
Randomized Communication and Implicit Graph Representations∗

Nathaniel Harms†

EPFL, Switzerland
nathaniel.harms@epfl.ch

Sebastian Wild‡

University of Marburg, Germany &
University of Liverpool, UK

wild@informatik.uni-marburg.de

Viktor Zamaraev
University of Liverpool, UK

viktor.zamaraev@liverpool.ac.uk

December 12, 2024

Abstract
We initiate the focused study of constant-cost randomized communication, with emphasis

on its connection to graph representations. We observe that constant-cost randomized com-
munication problems are equivalent to hereditary (i.e. closed under taking induced subgraphs)
graph classes which admit constant-size adjacency sketches and probabilistic universal graphs
(PUGs), which are randomized versions of the well-studied adjacency labeling schemes and
induced-universal graphs. This gives a new perspective on long-standing questions about the
existence of these objects, including new methods of constructing adjacency labeling schemes.

We ask three main questions about constant-cost communication, or equivalently, constant-
size PUGs: (1) Are there any natural, non-trivial problems aside from Equality and k-Hamming
Distance which have constant-cost communication? We provide a number of new examples,
including deciding whether two vertices have path-distance at most k in a planar graph, and
showing that constant-size PUGs are preserved by the Cartesian product operation. (2) What
structures of a problem explain the existence or non-existence of a constant-cost protocol? We
show that in many cases a Greater-Than subproblem is such a structure. (3) Is the Equality
problem complete for constant-cost randomized communication? We show that it is not: there
are constant-cost problems which do not reduce to Equality.

∗An earlier version of this paper appeared at STOC 2022.
†This work was done while the author was a student at the University of Waterloo. Partly supported by an

NSERC postgraduate scholarship.
‡The second author is supported by EPSRC grant EP/X039447/1.

ar
X

iv
:2

11
1.

03
63

9v
4

 [
cs

.D
S]

 1
1

D
ec

 2
02

4

Contents
1 Introduction 1

1.1 Communication Complexity . 2
1.2 Implicit Graph Representations . 5
1.3 Subsequent Work . 7
1.4 Organization . 8

2 Preliminaries 9
2.1 Notation and Terminology . 9
2.2 Communication Complexity . 10
2.3 Adjacency Labeling Schemes, Universal Graphs, and Factorial Classes 10

3 Connections: Randomized Communication and Implicit Representations 11
3.1 Adjacency Sketching and Probabilistic Universal Graphs . 12
3.2 Communication-to-Graph Correspondence . 13
3.3 Reductions . 16
3.4 Equality-Based Labeling Schemes . 19
3.5 Basic Adjacency Sketches . 20

4 Question I. New Examples of Constant-Cost Communication 21
4.1 Computing Small Distances and First-Order Formulae . 21
4.2 Graph Products . 28

5 Question II. Structure: Stability is Sometimes Sufficient 32
5.1 Interval & Permutation Graphs . 33
5.2 Monogenic Bipartite Graphs . 42

6 Question III. Equality is Not Complete 55

A Missing Proofs from Section 3 62
A.1 Probability Boosting and Derandomization . 62
A.2 Lower Bound from Greater-Than . 63
A.3 Missing Proof for Equality-Based Labeling . 65

B The Lattice of Hereditary Graph Classes 65
B.1 The Speed of Hereditary Graph Families . 65
B.2 Minimal Factorial Families . 67

1 Introduction
Randomized communication is a central topic in communication complexity [GPW18, CLV19,
PSW20, HHH23], and yet the power of randomness in communication remains poorly understood.
The textbook example of the power of randomness in communication is the Equality problem
(where two players wish to decide if they have received identical inputs), which has a constant-cost
randomized protocol (see e.g. [NK96]): the required number of bits of communication remains con-
stant, regardless of input size, whereas a deterministic communication protocol cannot do better
than simply sending the entire input.

To better understand the power of randomness in communication, we wish to understand the
most extreme examples. Therefore the goal of this paper is to initiate the focused study of the
communication problems that, like Equality, have constant-cost protocols. In related models
of computation like randomized decision trees or even deterministic communication, the class of
constant-cost problems is trivial1. A priori, one may also expect the class of constant-cost ran-
domized communication problems to be simple or nearly trivial, but we will see that this is not
the case: the class is surprisingly rich, containing a variety of natural problems and having many
connections to other areas.

One of the central observations of this paper is that constant-cost randomized communica-
tion problems are equivalent to hereditary graph classes which admit a constant-size adjacency
sketch, a probabilistic version of an adjacency labeling scheme (also known as an implicit repre-
sentation), the subject of a large body of research in graph theory and distributed computing
(e.g. [KNR92, FK09, KM12, ACLZ15, Har20, BGK+21, DEG+21, HH22]). Therefore the study of
constant-cost randomized communication can be viewed from two perspectives, the communication
complexity perspective and the graph representation perspective. In Section 1.1 we describe our
motivations and results from the perspective of communication complexity, and in Section 1.2 from
the perspective of graph representations. Each of these perspectives suggest different questions,
but, to begin understanding constant-cost randomized communication, we believe it is important
to answer the following 3 questions, which will be the focus of this paper:

Question I. Are there natural examples of constant-cost randomized communication problems,
that are not trivially obtained from the few known examples (Equality and k-Hamming Dis-
tance)? Equivalently, what hereditary classes of graphs admit constant-size adjacency sketches?
We will give a number of new examples, which also lead to new techniques for obtaining implicit
representations of graphs.

Question II. What structures of problems determine the existence or non-existence of constant-
cost randomized communication? One of the main applications of communication complexity is to
prove lower bounds, and constant vs. non-constant is the most basic lower-bound question. One
might therefore hope for a simple criterion to determine whether a problem has constant cost or
not.

Question III. What “types” of constant-cost randomized protocols are there? In particular, is
there a “complete” problem for this class, which all constant-cost problems reduce to? The most
natural candidate is the Equality problem, and we show that Equality is not complete.

We refer the reader also to [HHH23] which has independently and concurrently initiated the
1Constant-cost randomized decision trees are equivalent to constant-cost deterministic decision trees, which com-

pute functions {0, 1}n → {0, 1} depending on only O(1) variables [BD02], and constant-cost deterministic communi-
cation protocols compute n × n matrices which have only O(1) distinct rows and columns.

1

study of constant-cost randomized communication, with an emphasis on the algebraic properties
of these problems, including connections to operator theory and other areas. Since the preprint
and conference version of the current paper [HWZ22], there have been many subsequent works
extending and improving our results. We discuss these works in Section 1.3.

1.1 Communication Complexity

Let us now discuss our results from the perspective of communication complexity. In Section 1.2 we
will discuss the results from the perspective of structural graph theory and graph representations.

We formally define the relevant notions of communication complexity in Definition 2.1; here we
write R(P) for the minimum cost (on worst-case inputs) of a public-coin randomized communication
protocol computing the problem P , and note that R(P) is a function of the input domain size. We
wish to understand the structure of problems which admit constant-cost randomized protocols,
i.e., problems P with R(P) = O(1). (Note that this goal would not be sensible for private-coin
randomized protocols2, since the constant-cost problems for this class of protocols are the same as
the constant-cost problems for deterministic communication.) We organize the paper in order of
studying Questions I-III.

Question I. What are natural examples of problems with constant cost?

Equality is the standard example of a constant-cost problem, and more generally it has been
known since at least [Yao03] that for any constant k ∈ N, the k-Hamming Distance problem
(where two players decide if their inputs x, y ∈ {0, 1}n differ on at most k bits) also has constant
cost. But, to the best of our knowledge, almost no further non-trivial examples of constant-cost
communication problems have appeared in the past 20 years. This makes it difficult to speculate
on the general structure of constant-cost problems and the techniques required to design these
“hyperefficient” protocols.

We present a number of new communication problems with non-trivial constant-cost commu-
nication protocols. Let us break these down into two sub-questions:

Question I (a). For which graphs G can two players decide if their vertices x, y are adjacent, or at
distance at most k? Every communication problem can be rephrased as: Alice and Bob each have
a vertex in a shared graph G, and they want to decide if their vertices are adjacent3. One may
also think of the k-Hamming Distance problem as: Alice and Bob have vertices of the hypercube
graph, and wish to decide if their vertices have path-distance k. So, which other classes of graphs
have constant-cost communication protocols for deciding adjacency or path-distance k?

Our first example is that Alice and Bob can decide if their vertices have path-distance k in any
planar graph, with communication cost depending on k but not on the number of vertices in the
graph:

Theorem 1.1 (Informal; see Section 4.1). Let k be any constant, and let Alice and Bob have
vertices x, y in a shared planar graph G. Then there is a constant-cost randomized communication
protocol for deciding dist(x, y) ≤ k.

This is a corollary of a more general result, using structural graph theory techniques from the
literature on model checking. We generalize the problem in two ways:

2With bounded error. Constant-cost for private-coin unbounded-error protocols (as in [PS86]) is studied in a
number of subsequent works; see Section 1.3.

3The communication matrix may be interpreted as the adjacency matrix of a bipartite graph.

2

1. The statement dist(x, y) ≤ k can be written as a first-order formula ϕ(x, y) using the edge
relation of the graph G, and with variables being vertices of the graph, i.e.:

dist(x, y) ≤ k ≡ ϕ(x, y) := (∃v1, . . . , vk : x = v1 ∧ y = vk ∧ E(x1, x2) ∧ · · · ∧ E(xk−1, xk)) .

We generalize the result to give communication protocols for deciding any such first-order
formula.

2. We generalize the result to hold not only for planar graphs, but for any stable graph class of
bounded twin-width. Including, for example, any proper minor-closed class or any class with
bounded treewidth or bounded clique-width.

Question I (b). How can we generate new constant-cost problems? It is often helpful to be able
to create new problems by composition. In graph theory terms, it is often helpful to understand
what happens to graph properties under product operations. We show there is a general method
to construct new constant-cost problems via a composition operation (which corresponds to the
Cartesian product of graphs). This also leads to new techniques for constructing implicit graph
representations for Cartesian product graphs.

Specifically, consider n independent instances P1, . . . , Pn of any constant-cost problem P, so
that Alice and Bob have inputs x1, . . . , xn and y1, . . . , yn, respectively, to these problems. We may
define a new problem P1□P2□ · · ·□Pn where Alice and Bob should output Pi(xi, yi) if i ∈ [n] is
a unique index where they have received unequal inputs xi ̸= yi (otherwise they simply output
0). Note that, with only a budget of O(1) communication, Alice and Bob cannot identify the
index i where xi ̸= yi; nevertheless, as we show, they can compute the output of this unknown
instance. This generalizes the 1-Hamming Distance problem, which is obtained in this way when
the “base problem” P is simply the complement of the 2 × 2 identity matrix. Our proof that
Equality is not a complete problem (see Question III below) also shows that this composition
takes any problem P and turns it into a problem that does not reduce to Equality. (Subsequent
work [FGHH24] extends this composition method to find problems which do not reduce to any
k-Hamming Distance.)

In graph theory terms, if F is any graph class such that, for any graph G ∈ F , two players
can decide whether their vertices x, y are adjacent in G using a constant-cost protocol, then there
exists also a constant-cost protocol for deciding adjacency of vertices in any Cartesian product
graph G□ = G1 □G2 □ · · ·□Gn, where □ denotes the Cartesian product and each Gi ∈ F . More
generally, if deciding whether two vertices have path-distance k is a constant-cost problem in the
class F (as is the case for planar graphs), then deciding path-distance k in G□ is also constant cost.
Theorem 1.2 (Section 4.2). Suppose that for every constant k, there is a constant-cost randomized
protocol for deciding dist(x, y) ≤ k in graphs G ∈ F . Then for every constant k there is a constant-
cost randomized protocol deciding dist(x, y) ≤ k in the class F□ of Cartesian products of graphs in
F .

This allows a new method for constructing implicit representations of Cartesian product graphs,
which were not known (see Section 1.2, prior work [CLR20], and subsequent work [EHZ24]).

Question II. What structures of a problem explain the existence or non-existence of a
constant-cost protocol?

Constant-cost communication seems quite restrictive, and constant vs. non-constant is the sim-
plest possible lower-bound question that one can ask. So, we may hope for a simple criterion to
determine whether a communication problem has a constant-cost protocol or not. We observe in

3

Section 3.2 that constant-cost communication problems may always be expressed as a hereditary
class F of graphs (i.e. closed under taking induced subgraphs) where two players can decide adja-
cency of vertices x, y in a shared graph G ∈ F , using a randomized communication protocol whose
cost is independent of the number of vertices of G. Then the question becomes, which hereditary
graph classes F admit constant-cost randomized protocols for deciding adjacency in graphs G ∈ F?

Necessary criterion 1: The number of n-vertex graphs in F (a quantity sometimes called the
speed of F) must be at most 2O(n log n) (see Section 3.2). This is interesting because hereditary graph
classes with 2Θ(n log n) n-vertex graphs are already well-studied in structural graph theory and are
sometimes called factorial classes. Here are two of the most natural ways to obtain hereditary
factorial classes, which we will study in this paper:

1. Geometric intersection graphs. A class of graphs is obtained by associating each vertex
with a geometric object (e.g. a line in R2) and making two vertices adjacent if and only
if their associated objects intersect. These classes of graphs are hereditary by definition,
and constant-dimensional geometric intersection graphs generally have factorial speed (see
e.g. [Spi03]), so answering Question II requires understanding which subclasses of geometric
intersection graphs admit constant-cost randomized protocols for deciding adjacency. Geo-
metric intersection graphs are the subject of one of the main open problems about implicit
graph representations [Spi03], and they are closely related to unbounded error randomized
communication [PS86], making them vital for understanding randomized communication (see
discussion in Section 1.3).

2. Classes defined via forbidden induced subgraphs. Every hereditary graph class may be ob-
tained by choosing a set H of graphs, and taking the class Free(H) of graphs which do not
contain any H ∈ H as an induced subgraph (see e.g. [KL15, Chapter 2]). For hereditary
classes of bipartite graphs (such as the graph classes obtained from any constant-cost com-
munication problem), it is known exactly which graph classes defined by forbidding exactly
one graph H have factorial speed [All09, LZ17].

Necessary criterion 2: Stability. Although the above mentioned graph classes have factorial
speed, they still may not have constant-cost communication protocols for deciding adjacency, be-
cause they are unstable, meaning that the Greater-Than problem can be reduced to the problem
of deciding adjacency in these graphs. Greater-Than is a standard communication problem,
where the two players receive numbers i, j ∈ [N] and must decide whether i > j. This problem
has randomized communication cost Θ(log logN) [Nis93, Vio15], which is exponentially superior
than the deterministic cost Θ(logN), but still non-constant. A graph class F is stable if there is a
fixed constant bound on the largest instance of Greater-Than which appears in the adjacency
relation in F .

Example 1.3. An interval graph is a geometric intersection graph where each vertex is represented
by an interval [a, b] ⊆ Z, and two vertices are adjacent when their intervals intersect. Two players
holding vertices of an N -vertex interval graph cannot, in general, determine whether their vertices
are adjacent using a constant-cost communication protocol, because one may easily construct arbi-
trarily large instances of Greater-Than inside the adjacency relation of interval graphs. But this
does not yet characterize the non-existence of a constant-cost protocol for this problem, because a
priori it is not clear whether there is another structure of the problem which would also prevent a
constant-cost protocol from existing, even if we “remove” the Greater-Than subproblems.

This raises the question: For which factorial classes is stability both necessary and sufficient to

4

guarantee constant cost? For a surprising variety of examples (including interval graphs), we show
that stability precisely characterizes the existence of constant-cost protocols. We prove:

Theorem 1.4 (Informal; Section 5.1). For interval graphs and permutation graphs (another ex-
ample of geometric intersection graphs), deciding adjacency between two vertices is a constant-cost
problem if and only if the graphs are stable.

Theorem 1.5 (Informal; Section 5.2). For bipartite graph classes defined as above by forbidding a
single bipartite graph H such that Free(H) has factorial speed, deciding adjacency between vertices
is again a constant-cost problem if and only if the graphs are stable.

These results are also motivated by the connection to implicit graph representations, specifi-
cally Question 1.9 discussed below. The proofs require new structural decompositions of interval
graphs, permutation graphs, and H-free bipartite graphs, and provide further new examples of
problems with constant-cost communication protocols. They also suggest (to us) a deeper relation
between communication complexity and the stability condition. Stability plays an important role
in structural graph theory and model theory (see Section 5). Its role in communication complexity
remains unclear (see Section 1.3). Subsequent work has shown that stable factorial classes may
not have constant-cost protocols [HHH22, EHK22], and stability is crucial in recent lower bounds
[FHHH24].

Question III. Is Equality complete for constant-cost randomized communication?

A useful way to try to characterize the constant-cost communication problems is to find a complete
problem: a single constant-cost communication problem that all other constant-cost problems
reduce to (see Section 3.3 for the definition of reductions in the constant-cost setting). Depending
on the properties of the complete problem, this could immediately answer many of the interesting
questions about constant-cost randomized communication. Equality is the first natural candidate
that one might choose.

So, can every constant-cost communication protocol be rewritten in such a way that the only use
of randomness in the protocol is the computation of Equality instances, and the remainder of the
protocol is completely deterministic? If this were so, we would know that the most extreme examples
of the power of randomized communication are all explained by the power of the Equality protocol,
and we would know that to prove non-constant lower bounds for any problem, it suffices to prove
lower bounds against deterministic protocols with access to the Equality oracle.

However, we show that the answer is no: the 1-Hamming Distance problem is another problem
that has a constant-cost protocol, but it cannot be reduced to Equality.

Theorem 1.6 (Section 6). Equality is not complete for constant-cost randomized communication.

A very different proof of this result appeared independently and concurrently in [HHH23], who
use Fourier analysis to get optimal bounds on the number of Equality oracle queries required to
compute 1-Hamming Distance. Our proof is combinatorial and relies on a Ramsey-type theorem
of [ARSV06], but it does not give quantitative bounds.

1.2 Implicit Graph Representations

We now discuss our results from the perspective of efficient graph representations. A central ob-
servation of this paper is that constant-cost randomized communication is the natural probabilistic
version of implicit graph representations (see Section 3.2), which can be introduced with the fol-
lowing combinatorial question. Consider a hereditary graph class F . How tightly can we “pack”

5

all the n-vertex graphs together? Or in other words, what is the smallest graph into which we can
put all the n-vertex graphs in F? More formally, write Fn for the set of graphs in F with vertex
set [n]. A universal graph (or induced-universal graph) for F is a sequence U = (Un)n∈N of graphs,
such that all n-vertex graphs G ∈ Fn appear as induced subgraphs of Un. How big must Un be?

This combinatorial question may also be expressed as an equivalent question in distributed
computing and data structures, well-studied since [Mul89, KNR92]: For a graph G ∈ F , we wish to
represent G as efficiently as possible in an implicit or distributed manner: we would like to assign
short binary labels ℓ(v) to each vertex v of G such that, given two labels ℓ(x), ℓ(y), adjacency
between x and y in G can be determined by a decoder which knows the class F but not the specific
graph G. This is an adjacency labeling scheme, and the existence of an adjacency labeling scheme
with labels of size s(n) for the n-vertex graphs is equivalent to the existence of a universal graph
of size 2s(n) [KNR92]. The main open problem is:

Question 1.7 (Implicit Graph Question (IGQ)). Which hereditary graph classes admit a universal
graph of size poly(n) (i.e. an O(logn)-bit adjacency labeling scheme)?

Adjacency labeling schemes with O(logn) bits are also known as implicit representations. This
question has seen significant attention but little progress, although many positive examples are
known. We introduce a probabilistic version of this question, which replaces adjacency labeling
schemes with randomized adjacency labeling schemes, which we call adjacency sketches, and the
equivalent notion of probabilistic universal graphs (PUGs). Randomized adjacency labels for trees
were introduced in [FK09], and have been studied more generally in connection to communication
complexity by [Har20]; see Definitions 3.1 and 3.2. We are interested in the classes that admit
constant-size adjacency sketches (equivalently, constant-size PUGs), so we ask:

Question 1.8 (PUG Question). Which hereditary graph classes admit a PUG of constant size
(i.e., a constant-size adjacency sketch)?

This question is interesting for three main reasons. First, we think it is both a natural question
on its own, as well as being a natural probabilistic variant of the IGQ, and it is surprising that, as
we will see, a rich variety of graph classes can be randomly projected into a constant-size universal
graph.

Second, answering the PUG question is in fact equivalent to characterizing all communication
problems with constant-cost randomized protocols. To see this, we make two observations (see
Section 3.2):

• As mentioned above, any communication problem with a constant-cost randomized protocol
is equivalent to a hereditary graph class with a constant-cost protocol for deciding adjacency.

• This constant-cost protocol for adjacency may be transformed into a constant-size adjacency
sketch, or constant-size PUG. In the other direction, a constant-size adjacency sketch may be
used as a constant-cost communication protocol for deciding adjacency.

Third, a simple derandomization argument shows that any class with a constant-size adjacency
sketch also admits a size O(logn) adjacency labeling scheme, so the PUG question is an interesting
special case of the IGQ, and it also leads to new techniques for constructing adjacency labeling
schemes; for example, in Question I (b) above, we showed that Cartesian products preserve constant-
size adjacency sketches, which imply new adjacency labeling schemes for Cartesian product graphs
that were previously unknown (see e.g. [CLR20]). Since little progress has been made towards
answering the IGQ, the PUG question may serve as an interesting step towards the IGQ, which
makes stronger demands on the graph class. Since PUGs and adjacency sketches are stronger than

6

universal graphs and adjacency labeling schemes, one way to start understanding the relationship
between the two is to ask when we can strengthen known adjacency labeling schemes to adjacency
sketches; in other words:

Question 1.9. Which hereditary graph classes with a universal graph of size poly(n) also admit a
constant-size PUG?

This question motivates many of the examples we study in this paper (particularly interval
and permutation graphs, and graphs of bounded twin-width). It is also related to Question III,
since several standard examples of adjacency labeling schemes (e.g. for bounded-arboricity graphs
[KNR92]) can in fact be rephrased as reductions to the Equality problem. More generally, the
most natural notion of a reduction between constant-cost communication problems (see Section 3.3)
is equivalent to a natural notion of reduction between graph classes, for the purpose of studying ad-
jacency labeling (which were also proposed independently in the literature on the IGQ in [Cha23]).

1.3 Subsequent Work

The concurrent work of Hambardzumyan, Hatami, & Hatami [HHH23] initiates the study of
constant-cost communication from a different perspective and proposes a number of interesting
conjectures about the structure of constant-cost problems. Following that paper and the conference
version of the present work [HWZ22], there have been several follow-up works on communication
complexity and implicit representations [HHH22, EHK22, EHZ24, HZ24], and numerous others re-
lated to constant-cost communication [HHP+22, ACHS23, CHHS23, HHM23, FHHH24, FGHH24]
and adjacency sketching [NP24]; we briefly describe a few of these developments here, and we refer
the reader to the subsequent works for discussions of open problems.

No complete problem. This paper and [HHH23] both show that the Equality problem is not
“complete” for the class of constant-cost randomized communication problems. Subsequent work
[FHHH24] shows that in fact there is no complete problem.

New implicit representations, and generalized adjacency sketches. Extending the tech-
niques in this paper, [EHZ24] prove optimal bounds on the size of universal graphs for any class
of subgraphs of Cartesian product graphs, which improved upon the best-known bounds of earlier
work [CLR20] and showed that they satisfy the IGQ. Recent work [NP24] has generalized the notion
of adjacency sketching to adversarial environments.

Sign-rank and geometric intersection graphs. Informally, a family of matrices has bounded
sign-rank if each matrix can be represented as a point-halfspace incidence matrix in a constant-
dimensional space. Examples include the interval and permutation graphs studied in this article.
A central open problem about implicit graph representations is whether all geometric intersection
graphs (formally, the semi-algebraic graph classes) have universal graphs of size poly(n). It is
sufficient to consider graph classes whose adjacency matrices have bounded sign-rank (see e.g.
[Spi03, Fit19, HZ24]). Understanding the matrices which have both bounded sign-rank and constant
randomized communication cost has also emerged as one of the main open problems in constant-
cost communication, one reason being that sign-rank is equivalent to unbounded-error randomized
communication [PS86]; see [HHP+22, ACHS23, CHHS23, HHM23, HZ24]. So, bounded sign-rank
is central to both implicit graph representations and constant-cost communication.

7

The implicit graph conjecture. As mentioned above, any hereditary graph class with a
poly(n)-size universal graph must contain at most 2O(n log n) distinct n-vertex graphs. A long-
standing conjecture was that this condition is also sufficient:

Implicit graph conjecture [KNR92, Spi03]: A hereditary graph class has a universal graph of size
poly(n) (i.e., an O(logn)-size adjacency labeling scheme) if and only if it has at most factorial speed.

