4 LEARNING CONTROL POLICIES
We use deep reinforcement learning (DRL) to learn brachiation
skills in both the simplified and the detailed environment. In RL,
at each time step 𝑡 , the control policy reacts to an environment
state 𝑠𝑡 by performing an action 𝑎𝑡 . Based on the action performed,
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the policy receives a reward signal 𝑟𝑡 = 𝑟 (𝑠𝑡 , 𝑎𝑡 ) as feedback. In
DRL, the policy computes 𝑎𝑡 using a neural network 𝜋𝜃 (𝑎 |𝑠), where
𝜋𝜃 (𝑎 |·) is the probability density of 𝑎 under the current policy. The
goal of DRL is to find the network parameters 𝜃 which maximize
the following:

𝐽𝑅𝐿 (𝜃 ) = 𝐸
[ ∞∑︁
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 )
]
. (1)

Here, 𝛾 ∈ [0, 1) is the discount factor so that the sum converges.
We solve this optimization problem using the proximal policy opti-
mization (PPO) algorithm [Schulman et al. 2017], a policy gradient
actor-critic algorithm. We choose PPO for its effective utilization
of hardware resources in parallelized settings which results in re-
duced wall-clock learning time. Our learning pipeline is based on
a publicly available implementation of PPO [Kostrikov 2018]. A
review of the PPO algorithm is provided in Appendix B.

4.1 System Overview
We start by providing an overview of our system, shown in Fig-
ure 2. Our system contains three distinct components: the simplified
model, the full model, and a handhold sequence generator. During
training, the simplified model is trained first on randomly sampled
handhold sequences generated by the handhold generator. After
the simplified model is trained, we obtain reference trajectories
from the simplified environment on a fixed set of handholds se-
quences. The full model is subsequently trained by imitating the
reference trajectories from the simplified model while optimizing
task and style objectives. At evaluation time, the simplified model
can be used as a planner to provide guidance for the full model
either upfront for an entire handhold sequence or on a per-grab
basis. Both models working in tandem allows our system to traverse
difficult handholds sequences that would otherwise be challenging
for standard reinforcement learning policies.

4.2 Learning Simplified Policies
The simplified policy is trained to optimize a sparse reward that is
given when the character grabs the next handhold. The fact that the
simplified policy can be trained with only the sparse task reward is
desirable as it allows for interesting behaviors to emerge. In DRL,
reward shaping is often required for the learning to succeed or
to significantly speed up the learning. At the same time, reward
shaping can also introduce biases that cause the control policy to
optimize for task-irrelevant objectives and deviate from the main
task. Directly optimizing a policy using the sparse task reward al-
lows us to find solution modes that would otherwise be exceedingly
difficult to find.

Simplified Policy Networks. The simplified policy contains two
neural networks, the controller and the value function. The con-
troller and the value function have similar architecture differing
only in the output layer. Each neural network is a three-layered
feed-forward network with 256 hidden units followed by ReLU
activations. Since the actions are to be scaled by the proportional
gain constants in the PD controller, we apply Tanh activation to the
controller network’s output layer to ensure the values are normal-
ized between -1 and +1. The value function outputs a scalar value

approximating the expected return which is not normalized. The
input to the networks are as described earlier (§3.5).

4.3 Learning Full Model Policies Using
Simplified Model Imitation

The full model policy is trained using imitation learning by tracking
the reference trajectory generated by the simplified model. The
imitation learning task can be considered as an inverse dynamics
problem where the full model policy is required to produce the joint
torques at each time step given the current character state and the
future reference trajectory. We can consider the reward function
to have a task reward component, an auxiliary reward component,
and a style reward component.

As in the simplified environment, the task reward, 𝑟task, is the
sparse reward for successfully grabbing the next target handhold.
The auxiliary reward (𝑟aux) consists of reward objectives that facili-
tate learning, including a tracking term and a reaching term. The
tracking term rewards the character to closely follow the reference
trajectory and a reaching term encourage the grabbing hand to be
close to the next target handhold. The style reward (𝑟style) terms
are added to incentivize more natural motions, including keeping
the torso upright, slower arm rotation, reducing lower body move-
ments, and minimizing energy. Finally, the overall reward can be
computed as:

𝑟full = exp(𝑟aux + 𝑟style) + 𝑟task (2)
𝑟aux = 𝑤𝑡𝑟tracking +𝑤𝑟 𝑟reaching (3)
𝑟style = 𝑤𝑢𝑟upright +𝑤𝑎𝑟arm +𝑤𝑙𝑟legs +𝑤𝑒𝑟energy (4)

Note that the style reward does not affect the learning outcome;
the character can learn brachiation motions without the style re-
ward. The reward terms and their weighting coefficients are fully
described in Appendix A.