In the preprint of this paper, motivated by the idea that constant-size PUGs are the probabilistic
version of poly(n)-size universal graphs, we formulated a probabilistic version of the implicit graph
conjecture. Based on the fact that stability plays a fundamental role in the structure of hereditary
graph classes (e.g. it plays a role in certain “speed thresholds”, see Appendix B, and is important
in model theory and model checking), and the observation that, in each example considered in this
paper, stability was the condition that determined whether cosntant-size PUGs exist, we proposed
the following as a natural probabilistic variant of the implicit graph conjecture:

PUG Conjecture: A hereditary graph class has a constant-size PUG if and only if it is both stable
and has at most factorial speed.

Shortly after the preprint became public, Hambardzumyan, Hatami, & Hatami refuted our
PUG Conjecture [HHH22] using a construction from [HHH23], and Hatami & Hatami extended
this refutation to refute the implicit graph conjecture itself [HH22]. This approach was further
extended to refute variants of the conjecture for “small” graph classes (an important subfamily of
factorial classes [BDS+24a]) and monotone graph classes [BDS+24b]. More examples refuting the
PUG conjecture are now known, including (among others) the subgraphs of hypercubes [EHK22].
[EHK22] has resolved the PUG question (Question 1.8) for monotone graph classes.

1.4 Organization

The paper is organized in order of Questions I – III asked in Section 1.1.

Section 2: Preliminaries. Notation and standard definitions of communication complexity, ad-
jacency labeling, and universal graphs.

Section 3: Definitions and connections. Adjacency sketching, probabilistic universal graphs,
the correspondence between communication complexity and hereditary graph classes, and
stability.

Section 4, Question I – New examples. Two new examples of constant-cost communication
(or constant-size adjacency sketches): (1) first-order formulae (including small distances) for
planar graphs and their generalization, and (2) adjacency in Cartesian products of graphs.

Section 5, Question II – Structure and stability. Some examples where stability is both nec-
essary and sufficient to guarantee constant-cost communication or constant-size PUGs: (1)
subclasses of permutation graphs, (2) subclasses of interval graphs, and (3) subclasses of
monogenic bipartite graph classes.

Section 6, Question III – Equality is not complete. A proof that the Equality problem is
not complete for constant-cost communication.

8

2 Preliminaries
We introduce in this section some notation and standard notions of communication complexity,
adjacency labeling schemes, and universal graphs. Since this paper is intended for readers who
may be unfamiliar with communication complexity or adjacency labeling schemes, we attempt to
include all relevant definitions here.

2.1 Notation and Terminology

We write 1[A] for the indicator of event A; i.e., the function which is 1 if and only if statement A is
true. For a finite set X, we write x ∼ X when x is a random variable drawn uniformly at random
from X.

Graphs. All graphs in this work are simple, i.e., undirected, without loops and multiple edges.
Let G = (V,E) be a graph. We write AdjG ∈ {0, 1}|V |×|V | for the adjacency matrix of G. For a
subset W ⊆ V , we write G[W] to denote the subgraph of G induced by W , i.e., a graph obtained
from G by removing all vertices in V \W . A graph H is an induced subgraph of G if H = G[W] for
some W ⊆ V . We write H ⊏ G to denote the fact that H is an induced subgraph of G. We also
write G for the complement of G, i.e., the graph (V,E) where (x, y) ∈ E if and only if (x, y) /∈ E.
A set of pairwise non-adjacent vertices in a graph is an independent set, and a set of pairwise
adjacent vertices is a clique. For two graphs G = (V,E) and H = (V ′, E′) on disjoint vertex sets,
the G+H := (V ∪ V ′, E ∪E′) is called the disjoint union of G and H. We denote by Kn, Pn, and
Cn, respectively a complete graph, a path, and a cycle, each on n vertices.

Bipartite graphs. A colored bipartite graph is a bipartite graph with a given bipartition of its
vertex set. We denote a colored bipartite graph by a triple (X,Y,E), where X,Y is the partition
of its vertex set into two parts, and the function E : X × Y → {0, 1} defines the edge relation. If a
bipartite graph G is connected, it has a unique partition of its vertices into two parts and therefore
there is only one colored bipartite graph corresponding to G; (note that (X,Y,E) and (Y,X,E) are
considered the same colored bipartite graph). If G is disconnected, however, there is more than one
corresponding colored bipartite graph. The bipartite adjacency matrix of a colored bipartite graph
G = (X,Y,E) is the matrix A ∈ {0, 1}|X|×|Y | with A(i, j) = 1 if and only if (i, j) ∈ E. Abusing
notation, we also write AdjG for the bipartite adjacency matrix of G.

For colored bipartite graphs G = (X,Y,E) and H = (X ′, Y ′, E′), we say that H is an induced
subgraph of G, and write H ⊏ G, when there is an injective map ϕ : X ′∪Y ′ → X∪Y that preserves
adjacency and preserves parts. The latter means that the images ϕ(X ′) and ϕ(Y ′) satisfy either
ϕ(X ′) ⊆ X,ϕ(Y ′) ⊆ Y or ϕ(X ′) ⊆ Y, ϕ(Y ′) ⊆ X. A colored bipartite graph G = (X,Y,E) is called
biclique if every vertex in X is adjacent to every vertex in Y , and G is called co-biclique if E = ∅.

For a graph G = (V,E) and two disjoint sets X,Y ⊆ V , we write G[X,Y] for the colored
bipartite graph (X,Y,E′) where for (x, y) ∈ X × Y , (x, y) ∈ E′ if and only if (x, y) ∈ E. A
bipartite graph H is a semi-induced subgraph of G if there exist disjoint sets X,Y ⊆ V such that
H = G[X,Y].

The bipartite complement, G, of a colored bipartite graph G = (X,Y,E) is the graph G :=
(X,Y,E) with (x, y) ∈ E if and only if (x, y) /∈ E for x ∈ X, y ∈ Y .

Classes of graphs and bipartite graphs. We define the following for graphs; the same dis-
cussion also applies to bipartite graphs. A class of graphs is a set of graphs that is closed under
isomorphism. A class of graphs is hereditary if it is closed under taking induced subgraphs. It is

9

well-known that any hereditary graph class can be defined by its set of minimal forbidden induced
subgraphs (see e.g. [KL15, Theorem 2.1.3]). That is, for any hereditary class F , there is a unique
minimal set of graphs H such that F is the class H-free graphs, i.e., F = Free(H), where

Free(H) := {G : ∀H ∈ H, H ̸⊏ G} .

For a class of graphs G, its hereditary closure cl(G) is the set of all induced subgraphs of graphs in
G, i.e., cl(G) = {H : ∃G ∈ G, H ⊏ G}. Note, by definition, cl(G) is a (minimal) hereditary graph
class that includes G.

2.2 Communication Complexity

We define some basic concepts in communication complexity and refer the reader to [NK96, RY20]
for an introduction to communication complexity. Typically, a communication problem is a se-
quence f = (fn)n∈N of functions4 fn : [n] × [n] → {0, 1}. In this paper it will be more convenient
to define a communication problem as a set of (not necessarily square) matrices M. For a fixed
communication matrix M ∈ M, we write R(M) for the cost of the optimal two-way, randomized
communication protocol computing M , defined as follows.

Informally, two players Alice and Bob share a source of randomness. Alice receives input x which
is a row index of M , Bob receives input y which is a column index of M , and they communicate by
sending messages back and forth using their shared randomness. After communication, Bob must
output a (random) value b ∈ {0, 1} such that b = M(x, y) with probability at least 2/3. The cost of
such a protocol is the maximum, over all inputs x, y, of the number of bits communicated between
the players. Formally, the definition is as follows.
Definition 2.1. A two-way public-coin communication protocol is a probability distribution D
over communication trees. For communication matrix M ∈ {0, 1}m×n, a communication tree T is a
binary tree with each inner node being a tuple (p, µ) where p ∈ {A,B} and either µ : [n]→ {0, 1} or
µ : [m]→ {0, 1} depending on whether p = A or p = B. Each edge of T is labeled either 0 or 1. Each
leaf node is labeled either 0 or 1. For any fixed tree T and inputs x ∈ [m], y ∈ [n], communication
proceeds by setting the current node c to the root node. At each step of the protocol, if c is an
inner node (A,µ) then Alice sends µ(x) to Bob and both players set c to the child along the edge
labeled µ(x). If c is an inner node (B,µ) then Bob sends µ(y) to Alice, and both players set c to
the child along the edge labeled µ(y). The protocol terminates when c becomes a leaf node, and
the output is the value of the leaf node; we write T (x, y) for the output of communication tree T
on inputs x, y.

The distribution D is required to satisfy the condition that, for all inputs x, y, T (x, y) = M(x, y)
with probability at least 2/3 over the random choice of T ∼ D, and the cost of the protocol is the
largest depth d of a tree T in the support of D. We write R(M) for the minimum cost of a protocol
computing M .

For a communication problem M, we denote by Mn the subset of matrices M ∈ M with r
rows and c columns such that r + c = n. Then we define the complexity R(M) of the problem M
as the function

n 7→ max
M∈Mn

R(M) .

2.3 Adjacency Labeling Schemes, Universal Graphs, and Factorial Classes

A graph class F is a set of labeled graphs, closed under ismorphism. It is hereditary if it is also
closed under vertex deletion (i.e. it is closed under taking induced subgraphs). For any graph class

4In the literature, the domain is usually {0, 1}n × {0, 1}n. We use [n] × [n] to highlight the graph interpretation.

10

F and any n ∈ N, we write Fn for the set of graphs G ∈ F with vertex set [n].
Adjacency labeling schemes were introduced in [Mul89, KNR92] and are defined as follows.

Definition 2.2 (Adjacency labeling scheme). Let F be a hereditary graph class. An adjacency
labeling scheme for F of size s(n) consists of a decoder D : {0, 1}∗ × {0, 1}∗ → {0, 1} such that,
for all n ∈ N and all n-vertex graphs G ∈ Fn, there exists a labeling ℓG : V (G)→ {0, 1}s(n) of the
vertices of G, where

∀x, y ∈ V (G) : {x, y} ∈ E(G) ⇐⇒ D(ℓG(x), ℓG(y)) = 1 .

A hereditary graph class which admits an adjacency labeling scheme of size s(n) = O(logn) is
sometimes said to have an implicit representation, and characterizing the graph classes which have
an implicit representation is the main open problem about adjacency labeling schemes, which we
call the IGQ.

Universal graphs were introduced in [Rad64]. A universal graph (or induced-universal graph)
is defined as
Definition 2.3. Let F be a hereditary graph class. A universal graph for F of size s(n) is a
sequence U = (Un)n∈N of graphs with |Un| = s(n), such that for all n ∈ N and all G ∈ Fn, G is an
induced subgraph of Un.

As observed in [KNR92], these concepts are equivalent:
Proposition 2.4 ([KNR92]). A hereditary graph class F has an adjacency labeling scheme of size
⌈s(n)⌉ if and only if it has a universal graph of size 2s(n).

Implicit representations, or adjacency labeling schemes of size O(logn), are therefore equivalent
to universal graphs of size poly(n). These graph classes satisfy a certain bound on the number of
n-vertex graphs |Fn|:
Proposition 2.5 ([KNR92]). If a hereditary graph class F has a universal graph of size 2O(log n) =
poly(n) (i.e., an adjacency labeling scheme of size O(logn)), then |Fn| ≤

(poly(n)
n

)
= 2O(n log n).

The function n 7→ |Fn| is called the speed of the graph class. Graph classes with speed 2Θ(n log n)

are said to have factorial speed, and are called factorial classes. In Appendix B we summarize some
known results about the family of factorial hereditary graph classes.

3 Connections: Randomized Communication and Implicit Repre-
sentations

In this section we define the central concepts of the paper and prove some basic properties, including
the connection between randomized communication and implicit representations.

Section 3.1: We define adjacency sketching and probabilistic universal graphs.
Section 3.2: We explain the correspondence between communication complexity, adjacency sketch-

ing, and implicit graph representations.
Section 3.3: We define notions of reductions between families of matrices, communication prob-

lems, and graph classes.
Section 3.4: We introduce some notation for equality-based communication and labeling, which

will be used often throughout the paper.
Section 3.5: We state and prove some basic results about adjacency sketching, which will be used

throughout the paper.

11

3.1 Adjacency Sketching and Probabilistic Universal Graphs

Probabilistic versions of adjacency labeling schemes and universal graphs were introduced in [Har20],
which we call adjacency sketches and probabilistic universal graphs (PUGs), respectively. A similar
definition with one-sided error is given in [FK09]; see that paper for some results on the limitations
of one-sided error. In the field of sublinear algorithms, a sketch reduces a large or complicated ob-
ject to a smaller, simpler one that supports (approximate) queries. An adjacency sketch randomly
reduces a hereditary graph class to a PUG that supports adjacency queries.

Definition 3.1 (Probabilistic Universal Graph). A probabilistic universal graph sequence for a
graph class F (or probabilistic universal graph for short) with error δ and size m(n) is a sequence
U = (Un)n∈N of graphs with |Un| = m(n) such that, for all n ∈ N and all G ∈ Fn, the following
holds: there exists a probability distribution over maps ϕ : V (G)→ V (Un) such that

∀u, v ∈ V (G) : P
ϕ

[
1[(ϕ(u), ϕ(v)) ∈ E(Un)] = 1[(u, v) ∈ E(G)]

]
≥ 1− δ .

We say that a graph class F admits a constant-size PUG if there exists a probabilistic universal
graph sequence for F with error δ = 1/3 and size m(n) = O(1).

Definition 3.2 (Adjacency Sketch). For a graph class F , an adjacency sketch with size c(n) and
error δ is a pair of algorithms: a randomized encoder and a deterministic decoder. On input G ∈ Fn,
the encoder outputs a (random) function sk : V (G)→ {0, 1}c(n). The encoder and (deterministic)
decoder D : {0, 1}∗ × {0, 1}∗ → {0, 1} satisfy the condition that for all G ∈ F ,

∀u, v ∈ V (G) : P
sk

[
D(sk(u), sk(v)) = 1[(u, v) ∈ E(G)]

]
≥ 1− δ .

In both definitions, we assume δ = 1/3 unless otherwise specified. Setting δ = 0 we obtain the
(deterministic) labeling schemes of [KNR92]. We will write SK(F) for the smallest function c(n)
such that there is an adjacency sketch for F with size c(n) and error δ = 1/3.

PUGs are equivalent to adjacency sketches, by the same argument which shows that universal
graphs are equivalent to adjacency labeling schemes [KNR92]: identify the vertices of Un with the
binary strings {0, 1}c(n) for c(n) = ⌈log |Un|⌉, identify the random sketch sk : V (G) → {0, 1}c(n)

with the map ϕ : V (G) → V (Un), and identify the decoder D with the edge relation on Un. We
get:

Proposition 3.3. A hereditary class F has a constant-size PUG if and only if SK(F) = O(1).

The choice of δ = 1/3 in the definition of constant-size PUGs and adjacency sketches is arbitrary:
by standard probability boosting arguments, one may achieve any constant error δ < 1/2 while
incurring only a constant-factor cost; we provide a proof for the sake of completeness in Appendix A.

Proposition 3.4. Let F be a class of graphs. For any δ ∈ (0, 1/2), there is an adjacency sketch
with error δ and size at most O(SK(Fn) · log 1

δ). Equivalently, if there is a PUG U = (Un)n∈N for
F with size |Un|, then there is a PUG U ′ = (U ′

n)n∈N for F with error δ and |U ′
n| ≤ |Un|O(log(1/δ)).

Adjacency sketches can be derandomized to obtain adjacency labeling schemes. This was ob-
served in [Har20] as a consequence of a bound on the number of bits of randomness that are required,
and can also be proved by simple derandomization; we give a proof for the sake of completeness in
Appendix A. It is sometimes required that adjacency labeling schemes be produced by an efficient
algorithm, and we observe that efficiency is preserved by this derandomization:

12

constant speed

polynomial speed

exponential speed

factorial speed

superfactorial speed

planar graphs

interval graphs

communication
problems

randomized
constant

deter-
ministic
constant

F

Adj

Adj

F

Adj

Adj

Figure 1: The correspondence that motivates this paper (Proposition 3.8). Appendix B describes the
lattice on the right. Communication problems with constant-cost randomized protocols are mapped to
the set of hereditary graph classes with constant-size PUGs (and therefore poly(n) universal graphs by
Proposition 3.6) by F. Families with constant-size PUGs are mapped to constant-cost communication
problems by Adj.

Proposition 3.5. For any hereditary graph class F , there is an adjacency labeling scheme of size
O(SK(F) · logn). If there is a randomized algorithm which produces the adjacency sketch in time
poly(n), then there is a randomized algorithm which produces the adjacency labels in expected time
poly(n).

It follows that hereditary graph classes which admit constant-size PUGs have the poly(n)-vertex
universal graphs, asked for by the IGQ, as illustrated in Figure 1.
Proposition 3.6. If a hereditary class F has a constant-size PUG (i.e., SK(F) = O(1)) then it is
a positive example to the IGQ (i.e., it admits a universal graph of size poly(n)).
Remark 3.7. A further motivation for these objects from the perspective of communication com-
plexity, given in [Har20], is that adjacency sketching (respectively, labeling) is a generalization of
the randomized (resp. deterministic) simultaneous message passing (SMP) model of communica-
tion. In this generalization, the referee who must compute f(x, y) from the messages of the players
does not know f in advance; they only know a certain class F which contains f , and the players
must include sufficient information in their messages to compensate for the ignorance of the referee.

3.2 Communication-to-Graph Correspondence

We now explain that communication problems with constant-cost randomized communication pro-
tocols are equivalent to hereditary graph classes with constant-size PUGs. This correspondence is
illustrated in Figure 1

Let M be any communication problem, which we recall is a set of matrices. For any M ∈ M
with M ∈ {0, 1}n1×n2 , we may consider the bipartite graph GM = ([n1], [n2], E) with edge (i, j) ∈ E
if and only if M(i, j) = 1. We define the hereditary class F(M) associated with M as the smallest
hereditary class that contains each GM . Formally,

F(M) := cl({GM : M ∈M}) .

13

One may equivalently think of F(M) as being the communication problem containing every matrix
which appears as a permutation of a submatrix ofM. It is important to keep in mind that, due to
the fact that it is hereditary, F(M) can have unintuitive consequences for the communication com-
plexity: for example, some problemsM with small (but non-constant) randomized communication
complexity can suddenly have maximum communication complexity when replaced with F(M); see
Example 3.9.

In the other direction, for any set of graphs F , we define the natural Adjacency communication
problem, which captures the complexity of the two-player game of deciding whether the players are
adjacent in a given graph G ∈ F .

AdjF := {M |M is the adjacency matrix of some G ∈ F} .

We may now state the formal equivalence between constant-cost communication and constant-
size PUGs:
Proposition 3.8. For any communication problem M and hereditary graph class F :

1. F has a constant-size PUG if and only if R(AdjF) = O(1).

2. R(M) = O(1) if and only if F(M) has a constant-size PUG (i.e., SK(F(M)) = O(1)).

Proof. We start by proving Item 1. First, suppose that F is a hereditary graph class with SK(F) =
O(1). Let D be the decoder of the constant-cost adjacency sketch, and for any graph G ∈ F write
ΦG for the distribution over sketches for G. We obtain a constant-cost communication protocol for
AdjF as follows. Let M ∈ AdjF so that M is the adjacency matrix of some graph G ∈ F and we
may think of the rows and columns of M as being indexed by vertices of G. On inputs x, y ∈ V (G),
Alice and Bob sample sk ∼ ΦG and Alice sends sk(x) to Bob, which requires at most SK(F) bits of
communication. Then Bob simulates the decoder on D(sk(x), sk(y)) and sends the result to Alice.
By definition

P
sk∼ΦG

[
D(sk(x), sk(y)) = M(x, y)

]
≥ 2/3 .

Now suppose that R(AdjF) = O(1). Then there is a constant d such that for any G ∈ Fn it holds
that the adjacency matrix M ∈ {0, 1}n×n of G satisfies R(M) ≤ d. For each G ∈ F , let P(G) be the
probability distribution over communication trees defined by an optimal communication protocol
for the edge relation of G. Then it holds that every communication tree in the support of P(G)
has depth at most d. We define the adjacency sketch for F as follows. For every G = (V,E) ∈ F ,
construct the random sketch sk by sampling T ∼ P(G), and then for every v ∈ V :

For every node c of T , append to the label sk(v) the following:

1. If c is an inner node (p,m) (with p ∈ {A,B} and m : [n] → {0, 1}), append the
symbol p and the value m(v).

2. If c is a leaf with value b, append the symbol L and the value b.

We define the decoder D as follows. On input (sk(u), sk(v)), the decoder simulates the communi-
cation tree T on (u, v) using the values m(u),m(v) for each inner node. We therefore obtain

P
sk

[D(sk(u), sk(v)) = E(u, v)] = P
T ∼P(G)

[T (u, v) = E(u, v)] ≥ 2/3 .

We now prove Item 2. From the first argument above, it is clear that for any communication problem
M, if SK(F(M)) = O(1) then R(M) = O(1). In the other direction, assume that R(M) ≤ d for

14

some constant d, and consider SK(F(M)). Then it holds for any G ∈ F(M) that there exists
M ∈M such that the adjacency matrix A of G is a submatrix of M . Then R(A) ≤ R(M) ≤ d. We
may then construct adjacency sketches by the scheme above, so we conclude SK(F(M)) = O(1).

Note that this equivalence is special to constant-cost communication. The transformation of a
communication problem to a hereditary graph class may have unintuitive consequences for problems
with non-constant complexity, as in the next example.

Example 3.9. For a function k(d), the k(d)-Hamming Distance problem HDk(d) requires Alice
and Bob to decide whether the Hamming distance between their inputs x, y ∈ {0, 1}d is at most
k(d). Note that this is a family of n × n matrices with n = 2d. The randomized communication
complexity of HDk(d) is Θ(k(d) log k(d)) when k(d) = o(

√
d) [HSZZ06, Sağ18]. For example, if

k = log log d then the communication complexity is Θ((log log logn) · (log log log logn)).
For any non-constant k(d), no matter how small, the hereditary graph class H = F(HDk(d))

has a lower bound of R(AdjH) = Θ(logn) for n-vertex graphs, meaning that no protocol does
better than simply sending the entire input to the other player. This is because, when we take the
hereditary closure (essentially, we include every submatrix of a k(d)-Hamming Distance problem
for arbitrarily large d), we get the family of all bipartite graphs, as follows.

Suppose that k(d) is increasing in d. Fix any n and let d be large enough that d ≥ 2n and
k(d) ≥ n − 1. Let G = (X,Y,E) be any bipartite graph with n = |X|, and identify X with [n].
To each x ∈ X, assign the string ex ∈ {0, 1}2n which is 0 everywhere except on coordinate x ∈ [n].
Now to each y ∈ Y , let S ⊆ [n] be the set of its neighbors in G. Assign the string ay ∈ {0, 1}2n

which is 0 everywhere except on the coordinates in S, as well as on the last n − |S| coordinates.
Observe that the Hamming distance between ex and ay is (n−|S|)+(|S|−1) = n−1 if x is adjacent
to y, and (n − |S|) + (|S| + 1) = n + 1 if x is not adjacent to y. We may now perform a simple
padding operation to extend ex to e′

x ∈ {0, 1}d and ay to a′
y ∈ {0, 1}d, such that the Hamming

distance between e′
x, a

′
y is k(d) if x is adjacent to y and k(d)+2 if x is not adjacent to y. So we have

constructed a submatrix of the k(d)-Hamming Distance matrix which is equal to the adjacency
matrix of G.

3.2.1 Chain Number & Stability

We define the notion of chain number, which will be used in several of our proofs, and use it to
formally define stability.

Definition 3.10 (Chain Number & Stability). For a graph G, the chain number ch(G) is the
maximum number k for which there exist disjoint sets of vertices {a1, . . . , ak}, {b1, . . . , bk} ⊆ V (G)
such that (ai, bj) ∈ E(G) if and only if i ≤ j. For a graph class F , we write ch(F) = maxG∈F ch(G).
If ch(F) =∞, then F has unbounded chain number, otherwise it has bounded chain number. If F
has bounded chain number, we also call it stable.

The name stable for these classes is as in [CS18, NMP+21] (they are also called graph-theoretically
stable in [GPT22]). These classes have many interesting properties, including stronger versions of
Szemerédi’s Regularity Lemma [MS14] and the Erdős-Hajnal property [CS18] (it is also conjec-
tured in [HHH23] that graphs which admit constant-cost protocols for adjacency satisfy the strong
Erdős-Hajnal property), and they play a central role in algorithmic graph theory [GPT22]. We
observe that stability is also essential for understanding the IGQ and randomized communication
complexity. More specifically, for a hereditary graph class to have a constant-size PUG, it is nec-
essary for it to be stable. This follows simply from known lower bounds on the Greater-Than
communication problem (see Appendix A.2).

15

Proposition 3.11. If a hereditary graph class F is not stable, then SK(F) = Ω(logn).

We conclude this section by noting a useful characterization of stable graph classes via forbidden
induced subgraphs (Proposition B.4): a graph class F has a bounded chain number (i.e., F is stable)
if and only if

F ⊆ Free(H◦◦
p , H•◦

q , H••
r), for some choice of p, q, r,

where H◦◦
p is a half-graph, H•◦

q is a co-half-graph, and H••
r is a threshold graph (depicted in Figure 2).

a1
a2
a3
a4
a5

b1
b2
b3
b4
b5

H◦◦
5 H•◦

5 H••
5

Figure 2: Examples of the half-graph, co-half-graph, and threshold graphs.

3.3 Reductions

We define a general notion of reductions useful for both communication complexity and implicit
graph representations5. First, we define a notion of reduction between families of matrices. Given
k matrices B1, B2, . . . , Bk ∈ {0, 1}n×n and a Boolean function h : {0, 1}k → {0, 1}, we define

h(B1, B2, . . . , Bk) := A ,

where A ∈ {0, 1}n×n is the matrix with A(i, j) = h(B1(i, j), B2(i, j), . . . , Bk(i, j)) for all i, j ∈ [n].

Definition 3.12 (Matrix Reductions). Let A,B be families of matrices. We say that A matrix-
reduces to B if there exists a constant k such that, for every A ∈ A, there exist h : {0, 1}k → {0, 1}
and B1, B2, . . . , Bk ∈ B so that

A = h(B1, B2, . . . , Bk) .

3.3.1 Between communication problems

Informally, for communication problems A,B, we will say that A has a constant-cost reduction to B
if A can be computed by a constant-cost deterministic protocol with oracle access to B. Formally,
we define this as follows.

Definition 3.13 (Query Set). For any set of matrices Q we define the query set

QS(Q) := {M | M is a blowup of a permutation of a submatrix of some Q ∈ Q} ,

where we say that a matrix A is a blowup of B if it is obtained from B by a sequence of row and
column duplications.

Definition 3.14 (Communication with Oracles). For any set Q of matrices, we define the deter-
ministic Q-oracle communication complexity of the communication problem A as follows. For any
M ∈ A with row and columns indexed by [n1], [n2] respectively, a Q-oracle protocol for M is a

5This general notion of reductions did not appear in the conference version of this paper. It is an adaptation
of the definitions presented in subsequent work [HZ24, FHHH24], which we include here for the sake of clarity, and
consistency with subsequent work.

16

tree T whose leaves v are associated with output values ℓ(v) ∈ {0, 1}, and whose inner nodes u are
associated with n1 × n2 matrices Qu ∈ QS(Q) (note that matrices of every size appear in QS(Q)
since it is closed under taking submatrices and blowups). On input pair i ∈ [n1], j ∈ [n2], the
protocol initializes a pointer p to the root of T , and in every round the protocol proceeds to

p←
{

left child of p if Qp(i, j) = 0
right child of p if Qp(i, j) = 1 ,

until p is a leaf, at which point it outputs ℓ(p), which is required to be equal to M(i, j). We write
DQ(M) for the minimum cost (i.e., depth) of such a protocol, and we say n 7→ DQ(An) is the
deterministic Q-oracle communication complexity of A.

We may now define constant-cost reductions between communication problems.
Definition 3.15 (Constant-Cost Reductions). A communication problem A reduces to (or has a
constant-cost reduction to) B if DB(A) = O(1).
Remark 3.16. This notion of reduction differs from the standard notion of an oracle reduction in
communication complexity (e.g. [BFS86]) because it allows the oracle matrices to be submatrices
of arbitrarily large instances of B. Standard oracle reductions require the oracle matrix to be a
submatrix of some B ∈ B with at most N rows and columns, where logN = poly log(logn) to
preserve communication complexities of the form poly log(logn) (where logn is the number of bits
required to encode the inputs i, j ∈ [n]). Since we aim to preserve constant-cost communication,
this requirement is unnecessary.
Proposition 3.17. Suppose communication problem A has a constant-cost reduction to problem
B, and R(B) = O(1). Then R(A) = O(1).

Proof. The randomized communication cost of a matrix M is not changed by permutations or by
row and column duplications, so R(QS(B)) = O(1) also. Let A ∈ A; we must show R(A) = O(1).
Since A reduces to B, there is a B-oracle protocol for A, i.e., a communication tree T of constant
depth d = O(1), with each vertex v assigned a matrix Qv ∈ QS(B). We obtain a randomized
communication protocol with cost O(d log d) by simulating the tree T on inputs x, y; namely, for
each node v of T we simulate the randomized protocol for Qv with error 1/3d, which can be done
with communication cost O(log d) using standard error boosting. Since at most d oracle queries are
simulated, the probability that the protocol has an error on any of them is at most d·1/3d = 1/3.

Constant-cost communication reductions are equivalent to matrix reductions as follows.
Proposition 3.18. A communication problem A has a constant-cost communication reduction to
B if and only if A matrix-reduces to QS(B).

Proof. First, assume that A matrix-reduces to QS(B), i.e., there exists a constant k such that, for
each A ∈ A, here exist a function h : {0, 1}k → {0, 1} and Q1, . . . , Qk ∈ QS(B) such that

A = h(Q1, Q2, . . . , Qk) .
Then for any A ∈ A, we obtain DB(A) ≤ k by using the following communication protocol: on in-
puts x, y, the players queryQ1(x, y), Q2(x, y), . . . , Qk(x, y) and then output h(Q1(x, y), . . . , Qk(x, y)).

Now, assume that DB(A) = O(1). Then for any A ∈ A, there is an oracle communication tree T
with constant depth d = O(1) and each inner node v assigned a matrix Qv ∈ QS(B). Let v1, . . . , vt

be inner nodes of T , where t ≤ 2d. Then we may write
A = h(Qv1 , Qv2 , . . . , Qvt) ,

where h : {0, 1}t → {0, 1} is the function which simulates T given the answers to every query.

17

3.3.2 Between graph classes

Let F ,G be hereditary classes of graphs. We define a reduction between F ,G with the purpose of
preserving the existence of implicit representations.

Let AdjF denote the set of adjacency matrices of graphs in F . We say F reduces to G if
AdjF matrix-reduces to QS(AdjG), where QS(·) denotes the query set defined above. In graph-
theoretic terms, QS(AdjG) is the set of bipartite adjacency matrices obtained as follows: for any
graph G ∈ G, let X,Y ⊂ V (G) be any subsets of vertices and H = (X,Y,EH) be the bipartite
graph where (x, y) ∈ X × Y is an edge of H if and only if {x, y} is an edge of G. Then take
any H ′ = (X ′, Y ′, E′

H) obtained from H by duplicating vertices. QS(AdjG) is the set of bipartite
adjacency matrices of any graph obtained in this way.

Proposition 3.19. Suppose that F reduces to G and G admits an adjacency labeling scheme of
size s(n). Then F admits an adjacency labeling scheme of size O(s(n)).

Proof. First, observe that, if G admits an adjacency labeling scheme of size s(n), then the family H
of bipartite graphs whose adjacency matrices are in QS(AdjG) admits an adjacency labeling scheme
of size s(n) + 1: to every vertex v ∈ X ∪ Y of a graph H = (X,Y,EH) constructed from G ∈ G as
in the paragraph above (without vertex duplication), simply take the original label for the scheme
of G and append one bit to indicate whether v ∈ X or v ∈ Y . For the graph H ′ = (X ′, Y ′, E′

H)
obtained by duplicating vertices of H, simply copy the corresponding labels. It is straightforward
to verify that such labels contain sufficient information to correctly deduce the adjacency relation
between vertices in graphs from H.

Now, there exists a constant k such that, for any graph G ∈ F , there exist bipartite graphs
B1, . . . , Bk ∈ H with bipartite adjacency matrices AdjBi ∈ QS(AdjG) and a function h : {0, 1}k →
{0, 1}, such that

AdjG = h(AdjB1 ,AdjB2 , . . . ,AdjBk
) .

If F is a class of bipartite graphs, then for G = (X,Y,E), AdjG has rows indexed by X and
columns indexed by Y , and we may assume that each AdjBi also has rows indexed by X and
columns indexed by Y . We label each v ∈ X ∪ Y , with the concatenation of the encoding of h and
the labels of v for each Bi in the labeling scheme for H. Then the decoder can decide if u,w ∈ X∪Y
are in different parts of the graph, and if so, decide adjacency of u and w in each Bi and compute
h on these adjacency values. The size of the labels is at most 2k + k(s(n) + 1) = O(s(n)) since k is
constant.

Now, if F is not a class of bipartite graphs, then for G = (V,E), AdjG is symmetric and has
rows and columns indexed by V . Each Bi is a bipartite graph with the parts V and V ′, a copy of
V . For each v ∈ V , we assign a label by concatenating the encoding of h with two labels a(v), b(v),
where a(v) is the concatenation of the labels of v ∈ V in each Bi, and b(v) is the concatenation of
the labels of v ∈ V ′ in each Bi. Given two labels for u, v ∈ V , the decoder can determine adjacency
in G by means of the function h and the decoder for the labeling scheme of H on each Bi, using the
relevant parts of a(v) and b(u). The size of the labels is at most 2k + 2k(s(n) + 1) = O(s(n)).

Remark 3.20. It may seem more natural to define reductions by saying F reduces to G if AdjF
matrix-reduces to AdjG instead of QS(AdjG). This would preserve more of the graph structure
through the reduction, since QS(AdjG) allows taking semi-induced bipartite subgraphs (instead of
induced subgraphs) and allows row and column duplication (i.e., duplicating vertices). But here
we are interested only in preserving existence of adjacency labeling, and the reduction defined here
is more permissive.

18

3.4 Equality-Based Labeling Schemes

We define a certain type of adjacency labeling scheme called an equality-based labeling scheme. A
number of our results will be proved by constructing equality-based labeling schemes, so we will
introduce some special notation for these. For simplicity of notation, we write

Eq(a, b) = 1[a = b] .

Definition 3.21. (Equality-based Labeling Scheme). Let F be a class of graphs. An (s, k)-
equality-based labeling scheme for F is a labeling scheme defined as follows. For every G ∈ F with
vertex set [n] and every x ∈ [n], the label ℓ(x) consists of the following:

1. A prefix p(x) ∈ {0, 1}s. If s = 0 we write p(x) = ⊥.

2. A sequence of k equality codes q1(x), . . . , qk(x) ∈ N.

The decoder must be of the following form. There is a set of functions Dp1,p2 : {0, 1}k×k → {0, 1}
defined for each p1, p2 ∈ {0, 1}s such that, for every x, y ∈ [n], it holds that (x, y) ∈ E(G) if
and only if Dp(x),p(y)(Qx,y) = 1, where Qx,y ∈ {0, 1}k×k is the matrix with entries Qx,y(i, j) =
1[qi(x) = qj(y)]. If s = 0 we simply write D(Qx,y).

We say that F admits a constant-size equality-based labeling scheme if there exist constants s, k
such that F admits an (s, k)-equality-based labeling scheme.
Remark 3.22. We will often use the following notation. A label for x will be written as a constant-
size tree of tuples of the form

(p1(x), . . . , pr(x) | q1(x), . . . , qt(x)) ,

where the symbols pi(x) belong to the prefix, while the symbols qi(x) are equality codes. When r, t
are constants, it is straightforward to put such a label into the form required by Definition 3.21.
Proposition 3.23. Suppose a class of graphs F admits an (s, k)-equality based labeling scheme.
Then SK(F) = O(s+ k log k).

Proof. Let G ∈ F and let n be the number of vertices. Let T ⊆ N be the set of equality codes
T = {qi(x) : i ∈ [k], x ∈ V (G)}. We assign the sketches to V (G) as follows. For each t ∈ T
we assign a uniformly random b(t) ∈ [3k2] and observe that b(t) may be encoded in O(log k)
bits. To each vertex x we assign the sketch containing the s bits of the prefix p(x), followed by
b(q1(x)), . . . , b(qq(x)), which requires O(s+ k log k) bits.

Consider any two vertices x, y. The decoder, upon receiving the sketches for x and y, con-
structs the matrix Q′

x,y defined as Q′
x,y(i, j) = Eq(b(qi(x)), b(qj(y))), and then applies the decoder

Dp(x),p(y)(Q′
x,y) from the equality-based labeling scheme. Observe that Eq(b(qi(x)), b(qj(y))) =

Eq(qi(x), qj(y)) with probability at least 1− 1
3k2 . Then by the union bound, we have Q′

x,y = Qx,y

with probability at least 2/3, in which case the decoder outputs the correct value.

Example 3.24. Many standard examples of adjacency labeling schemes are in fact equality-based
labeling schemes. For example, we may write the original adjacency labeling scheme of [KNR92]
for forests as an equality-based labeling scheme: the label for any vertex x ∈ [n] is

(− | x, p(x)),

where the first equality code is the vertex itself, and the second equality code is its parent p(x).
Given labels (− | x, p(x)) and (− | y, p(y)), the decoder outputs (x = p(y)) ∨ (y = p(x)).

19

Let us now define equivalence graphs.

Definition 3.25. A graph G is an equivalence graph if it is a disjoint union of complete graphs.
A colored bipartite graph G = (X,Y,E) is a bipartite equivalence graph if it is a colored disjoint
union of bicliques, i.e., if there are partitions X = X1 ∪ · · · ∪Xm, Y = Y1 ∪ · · · ∪Ym such that each
G[Xi, Yi] is a biclique and each G[Xi, Yj] is a co-biclique when i ̸= j.

Alternatively, the equivalence graphs are exactly the P3-free graphs, and the bipartite equiva-
lence graphs are exactly the P4-free bipartite graphs.

Equality-based labeling schemes are related to reductions by the following proposition. For the
sake of completeness, we state the simple proof in Appendix A.3.

Proposition 3.26. The following are equivalent for a hereditary graph class F :

1. F admits a constant-size equality-based labeling scheme;

2. The graph class F reduces to the class of equivalence graphs;

3. The communication problem AdjF reduces to Equality.

Therefore, if F admits a constant-size equality-based labeling scheme, it admits a constant-size
adjacency sketch (and hence a constant-size PUG).

3.5 Basic Adjacency Sketches

Adjacency sketches for graph classes of bounded arboricity will be basic building blocks for some
of our results.

Definition 3.27. A graph G = (V,E) has arboricity α if its edges can be partitioned into at most
α forests.

The classic adjacency labeling scheme of [KNR92] for graph classes of bounded arboricity may
be interpreted as an (0, α)-equality-based labeling scheme (as in Example 3.24). Using Proposi-
tion 3.23, this gives an adjacency sketch of size O(α logα), which was also stated in [Har20]. We
show that this can be improved as follows:

Lemma 3.28. For any α ∈ N, let A be the class of graphs with arboricity at most α. Then A
admits a constant-size equality-based adjacency labeling scheme. A also admits an adjacency sketch
of size O(α).

Proof. For any graph G ∈ An with vertex set [n], partition the edges of G into forests F1, . . . , Fα

and to each tree in each forest, identify some arbitrary vertex as the root. For every vertex x,
assign equality codes q1(x) = x and for i ∈ [α] set qi+1(x) to be the parent of x in forest Fi; if x is
the root assign qi+1(x) = 0. For vertices x, y, the decoder outputs α∨

j=2
1[q1(x), qj(y)]

 ∨
 α∨

j=2
1[q1(y), qj(x)]

 .
This is 1 if and only if y is the parent of x or x is the parent of y in some forest Fi.

One can apply Proposition 3.23 to obtain an O(α logα) adjacency sketch. We can improve this
using a Bloom filter, since the output is simply a disjunction of equality checks. To each i ∈ [n],
assign a uniformly random number r(i) ∼ [6α], and to each vertex x assign the sketch (r(x), b(x))
where b(x) ∈ {0, 1}6α satisfies b(x)i = 1 if and only if r(qj(x)) = i for some j ∈ {2, . . . , α+ 1}. On

20

input (r(x), b(x)) and (r(y), b(y)), the decoder outputs 1 if and only if b(x)r(y) = 1 or b(y)r(x) = 1.
If y is a parent of x in any of the α forests, then y = qj(x) for some j, so b(x)r(y) = b(x)r(qj(x)) = 1
and the decoder will output 1 with probability 1. Similarly, if x is a parent of y in any of the
α forests, the decoder will output 1 with probability 1. The decoder fails only when x, y are not
adjacent and r(x) = r(qj(y)) or r(y) = r(qj(x)) for some j. By the union bound, this occurs with
probability at most 2α · 1

6α = 1/3, as desired. The size of the sketches is O(α+ logα) = O(α).

Remark 3.29. Graph classes of bounded arboricity include many commonly-studied hereditary
graph classes, e.g., classes of graphs of bounded degree, classes of bounded treewidth, and proper
minor-closed classes [Mad67].

4 Question I. New Examples of Constant-Cost Communication
This first main section of results is dedicated to finding new examples of problems with constant-
cost randomized communication, to better understand the variety of problems in this class; this
also leads to some new methods for constructing adjacency labeling schemes.

Section 4.1. We study the problem of computing path distance dist(x, y) ≤ k in graphs, where the
players are given vertices x, y of a shared graph. It has long been known [Yao03, HSZZ06] that the
k-Hamming Distance problem has a constant-cost randomized communication protocol whenever
k is constant, which we may think of as computing path distance dist(x, y) ≤ k for vertices x, y
in the hypercube graph, with cost independent of the number of vertices. One of the questions
motivating this paper is, for which other graphs can we compute path distance dist(x, y) ≤ k in
randomized communication cost independent of the number of vertices? Equivalently, for which
hereditary classes of graphs can we construct constant-size sketches for deciding small distances?
We generalize this problem to constructing constant-size sketches for deciding certain first-order
formulae ϕ(x, y) over vertices x, y.

Section 4.2. We show that constant-size adjacency sketches are preserved by the Cartesian product
operation on graphs. This also gives a new method of constructing adjacency labeling schemes for
Cartesian products.

4.1 Computing Small Distances and First-Order Formulae

Graph width parameters like treewidth [RS86] and clique-width [CER93] are a central tool in
structural graph theory. Often, graph classes where a certain width parameter is bounded possess
favorable structural, algorithmic, or combinatorial properties. The twin-width parameter, intro-
duced recently in [BKTW20], generalizes treewidth and clique-width and has attracted a lot of
recent attention [GPT22, SS22, AHKO22, BH21]. Graph classes of bounded twin-width admit size
O(logn) adjacency labeling schemes [BGK+21], making them a natural choice for studying Ques-
tion 1.8. Building upon recent structural results on stable classes of bounded twin-width [GPT22],
we prove:

Theorem 4.1. Let F be a hereditary graph class of bounded twin-width. Then F admits a constant-
size PUG if and only if F is stable.

We also consider a type of sketches that generalizes adjacency and distance-k sketches. For
any first-order formula ϕ(x, y) on vertex pairs (see Section 4.1), we consider sketches that allow to

21

decide ϕ(x, y) instead of adjacency. An example is the dist(x, y) ≤ k formula:

δk(x, y) := (∃v1, v2, . . . , vk−1 : (E(x, v1)∨x = v1)∧(E(v1, v2)∨v1 = v2)∧· · ·∧(E(vk−1, y)∨vk−1 = y)) .

Using results on first-order transductions (a graph transformation that arises in model theory) and
their relation to stability and twin-width [BKTW20, NMP+21], we obtain the following corollary
of Theorem 4.1.
Corollary 4.2. Let F be a stable class of bounded twin-width and let ϕ(x, y) be a first-order formula.
Then F admits a constant-size sketch for deciding ϕ.

This implies Theorem 1.1 and its generalization stated in the introduction; it gives us constant-
size distance-k sketches for stable classes of bounded twin-width, and, in particular, answers a
question of [Har20], who asked about distance-k sketches for planar graphs (which are stable,
because they have bounded arboricity, and are of bounded twin-width [BKTW20]). Our results
have subsequently been extended and improved in [EHK22].

In Section 4.1.1 we provide necessary definitions and notations. To prove the theorem, we will
first reduce the problem to bipartite graphs in Section 4.1.2, and then show in Section 4.1.3 how to
construct a constant-size equality-based labeling scheme for any stable class of bipartite graphs of
bounded twin-width. In Section 4.1.4 we will generalize the above theorem to first-order labeling
schemes to show Corollary 4.2.

4.1.1 Preliminaries

Let G = (V,E) be a graph. A pair of disjoint vertex sets X,Y ⊆ V is pure if either ∀x ∈ X, y ∈ Y
it holds that (x, y) ∈ E, or ∀x ∈ X, y ∈ Y it holds that (x, y) ̸∈ E.
Definition 4.3 (Twin-Width). An uncontraction sequence of width d of a graph G = (V,E) is a
sequence P1, . . . ,Pm of partitions of V such that:

• P1 = {V };

• Pm is a partition into singletons;

• For i = 1, . . . ,m− 1, Pi+1 is obtained from Pi by splitting exactly one of the parts into two;

• For every part U ∈ Pi there are at most d parts W ∈ Pi with W ̸= U such that (U,W) is not
pure.

The twin-width tww(G) of G is the minimum d such that there is an uncontraction sequence of
width d of G.
The following fact, that we need for some of our proofs, uses the notion of first-order (FO) trans-
duction. We omit the formal definition of FO transductions and refer the interested reader to
e.g. [GPT22]. Informally, given a first-order formula ϕ(x, y) and a graph G, a first-order (FO)
ϕ-transduction of G is a transformation of G to a graph that is obtained from G by first taking
a constant number of vertex-disjoint copies of G, then coloring the vertices of the new graph by
a constant number of colors, then using ϕ as the new adjacency relation, and finally taking an
induced subgraph. An FO ϕ-transduction of a graph class F is a class of ϕ-transductions of graphs
in F . A graph class G is an FO-transduction of F if there exists an FO formula ϕ so that G is an
ϕ-transduction of F .
Theorem 4.4 ([BKTW20, NMP+21]). Let F be a stable class of bounded twin-width. Then any
FO transduction of F is also a stable class of bounded twin-width.

22

4.1.2 From General Graphs to Bipartite Graphs

We begin by defining a natural mapping bip(G) that transforms a graph G into a bipartite graph.

Definition 4.5. For any graph G = (V,E) we define the colored bipartite graph bip(G) =
(V, V ◁, E◁), where V ◁ is a copy of V , as follows. For each v ∈ V let ◁v ∈ V ◁ denote its copy
in V ◁. Then for each x, y ∈ V we have E(x, y) = E(y, x) = E◁(x, ◁y) = E◁(y, ◁x). For any set F
of graphs, we define

bip(F) := {bip(G) : G ∈ F} .

We require the following two simple properties of this transformation.

Proposition 4.6. Let F be a class of graphs. Then the class cl(bip(F)) is an FO transduction of
F .

Proof sketch. Let G = (V,E) be a graph in F . To obtain the graph bip(G), we take a disjoint
union G1 ∪ G2, where G1 = (V1, E1) and G2 = (V2, E2) are two copies of G, and transform this
graph using an FO formula ϕ(x, y) that does not hold for any pair of vertices that belong to the
same copy of G, and holds for any pair of vertices that are in different copies and whose preimages
are adjacent in G:

ϕ(x, y) =
[
(x ∈ V1 ∧ y ∈ V2) ∨ (y ∈ V1 ∧ x ∈ V2)

]
∧ ∃y′ : M(y, y′) ∧ (E1(x, y′) ∨ E2(x, y′)),

where M is a relation that is true exactly for copies of the same vertex. For any induced subgraph
of bip(G), we in addition take an induced subgraph.

Proposition 4.7. Let F be a hereditary graph class.

(1) If cl(bip(F)) has an adjacency labeling scheme of size s(n), then F has an adjacency labeling
scheme of size O(s(2n)).

(2) If cl(bip(F)) has a constant-size equality-based labeling schemes, then so does F .

Proof sketch. For G ∈ F , we may assign labels to v ∈ V (G) by concatenating the labels for
v, v◁ in bip(G), which are of size at most s(2n). Given the labels for (u, u◁), (v, v◁), the decoder can
determine adjacency from the labels of u, v◁. Thus, the total label size is at most 2s(2n) = O(s(2n)).
A similar argument works for the second part of the statement.

We now see that to prove Theorem 4.1, it is enough to establish its special case for the classes of
bipartite graphs. Assume Theorem 4.1 holds for the bipartite graph classes and let F be an arbitrary
hereditary stable class of graphs of bounded twin-width. Then, by Proposition 4.6 and Theorem 4.4,
the class cl(bip(F)) is also stable and has bounded twin-width. Therefore, by Proposition 4.7,
any constant-size equality-based labeling scheme for cl(bip(F)) can be turned into a constant-size
equality-based labeling scheme for F .

4.1.3 Bipartite Graphs of Bounded Twin-width

An ordered graph is a graph equipped with a total order on its vertices. We will denote ordered
graphs as (V,E,≤) and bipartite ordered graphs as (X,Y,E,≤), where ≤ is a total order on V and
on X ∪ Y respectively. A star forest is a graph whose every component is a star. Let (X,≤) be a
totally-ordered set. A subset S ⊆ X is convex if for every x, y, z ∈ X with x ≤ y ≤ z, such that
x, z ∈ S, it holds also that y ∈ S.