Full Policy Networks. The controller and the value function of
the full model consist of two five-layer neural networks, with a
layer width of 256. The first three hidden layers of the policy use
the softsign activiation, while the final two hidden layers use ReLU
activation. A Tanh is applied to the final output to normalize the
actions. The critic uses ReLU for all hidden layers. Prior work is
contradictory in nature with respect to the impact of network size,
finding larger network sizes to perform both better [Wang et al.
2020] and worse [Bergamin et al. 2019] for full-body motion imita-
tion tasks. In our experiments, we find the smaller networks used
for the simplified model to be incapable of learning the brachiation
task in the full environment.

4.4 Initial State and Early Termination
For both environments, we initialize the character to be hanging
from the first handhold at a 90-degree angle, where zero degree
corresponds to the pendulum resting position. The initial velocity of
the character is set to zero as the base state provides the necessary
forward momentum to reach the next handhold.

The environment resets when the termination condition is sat-
isfied, which we define as entering an unrecoverable state. An
unrecoverable state is reached when the character is not grabbing
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(a) Backward swing (b) Forward swing (c) Complete pumping trajectory

Figure 3: Brachiation with emergent pumping behavior. The blue line gives the trajectory of the simplified model, while the
brown line gives the trajectory of the root of the full character. The disparity between the two is caused by the fact that the
simplified model has a longer arm length with respect to the full model, to better represent its center of mass. For further
visual trajectories please refer to Appendix D and to the supplementary video.

onto any handholds and falls below the graspable range of the next
handhold with a downward velocity.

In addition to the unrecoverable criteria, both environments im-
plement a minimum and maximum grab duration. The minimum
and maximum duration are set to 0.25 and 4 seconds respectively.
The idea of the minimum grab duration is to simulate the reaction
time and time required to physically form a fist during a grasp. The
maximum grab duration effectively serves as another form of early
termination. It forces the character to enter an unrecoverable state
unless the policy has already learned to generate forward momen-
tum. We check the importance of early termination in Section 5.

5 RESULTS
All experiments are performed on a single 12-core machine with
one NVIDIA RTX 2070 GPU. For the simplified model, training
takes approximately five minutes as the simulation is parallelized
on the GPU. Training the full model policy takes just under one
hour. Each experiment is limited to collect a total of 25 million
samples and the learning rate is decreased to 3 × 10−5 over time
using exponential annealing. We use the Adam [Kingma and Ba
2014] optimizer with a mini-batch size of 2000 and a learning rate
of 3 × 10−4 to update policy parameters in all experiments. Other
implementation and hyperparameter details are summarized in
Appendix C.

5.1 Simplified Model Results
The goal of the simplified model is to facilitate more efficient train-
ing of a full model policy by generating physically-feasible reference
trajectories. A baseline solution for the simplified model can be
successfully trained to find reasonable solutions for traversing diffi-
cult terrains, i.e. with handholds sampled from the full distribution
(§3.3), using only the task reward described in Section 4.2. The
learned controllers have some speed variations; we use a low speed
controller to train the full model policy as the generated trajectories
are closer to the motions demonstrated by real gibbons.

The learned control policies can traverse challenging sequences
of handholds which require significant flight phases and exhibit
emergent pumping behavior where the characters would perform
extra back-and-forth swings as needed. We observe three scenarios
where pumping behavior can be observed: waiting for the minimum
swing time to elapse, adjusting for a better release angle, and for
gaining momentum. A visualization of the pumping behavior is

shown in Figure 3. Please refer to the supplementary video for
visual demonstrations of generated trajectories.