23

Definition 4.8 (Division). A division of an ordered bipartite graph G = (X,Y,E,≤) is a partition
D of X ∪ Y such that each part P ∈ D is convex and either P ⊆ X or P ⊆ Y . We will write
DX = {P ∈ D : P ⊆ X},DY = {P ∈ D : P ⊆ Y }.
Definition 4.9 (Quotient Graph). For any ordered bipartite graph G = (X,Y,E,≤) and any
division D, the quotient graph G/D is the bipartite graph (DX ,DY , E) where A ∈ DX , B ∈ DY are
adjacent if and only if there exist x ∈ A, y ∈ B such that (x, y) are adjacent in G.
Definition 4.10 (Convex Twin-Width). A convex uncontraction sequence of width d of an ordered
bipartite graph G = (X,Y,E,≤) is a sequence P1, . . . ,Pm of divisions of X ∪ Y such that:

• P1 = {X,Y };

• Pm is a division into singletons;

• For i = 1, . . . ,m − 1, the division Pi+1 is obtained from Pi by splitting exactly one of the
parts into two;

• For every part U ∈ PX
i , there are at most d parts W ∈ PY

i such that (U,W) is impure. For
every part W ∈ PY

i , there are at most d parts U ∈ PX
i such that (U,W) is impure.

The convex twin-width ctww(G) is the minimum d such that there is a convex uncontraction se-
quence of width d of G.
Lemma 4.11 ([GPT22], Lemmas 3.14 & 3.15). For any ordered bipartite graph G, tww(G) ≤
ctww(G). For any bipartite graph G = (X,Y,E), there is a total order ≤ on X ∪ Y such that
ctww((X,Y,E,≤)) ≤ tww(G) + 1.

Definition 4.12 (Quasi-Chain Number). Let G = (X,Y,E) be a bipartite graph. The quasi-
chain number qch(G) of G is the largest k for which there exist two sequences x1, . . . , xk ∈ X and
y1, . . . , yk ∈ Y of not necessarily distinct vertices such that for each i ∈ [k], one of the following
holds:

1. xi is adjacent to all of y1, . . . , yi−1 and yi is non-adjacent to all of x1, . . . , xi−1; or,

2. xi is non-adjacent to all of y1, . . . , yi−1 and yi is adjacent to all of x1, . . . , xi−1.

Lemma 4.13 ([GPT22], Lemma 3.3). For every bipartite graph G,

ch(G) ≤ qch(G) ≤ 4 · ch(G) + 4 .

Definition 4.14 (Flip). A flip of a bipartite graph G = (X,Y,E) is any graph G′ = (X,Y,E′)
obtained by choosing any A ⊆ X,B ⊆ Y and negating the edge relation for every pair (a, b) ∈ A×B.

For q ∈ N and a graph G, a graph G′ is a q-flip of G if there is a sequence G = G0, G1, . . . , Gr =
G′ such that r ≤ q and for each i ∈ [r], Gi is a flip of Gi−1.
Lemma 4.15 ([GPT22], Main Lemma). For all k, d ∈ N, k, d ≥ 2, there are r, q ∈ N satisfying
the following. Let G = (X,Y,E,≤) be an ordered bipartite graph of convex twin-width at most
d and quasi-chain number at most k. Then there is a division D of G, sets UX

1 , . . . ,UX
r ⊆ DX ,

UY
1 , . . . ,UY

r ⊆ DY , and a q-flip G′ of G such that the following holds for H := G′/D:

1. For every edge (A,B) of H there exists i ∈ [r] such that A ∈ UX
i , B ∈ UY

i ;

2. For each i ∈ [r], the graph H[UX
i ,UY

i] is a star forest. Moreover, for each star in H[UX
i ,UY

i],
with center C and leaves K1, . . . ,Km, the quasi-chain number of G[C ∪K1 ∪ · · · ∪Km] is at
most k − 1.

24

Lemma 4.16. Let F be any class of stable bipartite graphs with bounded twin-width. Then F
admits a constant-size equality-based labeling scheme.

Proof. Since F is stable, we have ch(F) = k and tww(F) = d for some constants k, d.

Decomposition tree. For any G ∈ F , we construct a decomposition tree as follows. Let k∗ =
qch(G) which satisfies k∗ ≤ 4 ·qch(G)+4 by Lemma 4.13. The root of the tree is associated with G.
Every node of the tree is associated with an induced subgraph G′ of G, defined as follows:

For a node G′ = (X ′, Y ′, E′) with qch(G′) ≤ 1, we have ch(G′) ≤ qch(G′) ≤ 1 by Lemma 4.13,
so G′ is P4.

For a node G′ = (X ′, Y ′, E′) with qch(G′) = k′ > 1, let G′
≤ = (X ′, Y ′, E′,≤) be an ordered

bipartite graph with ctww(G′
≤) ≤ d + 1, which exists due to Lemma 4.11. Let D be a division of

G′
≤, let UX

1 , . . . ,UX
r ⊆ DX , UY

1 , . . . ,UY
r ⊆ DY , and let F be a q-flip of G′

≤ such that the following
holds for H = F/D:

1. For every edge (A,B) of H there exists i ∈ [r] such that A ∈ UX
i , B ∈ UY

i ; and

2. For every i ∈ [r], H[UX
i ,UY

i] is a star forest such that for every star in this forest with center
C and leaves K1, . . . ,Km we have qch(G′[C ∪K1 ∪ · · · ∪Km]) ≤ k′ − 1.

The above holds for some r, q determined by Lemma 4.15. Below we will let l∗ be the maximum
value of r over all nodes G′. Note that we may assume that each edge (A,B) of H appears in at
most one set Ui := UX

i ∪ UY
i . Otherwise we can remove the leaf incident with (A,B) from all but

one set Ui that induce a star forest containing (A,B); each star forest remains a star forest.
The child nodes of G′ are the bipartite graphs G′[C∪K1∪· · ·∪Km] for each star (C,K1, . . . ,Km)

in the star forests induced by the sets Ui. Observe that each child G′′ has qch(G′′) < qch(G′), so
the depth of the tree is at most qch(G) = k∗ ≤ 4k + 4.

Labeling scheme. We will construct labels as follows. For a vertex x and a graph G containing x,
we will write L(x,G) for the label of x obtained by the following recursive labeling scheme. For
each node G′ of the decomposition tree, we assign labels to the vertices of G′ inductively as follows.

1. If G′ is a leaf node, so that qch(G′) ≤ 1, each x is assigned a label L(x,G′) = (0, p(x) | q(x)),
where (p(x) | q(x)) is the constant-size equality-based label in the graph G′, which is a P4-free
bipartite graph. Recall that P4-free bipartite graphs are bipartite equivalence graphs, so there
is a simple equality-based labeling scheme.

2. If G′ is an inner node, perform the following. Let UX
1 ,UY

1 , . . . ,UX
r ,UY

r be the sets that induce
star forests in H. For each i, fix an arbitrary numbering si to the stars in H[UX

i ,UY
i].

(a) Let G′
≤ = F0, F1, . . . , Fq′ = F with q′ ≤ q be the sequence of flips that take G′

≤ to F .
To each vertex x ∈ V (G′) assign a binary vector f(x) ∈ {0, 1}q so that f(x)i = 1 if and
only if x is in the set that is flipped to get Fi from Fi−1.

(b) For each i ∈ [r], any vertex x ∈ V (G′) belongs to at most one star Si = (C,K1, . . . ,Km)
in H[UX

i ,UY
i]. Append the tuple (1, f(x) |s1(S1), . . . , sr(Sr)) where si(Si) is the number

of the star Si = (C,K1, . . . ,Km) in H[UX
i ,UY

i] containing x. Then for each i ∈ [r],
append L(x,G′

i) for G′
i = G′[C∪K1∪. . .∪Km] induced by the star Si = (C,K1, . . . ,Km).

Decoder. The decoder for this scheme is defined recursively as follows: Given labels L(x,G),
L(y,G) for vertices x, y:

25

1. If L(x,G′) = (0, p(x) | q(x)), L(y,G′) = (0, p(y) | q(y)) then output the adjacency of x, y in G′,
which is a bipartite equivalence graph, as determined by the labels (p(x) | q(x)), (p(y) | q(y)).

2. If L(x,G′) = (1, f(x) | s1(S1), . . . , sr(Sr)), L(y,G′) = (1, f(y) | s1(S′
1), . . . , sr(S′

r)) then let i
be the unique value such that si(Si) = si(S′

i), if such a value exists. In this case, output
the adjacency of x, y as determined from the labels L(x,G′

i), L(y,G′
i) where G′

i is the child
corresponding to star Si = S′

i. Otherwise, output the parity of∣∣{i ∈ [q] : f(x)i = f(y)i = 1
}∣∣ .

Correctness. Let x ∈ X, y ∈ Y be vertices of G.

Claim 4.17. For any node G′ = (X ′, Y ′, E′) ⊏ G in the decomposition tree, there is at most one
child G′′ ⊏ G′ such that x, y ∈ V (G′′).

Proof of claim. Let F be the q-flip of G′
≤, let D the division of G′

≤, and write H = F/D. Let
A ⊆ X ′, B ⊆ Y ′ be the unique sets with A,B ∈ D such that x ∈ A, y ∈ B. Suppose that for some
i ∈ [r] there is a star {A,K1, . . . ,Km} ⊆ Ui such that B ∈ {K1, . . . ,Km}. Then (A,B) is an edge of
H so, by assumption, (A,B) appears in exactly one star forest H[UX

i ,UY
i]. (A,B) also appears in

exactly one star in the star forest H[UX
i ,UY

i]. So there is exactly one childG′′ = G′[C∪K1∪· · ·∪Km]
that contains both x and y.

It follows from the above claim that there is a unique maximal path G = G0, . . . , Gt in the
decomposition tree, starting from the root, satisfying x, y ∈ V (Gi) for each i = 0, . . . , t.

First we prove that the labeling scheme outputs the correct value on Gt = (X ′, Y ′, E′). If Gt

is a leaf node then this follows from the labeling scheme for P4-free bipartite graphs. Suppose Gt

is an inner node. Let A ⊆ X ′, B ⊆ Y ′ be the unique sets A,B ∈ V (H) such that x ∈ A, y ∈ B.
Since G0, . . . , Gt is a maximal path, it must be that there is no i ∈ [r] and star S in H[UX

i ,UY
i]

such that both A and B are nodes of S. Then for every i ∈ [r], let Si, S
′
i be the (unique) pair of

stars in H[UX
i ,UY

i] such that A ∈ Si, B ∈ S′
i; since A,B are not nodes of the same star, we have

Si ̸= S′
i so si(Si) ̸= si(S′

i) in the labels. So the decoder outputs the parity of∣∣{i ∈ [q] : f(x)i = f(y)i = 1
}∣∣.

We show that x, y are not adjacent in F . In this case, x, y are adjacent in Gt if and only if the
pair (x, y) is flipped an odd number of times in the sequence (Gt)≤ = F0, F1, . . . , Fq′ = F ; this
is equivalent to there being an odd number of indices i ∈ [q] such that f(x)i = f(y)i, so the
decoder will be correct. For contradiction, assume that x, y are adjacent in F . Then by definition,
(A,B) is an edge of H, so (A,B) must belong to some star S in some forest H[UX

i ,UY
i]. But then

si(Si) = si(S′
i) = si(S), a contradiction. So x, y are not adjacent in F .

Now consider node Gi for i = 0, . . . , t − 1. By definition, there is a child Gi+1 that contains
both x and y, so there exists j ∈ [r] and a star S = (C,K1, . . . ,Km) in H[UX

j ,UY
j] such that

x, y ∈ C ∪ K1 ∪ · · · ∪ Km. Then sj(Sj) = sj(S′
j) = sj(S) so the decoder will recurse on the

child Gi+1.

4.1.4 First-Order Labeling Schemes & Distance Sketching

In this section we construct sketches for stable graph classes of bounded twin-width that replace
the adjacency relation with a binary relation ϕ(x, y) on the vertices, that is defined by a formula ϕ
in first-order logic. We will call such a sketch a ϕ-sketch.

26

First-order logic. A relational vocabulary τ is a set of relation symbols. Each relation symbol
R has an arity, denoted arity(R) ≥ 1. A structure A of vocabulary τ , or τ -structure, consists of
a set A, called the domain, and an interpretation RA ⊆ Aarity(R) of each relation symbol R ∈ τ .
To briefly recall the syntax and semantics of first-order logic, we fix a countably infinite set of
variables, for which we use small letters. Atomic formulas of vocabulary τ are of the form:

1. x = y or

2. R(x1, . . . , xr), meaning that (x1, . . . , xr) ∈ R,

where R ∈ τ is r-ary and x1, . . . , xr, x, y are variables. First-order (FO) formulas of vocabulary τ
are inductively defined as either the atomic formulas, a Boolean combination ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, or
a quantification ∃x.ϕ or ∀x.ϕ, where ϕ and ψ are FO formulas. A free variable of a formula ϕ is
a variable x with an occurrence in ϕ that is not in the scope of a quantifier binding x. We write
ϕ(x1, x2, . . . , xk) to show that the set of free variable of ϕ is {x1, x2, . . . , xk}. By ϕ[t/x], we denote
the formula that results from substituting t for free variable x in ϕ.
First-order labeling schemes. We fix a relational vocabulary τ that consists of a unique (sym-
metric) binary relational symbol E, and t unary relational symbols R1, . . . , Rt. A τ -structure G
with domain V is a tuple (V,EG , RG

1 , . . . , R
G
t) where each RG

i ⊆ V is an interpretation of the symbol
Ri, and EG ⊆ V × V is an interpretation of the symbol E. For a graph class F , we will write Fτ

for the set of τ -structures G = (V,EG , RG
1 , . . . , R

G
t) where (V,EG) is a graph in F . Let ϕ(x, y) be

an FO formula of vocabulary τ . For a τ -structure G = (V,EG , RG
1 , . . . , R

G
t) and u, v ∈ V , we write

G |= ϕ[u/x, v/y], if ϕ[u/x, v/y] is a true statement in G. When the τ -structure is clear from context,
we drop the superscript G (and identify the relation symbol and its interpretation in G).
Definition 4.18 (First-order sketches). For a symmetric first-order formula ϕ(x, y) with vocab-
ulary τ , and a graph class F , a ϕ-sketch with cost c(n) and error δ is a pair of algorithms: a
randomized encoder and a deterministic decoder. The encoder takes as input any τ -structure G =
(V,E,R1, . . . , Rt) ∈ Fτ with |V | = n vertices and outputs a (random) function sk : V → {0, 1}c(n).
The encoder and (deterministic) decoder D : {0, 1}∗ × {0, 1}∗ → {0, 1} must satisfy the condition
that for all G ∈ Fτ ,

∀u, v ∈ V (G) : P
sk

[
D
(
sk(u), sk(v)

)
= 1[G |= ϕ[u/x, v/y]]

]
≥ 1− δ .

As usual, if left unspecified, we assume δ = 1/3. We will write ϕ-SK(F) for the smallest function
c(n) such that there is a randomized ϕ-labeling scheme for F with cost c(n) and error δ = 1/3.
Setting δ = 0 we obtain the notion of (deterministic) ϕ-labeling scheme.
Theorem 4.19. Let F be a stable, hereditary graph class with bounded twin-width, and let ϕ(x, y)
be an FO formula of vocabulary τ . Then ϕ-SK(F) = O(1).

Proof. Given a τ -structure G = (V,E,R1, . . . , Rt) ∈ Fτ , we denote by Gϕ the graph with vertex
set V and the edge set Eϕ = {(u, v) : G |= ϕ[u/x, v/y]}. We also define Fϕ := cl({Gϕ : G ∈ Fτ}).
By definition, Fϕ is hereditary. Furthermore, we note that Fϕ is an FO transduction of F . Hence,
Theorem 4.4 implies that Fϕ is a stable class of bounded twin-width, and therefore by Theorem 4.1,
Fϕ admits a constant-size adjacency sketch. Any such sketch can be used as a ϕ-sketch for F , since
for any two vertices u, v in G ∈ Fτ we have G |= ϕ[u/x, v/y] if and only if u and v are adjacent in
Gϕ.

As a corollary we obtain an answer to an open question of [Har20], who asked if the planar
graphs admit constant-size sketches for dist(x, y) ≤ k.

27

Corollary 4.20. For any k ∈ N, there is a constant-size sketch for planar graphs that decides
dist(x, y) ≤ k.

Proof. The class of planar graphs has bounded twin-width [BKTW20] and bounded chain number
(because it is of bounded arboricity). Hence, the result follows from Theorem 4.19 and the fact
that the relation dist(x, y) ≤ k is expressible in first-order logic, e.g. via the following FO formula

δk(x, y) := (∃v1, v2, . . . , vk−1 : (E(x, v1)∨x = v1)∧(E(v1, v2)∨v1 = v2)∧· · ·∧(E(vk−1, y)∨vk−1 = y)) .

4.2 Graph Products

The Cartesian product of graphs is defined as follows.
Definition 4.21 (Cartesian Products). Let d ∈ N and G1, . . . , Gd be any graphs. The Cartesian
product G1 □G2 □ · · ·□Gd is the graph whose vertices are the tuples (v1, . . . , vd) ∈ V (G1)× · · · ×
V (Gd), and two vertices v, w are adjacent if and only if there is exactly one coordinate i ∈ [d] such
that (vi, wi) ∈ E(Gi) and for all j ̸= i, vj = wj . For any set of graphs F , we will define the set of
graphs F□ as all graphs obtained by taking a product of graphs in F :

F□ := {G1 □G2 □ · · ·□Gd : d ∈ N, ∀i ∈ [d] Gi ∈ F} .

We also write G□d := G □ G □ · · · □ G for the d-wise product of G. For example, P□d
2 is the

d-dimensional hypercube.
Although Cartesian products are extremely well-studied (e.g. see [CLR20] for results on univer-

sal graphs for subgraphs of products), it was not previously known whether the number of unique
induced subgraphs of Cartesian products G□d is at most 2O(n log n), let alone whether they admit
adjacency labeling schemes of size O(logn). We resolve this question by proving that Cartesian
products preserve constant-size PUGs and distance-k sketches. We prove the following theorem.
Note that, unlike adjacency, distances are not necessarily preserved by taking induced subgraphs,
so the distance-k result applies to F□ instead of its hereditary closure. The following theorem
implies Theorem 1.2 from the introduction.
Theorem 4.22. If F is any class that admits a constant-size PUG (including any finite class),
then cl(F□) admits a constant-size PUG. For any fixed k, if F admits a constant-size distance-k
sketch, then so does F□.

We obtain as a corollary the new result that cl(F□) is a factorial class with a poly(n)-size
universal graph, when F is any class with a constant-size PUG (including any finite class), which
follows by Proposition 3.5 and Proposition 2.5.
Corollary 4.23. For any hereditary class F that admits a constant-size PUG (in particular any
finite class), the hereditary class cl(F□) has speed 2O(n log n) and admits a poly(n)-size universal
graph.

Follow-up work [EHZ24] simplifies and extends our technique from this section to obtain optimal
adjacency labels for subgraphs (not only induced subgraphs) of Cartesian products, improving upon
the results of [CLR20].
Remark 4.24. There are 3 other common types of graph products [HIK11]: the strong product,
the direct product, and the lexicographic product. Early versions of this paper showed that these
graph products admit constant-cost communication protocols only in trivial cases; we omit this
discussion from the current version.

28

We now prove Theorem 4.22. The proof is illustrated in Figure 3.

Proof of Theorem 4.22. Let s(k) be the size of the randomized distance k labeling scheme for F ,
and let D : {0, 1}s(k)×{0, 1}s(k) → {0, 1} be its decoder. We may assume that this scheme has error
probability at most 1

10k , at the expense of at most an O(log k) factor increase by Proposition 3.4.
For any G = G1 □ · · · □ Gd where each Gi ∈ F , we will construct a distance k labeling for G as
follows.

Choose constants m, t ∈ N with m ≥ 9k2, t ≥ 9k and mt ≥ 27(k + 1)2. Then:

1. For each i ∈ [d], draw a random labeling ℓi : V (Gi) → {0, 1}s(k) from the distance k scheme
for Gi.

2. For each i ∈ [m], j ∈ [t] and each vertex x ∈ G, initialize a vector w(i,j)(x) ∈ {0, 1}s(k) to 0⃗
and a bit W (i,j)(x) to 0.

3. For each i ∈ [d] choose a uniformly random coordinate b(i) ∼ [m]. For each i ∈ [d] and each
v ∈ V (Gi) choose a random coordinate c(i, v) ∼ [t].

4. For each x ∈ V (G), assign the label as follows. For each i ∈ [d], update

w(b(i),c(i,xi))(x)← w(b(i),c(i,xi))(x)⊕ ℓi(xi)
W (b(i),c(i,xi))(x)←W (b(i),c(i,xi))(x)⊕ 1 .

Then the label for x is w(x), the collection of all vectors w(i,j)(x) and bits W (i,j)(x) for i ∈ [m],
j ∈ [t]. So the size of the label is mt · (s(k) + 1).

The decoder is as follows. On receiving labels w(x), w(y), perform the following:

1. For each i ∈ [m], j ∈ [t], let z(i,j) = w(i,j)(x)⊕ w(i,j)(y) and Z(i,j) = W (i,j)(x)⊕W (i,j)(y).

2. If there exists i ∈ [m] for which the number of coordinates j ∈ [t] such that Z(i,j) = 1 is not
in {0, 2}, output ⊥.

3. If there are at least 2k + 1 pairs (i, j) ∈ [m]× [t] such that Z(i,j) = 1, output ⊥.

4. Otherwise, there are 2q ≤ 2k pairs

(i1, (j1)1), (i1, (j1)2), (i2, (j2)1), (i2, (j2)2), . . . , (iq, (jq)1), (iq, (jq)2) ∈ [m]× [t]

such that Z(i∗,j∗
1) = Z(i∗,j∗

2) = 1 for each of these pairs (i∗, j∗) ∈ {(i1, j1), . . . , (iq, jq)}. For
each r ∈ [q], define

kr = D(z(ir,(jr)1), z(ir,(jr)2)) ∈ [k] ∪ {⊥} .

If any of these values are ⊥, output ⊥. Otherwise output ∑q
r=1 kr.

Claim 4.25. Let x, y ∈ G such that there are exactly q ≤ k coordinates I ⊆ [d], |I| = q, such that
xi ̸= yi for all i ∈ I. Then, with probability at least 2/3, all of the following events occur:

1. For all i ∈ I, either dist(xi, yi) ≤ k and dist(xi, yi) = D(ℓi(xi), ℓi(yi)), or dist(xi, yi) > k and
D(ℓi(xi), ℓi(yi)) = ⊥;

2. The values b(i), i ∈ I, are all distinct;

3. For all i ∈ I, c(i, xi) ̸= c(i, yi).

29

Proof of claim. By assumption, for any i ∈ I, the probability that D(ℓi(xi), ℓi(yi)) fails to output
dist(xi, yi) (if this is at most k) or ⊥ (if the distance is greater than k) is at most 1/9k, so by the
union bound, the probability that the first event fails to occur is at most 1/9.

The probability that event 2 fails to occur is the probability that there exists a distinct pair
i, j ∈ I such that b(i) = b(j); by the union bound, this is at most |I|2/m ≤ k2/m ≤ 1/9.

The probability that there exists i ∈ I such that c(i, xi) = c(i, yi) is at most |I|/t ≤ k/t ≤ 1/9.
Therefore the probability that any one of these events fails to occur is at most 3/9 = 1/3.

Claim 4.26. For any x, y ∈ G such that there are exactly q ≤ k coordinates I ⊆ [d], |I| = q, such
that xi ̸= yi for all i ∈ I. Then, if all 3 events in Claim 4.25 occur, the decoder outputs dist(x, y)
unless there is a coordinate j such that dist(xj , yj) > k, in which case it outputs ⊥.

Proof of claim. We first observe that the 2q pairs P = {(b(i), c(i, xi)), (b(i), c(i, yi))}i∈I are distinct,
because each b(i) is distinct and c(i, xi) ̸= c(i, yi). First, consider pairs (b(i), c(i, xi)), (b(i), c(i, yi))
for i ∈ I. Then, since b(j) ̸= b(i) for each j ∈ I with j ̸= i, and c(i, yi) ̸= c(i, xi), we have

Z(b(i),c(i,xi)) = W (b(i),c(i,xi))(x)⊕W (b(i),c(i,xi))(y)

= 1⊕ 1[c(i, yi) = c(i, xi)]⊕

 ⊕
j ̸=i,b(j)=b(i)

1[c(j, xj) = c(i, xi)]


⊕

 ⊕
j ̸=i,b(j)=b(i)

1[c(j, yj) = c(i, xi)]


= 1⊕

 ⊕
j /∈I,b(j)=b(i)

1[c(j, xj) = c(i, xi)]⊕ 1[c(j, yj) = c(i, xi)]


= 1⊕

 ⊕
j /∈I,b(j)=b(i)

1[c(j, xj) = c(i, xi)]⊕ 1[c(j, xj) = c(i, xi)]


= 1 .

Multiplying each indicator 1[(b(j), c(j, xj)) = (b(i), c(i, xi))] by the vector ℓi(xi), and each indicator
1[(b(j), c(j, yj)) = (b(i), c(i, xi))] by the vector ℓi(yi), we obtain the following:

z(b(i),c(i,xi)) = w(b(i),c(i,xi)) = ℓi(xi) .

By similar reasoning, Z(b(i),c(i,yi)) = 1, and

z(b(i),c(i,yi)) = w(b(i),c(i,yi)) = ℓi(yi) .

Now consider any i′ ∈ [m], j′ ∈ [t] such that (i′, j′) /∈ P . If there exists no i ∈ [d], such that i′ = b(i),
then clearly W (i′,j′)(x) and W (i′,j′)(y) remain 0 and Z(i′,j′) = 0, so these entries do not contribute.
Otherwise i′ = b(i) for some i ∈ [d]. If c(i, xi) ̸= j′ ̸= c(i, yi), again the label entries are not touched
and Z(i′,j′) = 0. Finally, assume (i′, j′) = (b(i), c(i, xi)). Clearly (b(j), c(j, xj)) ̸= (b(i), c(i, xi)) for

30

any j ∈ I since (i′, j′) /∈ P ; in particular i /∈ I. Thus yi = xi by assumption. Then

Z(b(i),c(i,xi)) = W (b(i),c(i,xi))(x)⊕W (b(i),c(i,xi))(y)

=

 ⊕
j:b(j)=b(i)

1[c(j, xj) = c(i, xi)]

⊕
 ⊕

j:b(j)=b(i)
1[c(j, yj) = c(i, xi)]


=

 ⊕
j /∈I:b(j)=b(i)

1[c(j, xj) = c(i, xi)]⊕ 1[c(j, yj) = c(i, xi)]


=

 ⊕
j /∈I:b(j)=b(i)

1[c(j, xj) = c(i, xi)]⊕ 1[c(j, xj) = c(i, xi)]

 = 0 .

Since xi = yi, also Z(b(i),c(i,yi)) = 0. We may then conclude that the 2q distinct pairs P are the
only pairs (i, j) such that Z(i,j) = 1. Therefore the decoder will output∑

i∈I

D
(
w(b(i),c(i,xi)), w(b(i),c(i,yi))

)
=
∑
i∈I

D(ℓi(xi), ℓi(yi)) ,

which is dist(x, y) when each dist(xi, yi) ≤ k and ⊥ otherwise.

Suppose that x, y ∈ V (G) have distance at most k. Then the above two claims suffice to show
that the decoder will output dist(x, y) with probability at least 2/3.

Now suppose that x, y ∈ V (G) have distance greater than k. There are three cases:

1. There are at least k + 1 coordinates i ∈ [d] such that xi ̸= yi. In this case, using Proposi-
tion 4.27 below (with δ = 1

3 , u = mt, n = k + 1, k = k) yields that vector Z has at least
k+ 1 1-valued coordinates Z(i,j) with probability at least 2/3, and the decoder will correctly
output ⊥.

2. There are at most k coordinates i ∈ [d] such that xi ̸= yi, and there is some coordinate i such
that dist(xi, yi) > k. Then the above two claims suffice to show that the decoder will output
⊥ with probability at least 2/3, as desired.

3. There are at most k coordinates i ∈ [d] such that xi ̸= yi, and all coordinates satisfy
dist(xi, yi) ≤ k. Then the above two claims suffices to show that the decoder will output
dist(x, y) with probability at least 2/3.

This concludes the proof.

Proposition 4.27. For any 0 < δ < 1 and any u, k, n ∈ N, where u ≥ 9(k+1)2

δ and n > k the
following holds. Write ei ∈ Fu

2 for the ith standard basis vector. Let R1, . . . , Rn ∼ [u] be uniformly
and independently random. Then P[|eR1 + · · ·+ eRn | ≤ k] < δ, where |v| is the number of 1-valued
coordinates in v and addition is in Fu

2 .

Proof. Set t = ⌊1
3
√
δu⌋. We first prove the following claim.

Claim. For any vector e ∈ Fu
2 and S1, . . . , St ∼ [u], we have P[|e+ eS1 + · · ·+ eSt | ≤ k] < δ.

Proof. Observe that t > 1
3
√
δu − 1 ≥ k, and t ≤ 1

3
√
δu. Suppose first that |e| > k + t. Then

P[|e+ eS1 + · · ·+ eSt | ≤ k] = 0 < δ, as each of the vectors eSi can flip at most one coordinate in e
from 1 to 0. So assume now that |e| ≤ k+t. For a fixed i ∈ [t] we have P[|e+ eSi | < |e|] ≤ k+t

u ≤
2t
u ≤

31

Z(1,2) Z(1,6)Z(2,1) Z(2,4) Z(4,1)Z(4,3)

distance
sketches for x:

distance
sketches for y:

bucket 3bucket 2bucket 1 bucket 4

Z:

z:

Figure 3: Small-distance sketch for Cartesian products. Along the bottom are the distances sketches
for xi (top) and yi (bottom) for i = 1 to d. Where xi = yi, the sketches for xi and yi are equal and are
colored grey; they cancel out in Z and z. Where xi ̸= yi, the sketch for xi is in red and the sketch for
yi is in green. For i ̸= j where xi ̸= yi and xj ̸= yj , the sketches for xi, yi and xj , yj are mapped to
different buckets with high probability (i.e., b(i) ̸= b(j)) and the sketches for xi and yi are mapped to
different locations in the same bucket with high probability (i.e., c(i, xi) ̸= c(i, yi)).

2
√

δu/3
u = 2

3

√
δ√
u
. Then for A, the event that ∃i ∈ [t] : |e+eSi | < |e|, we have P[A] ≤ 1

3
√
δu· 23

√
δ√
u
< δ/2.

Let further B be the event that ∃i, j ∈ [t] : Si = Sj ; then also P[B] ≤
(t

2
) 1

u ≤
t2

2u < δ/2. If A
and B both do not occur, we have |e + eS1 + · · · + eSt | = |e| + |eS1 | + · · · + |eSt | ≥ t > k, so
P[|e+ eS1 + · · ·+ eSt | ≤ k] ≤ P[A ∪B] < δ, which proves the claim.

To prove the proposition we consider two cases. The first case is when n ≤ t. In this case, as above,
the probability that there are two distinct i, j ∈ [n] such that Ri = Rj is at most

(n
2
) 1

u ≤
(t

2
) 1

u < δ/2.
If all Ri are different then |eR1 + · · ·+ eRn | = n > k. Hence, P[|eR1 + · · ·+ eRn | ≤ k] < δ/2 < δ.

The second case is when n > t. In this case we apply the above claim with e = eR1 + · · ·+eRn−t

and S1 = Rn−t+1, . . . , St = Rn.

5 Question II. Structure: Stability is Sometimes Sufficient
Recall Question II: What structures of a problem explain the existence or non-existence of a
constant-cost protocol? Or equivalently, which structures of a hereditary graph class explain the
existence or non-existence of a constant-size PUG?

In this section, we approach the question by looking at hereditary graph classes F which satisfy
the necessary condition of having factorial speed, but do not have a constant-size PUG, and asking:
What structure of a subclass H ⊂ F determines whether it does have a constant-size PUG? We
hope to find statements of the form: “A subclass H ⊂ F admits a constant-size PUG if and only
if it has structure X”.

32

We consider examples of two types of hereditary graph classes:

Section 5.1. Geometric intersection graphs are an important type of hereditary graph classes.
These are classes graphs obtained by representing vertices as geometric objects (like lines in R2)
and connecting vertices by an edge if their objects intersect. These types of graphs are important for
both randomized communication complexity (e.g. [PS86, HHP+22, HHM23, HZ24]) and adjacency
labeling schemes (e.g. [Spi03, Fit19]) and are the subject of open problems in both fields. Keeping
in mind Question 1.9, we consider two types of geometric intersection graphs – interval graphs and
permutation graphs – which easily admit polynomial-size universal graphs, and ask what further
structure is necessary and sufficient to get constant-size PUGs instead. We find that stability is the
answer in both cases.

Section 5.2. Any hereditary subclass of bipartite graphs can be defined via a (possibly infinite) set
H of bipartite forbidden induced subgraphs. The ones obtained by finite sets H are called finitely-
defined, with the simplest example being the monogenic classes of bipartite graphs, obtained by
forbidding exactly one bipartite graph H. It is known exactly for which graphs H the family of H-
free bipartite graphs has the required condition of factorial speed, but it is not yet known whether
all the H-free bipartite graph classes with factorial speed have polynomial-size universal graphs.
We show that, for monogenic bipartite graph classes having factorial speed, stability is once again
the necessary and sufficient condition to guarantee a constant-size PUG.

5.1 Interval & Permutation Graphs

Definition 5.1 (Interval graph). A graphG is an interval graph if there exists an interval realization
ℓ, r : V (G) → R with ℓ(v) ≤ r(v) for all v ∈ V (G) so that u, v ∈ V (G) are adjacent in G if and
only if [ℓ(u), r(u)] ∩ [ℓ(v), r(v)] ̸= ∅.

The class of interval graphs admits a simple O(logn)-bit adjacency labeling scheme: Fix an
interval realization of a given n-vertex interval graph G where all endpoints of the intervals are
distinct integers in [2n] and assign to each vertex a label consisting of the two endpoints of the
corresponding interval.

Permutation graphs are another important class of geometric intersection graphs (like interval
graphs, they are a subclass of segment intersection graphs). They also admit a straightforward
O(logn)-bit adjacency labeling scheme that follows from their definition.

Definition 5.2 (Permutation Graph). A graph G is a permutation graph on n vertices if each
vertex can be identified with a number i ∈ [n], such that there is a permutation π of [n] where i, j
are adjacent if and only if i < j and π(i) > π(j).

In this section we prove Theorem 1.4 from the introduction, restated more formally:

Theorem 5.3. Let F be any hereditary subclass of interval or permutation graphs. Then F admits
a constant-size PUG if and only if F is stable.

This proof requires new structural results for interval and permutation graphs6. We show that
any stable subclass of interval graphs can be reduced to a class with bounded treewidth, and
therefore has a constant-size PUG (implied by Lemma 3.28). A consequence of our proof is that

6A weaker version of our permutation graph result (without an explicit bound on the sketch size) also follows
by our result for bounded twin-width combined with [BKTW20]. We keep our direct proof because: it gives an
explicit bound on the sketch size; it is much clearer than the twin-width result; the decomposition scheme may be of
independent interest; and it was proved independently of [GPT22], which we use for our twin-width result.

33

stable subclasses of interval graphs have bounded twin-width (which is not true for general interval
graphs [BKTW20]). For permutation graphs, we give a new decomposition scheme whose depth
can be controlled by the chain number.

We prove Theorem 5.3 separately for interval graphs (Theorem 5.8) and for permutation graphs
(Theorem 5.21) in the sections below.

5.1.1 Interval Graphs

The proof will rely on bounding the clique number of interval graphs with bounded chain number.

Lemma 5.4. Let F be a class of interval graphs with bounded clique number, i.e., there is a
constant c so that for any graph G ∈ F , the maximal clique size of G is at most c. Then F admits
a constant-size equality-based labeling scheme.

Proof. Any interval graph is chordal and the treewidth of a chordal graph is one less its clique
number. It follows that any interval graph G with clique number at most c has treewidth at most
c − 1. Graphs of treewidth c − 1 have arboricity at most O(c), and therefore, by Lemma 3.28, F
admits a constant-size equality-based labeling scheme and an adjacency sketch of size O(c).

It is not possible in general to bound the clique number of interval graphs with bounded chain
number, because there may be an arbitrarily large set of vertices realized by identical intervals,
which forms an arbitrarily large clique. Our first step is to observe that, for the purpose of designing
an equality-based labeling scheme, we can ignore these duplicate vertices (called true twins in the
literature).

Definition 5.5. For a graph G = (V,E), two distinct vertices x, y are called twins if N(x) \ {y} =
N(y) \ {x}, where N(x), N(y) are the neighbourhoods of x and y in G. Twins x and y are true
twins if they are adjacent, and false twins if they are not adjacent. The false-twin relation and
true-twin relation are equivalence relations.

A graph is true-twin-free if it does not contain any vertices x, y that are true twins, and it is
false-twin-free if it does not contain any vertices x, y that are false twins. It is twin-free if it is both
true-twin-free and false-twin-free.

Lemma 5.6. Let F be any hereditary graph class and let F ′ be either the set of true-twin-free
members of F , or the set of false-twin-free members of F . If F ′ admits an (s, k)-equality based
labeling scheme, then F admits an (s, k + 1)-equality based labeling scheme.

Proof. We prove the lemma for F ′ being the true-twin-free members of F ; the proof for the false-
twin-free members is similar. Let G ∈ F . We construct a true-twin-free graph G′ ∈ F ′ as follows.
Let T1, . . . , Tm ⊆ V (G) be the equivalence classes under the true-twin relation, so that for any i,
any two vertices x, y ∈ Ti are true twins. For each i ∈ [m], let ti ∈ Ti be an arbitrary element, and
let T = {t1, . . . , tm}. We claim that G[T] is true-twin free.

Suppose for contradiction that ti, tj are true twins in G[T]. Let x ∈ Ti, y ∈ Tj . Since ti, tj
are adjacent in G[T], they are adjacent in G. Then x is adjacent to tj since x, ti are twins. Since
tj , y are twins, x is adjacent to y. So G[Ti, Tj] is a biclique. Now suppose that z ∈ Tk for some
k /∈ {i, j}, and assume z is adjacent to x. Then z is adjacent to ti since x, ti are twins, and ti is
adjacent to tk since z, tk are twins. Since ti, tj are twins, it also holds that tj is adjacent to tk and
to z. So y is adjacent to z. Then for any z it holds that x, z are adjacent if and only if y, z are
adjacent. So x, y are true twins, for any x ∈ Ti, y ∈ Tj . But then Ti ∪ Tj is an equivalence class
under the true-twin relation, which is a contradiction.

34

Therefore, G[T] is true-twin free and a member of F , so G[T] ∈ F ′. For any x ∈ V (G), assign
the label (p(ti) | q(ti), i) where (p(ti) | q(ti)) is the label of ti in the equality-based labeling scheme
for F ′, and i ∈ [m] is the unique index such that x ∈ Ti. The decoder for F performs the following
on labels (p(ti) | q(ti), i) and (p(tj) | q(tj), j). If i = j output 1; otherwise simulate the decoder
for F ′ on labels (p(ti) | q(tj)) and (p(tj) | q(tj)). For vertices x, y in G, if x, y are true twins then
i = j and the decoder outputs 1. Otherwise, the adjacency between x and y is equivalent to the
adjacency between ti, tj in G[T], which is computed by the decoder for F ′, as desired.

The true-twin-free interval graphs with bounded chain number also have bounded clique number.

Lemma 5.7. Let G be a true-twin-free interval graph and let G contain a clique of c vertices. Then
G has chain number at least ⌊

√
c/2⌋.

Proof. Since G is interval, there is an interval realization ℓ, r : V (G) → R with ℓ(v) ≤ r(v)
for all v ∈ V (G) so that u, v ∈ V (G) are adjacent if and only if [ℓ(u), r(u)] ∩ [ℓ(v), r(v)] ̸= ∅.
We can assume without loss of generality that no two endpoints are the same. We abbreviate
i(v) = [ℓ(v), r(v)]. Let X = {x1, . . . , xc} be the c vertices that form a c-clique in G, arranged so
that ℓ(x1) < ℓ(x2) < · · · < ℓ(xc). Consider the sequence r = (r(x1), . . . , r(xc)) of right endpoints.
By the Erdős-Szekeres theorem [ES35], any sequence of at least R(k) = (k − 1)2 + 1 distinct
numbers contains either an increasing or a decreasing subsequence of length at least k. Setting
k = ⌊

√
c⌋, we have R(k) ≤ c, so there is a clique over k vertices y1, . . . , yk with ℓ(y1) < · · · < ℓ(yk)

and either r(y1) < · · · < r(yk) or r(y1) > · · · > r(yk). Graphically speaking, the intervals for
y1, . . . , yk either form a staircase or a (step) pyramid. In either case, ℓ(yk) < min{r(y1), r(yk)},
so m = (min{r(y1), r(yk)} + ℓ(yk))/2 is contained in all i(yj). We will assume the staircase case,
r(y1) < · · · < r(yk); see Figure 4. The pyramid case is similar.

ℓ(x1) r(x1)

ℓ(x2) r(x2)

ℓ(x3) r(x3)

ℓ(x4) r(x4)

ℓ(x5) r(x5)

ℓ(x6) r(x6)

ℓ(x7) r(x7)

ℓ(x8) r(x8)

ℓ(x9) r(x9)

m

y1

y2 = a1

y3

y4 = a2

y5 = a3

z1 = b1

z2

z3 = b2

z4 = b3

Figure 4: Example illustrating the notation from the proof of Lemma 5.7. The fat blue and red
intervals, a1, . . . , a3 resp. b1, . . . , b3, form an induced subgraph with chain number 3.

Now, since G is true-twin free, for every v, v′ ∈ X, there must be u ∈ V (G) with i(v)∩ i(u) = ∅
and i(v′) ∩ i(u) ̸= ∅ or vice versa, so i(u) must lie entirely to the left or entirely to the right of
i(v) or i(v′). In particular, for pair yj , yj+1 with j ∈ [k − 1], there must be zj ∈ V (G) adjacent to
exactly one of these vertices. So the endpoints of i(zj) are on the same side of m (“left” or “right”

35

of m) and the endpoint closer to m must be either between ℓ(yj) and ℓ(yj+1) or between r(yj) and
r(yj+1).

Among the k − 1 intervals i(z1), . . . , i(zk−1), at least h = ⌈(k − 1)/2⌉ are one the same side of
m. Assume the majority is on the right; the other case is similar. So for 1 ≤ j1 < · · · < jh ≤ k − 1
intervals i(zj1), . . . , i(zjh

) are all to the right of m. Define B = (b1, . . . , bh) = (zj1 , . . . , zjh
) and

A = (a1, . . . , ah) = (yj1+1, . . . , yjh+1). By definition, ℓ(b1) < r(a1) < ℓ(b2) < r(a2) < · · · < ℓ(bh) <
r(ah), so ai is adjacent to bj if and only if j ≤ i. Hence G[A,B] is isomorphic to H◦◦

h . It is easy to
check that h = ⌈(⌊

√
c⌋ − 1)/2⌉ = ⌊

√
c/2⌋.

With these preparations, the proof of the main result of this section becomes easy.
Theorem 5.8. Let F be a stable class of interval graphs. Then F admits a constant-size equality-
based adjacency labeling scheme, and hence SK(Fn) = O(1).

Proof. Since F is stable, we have ch(F) = k for some constant k. Let F ′ be the set of true-twin-free
members of F , and let G′ ∈ F ′. Then ch(G′) ≤ k, and hence the clique number of G′ is at most
4(k+ 1)2 by (contraposition of) Lemma 5.7. So F ′ is a class of interval graphs with clique number
bounded by 4(k + 1)2, and hence by Lemma 5.4, it admits a constant-size equality-based labeling
scheme (and a size O(k2) adjacency sketch). By Lemma 5.6, so does F .

Remark 5.9. We obtain an adjacency sketch of size O(k2) for interval graphs with chain number k.
There is another, less direct proof of the above theorem that uses twin-width instead of Lemma 5.6,
but does not recover this explicit bound on the sketch size. We prove in Section 4.1 that any
stable class F with bounded twin-width admits a constant-size equality-based labeling scheme.
Although interval graphs do not have bounded twin-width, some subclasses of interval graphs (e.g.
unit interval graphs) are known to have bounded twin-width [BKTW20]. Below we show that any
stable class of interval graphs has bounded twin-width.
Proposition 5.10. Let F be a stable class of interval graphs. Then F has bounded twin-width.

Proof. It is known and can easily be deduced from the definition of twin-width, that if x and y are
twins (true or false) in a graph G, then tww(G) = tww(G− x), where G− x is the graph obtained
by removing x from G.

Let G be an arbitrary graph in F and ch(F) = k. Let G′ be a twin-free induced subgraph of
G that is obtained from G by iteratively removing twins. By the above, tww(G) = tww(G′), and,
from Lemma 5.7, the clique number of G′ is at most 4(k+ 1)2. Then, by the argument in the proof
of Lemma 5.4, G′ has treewidth at most 4(k + 1)2 − 1, and therefore twin-width at most 2O(k2)

[BD23]. Since G was chosen arbitrarily, the twin-width of any graph in F is bounded by 2O(k2).

5.1.2 Permutation Graphs

We will denote by ≺ the standard partial order on R2, where (x1, x2) ≺ (y1, y2) if x1 ≤ y1 and
x2 ≤ y2 and (x1, x2) ̸= (y1, y2).

The following alternative representation of permutation graphs is well-known (although one
should note that adjacency is sometimes defined as between incomparable pairs, instead of compa-
rable ones – this is equivalent since the complement of a permutation graph is again a permutation
graph).
Proposition 5.11. For any permutation graph G there is an injective mapping ϕ : V (G) → R2

such that x, y ∈ V (G) are adjacent if and only if ϕ(x), ϕ(y) are comparable in the partial order
≺. This mapping also satisfies the property that no two vertices x, y have ϕ(x)i = ϕ(y)i for either
i ∈ [2].

36

A0 B0

B1

A1

B2A2

B3A3

B4A4

a(1)

b(1)

a(2)

b(2)

a(3)

b(3)

a(4)

b(4)

a(5)

Figure 5: The permutation graph decomposition.

We will call this the R2-representation of G. From now on we will identify vertices of G with
their R2-representation, so that a vertex x of G is a pair (x1, x2) ∈ R2. For a permutation graph G
with fixed R2-representation, any i ∈ [2], and any t1 < t2, we define

Vi(t1, t2) := {x ∈ V (G) : t1 < xi < t2} .

We need the following lemma, which gives a condition that allows us to increment the chain
number.

Lemma 5.12. For a graph G and a set A ⊂ V (G), suppose u, v ∈ V (G)\A are vertices such that u
has no neighbors in A, while v is adjacent to u and to every vertex in A. Then ch(G[A∪{u, v}]) >
ch(G[A]).

Proof. Suppose ch(G[A]) = k and let {a1, . . . , ak, b1, . . . , bk} be the vertices such that ai, bj are
adjacent if and only if i ≤ j. Then set ak+1 = u and bk+1 = v, and verify that vertices
{a1, . . . , ak+1, b1, . . . , bk+1} satisfy Definition 3.10, so ch(G[A ∪ {u, v}]) ≥ k + 1 > ch(G[A]).

A bipartite graph G = (X,Y,E) is called a chain graph if it is an induced subgraph of a half-
graph. Chain graphs are exactly the 2K2-free bipartite graphs, where 2K2 is the disjoint union of
two edges.

Proposition 5.13. For any t ∈ R, any R2-representation of a permutation graph G, and for each
i ∈ [2], G[Vi(−∞, t), Vi(t,∞)] is a chain graph.

Proof. Let V1(−∞, t) = {a(1), . . . , a(s)} and V1(t,∞) = {b(1), . . . , b(t)} where the vertices {a(i)} and
{b(i)} are sorted in increasing order in the second coordinate. Since a(i)

1 < t < b
(j)
1 for every i, j,

it holds that a(i), b(j) are adjacent if and only if a(i)
2 ≤ b

(j)
2 . To prove the statement we will show

that G[Vi(−∞, t), Vi(t,∞)] is 2K2-free. Suppose, towards a contradiction, that a(i1), a(i2), b(j1), b(j2)

induce a 2K2 in the graph, where a(i1) is adjacent to b(j1) and a(i2) is adjacent to b(j2). Assume,

37

without loss of generality, that a(i1)
2 < a

(i2)
2 . Since a(i2) is adjacent to b(j2), we have that a(i2)

2 ≤ b(j2)
2 ,

which together with the previous inequality imply that a(i1)
2 < b

(j2)
2 , and hence a(i1) is adjacent to

b(j2), a contradiction.

Any proper subclass of the class of chain graphs has a constant-size adjacency labeling scheme,
because the class of chain graphs is a minimal factorial class (see Appendix B). We give an explicit
bound on the size of the labeling scheme, so that we can get an explicit bound on the size of the
labels for permutation graphs.
Proposition 5.14. Let F be a hereditary class of chain graphs of chain number at most k. Then
F admits an adjacency labeling scheme of size O(log k).

Proof. Let G ∈ F , so that G ⊏ H◦◦
r for some r ∈ N. Then we can partition V (G) into independent

sets A and B, such that the following holds. There is a total order ≺ defined on V (G) = A ∪ B
such that for a ∈ A and b ∈ B, a, b are adjacent if and only if a ≺ b. Then we may identify each
a ∈ A and each b ∈ B with a number in [n], such that the ordering ≺ is the natural ordering on
[n].