Number of Look-ahead Handholds. In this experiment, we empir-
ically verify the choice for the number of look-ahead handholds
by comparing the task performance on 𝑁 = {1, 2, 3, 5, 10}. Results
are summarized in Table 2. The best performance is achieved when
𝑁 = 1 as measured by both the number of completed handholds
and the average episode reward. This is surprising since previous
work in human locomotion has shown that a two-step anticipation
horizon achieves the lowest stepping error [Coros et al. 2008]. The
result shows that the policy performance generally decreases with
increasing number of look-ahead handholds. We hypothesize that,
due to the relative small network size used in the simplified policy,
increasing the number of look-ahead handholds creates more dis-
traction for the policy. We leave validation of this hypothesis for
future work.

Importance of Early Termination. In this ablation study, we ver-
ify the importance of applying early termination in the simplified
environment. There are two forms of early termination: the unre-
coverable criteria and the maximum grab duration. The complete
simplified model implements all early termination strategies. Ta-
ble 3 shows the average number of handholds reached aggregated
across five different runs. The results show that enforcing strict
early termination can facilitate faster learning. When maximum
grab duration is disabled, only one run out of ten total successfully
learned the brachiation task. In addition, we find that enforcing the
minimum grab duration of 0.25 seconds helps the character to learn
to swing, which in turn helps to discover the future handholds.

5.2 Full Model Results
The full model policy is learned through simplified model imita-
tion, as described earlier (§4.3). In addition to using the tracking
reward, which uses the simplified model only during training, we
experiment with three different methods of further leveraging the
simplified model reference trajectories at inference time.

A. Tracking reward only. The tracking reward is combined
with the task reward to train the full model policy. The reference
trajectory is only used to compute the tracking reward.
B. Tracking + Other Rewards. Reward includes all reward
terms: tracking, task, auxiliary, and style rewards.
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Table 2: Experiment results on the effect of the number of
look-ahead handholds for the simplified model. We report
the average and the standard deviation over five indepen-
dent runs.

Number of Look-ahead Handholds
1 2 3 5 10

Handholds Completed
17.8 ± 2.1 14.6 ± 5.0 4.9 ± 5.7 7.6 ± 5.8 0.3 ± 0.6

Episode Reward (×102)
7.3 ± 0.8 5.9 ± 1.8 2.0 ± 2.4 3.1 ± 2.4 0.1 ± 0.3

Table 3: Ablation results on early termination strategies for
the simplified model. Each column names the termination
strategy that is removed. Each entry represents the average
number of completed handholds and the standard deviation
over five runs.

Early Termination Ablations
None Unrecoverable Min Duration Max Duration Min & Max

14.6 ± 5.1 10.2 ± 7.3 7.4 ± 9.3 2.9 ± 2.0 3.1 ± 4.1

C. Rewards + Release Timing. Reward includes everything
described in Experiment B. In addition, the release timing from
the reference trajectory is used to control the grab action of the
full model policy.
D. Rewards + States. Reward includes everything described in
Experiment B. In addition, a slice of the future reference trajec-
tory is included as a part of the full model policy input.
E. Rewards + States + Grab Info. Reward includes everything
described in Experiment D. In addition, instead of conditioning
the full model state with just the future reference trajectory, we
also give access to the grab flag for those future points.
Figure 4 shows the learning curves for different full model con-

figurations. We include a baseline model which is trained using
all reward terms except for the tracking reward. For the baseline
model, we experimented both with and without a learning cur-
riculum on the terrain difficulty, e.g., similar to [Xie et al. 2020],
but neither version was able to advance to the second handhold.
The best policies are obtained when the simplified model is also
used at evaluation time. This includes adding information from
the reference trajectory (Experiment D) and also further adding
the grab information (Experiment E). However, the grab informa-
tion provides no additional benefit to the policy when reference
trajectory information is present.

5.3 Full Model with Planning
At inference time, we are able to extend the capability of the full
model policy by expanding the anticipation horizon using the sim-
plified model. The full model policy’s value function cannot antici-
pate more than the number of look-ahead handholds that was used
for training. However, the simplified model is fast enough to replan
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Figure 4: LearningCurves for the fullmodel, for various con-
figurations. No imitation reward results in failure. Using ref-
erence trajectory information only at training time (A andB)
improves learning. Using the release timing from the simpli-
fied model degrades performance (C). The best policies are
obtained when simplified and full models are used in tan-
dem at evaluation time (D and E). Please refer to Section 5.2
for a detailed description.