Let A1, . . . , Ap ⊂ [n] be the set of (non-empty) maximal intervals such that each Ai ⊆ A, and
let B1, . . . , Bq ⊆ [n] be the set of (non-empty) maximal intervals such that each Bi ⊆ B. We claim
that p, q ≤ k + 1. Suppose for contradiction that p ≥ k + 2. Since A1, . . . , Ap are maximal, there
exist b1, . . . , bp−1 ∈ B such that a1 < b1 < a2 < b2 < · · · < bp−1 < ap, where we choose ai ∈ Ai

arbitrarily. But then {a1, . . . , ap−1}, {b1, . . . , bp−1} is a witness that ch(G) ≥ p − 1 ≥ k + 1, a
contradiction. A similar proof shows that q ≤ k + 1.

We construct adjacency labels for G as follows. To each x ∈ A, assign 1 bit to indicate that
x ∈ A, and append the unique number i ∈ [k + 1] such that x belongs to interval Ai. To each
y ∈ B, assign 1 bit to indicate that y ∈ B, and append the unique number j ∈ [k + 1] such that
y ∈ Bj . It holds that for x ∈ A, y ∈ B, x, y are adjacent if and only if i ≤ j. Therefore, on seeing
the labels for x and y, the decoder simply checks that x ∈ A and y ∈ B (or vice versa) and outputs
1 if i ≤ j.

Definition 5.15 (Permutation Graph Decomposition; see Figure 5). For a permutation graph G
with a fixed R2-representation, where G,G are both connected, we define the following partition.
Let a(1) be the vertex with minimum a

(1)
2 coordinate, and let b be the vertex with maximum b2

coordinate. If b1 < a
(1)
1 , perform the following. Starting at i = 1, construct the following sequence:

(1) Let b(i) be the vertex with maximum b
(i)
2 coordinate among vertices with b

(i)
1 > a

(i)
1 .

(2) For i > 1, let a(i) be the vertex with minimum a
(i)
1 coordinate among vertices with a(i)

2 < b
(i−1)
2 .

Let β be the smallest number such that b(β+1) = b(β) and α the smallest number such that a(α+1) =
a(α). Define these sets:

For 2 ≤ i ≤ α, define Ai := {a(i+1)} ∪
(
V1(a(i+1)

1 , a
(i)
1) ∩ V2(b(i−1)

2 , b
(i)
2)
)

For 2 ≤ i ≤ β, define Bi := {b(i)} ∪
(
V1(a(i)

1 , a
(i−1)
1) ∩ V2(b(i−1)

2 , b
(i)
2)
)

A1 := {a(2)} ∪
(
V1(a(2)

1 , a
(1)
1) ∩ V2(a(1)

2 , b
(1)
2)
)

A0 := {a(1)} ∪
(
V1(a(1)

1 , b
(1)
1) ∩ V2(a(1)

2 , a
(2)
2)
)

B1 := {b(1)} ∪
(
V1(a(1)

1 ,∞) ∩ V2(a(2)
2 , b

(1)
2)
)

B0 :=
(
V1(b(1)

1 ,∞) ∩ V2(a(1)
2 , a

(2)
2)
)
.

38

If b1 > a
(1)
1 , define the map ϕ : R2 → R2 as ϕ(x) = (−x1, x2) and apply ϕ to each vertex in the

R2-representation of G; it is easily seen that the result is an R2-representation of G. Then apply
the above process to G.

It is necessary to ensure that b(1) is well-defined, i.e., that the set of points x with x1 > a
(1)
1 is

non-empty, so that the maximum is taken over a non-empty set.

Proposition 5.16. If G is connected then there exists x ∈ V (G) such that x1 > a
(1)
1 .

Proof. Suppose otherwise. Then every x ∈ V (G) distinct from a(1) has x2 > a
(1)
2 by definition,

and x1 < a
(1)
1 . But then x is not adjacent to a(1). So a(1) has no neighbors, contradicting the

assumption that G is connected.

Proposition 5.17. If G is connected and b1 < a
(1)
1 , then b(1) ̸= b(2).

Proof. Suppose b(2) = b(1). Then b
(1)
2 = b

(2)
2 is maximum among all vertices x with x1 > a

(2)
1 , so

b1 < a
(2)
1 . But all vertices x with x1 < a

(2)
1 satisfy x2 > b

(1)
2 = b

(2)
2 , so they cannot have an edge to

V1(a(2)
1 ,∞). Both V1(a(2)

1 ,∞) and V1(−∞, a(2)
1) are non-empty, so the graph is not connected.

Proposition 5.18. If G is connected, the sets {Ai}αi=0, {Bi}βi=0 form a partition of V (G).

Proof. Let C = {x : x1 ≥ a
(α)
1 , x2 ≤ b

(β)
2 }. There are no vertices x with x1 > a

(α)
1 and x2 > b

(β)
2 ,

since this would contradict the definition of b(β); likewise, there are no vertices x with x1 < a
(α)
1

and x2 < b
(β)
2 , since this would contradict the definition of a(α). Now suppose x1 < a

(α)
1 , x2 > b

(β)
2 .

Then x has no edge to any vertex y ∈ C. Then the set of vertices with x1 < a
(α)
1 , x2 > b

(β)
2 must

be empty, otherwise V (G) is partitioned into C, V (G) \ C where V (G) \ C ̸= ∅ has no edges to C.
Then we may assume that every vertex x is in C; we will show that it belongs to some Ai or

Bi. We may assume that x has distinct x1, x2 coordinates from all a(i), b(i), otherwise we would
have x = b(i) or x = a(i), so x is an element of some Ai or Bi.

Let i be the smallest number such that x2 < b
(i)
2 . Suppose i ≥ 2. By definition it must be

that x1 > a
(i+1)
1 . If x1 > a

(i−1)
1 , then x2 < b

(i−1)
2 by definition, which contradicts the choice of

i. So it must be that a(i+1)
1 < x1 < a

(i−1)
1 and b

(i−1)
2 < x2 < b

(i)
2 . The set of points that satisfy

this condition is contained in Ai ∪ Bi. Now suppose i = 1. Again, it must be that x1 > a
(2)
1 by

definition, and also a(1)
2 < x2 < b

(1)
2 . The points satisfying these conditions are easily seen to be

partitioned by A0, B0, A1, B1.

For any subset A ⊂ V (G) and any two vertices u, v ∈ V (G) \ A, we will say that u, v cover A
if u has no edge into A and v is adjacent to u and every vertex in A. Then by Lemma 5.12, if u, v
cover A, then ch(G) > ch(G[A]).

Proposition 5.19. If G is connected and b1 < a
(1)
1 , then for each D ∈ {Ai}αi=0 ∪ {Bi}βi=0,

ch(G[D]) < ch(G).

Proof. Each x ∈ B0 satisfies x1 > b
(1)
1 > a

(1)
1 and a

(1)
2 < x2 < a

(2)
2 < b

(1)
2 , so b(1) has no neighbors

in B0 while a(1) is adjacent to b(1) and all vertices in B0, so a(1), b(1) cover B0.
Each x ∈ B1 satisfies x1 > a

(1)
1 > b

(2)
1 > a

(2)
1 and a(1)

2 < x2 < b
(1)
2 < b(2), so b(2) has no neighbors

in B1 and a(2) is adjacent b(2) and all vertices in B1, so a(2), b(2) cover B1.
Each x ∈ A0 satisfies b(1)

1 > x1 ≥ a
(1)
1 > a

(2)
1 and x2 < a

(2)
2 < b

(1)
2 , so a(2) has no neighbors in

A0 and b(1) is adjacent to a(2) and all vertices in A0, so a(2), b(1) cover A0.

39

Next we show that for any 1 ≤ i ≤ α, Ai is covered by a(i), b(i). By definition each x ∈ Ai

satisfies x1 < a
(i)
1 < b

(i)
1 and a

(i)
2 < b

(i−1)
2 < x2 < b

(i)
2 , so a(i) has no neighbors in Ai while b(i) is

adjacent to a(i) and all vertices in Ai.
Finally, we show that for any 2 ≤ i ≤ β, Bi is covered by a(i), b(i−1). By definition each x ∈ Bi

satisfies a(i)
1 < x1 < a

(i−1)
1 < b

(i−1)
1 and a

(i)
2 < b

(i−1)
2 < x2, so b(i−1) has no neighbors in Bi while

a(i) is adjacent to b(i−1) and all vertices in Bi.

Lemma 5.20. Let G ∈ P be any permutation graph. Then one of the following holds:

(1) G is disconnected;

(2) G is disconnected;

(3) There is a partition V (G) = V1 ∪ · · · ∪ Vm such that:

• ch(G[Vi]) < ch(G) for each i ∈ [m], or ch(G[Vi]) < ch(G) for each i ∈ [m];
• For each i ∈ [m], there is a set J(i) ⊂ {Vt}t∈[m] of at most 4 parts such that for each
W ∈ J(i), G[Vi,W] is a chain graph; and

• One of the following holds:
– For all i ∈ [m] and W ∈ {Vt}t∈[m] \ J(i), G[Vi,W] is a co-biclique; or,
– For all i ∈ [m] and W ∈ {Vt}t∈[m] \ J(i), G[Vi,W] is a biclique.

Proof. Assume G,G are connected. Perform the decomposition of Definition 5.15. We will let
m = α+ β + 2 and let V1, . . . , Vm be the sets {Ai}αi=0 ∪ {Bi}βi=0.

Case 1: b1 < a
(1)
1 . Then V1, . . . , Vm is a partition due to Proposition 5.18, and ch(G[Vi]) <

ch(G), i ∈ [m] holds by Proposition 5.19. For Vi = A1 we define the corresponding set J(i) = {A0,
B0, B1, B2}. Since all sets Vi, Vj with i ̸= j are separated by a horizontal line or a vertical line,
it holds by Proposition 5.13 that G[Vi, Vj] is a chain graph. Now let W /∈ J(i). Observe that all
x ∈W must satisfy x1 < a

(2)
1 and x2 > b

(1)
2 , so x is not adjacent to any vertex in A1. So G[A1,W]

is a co-biclique.
Now for Vi ∈ {A0, B0, B1}, we let J(i) = {A0, B0, A1, B1} \ {Vi}. Similar arguments as above

hold in this case to show that G[Vi,W] is a co-biclique for each W /∈ J(i).
For Vi = Aj for some j > 1, we define J(i) = {Bj , Bj+1}. For any W /∈ J(i) with W ̸= Aj , it

holds either that all x ∈ W satisfy x1 < a
(i+1)
1 and x2 > b

(j)
2 , or that all x ∈ W satisfy x1 ≥ a

(j)
1

and x2 ≤ b(j−1)
2 ; in either case x is not adjacent to any vertex in Aj , so G[Aj ,W] is a co-biclique.

For Vi = Bj for some j > 1, we define J(i) = {Aj , Aj−1}. Similar arguments to the previous
case show that G[Bj ,W] is a co-biclique for each W /∈ J(i),W ̸= Bj . This concludes the proof for
case 1.

Case 2: b1 > a
(1)
1 . In this case we transform the R2-representation of G using ϕ to obtain an

R2-representation of G and apply the arguments above to obtain V1, . . . , Vm such that ch(G[Vi]) <
ch(G) for each i ∈ [m], and each Vj ∈ {Vt}t∈[m] \ J(i) satisfies that G[Vi, Vj] is a co-biclique; then
G[Vi, Vj] is a biclique as desired.

Theorem 5.21. Let F be a stable subclass of permutation graphs. Then F admits a constant-size
equality-based labeling scheme, and hence SK(F) = O(1).

Proof. Since F is stable, we have ch(F) = k for some constant k.
We apply an argument similar to Lemma 5.25. For any G ∈ F , we construct a decomposition

tree where each node is associated with either an induced subgraph of G, or a bipartite induced

40

subgraph of G, with the root node being G itself. For each node G′, we decompose G′ into children
as follows,

1. If G′ is a chain graph, the node is a leaf node.

2. If G′ is disconnected, call the current node a D-node, and let the children G1, . . . , Gt be the
connected components of G′.

3. If G′ is disconnected, call the current node a D-node, and let C1, . . . , Ct ⊆ V (G′) be such that
G

′[Ci], i ∈ [t] are the connected components ofG′. Define the children to beGi = G[Ci], i ∈ [t].

4. Otherwise construct V1, . . . , Vm as in Lemma 5.20 and let the children be G[Vi] for each i ∈ [m]
and G[Vi, Vj] for each i, j such that i ∈ [m] and Vj ∈ J(i). Call this node a P -node.

We will show that this decomposition tree has bounded depth. As in the decomposition for
bipartite graphs, on any leaf-to-root path there cannot be two adjacent D-nodes or D-nodes. As
in the proof of Claim 5.48, if G′′ is associated with a D-node and its parent G′ is associated with a
D-node, and G′′′ is any child of G′′, then ch(G′) > ch(G′′′). On the other hand, if G′′ is associated
with a D-node and its parent is associated with a D-node, then ch(G′) > ch(G′′′).

Now consider any P -node associated with G′, with child G′′. By Lemma 5.20, it holds that
either G′′ is a bipartite induced subgraph of G′ that is a chain graph, or G′′ has ch(G′′) < ch(G′)
or ch(G′′) < ch(G′). It is easy to verify that ch(G) ≤ ch(G) + 1 for any graph G. Now, since
every sequence G′′′, G′′, G′ of inner nodes along the leaf-to-root path in the decomposition tree
must satisfy ch(G′′′) < ch(G′) or ch(G′′′) < ch(G′) and ch(G) ≤ k+ 1, it must be that the depth of
the decomposition tree is at most 2(2k + 1).

Now we construct an equality-based labeling scheme. For a vertex x, we construct a label at
each node G′ inductively as follows.

1. If G′ is a leaf node, it is a chain graph with chain number at most k. We may assign a label
of size O(log k) due to Proposition 5.14.

2. If G′ is a D-node with children G1, . . . , Gt, append the pair (D | i) where the equality code i
is the index of the child Gi that contains x, and recurse on Gi.

3. If G′ is a D-node with children G1, . . . , Gt, append the pair (D | i) where the equality code i
is the index of the child Gi that contains x, and recurse on Gi.

4. If G′ is a P -node, let V1, . . . , Vm be partition of V (G′) as in Lemma 5.20, and for each i let
J(i) be the (at most 4) indices such that G′[Vi, Vj] is a chain graph when j ∈ J(i). Append
the tuple

(P, b, ℓ1(x), ℓ2(x), ℓ3(x), ℓ4(x) | i, j1, j2, j3, j4)
where b indicates whether all G′[Vi, Vj], j /∈ J(i) are bicliques or co-bicliques; the equality
code i is the index such that x ∈ Vi, the equality codes j1, . . . , j4 are the elements of J(i), and
ℓs(x) is the O(log k)-bits adjacency label for x in the chain graph G′[Vi, Vjs]. Then, recurse
on the child G′[Vi].

Given labels for x and y, which are sequences of the tuples above, the decoder iterates through the
pairs and performs the following. On pairs (D, i), (D, j) the decoder outputs 0 if i ̸= j, otherwise it
continues. On pairs (D, i), (D, j), the decoder outputs 1 if i ̸= j, otherwise it continues. On tuples

(P, b, ℓ1(x), ℓ2(x), ℓ3(x), ℓ4(x) | i, j1, j2, j3, j4)
(P, b, ℓ1(y), ℓ2(y), ℓ3(y), ℓ4(y) | i′, j′

1, j
′
2, j

′
3, j

′
4) ,

41

the decoder continues to the next tuple if i = i′. Otherwise, the decoder outputs 1 if i /∈ {j′
1, . . . , j

′
4}

and i′ /∈ {j1, . . . , j4} and b indicates that G′[Vi, Vj] are bicliques for j /∈ J(i); it outputs 0 if b
indicates otherwise. If i = j′

s and i′ = jt then the decoder outputs the adjacency of x, y using
the labels ℓt(x), ℓs(y). On any tuple that does not match any of the above patterns, the decoder
outputs 0.

Since the decomposition tree has depth at most 2(2k + 1), each label consists of O(k) tuples.
Each tuple contains at most O(log k) prefix bits (since adjacency labels for the chain graph with
chain number at most k have size at most O(log k)) and at most 5 equality codes. So this is an
(O(k log k), O(k))-equality-based labeling scheme.

The correctness of the labeling scheme follows from the fact that at any node G′, if x, y belong
to the same child of G′, the decoder will continue to the next tuple. If G′ is the lowest common
ancestor of x, y in the decomposition tree, then x and y are adjacent in G if and only if they are
adjacent in G′. If G′ is a D- or D-node then adjacency is determined by the equality of i, j in the
tuples (D | i), (D | j) or (D | i), (D | j). If G′ is a P -node and i /∈ J(i′) (equivalently, i′ /∈ J(i)) then
adjacency is determined by b. If i ∈ J(i′) (equivalently, i′ ∈ J(i)) then i = j′

s and i′ = jt for some
s, t, and the adjacency of x, y is equivalent to their adjacency in G[Vi, Vi′] = G[Vj′

s
, Vjt], which is a

chain graph, and it is determined by the labels ℓt(x), ℓs(y).

Remark 5.22. We get an explicit O(k log k) bound on the size of the adjacency sketch in terms of
the chain number k, due to Proposition 3.23; this explicit bound would not arise from the alternate
proof that goes through the twin-width (proper subclasses of permutation graphs have bounded
twin-width [BKTW20], so we could apply Theorem 4.1).

5.2 Monogenic Bipartite Graphs

As explained in Section 3.2, any constant-cost communication problem is equivalent to the problem
of deciding adjacency in a hereditary class of bipartite graphs. In this section we answer Question 1.8
for the hereditary classes of bipartite graphs which have at most factorial speed and are defined by
a single forbidden induced bipartite subgraph. The following theorem is a formal restatement of
Theorem 1.5 from the introduction:

Theorem 5.23. Let H be a bipartite graph such that the class of H-free bipartite graphs is factorial.
Then any hereditary subclass F of the H-free bipartite graphs has a constant-size PUG if and only
if F is stable.

To prove this theorem, we require new structural results for some classes of bipartite graphs.
Previous work [All09, LZ17] has shown that a class of H-free bipartite graphs is factorial only when
H is an induced subgraph of P7, S1,2,3, or one of the infinite set {F ∗

p,q}p,q∈N (defined in Section 5.2.2).
We construct a new decomposition scheme for the F ∗

p,q-free graphs whose depth is controlled by the
chain number, and we show that the chain number controls the depth of the decomposition scheme
from [LZ17] for P7-free graphs.

As a result, we get a poly(n)-size universal graph for any stable subclass of the P7-free bipartite
graphs. The P7-free bipartite graphs form a factorial class, but existence of a poly(n)-size universal
graph for this class is not known. We take this as evidence that, independent of randomized
communication, the study of stable graph classes might allow progress on the IGQ.

We remark that, under a conjecture of [LZ17], if our theorem was proved for the classes of
bipartite graphs obtained by excluding only two graphs H1, H2, it would establish that stability
is characteristic of the constant-PUG factorial classes of bipartite graphs that are obtained by
excluding any finite set of induced subgraphs.

42

5.2.1 Decomposition Scheme for Bipartite Graphs

In this section we define a decomposition scheme for bipartite graphs that we will use to establish
constant-size adjacency sketches for the stable subclasses of factorial monogenic classes of bipartite
graph.

Definition 5.24 ((Q, k)-decomposition tree). Let G = (X,Y,E) be a bipartite graph, k ≥ 2, and
let Q be a hereditary class of bipartite graphs. A graph G admits a (Q, k)-decomposition tree of
depth d if there is a tree of depth d of the following form, with G as the root. Each node of the
tree is a bipartite graph G′ = G[X ′, Y ′] for some X ′ ⊆ X,Y ′ ⊆ Y , labelled with either L,D,D, or
P as follows

(1) L (leaf node): The graph G′ belongs to Q.

(2) D (D-node): The graph G′ is disconnected. There are sets X ′
1, . . . , X

′
t ⊆ X ′ and Y ′

1 , . . . , Y
′

t ⊆
Y ′ such that G[X ′

1, Y
′

1], . . . , G[X ′
t, Y

′
t] are the connected components of G′. The children of

this decomposition tree node are G[X ′
1, Y

′
1], . . . , G[X ′

t, Y
′

t].

(3) D (D-node): The graph G′ is disconnected. There are sets X ′
1, . . . , X

′
t ⊆ X ′ and Y ′

1 , . . . , Y
′

t ⊆
Y ′ such that G[X ′

1, Y
′

1], . . . , G[X ′
t, Y

′
t] are the connected components of G′. The children of

this decomposition tree node are G[X ′
1, Y

′
1], . . . , G[X ′

t, Y
′

t].

(4) P (P -node): The vertex set ofG′ is partitioned into at most 2k non-empty setsX ′
1, X

′
2, . . . , X

′
p ⊆

X ′ and Y ′
1 , Y

′
2 , . . . , Y

′
q ⊆ Y ′, where p ≤ k, q ≤ k. The children of this decomposition tree node

are G[X ′
i, Y

′
j], for all i ∈ [p], j ∈ [q]. We say that the P -node G′ is specified by the partitions

X ′
1, X

′
2, . . . , X

′
p and Y ′

1 , Y
′

2 , . . . , Y
′

q .

Lemma 5.25. Let k ≥ 2 and d ≥ 1 be natural constants, and let Q be a class of bipartite graphs
that admits a constant-size equality-based adjacency labeling scheme. Let F be a class of bipartite
graphs such that each G ∈ F admits a (Q, k)-decomposition tree of depth at most d. Then F admits
a constant-size equality-based adjacency labeling scheme.

Proof. Let G = (X,Y,E) ∈ F . We fix a (Q, k)-decomposition tree of depth at most d for G. For
each node v in the decomposition tree we write Gv for the induced subgraph of G associated with
node v. Each leaf node v has Gv ∈ Q. For some constants s and r, we fix an (s, r)-equality-based
adjacency labeling scheme for Q, and for each leaf node v, we denote by ℓ′v the function that assigns
labels to the vertices of Gv under this scheme.

For each vertex x we will construct a label ℓ(x) that consists of a constant number of tuples (as
in Remark 3.22), where each tuple contains one prefix of at most two bits, and at most two equality
codes. First, we add to ℓ(x) a tuple (α(x) | −), where α(x) = 0 if x ∈ X, and α(x) = 1 if x ∈ Y .
Then we append to ℓ(x) tuples defined inductively. Starting at the root of the decomposition tree,
for each node v of the tree where Gv contains x, we add tuples ℓv(x) defined as follows. Write
X ′ ⊆ X,Y ′ ⊆ Y for the vertices of Gv.

• If v is a leaf node, then Gv ∈ Q, and we define ℓv(x) = (L | −), ℓ′v(x).

• If v is a D-node then Gv is disconnected, with sets X ′
1, . . . , X

′
t ⊆ X ′, Y ′

1 , . . . , Y
′

t ⊆ Y such
that the children v1, . . . , vt are the connected components Gv[X ′

1, Y
′

1], . . . , Gv[X ′
t, Y

′
t] of Gv.

We define ℓv(x) = (D | j), ℓvj (x), where j ∈ [t] is the unique index such that x belongs to
the connected component Gv[X ′

j , Y
′

j], and ℓvj (x) is the inductively defined label for the child
node vj .

43

• If v is a D-node then Gv is disconnected, with sets X ′
1, . . . , X

′
t ⊆ X ′, Y ′

1 , . . . , Y
′

t ⊆ Y such that
Gv[X ′

1, Y
′

1], . . . , Gv[X ′
t, Y

′
t] are the connected components of Gv, and the children v1, . . . , vt of

v are the graphs Gv[X ′
1, Y

′
1], . . . , Gv[X ′

t, Y
′

t]. We define ℓv(x) = (D | j), ℓvj (x), where j ∈ [t]
is the unique index such that x belongs to Gv[X ′

j , Y
′

j], and ℓvj (x) is the inductively defined
label for the child node vj .

• If v is a P -node then let X ′
1, . . . , X

′
p ⊆ X ′, Y ′

1 , . . . , Y
′

q ⊆ Y ′ be the partitions of X ′, Y ′ with
p, q ≤ k. For each (i, j) ∈ [p] × [q], let vi,j be the child node of v corresponding to the
subgraph Gv[X ′

i, Y
′

j]. If x ∈ X, then there is a unique i ∈ [p] such that x ∈ X ′
i, and we define

ℓv(x) = (P | i, q), ℓvi,1(x), . . . , ℓvi,q (x), where ℓvi,j (x) is the label assigned to x at node vi,j . If
x ∈ Y , then we define ℓv(x) = (P | i, p), ℓv1,i(x), . . . , ℓvp,i(x), where i ∈ [q] is the unique index
such that x ∈ Y ′

i .

First, we will estimate the size of the label ℓ(x) produced by the above procedure. For every leaf
node v, the label ℓv(x) of x is a tuple consisting of an s-bit prefix and r equality codes. Let f(i) be
the maximum number of tuples added to ℓ(x) by a node v at level i of the decomposition tree, where
the root node belongs to level 0. Then, by construction, f(i) ≤ 1 + k · f(i + 1) and f(d − 1) = 1,
which implies that the total number of tuples in ℓ(x) does not exceed f(0) ≤ kd. Since every tuple
contains a prefix with at most s′ = max{2, s} bits, and at most r′ = max{2, r} equality codes, we
have that the label ℓ(x) contains a prefix with at most s′kd bits, and at most r′kd equality codes.

We will now show how to use the labels to define an equality-based adjacency decoder. Let
x and y be two arbitrary vertices of G. The decoder first checks the first tuples (α(x) | −) and
(α(y) | −) of the labels ℓ(x) and ℓ(y) respectively, to ensure that x, y are in different parts of G and
outputs 0 if they are not. We may now assume x ∈ X, y ∈ Y . The remainder of the labels are of
the form ℓv(x) and ℓv(y), where v is the root of the decomposition tree.

• If the labels ℓv(x), ℓv(y) are of the form (L | −), ℓ′v(x) and (L | −), ℓ′v(y), then the decoder
simulates the decoder for the labeling scheme for Q, on inputs ℓ′v(x), ℓ′v(y), and outputs the
correct adjacency value.

• If the labels ℓv(x), ℓv(y) are of the form (D | i), ℓvi(x) and (D | j), ℓvj (y), the decoder outputs 0
when i ̸= j (i.e., x, y are in different connected components of Gv), and otherwise it recurses
on ℓvi(x), ℓvi(y).

• If the labels ℓv(x), ℓv(y) are of the form (D | i), ℓvi(x) and (D | j), ℓvj (y), the decoder outputs
1 when i ̸= j (i.e., x, y are in different connected components of Gv and therefore they are
adjacent in Gv), and otherwise it recurses on ℓvi(x), ℓvi(y).

• If the labels ℓv(x), ℓv(y) are of the form (P | i, q), ℓvi,1(x), . . . , ℓvi,q (x) and (P | j, p), ℓv1,j (y),
. . . , ℓvp,j (y) the decoder recurses on ℓvi,j (x) and ℓvi,j (y).

It is routine to verify that the decoder will output the correct adjacency value for x, y.

Remark 5.26 ((Q, k)-tree for general graphs). A similar decomposition scheme can be used for
non-bipartite graph classes; we do this for permutation graphs in Section 5.1.2.

5.2.2 Monogenic Classes of Bipartite Graphs

Let H be a finite set of bipartite graphs. It is known [All09] that if the class of H-free bipartite
graphs is at most factorial, then H contains a forest and a graph whose bipartite complement is
a forest. The converse was conjectured in [LZ17], where it was verified for monogenic classes of

44

bipartite graphs. More specifically, it was shown that, for a colored bipartite graph H, the class
of H-free bipartite graphs is at most factorial if and only if both H and its bipartite complement
is a forest. It is not hard to show that a colored bipartite graph H is a forest and its bipartite
complement is a forest if and only if H is an induced subgraph of S1,2,3, P7, or one of the graphs
F ∗

p,q, p, q ∈ N defined below.

S1,2,3 P7 F ∗
3,5

Figure 6: The bipartite graphs from Definition 5.27

Definition 5.27 (S1,2,3, P7, F ∗
p,q). See Figure 6 for an illustration.

(1) S1,2,3 is the (colored) bipartite graph obtained from a star with three leaves by subdividing
one of its edges once and subdividing another edge twice.

(2) P7 is the (colored) path on 7 vertices.

(3) F ∗
p,q is the colored bipartite graph with vertex color classes {a, b} and {a1, . . . , ap, c, b1, . . . , bq, d}.

The edges are {(a, ai) | i ∈ [p]}, {(b, bj) | j ∈ [q]}, and (a, c), (b, c).

Combining results due to Allen [All09] (for the S1,2,3 and F ∗
p,q cases) and a result of Lozin &

Zamaraev [LZ17] (for the P7 case), we formally state
Theorem 5.28 ([All09, LZ17]). Let H be a colored bipartite graph, and let F be the class of H-free
bipartite graphs. If F has at most factorial speed, then F is a subclass of either the S1,2,3-free
bipartite graphs, the P7-free bipartite graphs, or the F ∗

p,q-free bipartite graphs, for some p, q ∈ N.

By the above result, in order to establish Theorem 5.23, it suffices to consider the maximal
monogenic factorial classes of bipartite graphs defined by the forbidden induced subgraphs S1,2,3,
P7, F ∗

p,q.

5.2.3 S1,2,3-Free Bipartite Graphs

In this section, we derive Theorem 5.23 for the class of S1,2,3-free bipartite graphs. It is known
that the class of S1,2,3-free bipartite graphs has bounded clique-width [LV08], and hence it has also
bounded twin-width [BKTW20]. Therefore the following theorem follows immediately from our
result for graph classes of bounded twin-width (Theorem 4.1).
Theorem 5.29. Let F be a stable class of S1,2,3-free bipartite graphs. Then F admits a constant-
size equality-based adjacency labeling scheme, and hence SK(Fn) = O(1).

5.2.4 F ∗
p,q-Free Bipartite Graphs

In this section, we prove Theorem 5.23 for classes of F ∗
p,q-free bipartite graphs by developing a

constant-size equality-based adjacency labeling scheme for stable classes of F ∗
p,q-free bipartite graphs

via a sequence of labeling schemes for special subclasses each generalizing the previous one.
We denote by Fp,q the bipartite graph with parts {a, b} and {c, a1, . . . , ap, b1, . . . , bq}, and with

edges (a, c), (b, c), {(a, ai) | i ∈ [p]}, {(b, bi) | j ∈ [q]}. We also denote by Tp the bipartite graph on

45

c

a

a1a2a3

b

b1 b2 b3 b4 b5 d

F ∗
3,5

c

a

a1a2a3

b

b1 b2 b3 b4 b5

F3,5

a

a1a2a3

b

b1 b2 b3

T3

Figure 7: The bipartite graphs considered in Section 5.2.4.

vertex sets {a, b}, {a1, . . . , ap, b1, . . . , bp}, where (a, ai) and (b, bi) are edges for each i ∈ [p]. So Tp

is the disjoint union of two stars with p+ 1 vertices.

Definition 5.30. For q, s ∈ N we denote by Zq,s the bipartite graph (X,Y,E) with |X| = q, |Y | =
qs, where X = {x1, . . . , xq}, Y is partitioned into q sets Y = Y1 ∪ . . . ∪ Yq each of size s, and for
every i ∈ [q]:

(1) xi is adjacent to all vertices in Yj for all 1 ≤ j ≤ i, and

(2) xi is adjacent to no vertices in Yj for all i < j ≤ q.

Note that Zq,s is obtained from H◦◦
q by duplicating every vertex in one of the parts s− 1 times. In

particular, H◦◦
q is and induced subgraph of Zq,s

We start with structural results and an equality-based labeling scheme for one-sided Tp-free bipartite
graphs. A colored bipartite graph G = (X,Y,E) is one-sided Tp-free if it does not contain Tp as an
induced subgraph such that the centers of both stars belong to X. Note that any Tp-free bipartite
graph is also a one-sided Tp-free graph.

Proposition 5.31. Let G = (X,Y,E) be any one-sided Tp-free bipartite graph and let u, v ∈ X
satisfy deg(u) ≤ deg(v). Then |N(u) ∩N(v)| > |N(u)| − p.

Proof. For contradiction, assume |N(u) ∩ N(v)| ≤ |N(u)| − p so that |N(u) \ N(v)| ≥ p. Then
since deg(v) ≥ deg(u) it follows that |N(v) \ N(u)| ≥ p. But then Tp is induced by {u, v} and
(N(u) \N(v)) ∪ (N(v) \N(u)).

Proposition 5.32. Suppose S1, . . . , St ⊆ [n] each have |Si| ≥ n−p where n > pt. Then
∣∣∣⋂t

j=1 Sj

∣∣∣ ≥
n− pt.

Proof. Let R be the set of all i ∈ [n] such that for some Sj , i /∈ Sj . Then

|R| ≤
t∑

j=1
(n− |Sj |) ≤

t∑
j=1

p = pt ,

so
∣∣∣⋂t

j=1 Sj

∣∣∣ ≥ n− |R| ≥ n− pt.
Lemma 5.33. Fix any constants k, q, p such that k ≥ qp + 1 and let G = (X,Y,E) be any one-
sided Tp-free bipartite graph. Then there exists m ≥ 0 and partitions X = A0 ∪ A1 ∪ . . . ∪ Am and
Y = B1 ∪ . . . ∪Bm ∪Bm+1, where Ai ̸= ∅, Bi ̸= ∅ for every i ∈ [m], such that the following hold

(1) |Bi| ≥ k, for all i ∈ [m].

(2) For every j ∈ {0, 1, . . . ,m}, every x ∈ Aj has less than k neighbours in
⋃

i≥j+1Bi.

46

(3) For every i, j, 1 ≤ i ≤ j ≤ m, every x ∈ Aj has more than |Bi| − p neighbours in Bi.

(4) If m ≥ q, then Zq,k−qp is an induced subgraph of G.

Proof. Let A0 be the set of vertices in X that have less than k neighbours. If A0 = X, then m = 0,
A0, and B1 = Y satisfy the conditions of the lemma. Otherwise, we construct the remaining parts
of partitions using the following procedure. Initialize X ′ = X \A0, Y

′ = Y , and i = 1.

1. Let ai be a vertex in X ′ with the least number of neighbours in Y ′.

2. Let Bi be the set of all neighbors of ai in G[X ′, Y ′].

3. Let Ai be the set of vertices in X ′ with degree less than k in G[X ′, Y ′ \ Bi]. Note that Ai

contains ai.

4. X ′ ← X ′ \Ai, Y ′ ← Y ′ \Bi.

5. If X ′ = ∅, then Bi+1 = Y ′, let m = i, and terminate the procedure; Otherwise increment i
and return to step 1.

Conditions (1) and (2) follow by definition. Next we will prove condition (3) by showing that for
every 1 ≤ i ≤ j ≤ m, every x ∈ Aj has more than |Bi| − p neighbours in Bi. Suppose, towards
a contradiction, that |N(x) ∩ Bi| ≤ |Bi| − p. Consider X ′, Y ′ as in round i of the construction
procedure, so Bi is the neighbourhood of ai in G[X ′, Y ′]. Then x has degree at least that of ai in
G[X ′, Y ′], and hence the conclusion holds by Proposition 5.31.

Finally, to prove condition (4) we will show that for any q ≤ m there exist sets B′
1 ⊆

B1, . . . , B
′
q ⊆ Bq so that the vertices {a1, . . . , aq} and the sets B′

1, . . . , B
′
q induce Zq,k−pq. First,

observe that by construction for every 1 ≤ i < j ≤ m, ai has no neighbours in Bj . Now, let i ∈ [m],
then by condition (3), for all i ≤ j ≤ m it holds that |N(aj) ∩Bi| > |Bi| − p. Since |Bi| ≥ k > pq,
it holds by Proposition 5.32 that∣∣∣∣∣∣Bi ∩

q⋂
j=i

N(aj)

∣∣∣∣∣∣ ≥ |Bi| − pq ≥ k − pq .

We define B′
i = Bi ∩

⋂q
j=iN(aj). Then for each i ∈ [m] it holds that ai is adjacent to all vertices

in B′
j for all 1 ≤ j ≤ i, but ai is adjacent to no vertices in B′

j for i < j ≤ m. Hence the vertices
{a1, . . . , aq} and the sets B′

1, . . . , B
′
q induce Zq,k−pq, which proves condition (4) and concludes the

proof of the lemma.

Lemma 5.34. Let p ∈ N and let T be a stable class of one-sided Tp-free bipartite graphs. Then T
admits a constant-size equality-based adjacency labeling scheme, and hence SK(Tn) = O(1).

Proof. Since T is stable, it does not contain C◦◦ as a subclass. Let q be the minimum number such
that H◦◦

q ̸∈ T , and let G = (X,Y,E) be an arbitrary graph from T .
Let k = qp + 1 and let X = A0 ∪ A1 ∪ . . . ∪ Am and Y = B1 ∪ . . . ∪ Bm ∪ Bm+1 be partitions

satisfying the conditions of Lemma 5.33. Since G does not contain H◦◦
q as an induced subgraph, it

holds that m < q.
We construct the labels for the vertices of G as follows. For a vertex x ∈ X we define ℓ(x) as a

label consisting of several tuples. The first tuple is (0, i | −), where i ∈ {0, 1, . . . ,m} is the unique
index such that x ∈ Ai. This tuple follows by i tuples (− | yj

1, y
j
2, . . . , y

j
pj

), j ∈ [i], where pj < p and
{yj

1, y
j
2, . . . , y

j
pj
} are the non-neighbours of x in Bj . The last tuple of ℓ(x) is (−|yi+1

1 , yi+1
2 , . . . , yi+1

k′),

47

where k′ < k and yi+1
1 , yi+1

2 , . . . , yi+1
k′ are the neighbours of x in ⋃i≥j+1Bi. For a vertex y ∈ Y we

define ℓ(y) = (1, i | y), where i ∈ [m+ 1] is the unique index such that y ∈ Bi.
Note that, in every label, the total length of prefixes is at most 1 + ⌈logm⌉ ≤ 1 + ⌈log q⌉, and

the total number of equality codes depends only on p, q, and k, which are constants. Therefore it
remains to show that the labels can be used to define an equality-based adjacency decoder.

Given two vertices x, y in G the decoder operates as follows. First, it checks the first prefixes in
the first tuples of ℓ(x) and ℓ(y). If they are the same, then x, y belong to the same part in G and
the decoder outputs 0. Hence, we can assume that they are different. Without loss of generality,
let ℓ(x) = (0, i | −) and ℓ(y) = (1, j | y), so x ∈ Ai ⊆ X and y ∈ Bj ⊆ Y .

If j ≤ i, then the decoder compares y with the equality codes yj
1, y

j
2, . . . , y

j
pj

of the (j + 1)-th
tuple of ℓ(x). If y is equal to at least one of them, then y is among the non-neighbours of x in Bj

and the decoder outputs 0; otherwise, x and y are adjacent and the decoder outputs 1. If j > i,
then the decoder compares y with the equality codes yi+1

1 , yi+1
2 , . . . , yi+1

k′ of the last tuples of ℓ(x),
and if y is equal to at least one of them, then y is among the neighbours of x in ⋃i≥j+1Bi and the
decoder outputs 1; otherwise, x and y are not adjacent and the decoder outputs 0.

Next, we develop an equality-based labeling scheme for stable classes of one-sided Fp,p-free bipartite
graphs. A colored bipartite graph G = (X,Y,E) is one-sided Fp,p-free if it does not contain Fp,p as
an induced subgraph such that the part of Fp,p of size 2 is a subset of X.

Proposition 5.35. Let G = (X,Y,E) be any one-sided Fp,p-free bipartite graph and let u, v ∈ X
satisfy deg(u) ≤ deg(v). Then either N(u) ∩N(v) = ∅ or |N(u) ∩N(v)| > |N(u)| − p.

Proof. Suppose that N(u)∩N(v) ̸= ∅, and for contradiction assume that |N(u) \N(v)| ≥ p. Since
deg(u) ≤ deg(u), this means |N(v)\N(u)| ≥ |N(u)\N(v)| ≥ p. Let w ∈ N(u)∩N(v). Then {u, v}
with {w} ∪ (N(v) \N(u)) ∪ (N(u) \N(v)) induces a graph containing Fp,p, a contradiction.

Proposition 5.36. Let G = (X,Y,E) be any one-sided Fp,p-free bipartite graph and let x, y, z ∈ X
satisfy deg(x) ≥ deg(y) ≥ deg(z) ≥ 2p. Suppose that N(y) ∩N(z) ̸= ∅. Then

N(x) ∩N(y) = ∅ ⇐⇒ N(x) ∩N(z) = ∅ .

Proof. Since N(y) ∩N(z) ̸= ∅, it holds that |N(y) ∩N(z)| > |N(z)| − p ≥ p by Proposition 5.35.
Suppose that N(x)∩N(y) ̸= ∅. For contradiction, assume that N(x)∩N(y)∩N(z) = ∅. Then

|N(y) \N(x)| ≥ |N(y) ∩N(z)| > |N(z)| − p ≥ p, which contradicts |N(y) ∩N(x)| > |N(y)| − p.
Now suppose that N(x) ∩ N(y) = ∅. For contradiction, assume that N(x) ∩ N(z) ̸= ∅. Then

|N(x) ∩N(z)| ≤ |N(z) \N(y)| < p ≤ |N(z)| − p < |N(x) ∩N(z)|, a contradiction.

We will say that a bipartite graph G = (X,Y,E) is left-disconnected if there are two vertices
x, y ∈ X that are in different connected components of G. It is left-connected otherwise.

Proposition 5.37. Let G = (X,Y,E) be any one-sided Fp,p-free bipartite graph where every vertex
in X has degree at least 2p. Let x ∈ X have maximum degree of all vertices in X. If G is
left-connected, then for any y ∈ X it holds that |N(y) ∩N(x)| > |N(y)| − p.

Proof. Let y ∈ X. Since G is left-connected, there is a path from y to x. Let y0, y1, . . . , yt be
the path vertices in X, where y = y0, x = yt, and N(yi−1) ∩ N(yi) ̸= ∅ for each i ∈ [t]. By
Propositions 5.36 and 5.35, it holds that if N(yi) ∩ N(x) ̸= ∅ then |N(yi) ∩ N(x)| > |N(yi)| − p
and |N(yi−1) ∩N(x)| > |N(yi−1)| − p. Therefore the conclusion holds, because N(yt−1) ∩N(x) =
N(yt−1) ∩N(yt) ̸= ∅.

48

Lemma 5.38. Fix any constants p, q ≥ 1, let k = (q+ 1)p, and let G = (X,Y,E) be any connected
one-sided Fp,p-free bipartite graph. Then there exists a partition X = X0 ∪X1 ∪X2 (where some
of the sets can be empty) such that the following hold:

(1) X0 is the set of vertices in X that have degree less than k.

(2) The induced subgraph G[X1, Y] is one-sided Tp-free.

(3) The induced subgraph G[X2, Y] is left-disconnected.

(4) For any r, s such that r < q and p < s ≤ k, if X1 ̸= ∅ and Zr,s ⊏ G[X2, Y], then Zr+1,s−p ⊏ G.

Proof. Let X0 be the set of vertices in X that have degree less then k, and let X ′ = X \ X0. If
G[X ′, Y] is left-disconnected, then we define X1 = ∅ and X2 = X ′.

Assume now that G[X ′, Y] is left-connected. By Proposition 5.37, the highest-degree vertex
x ∈ X ′ satisfies |N(x)∩N(y)| > |N(y)|−p for every y ∈ X ′. Define X1 as follows: add the highest-
degree vertex x to X1, and repeat until G[X ′ \X1, Y] is left-disconnected. Then set X2 = X ′ \X1.
Condition 3 holds by definition, so it remains to prove conditions 2 and 4.

For every a, b ∈ X1, note that N(a)∩N(b) ̸= ∅. Suppose for contradiction that Tp ⊏ G[X1, Y],
then there are a, b ∈ X1 such that Tp is contained in the subgraph induced by the vertices {a, b}
and (N(a) \ N(b)) ∪ (N(b) \ N(a)). But then adding any c ∈ N(a) ∩ N(b) results in a forbidden
copy of induced Fp,p, a contradiction. This proves condition 2.

Now for any r, s such that r < q and p < s ≤ k, suppose that X1 ̸= ∅ and Zr,s ⊏ G[X2, Y].
Then there are u1, . . . , ur ∈ X2 and pairwise disjoint sets V1 ⊆ N(u1), . . . , Vr ⊆ N(ur) such that
for each i, |Vi| = s, for every 1 ≤ j ≤ i, vi is adjacent to all vertices in Vj , and for every i < j ≤ r,
vi is adjacent to no vertices in Vj .

Let x be the vertex in X1 with least degree, so that x was the last vertex to be added to
X1. Then G[X2 ∪ {x}, Y] is left-connected but G[X2, Y] is left-disconnected, and x is the highest-
degree vertex of G[X2∪{x}, Y] in X2∪{x}. Since u1, . . . , ur are in the same connected component
of G[X2, Y], but the graph G[X2, Y] is disconnected, it must be that there is z ∈ X2 such that
N(z) ∩N(ui) = ∅ for all ui. It is also the case that |N(x) ∩N(z)| > |N(z)| − p ≥ k − p ≥ s− p by
Proposition 5.37, since x has the highest degree in X2 ∪ {x}.

Observe that for each Vi ⊆ N(ui) it holds that |N(x) ∩ Vi| ≥ s − p also by Proposition 5.37.
Set V ′

i = Vi ∩ N(x) for each i ∈ [r], and set V ′
r+1 = N(x) ∩ N(z). Clearly, the graph induced by

{u1, . . . , ur, x} ∪ V ′
1 ∪ V ′

2 ∪ . . . ∪ V ′
r ∪ V ′

r+1 contains Zr+1,s−p as an induced subgraph.

We will now use the above structural result to construct a suitable decomposition scheme for
stable one-sided Fp,p-free bipartite graphs. Let p, q ≥ 1 be fixed constants, let k = (q + 1)p, and
let Fp,q be the class of one-sided Fp,p-free bipartite graphs that do not contain H◦◦

q as an induced
subgraph. Let G = (X,Y,E) ∈ Fp,q. Using Lemma 5.38, we define a decomposition tree T for
G inductively as follows. Let Gv be the induced subgraph of G associated with node v of the
decomposition tree and write X ′ ⊆ X, Y ′ ⊆ Y for its sets of vertices, so Gv = G[X ′, Y ′]. Graph G
is associated with the root node of T .

• If Gv is one-sided Tk-free, terminate the decomposition, so v is a leaf node (L-node) of the
decomposition tree.

• If Gv is disconnected (in particular, if it is left-disconnected), then v is a D-node such that
the children are the connected components of Gv.

49

• If Gv is connected and not one-sided Tk-free, then X ′ admits a partition X ′ = X ′
0 ∪X ′

1 ∪X ′
2

satisfying the condition of Lemma 5.38. Since Gv is connected, X ′
0 ∪X ′

1 ̸= ∅. Furthermore,
since Gv is not one-sided Tk-free, X ′

2 ̸= ∅. Hence, v is a P -node with exactly two children v1
and v2, where Gv1 = G[X ′

0 ∪X ′
1, Y

′] and Gv2 = G[X ′
2, Y

′]. Observe that

(1) Gv1 is one-sided Tk-free, and therefore v1 is a leaf;
(2) Gv2 is left-disconnected, and therefore v2 is a D-node; furthermore, every vertex x ∈ X ′

2
has degree at least k in Gv2 (otherwise it would be included in the set X ′

0).

Proposition 5.39. Let Q be the class of one-sided Tk-free bipartite graphs. Then the graphs in
Fp,q admit (Q, 2)-decomposition trees of depth at most 2q.

Proof. By definition, the above decomposition scheme produces (Q, 2)-decomposition trees. In
the rest of the proof we will establish the claimed bound on the depth of any such tree. Suppose,
towards a contradiction, that there exists a graph G = (X,Y,E) ∈ Fp,q such that the decomposition
tree T for G has depth at least 2q + 1. Let P = (v0, v1, v2, . . . , vs) be a leaf-to-root path in T of
length s ≥ 2q + 1, where v0 is a leaf and vs is the root. Denote by Gvi = G[Xi, Y i] the graph
corresponding to a node vi in P. By construction, all internal nodes of P are either D-nodes or
P -nodes. Clearly, the path cannot contain two consecutive D-nodes, as any child of a D-node is
a connected graph. Furthermore, a unique non-leaf child vi of a P -node is a D-node, and every
x ∈ Xi has degree at least k in Gvi . Consequently, P -nodes and D-nodes alternated along (the
internal part of) P.

Let vi−1, vi, vi+1, vi+2 be four internal nodes of P, where vi−1 and vi+1 are D-nodes, and vi and
vi+2 are P -nodes. Recall that, since the parent vi+2 of vi+1 is a P -node, every vertex in Xi+1 has
degree at least k in Gvi+1 . Hence, since Gvi is a connected component of Gvi+1 , every vertex in
Xi ⊆ Xi+1 also has degree at least k. Let Xi = Xi

0 ∪ Xi
1 ∪ Xi

2 be the partition of Xi according
to the decomposition rules. Since Xi

0 ∪Xi
1 ̸= ∅ and Xi

0 = ∅, we conclude that Xi
1 ̸= ∅. Therefore,

by Lemma 5.38, if the Gvi−1 = G[Xi
2, Y

i] contains Zr,s for some r < q and p < s ≤ k, then Gvi

contains Zr+1,s−p.
Let vt be the first D-node in P. Note that t ≤ 2. Every vertex in Xt has degree at least k in

Gvt , and therefore Z1,k ⊏ Gvt . By induction, the above discussion implies that for 1 ≤ i ≤ q − 1,
the graph Z1+i,k−ip is an induced subgraph of Gvt+2i−1 . Hence, since the length of P is at least
2q + 1, we have H◦◦

q = Zq,1 ⊏ Zq,k−(q−1)p ⊏ Gvt+2q−3 ⊏ G, a contradiction.