Table 4: Quantitative evaluation of the different planning
methods. In each generated terrain, three unreachable gaps
(e.g., Figure 5) are placed at random locations. Each planning
method is evaluated on 40 different terrains. The combined
approach is able to pass all gaps most consistently.

Gaps Passed
Planning Method 0 1 1+2 1+2+3

Only Full Value Function 40 22 9 7
Only Simplified Rewards 40 36 26 15
Reward & Value Function 40 35 26 21

on a handhold-by-handhold basis, in the style of model predictive
control (MPC). It can be used to simulated thousands of trajectories
in parallel at run-time. In this experiment, we set the planner to
explore 10k trajectories for 4 seconds into the future; this can be
completed in under one second of machine time. There is still room
for improvement for real time animation purposes.

The planner uses three fully-trained components: the full model
policy 𝜋full, the full model value function 𝑉full and the simplified
model policy 𝜋simple. As input, the method takes a terrain which
is a contiguous ceiling where handholds can be placed. Given the
current state of the full model character 𝑠𝑡 , we randomly sample
𝐾 handhold plans of length 𝐻 handholds on the terrain, {P𝑘 }.
Concretely, each handhold in a plan P𝑘 is sampled at a horizontal
distance 𝛿𝑥 ∼ 𝑈 (1.1, 1.8) beyond the previous handhold, and takes
its corresponding height from the terrain. We then retain the best
plan, i.e., 𝑘 = argmax 𝐽 (P𝑘 ), according to the objective defined by

𝐽 (P𝑘 ) = 𝑉full (𝑠𝑡 , 𝑘 [0 : 𝑁 ]) +
𝐻∑︁
𝑗

𝑅 𝑗 ,

where 𝑅 𝑗 is the reward for the simplified model obtained by 𝜋simple,
and 𝑁 is the policy look-ahead value, with 𝐻 > 𝑁 . The selected
plan is then used until the next handhold is reached, at which point



SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada Daniele Reda, Hung Yu Ling, and Michiel van de Panne

(a) Planning using only the full model value function. The last
planned target grasp location (red dot) is unreachable. This ap-
proach has a limited planning horizon, so unrealistic plans are
occasionally generated.

(b) Planning using only the simplified model. Here, the last
handhold target is unreachable because this planning approach
fails to consider the capability of the full model policy.

(c) Planning with combined full model value function and simplified model. The target handhold locations
are planned very close to the discontinuities, which effectively reduces the risk of producing unreachable
targets.

Figure 5: Comparison of different planning approaches.

a full replanning takes place. This MPC-like process repeats ad
infinitum. We find empirically that the above objective generates
better planning trajectories as compared to only using the reward
of 𝜋simple or only 𝑉full. This is because the reward of the simplified
model is not enough to capture the capabilities of the full character,
while the value function has a limited planning horizon. Quantita-
tive results are presented in Table 4. Examples of terrains traversed
by the policy with the planners are presented in Figure 5 and in the
supplementary video.

6 CONCLUSIONS
Brachiation is challenging to learn, as it requires the careful man-
agement of momentum, as well as precision in grasping. We demon-
strate a two-level reinforcement learningmethod for learning highly-
capable and dynamic brachiation motions. The motions generated
by the policy learned for the simplified model play a critical role
in the efficient learning of the full policy. Our work still has many
limitations. There are likely to be other combinations of rewards, re-
ward curricula, and handhold curricula, that, when taken together,
may produce equivalent capabilities. We have not yet fully char-
acterized the limits of the model’s capabilities, i.e., the simulated
gibbon’s ability to climb, leap, descend, and more. We wish to better
understand, in a quantitative fashion, how the resulting motions
compare to those of real gibbons. Lastly, to emulate the true capa-
bilities of gibbons, we need methods that can plan in complex 3D
worlds, perform 3D brachiation, make efficient use of the legs when
necessary, and more. We believe the simplicity of our approach
provides a solid foundation for future research in these directions.
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A FULL MODEL REWARDS
The tracking reward 𝑟tracking is formulated as a penalty and com-
puted as the squared distance between the character’s root and the
position of the reference trajectory.

𝑟tracking = ∥𝑝body − 𝑝reference∥22
𝑤𝑡 = −4

The reaching reward 𝑟reaching is computed similarly as the track-
ing reward, except the distance is between the next grabbing hand
and the target handhold. This reward is only applied during the
flight phase. During swing phase, the character can still use the
free arm to generate momentum without penalty.

𝑟reaching = ∥𝑝hand − 𝑝target∥22, if in flight phase
𝑤𝑟 = −0.1

The upright posture term 𝑟upright penalizes the character if the
root pitch is not within 40 degrees of the vertical axis.

𝑟upright = |pitch| − 40◦, if |pitch| > 40◦

𝑤𝑢 = −1
The arm rotation reward 𝑟arm penalizes the character for exces-

sive angular velocity in the next grabbing arm.

𝑟arm = |𝜔arm | and𝑤𝑎 = −0.1
The lower body reward 𝑟legs encourages the knees to be close

to 110 degrees from base position of straight legs. This reward is
applied to improve the visibility of the legs during brachiation.

𝑟legs = ∥𝜃knees − 110◦∥1
𝑤𝑙 = −0.1

The energy reward 𝑟energy penalizes the policy for using exces-
sive amounts of energy. The overall energy is approximated based
on the applied torques and the combined angular velocity of all
joints, computed as:

𝑟energy = ∥𝜏joints∥22 + ∥𝜔joints∥1
𝑤𝑙 = −0.01

B PROXIMAL POLICY OPTIMIZATION
Let an experience tuple be 𝑒𝑡 = (𝑜𝑡 , 𝑎𝑡 , 𝑜𝑡+1, 𝑟𝑡 ) and a trajectory be
𝜏 = {𝑒0, 𝑒1, . . . , 𝑒𝑇 }. We episodically collect trajectories for a fixed
number of environment transitions and we use this data to train
the controller and the value function networks. The value function
network approximates the expected future returns of each state,
and is defined for a policy 𝜋 as

𝑉 𝜋 (𝑜) = 𝐸𝑜0=𝑜,𝑎𝑡∼𝜋 ( · |𝑜𝑡 )

[ ∞∑︁
𝑡=0

𝛾 𝑡𝑟 (𝑜𝑡 , 𝑎𝑡 )
]
.

This function can be optimized using supervised learning due to
its recursive nature:

𝑉 𝜋𝜃 (𝑜𝑡 ) = 𝛾 𝑉 𝜋𝜃 (𝑜𝑡+1) + 𝑟𝑡 ,
where

𝑉 𝜋𝜃 (𝑜𝑇 ) = 𝑟𝑇 + 𝛾𝑉 𝜋𝜃𝑜𝑙𝑑 (𝑜𝑇+1) .
In PPO, the value function is used for computing the advantage

𝐴𝑡 = 𝑉
𝜋𝜃 −𝑉 𝜋𝜃𝑜𝑙𝑑

which is then used for training the policy by maximizing:

𝐿𝜋 (𝜃 ) =
1
𝑇

𝑇∑︁
𝑡=1

min(𝜌𝑡𝐴𝑡 , clip(𝜌𝑡 , 1 − 𝜖, 1 + 𝜖)𝐴𝑡 ),

where 𝜌𝑡 = 𝜋𝜃 (𝑎𝑡 |𝑜𝑡 ) /𝜋𝜃𝑜𝑙𝑑 (𝑎𝑡 |𝑜𝑡 ) is an importance sampling term
used for calculating the expectation under the old policy 𝜋𝜃𝑜𝑙𝑑 .

C PPO HYPERPARAMETERS

Table 5: Hyperparameters used for training PPO.

Hyperparameter Simplified/Full Model

Learning Rate 3 × 10−4
Final Learning Rate 3 × 10−5
Optimizer Adam
Batch Size 2000
Training Steps 2.5 × 107
Num processes 10000/125
Episode Steps 80000/40000
Num PPO Epochs 10
Discount Factor 𝛾 0.99
Gradient Clipping False
Entropy Coefficient 0
Value Loss Coefficient 0
Clip parameter 0.2
Max Grad Norm 2.0



Learning to Brachiate via Simplified Model Imitation SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada

D SUPPLEMENTARY RESULTS

Figure 6: Additional trajectories showing a variety of motions.
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