Lemma 5.40. Let p ∈ N and let F be a stable class of one-sided Fp,p-free bipartite graphs. Then
F admits a constant-size equality-based adjacency labeling scheme, and hence SK(Fn) = O(1).

Proof. Since F is stable, it does not contain C◦◦ as a subclass. Let q be the minimum number such
that H◦◦

q ̸∈ F . Let k = (q+1)p and let Q be the class of one-sided Tk-free bipartite graphs. We have
that F ⊆ Fp,q, and therefore, by Proposition 5.39, the graphs in F admit (Q, 2)-decomposition trees
of depth at most 2q. Hence, by Lemma 5.34 and Lemma 5.25, F admits a constant-size equality-
based adjacency labeling scheme.

We conclude this section by showing that stable classes of F ∗
p,p′-free graphs admit constant-size

equality-based adjacency labeling schemes. For this we will use the above result for one-sided
Fp,p-free graphs and the following

Proposition 5.41 ([All09], Corollary 9). Let G = (X,Y,E) be a F ∗
p,p-free bipartite graph. Then

there is a partition X = X1 ∪X2 and Y = Y1 ∪ Y2, where |Y2| ≤ 1, such that both G[X1, Y1] and
G[X2, Y1] are one-sided Fp,p-free.

50

Theorem 5.42. For any constants p, p′ ≥ 1, a stable class F of F ∗
p,p′-free bipartite graphs admits

a constant-size equality-based adjacency labeling scheme, and hence SK(Fn) = O(1).

Proof. As before, since F is stable, it does not contain C◦◦ as a subclass. Let q be the minimum
number such that H◦◦

q ̸∈ F , and assume without loss of generality that p ≥ p′. It follows that F
is a subclass of (F ∗

p,p, H
◦◦
q)-free bipartite graphs. Let G = (X,Y,E) be a member of this class. Let

X = X1 ∪X2, Y = Y1 ∪ Y2 be the partition given by Proposition 5.41. We assign labels as follows.
We start the label for each vertex with a one-bit prefix indicating whether it is in X or Y .

We then append the following labels. For x ∈ X, we use another one-bit prefix that is equal
to 1 if x is adjacent to the unique vertex Y2, and 0 otherwise. Then, we use one more one-bit
prefix to indicate whether x ∈ X1 or x ∈ X2. If x ∈ X1, complete the label by using the labeling
scheme of Lemma 5.40 for G[X1, Y1]. If x ∈ X2, complete the label by using the labeling scheme of
Lemma 5.40 for G[X2, Y1].

For y ∈ Y , use a one-bit prefix to indicate whether y ∈ Y2. If y ∈ Y1 then concatenate the two
labels for y obtained from the labeling scheme of Lemma 5.40 for G[X1, Y1] and G[X2, Y1].

The decoder first checks if x, y are in opposite parts. Now assume x ∈ X, y ∈ Y . The decoder
checks if y ∈ Y2 and outputs the appropriate value using the appropriate prefix from the label of
x. Then if x ∈ X1, it uses the labels of x and y in G[X1, Y1]; otherwise it uses the labels of x and
y in G[X2, Y1] and flips the output.

5.2.5 P7-Free Bipartite Graphs

In this section, we prove Theorem 5.23 for P7-free bipartite graphs by developing a constant-size
equality-based adjacency labeling scheme for stable classes of P7-free bipartite graphs

In the below definition, for two disjoint sets of vertices A and B we say that A is complete to
B if every vertex in A is adjacent to every vertex in B; we also say that A is anticomplete to B if
there are no edges between A and B.

Definition 5.43 (Chain Decomposition). See Figure 8 for an illustration of the chain decompo-
sition. Let G = (X,Y,E) be a bipartite graph and k ∈ N. We say that G admits a k-chain
decomposition if one of the parts, say X, can be partitioned into subsets A1, . . . , Ak, C1, . . . , Ck and
the other part Y can be partitioned into subsets B1, . . . , Bk, D1, . . . , Dk in such a way that:

• For every i ≤ k − 1, the sets Ai, Bi, Ci, Di are non-empty. For i = k, at least one of the sets
Ai, Bi, Ci, Di must be non-empty.

• For each i = 1, . . . , k,

– every vertex of Bi has a neighbour in Ai;
– every vertex of Di has a neighbour in Ci;

• For each i = 2, . . . , k − 1,

– every vertex of Ai has a non-neighbour in Bi−1;
– every vertex of Ci has a non-neighbour in Di−1;

• For each i = 1, . . . , k,

– the set Ai is anticomplete to Bj for j > i and is complete to Bj for j < i− 1;
– the set Ci is anticomplete to Dj for j > i and is complete to Dj for j < i− 1;

51

• For each i = 1, . . . , k,

– the set Ai is complete to Dj for j < i, and is anticomplete to Dj for j ≥ i;
– the set Ci is complete to Bj for j < i, and is anticomplete to Bj for j ≥ i.

A1 A2 A3 A4

B1 B2 B3 B4

C1C2C3C4

D1D2D3D4

VU every u ∈ U has a neighbour in V

VU every u ∈ U has a non-neighbour in V

VU U is complete to V

Figure 8: Example of a 4-chain decomposition.

Remark 5.44. In the case of a 2-chain decomposition of a connected P7-free bipartite graphs, we
will also need the fact that every vertex in A2 and every vertex in A1 have a neighbour in common;
and every vertex in C2 and every vertex in C1 have a neighbour in common. This is not stated
explicitly in [LZ17], but easily follows from a proof in [LZ17]. Since the neighbourhood of every
vertex in A1 lies entirely in B1, the above fact implies that every vertex in A2 has a neighbour
in B1. Similarly, the neighbourhood of every vertex in C1 lies entirely in D1, and therefore every
vertex in C2 has a neighbour in D1.
Theorem 5.45 ([LZ17]). Let G = (X,Y,E) be a P7-free bipartite graph such that both G and G
are connected. Then G or G admits a k-chain decomposition for some k ≥ 2.

Lemma 5.46. Let G = G(X,Y,E) be a connected P7-free bipartite graph of chain number c that
admits a k-chain decomposition for some k ≥ 2. Then there exists a partition of X into p ≤ 2(c+1)
sets X1, X2, . . . , Xp, and a partition of Y into q ≤ 2(c + 1) sets Y1, Y2, . . . , Yq such that, for any
i ∈ [p], j ∈ [q],

ch(G[Xi, Yj]) < ch(G) .

Proof. Assume, without loss of generality, that X is partitioned into subsets A1, . . . , Ak, C1, . . . , Ck

and Y is partitioned into subsets B1, . . . , Bk, D1, . . . , Dk satisfying Definition 5.43. Since at least
one of the sets Ak, Bk, Ck, Dk is non-empty, and every vertex in Bk has a neighbour in Ak and
every vertex in Dk has a neighbour in Ck, at least one of Ak and Ck is non-empty. Without loss
of generality we assume that Ak is not empty. It is straightforward to check by definition that for
any vertices a2 ∈ A2, a3 ∈ A3, . . . , ak ∈ Ak, and d1 ∈ D1, d2 ∈ D2, . . . , dk−1 ∈ Dk−1 the subgraph
of G induced by {a2, a3, . . . , ak, d1, d2, . . . , dk−1} is isomorphic to H◦◦

k−1, which implies that k is at
most c+ 1. We also observe that any path from a vertex in A1 to a vertex in D1 contains at least
4 vertices, and hence G contains H◦◦

2 and ch(G) ≥ 2. We split our analysis in two cases.

52

Case 1. k ≥ 3. We will show that for any X ′ ∈ {A1, . . . , Ak, C1, . . . , Ck} and Y ′ ∈ {B1, . . . , Bk,
D1, . . . , Dk}, ch(G[X ′, Y ′]) < ch(G). Since ch(G) ≥ 2, the chain number of a biclique is 1, and the
chain number of a co-biclique is 0, we need only to verify pairs of sets that can induce a graph which
is neither a biclique nor a co-biclique. By Definition 5.43, these are the pairs (Ai, Bi), (Ci, Di) for
i ∈ [k] and (Ai, Bi−1), (Ci, Di−1) for i ∈ {2, . . . , k}.

We start with the pair (A1, B1). Since D2 is anticomplete to A1, and C2 is complete to B1, for
any vertex d2 ∈ D2 and its neighbour c2 ∈ C2 we have that ch(G[A1, B1]) < ch(G[A1 ∪ {c2}, B1 ∪
{d2}]) ≤ ch(G). Similarly, since D1 is complete to all A2, A3, . . . , Ak, and C1 is anticomplete
to all B1, B2, . . . , Bk, addition of a vertex d1 ∈ D1 and its neighbour c1 ∈ C1 to any of the
graphs G[Ai, Bi] or G[Ai, Bi−1] for i ∈ {2, . . . , k} strictly increases the chain number of that graph.
Symmetric arguments establish the desired conclusion for the pairs of sets (Ci, Di), i ∈ [k], and
(Ci, Di−1), i ∈ {2, . . . , k}.

In this case, A1, . . . , Ak, C1, . . . , Ck and B1, . . . , Bk, D1, . . . , Dk are the desired partitions of X
and Y respectively.

Case 2. k = 2. Assume first that both A2 and C2 are non-empty. Let c2 be a vertex in C2, d1 be
a neighbour of c2 in D1 (which exists by Remark 5.44), and c1 be a neighbour of d1 in C1. Since C2 is
complete to B1 and D1 is anticomplete to A1, ch(G[A1, B1]) < ch(G[A1∪{c2}, B1∪{d1}]) ≤ ch(G).
Similarly, because C1 is anticomplete to both B1 and B2 and D1 is complete to A2, we have that
ch(G[A2, B1]) < ch(G[A2 ∪ {c1}, B1 ∪ {d1}]) ≤ ch(G) and ch(G[A2, B2]) < ch(G[A2 ∪ {c1}, B2 ∪
{d1}]) ≤ ch(G). Using symmetric arguments we can show that the chain number of each of
G[C1, D1], G[C2, D1], and G[C2, D2] is strictly less than the chain number of G. All other pairs of
sets (X ′, Y ′), where X ′ ∈ {A1, A2, C1, C2} and Y ′ ∈ {B1, B2, D1, D2} induce either a biclique or
a co-biclique, and therefore ch(G[X ′, Y ′]) < ch(G). In this case, A1, A2, C1, C2 and B1, B2, D1, D2
are the desired partitions of X and Y respectively.

The case when one of A2 and C2 is empty requires a separate analysis. Assume that A2 ̸= ∅
and C2 = ∅. The case when A2 = ∅ and C2 ̸= ∅ is symmetric and we omit the details. Since C2 is
empty, D2 is also empty and therefore A1, A2, C1 is a partition of X, and B1, B2, D1 is a partition of
Y . Let a2 be a vertex in A2, d1 be a vertex in D1, and c1 be a neighbour of d1 in C1. Let B′

1 be the
neighbourhood of a2 in B1 and let B′′

1 = B1 \B′
1. We claim that A1, A2, C1 and B′

1, B
′′
1 , B2, D1 are

the desired partitions of X and Y respectively. All the pairs of sets, except (A1, B
′
1) and (A1, B

′′
1),

can be treated as before and we skip the details. For (A1, B
′
1), we observe that a2 is complete to

B′
1 and D1 is anticomplete to A1, and hence ch(G[A1, B

′
1]) < ch(G[A1 ∪ {a2}, B′

1 ∪ {d1}]) ≤ ch(G).
To establish the desired property for (A1, B

′′
1), we first observe that by Remark 5.44 every vertex

in A1 has a neighbour in common with a2, and therefore every vertex in A1 has a neighbour in B′
1.

If G[A1, B
′′
1] is edgeless the property holds trivially. Otherwise, let P ⊆ A1 and Q ⊆ B′′

1 be such
that P ∪Q induces a H◦◦

s in G[A1, B
′′
1], where s ≥ 1 is the chain number of the latter graph. Let x

be the vertex in P that has degree 1 in G[P,Q], and let y be a neighbour of x in B′
1. We claim that y

is complete to P . Indeed, if y is not adjacent to some x′ ∈ P , then x′, z, x, y, a2, d1, c1 would induce
a forbidden P7, where z is the vertex in Q that is adjacent to every vertex in P . Consequently,
G[P ∪ {a2}, Q ∪ {y}] is isomorphic to H◦◦

s+1, and therefore ch(G[A1, B
′′
1]) < ch(G).

For two pairs of numbers (a, b) and (c, d) we write (a, b) ⪯ (c, d) if a ≤ c and b ≤ d, and we
write (a, b) ≺ (c, d) if at least one of the inequalities is strict.

Lemma 5.47. Let G = G(X,Y,E) be a P7-free bipartite graph such that both G and G are con-
nected, and let c be the chain number of G. Then there exists a partition of X into p ≤ 2(c+2) sets
X1, X2, . . . , Xp, and a partition of Y into q ≤ 2(c+ 2) sets Y1, Y2, . . . , Yq such that for any i ∈ [p],

53

j ∈ [q] (
ch(Gi,j), ch(Gi,j)

)
≺
(
ch(G), ch(G)

)
,

where Gi,j = G[Xi, Yj].

Proof. It is easy to verify that for any k ≥ 2, the graph H◦◦
k contains the half graph H◦◦

k−1, which
implies that ch(G) ≤ ch(G) + 1 = c + 1. Furthermore, the bipartite complement of a P7 is again
P7, and hence the bipartite complement of any P7-free bipartite graph is also P7-free.

By Theorem 5.45, G or G admits a k-chain decomposition for some k ≥ 2. Therefore, by
Lemma 5.46 applied to either G or G, there exist a partition of X into at most p ≤ 2(c + 2) sets
X1, X2, . . . , Xp, and a partition of Y into at most q ≤ 2(c + 2) sets Y1, Y2, . . . , Yq such that either
ch(Gi,j) < ch(G) holds for any i ∈ [p], j ∈ [q], or ch(Gi,j) < ch(G) holds for any i ∈ [p], j ∈ [q].
This together with the fact that the chain number of an induced subgraph of a graph is never larger
than the chain number of the graph, implies the lemma.

We are now ready to specify a decomposition scheme for P7-free bipartite graphs. Let G =
(X,Y,E) be a P7-free bipartite graph of chain number c. Let Q be the class consisting of bicliques
and co-bicliques. We define a (Q, 2(c+ 2))-decomposition tree T for G inductively as follows. Let
Gv be the induced subgraph of G associated with node v of the decomposition tree and write
X ′ ⊆ X, Y ′ ⊆ Y for its sets of vertices, so Gv = G[X ′, Y ′]. Graph G is associated with the root
node of T .

• If Gv belongs to Q, then terminate the decomposition, so v is a leaf node (L-node) of the
decomposition tree.

• If Gv does not belong to Q and is disconnected, then v is a D-node such that the children
are the connected components of Gv.

• If Gv does not belong to Q, is connected, and Gv is disconnected, then v is a D-node. There
are sets X ′

1, . . . , X
′
t ⊆ X ′ and Y ′

1 , . . . , Y
′

t ⊆ Y ′ such that G[X ′
1, Y

′
1], . . . , G[X ′

t, Y
′

t] are the
connected components of Gv. The children of this node are G[X ′

1, Y
′

1], . . . , G[X ′
t, Y

′
t].

• If Gv does not belong to Q, and neither Gv, nor Gv is disconnected, then v is a P -node. Let
X ′

1, X2, . . . , X
′
p be a partition of X ′ into p ≤ 2(c+ 2) sets, and Y ′

1 , Y2, . . . , Y
′

q be a partition of
Y ′ into q ≤ 2(c+ 2) sets, as in Lemma 5.47. The children of this node are G[X ′

i, Y
′

j], i ∈ [p],
j ∈ [q].

Claim 5.48. Let T be a decomposition tree as a above, and let Gi = G[Xi, Yi], i = 1, 2, 3, be
internal nodes in T such that G3 is the parent of G2 which is in turn the parent of G1. Then

(1) one of G3, G2, and G1 is a P -node, or Gi is D-node and Gi−1 is a D-node for some i ∈ {3, 2};

(2) if G3 is a D-node and G2 is a D-node, then ch(G1) < ch(G3).

Proof. We start by proving the first statement. Observe that every child a D-node is a connected
graph, and therefore it is not a D-node. Similarly, the bipartite complement of every child of a
D-node is a connected graph, and therefore a D-node cannot have a D-node as a child. Hence,
if none of G3, G2, G1 is a P -node, either G3 is a D-node and therefore G2 is a D-node, or G3 is
a D-node, in which case G2 is a D-node and G1 is a D-node. In both cases we have a pair of
parent-child nodes, where the parent is a D-node and the child is a D-node.

To prove the second statement, let now G3 be a D-node and G2 be a D-node, i.e., G[X2, Y2]
is disconnected, while G[X3, Y3] is connected, but its bipartite complement is disconnected. Then

54

there are sets X ′
1 ⊆ X2 \ X1 and Y ′

1 ⊆ Y2 \ Y1 such that G[X ′
1, Y

′
1] and G[X1, Y1] are connected

components of G[X2, Y2] and at least one of X ′
1, Y

′
1 is non-empty. Also at least one of the sets

X ′
2 = X3 \ X2 and Y ′

2 = Y3 \ Y2 is non-empty, and every vertex in X ′
2 is adjacent in G to every

vertex in Y2, and every vertex in Y ′
2 is adjacent in G to every vertex in X2. If exactly one of the

sets X ′
1 and Y ′

1 is non-empty, say Y ′
1 , then X ′

2 is also non-empty, as otherwise G[X3, Y3] would be
disconnected. Hence, any vertices x′ ∈ X ′

2 and y′ ∈ Y ′
1 can augment any half graph H◦◦

k in G[X1, Y1]
into a half graph H◦◦

k+1. Consequently, ch(G[X1, Y1]) < ch(G[{x′} ∪ X1, {y′} ∪ Y1]) ≤ ch(G3). If
both sets X ′

1 and Y ′
1 are non-empty, the argument is similar and we omit the details.

Theorem 5.49. Let F be a stable class of P7-free bipartite graphs. Then F admits a constant-size
equality-based adjacency labeling scheme, and hence SK(Fn) = O(1).

Proof. Since F is stable, it does not contain C◦◦ as a subclass. Let c be the maximum number such
that H◦◦

c ∈ F , and let G = (X,Y,E) be an arbitrary graph from F .
By the above discussion G admits a (Q, 2(c + 2))-decomposition tree, where Q is the class

consisting of bicliques and co-bicliques, and every P -nodeG′ = G[X ′, Y ′] is specified by the partition
X ′

1, . . . , X
′
p of X ′ and the partition Y ′

1 , . . . , Y
′

q of Y ′ as in Lemma 5.47, where p and q are bounded
from above by 2(c+ 2).

We claim that the depth of such a decomposition tree is at most 6c. To show this we associate
with every node G′ the pair

(
ch(G′), ch(G′)

)
and we will prove that if the length of the path from

the root G to a node G′ is at least 6c, then ch(G′) ≤ 1 or ch(G′) ≤ 1, which means that G′ is either
a biclique or a co-biclique, and therefore is a leaf node.

Let P be the path from the root to the node G′. By Claim 5.48 (1), among any three consecutive
nodes of the path, there exists a P -node, or a pair of nodes labeled with D and D respectively
such that the D-node is the parent of the D-node. In the former case, by Lemma 5.47, for the
child node H ′ of the P -node H on the path P, we have

(
ch(H ′), ch(H ′)

)
≺
(
ch(H), ch(H)

)
. In the

latter case, by Claim 5.48 (2), the child of the D-node on the path P has the chain number strictly
less than that of the D-node. In other words, for every node H in the path P and its ancestor H ′

at distance 3 from H, we have
(
ch(H ′), ch(H ′)

)
≺
(
ch(H), ch(H)

)
.

Now, since for the root node G we have
(
ch(G), ch(G)

)
≺ (c, c+ 1), if P has length at least 6c,

then ch(G′) ≤ 1 or ch(G′) ≤ 1, as required. The result now follows from Lemma 5.25 and a simple
observation that class Q admits a constant-size equality-based adjacency labeling scheme.

6 Question III. Equality is Not Complete
Recall the notion of reductions between communication problems from Section 3.3. Many questions
about constant-cost randomized communication would be answered if one could identify a complete
problem for this class of problems under these reductions:

Definition 6.1. A communication problem P is complete for the class of constant-cost randomized
communication if every constant-cost randomized problem A reduces to P.

The most natural candidate for a complete problem is the Equality problem. Note that all of
our results in this paper so far, except for Cartesian products, have used reductions to Equality.
In this section we will prove that the Equality problem is not complete for the class of constant-
cost randomized communication. To this end we will show that 1-Hamming Distance does not
reduce to Equality.

55

Theorem 6.2. 1-Hamming Distance does not reduce to Equality.

This theorem was also proved independently and concurrently in [HHH23] with a very different
Fourier-analytic argument.

In our proof, we will employ some results from the literature. We denote byHd the d-dimensional
hypercube, i.e., the d-wise Cartesian product P□d

2 of the single edge.

Theorem 6.3 ([ARSV06]). For every k and ℓ ≥ 6, there exists d0(k, ℓ) such that for every d ≥
d0(k, ℓ), every edge coloring of Hd with k colors contains a monochromatic induced cycle of length
2ℓ.

For a graph G, its equivalence covering number eqc(G) is the minimum number k such that
there exist k equivalence graphs Fi = (V,Ei), i ∈ [k], whose union (V,∪k

i=1Ei) coincides with G.
Similarly, for a bipartite graph G = (U,W,E), its bipartite equivalence covering number beqc(G) is
the minimum number k such that there exist k bipartite equivalence graphs Fi = (U,W,Ei), i ∈ [k],
whose union (U,W,∪k

i=1Ei) coincides with G.

Theorem 6.4 ([LNP80, Alo86]). For every n ≥ 3, it holds that eqc(Cn) ≥ logn− 1.

Corollary 6.5. For every even n ≥ 4, it holds that beqc(Cn) ≥ logn− 2.

Proof. Let G = (U,W,E) be a bipartite graph isomorphic to Cn for some n ≥ 4. Suppose towards
the contradiction that there exist bipartite equivalence graphs Fi = (U,W,Ei), i ∈ [k], whose union
(U,W,∪k

i=1Ei) coincides with G and k < logn − 2. For each i ∈ [k], let Si be the (non-bipartite)
equivalence graph obtained from Fi by turning each of its bicliques into a complete graph (this is
done by adding edges between vertices of the same biclique that are in the same part). Also let
S = (U ∪W,E′) be the equivalence graph with exactly two cliques, U and W . Then the union
S ∪

(⋃
i∈[k] Si

)
coincides with Cn, implying eqc(Cn) ≤ k + 1 < logn− 1, which is in contradiction

with Theorem 6.4.

For two binary vectors x, y ∈ {0, 1}t, we write x ⪯ y if xi ≤ yi for all i ∈ [t], and we write x ≺ y
if x ⪯ y and x ̸= y.

We now prove Theorem 6.2.

Proof of Theorem 6.2. Let A = (An)n∈N and B = (Bn)n∈N be the 1-Hamming Distance problem
and the Equality problem respectively. More specifically, An is a 2n×2n matrix, where An(i, j) =
1 if and only if the binary representations of i and j differ on exactly one bit; and Bn is an n× n
matrix, where Bn(i, j) = 1 if and only if i = j, i.e., Bn is the identity matrix.

By Proposition 3.18, in order to prove the statement, we will show that A does not matrix-
reduce to QS(B). To do this, we interpret the matrices of A and B as bipartite adjacency matrices
of bipartite graphs. In particular, An corresponds to the disjoint union of two hypercube graphs
of dimension n, and Bn corresponds to the matching graph, i.e., the graph in which every vertex
has degree exactly 1. The set QS(B) then corresponds to bipartite adjacency matrices of bipartite
equivalence graphs.

Thus, we want to show that there does not exist a constant t such that every matrix A ∈ A can
be expressed as A = h(M1,M2, . . . ,Mt), where M1,M2, . . . ,Mt ∈ QS(B) are bipartite adjacency
matrices of some bipartite equivalence graphs and h : {0, 1}t → {0, 1} is some Boolean function.

Suppose towards the contradiction that such a t exists. Let k = 2t, ℓ = 2t+2, and d ≥ d0(k, ℓ),
where d0(k, ℓ) is the function from Theorem 6.3. Since Ad, the bipartite adjacency matrix of two
disjoint d-dimensional hypercube graphs, can be expressed as above via t matrices from QS(B),
the same is true for the bipartite adjacency matrix of a single d-dimensional hypercube graph.

56

Let Hd = (U,W,E) be the hypercube graph of dimension d, and let h : {0, 1}t → {0, 1} and
M1,M2, . . . ,Mt ∈ QS(B) be such that Hd(u,w) = h(M1(u,w),M2(u,w), . . . ,Mk(u,w)) for every
u ∈ U , w ∈W .

Define κ : U × W → {0, 1}t as κ(u,w)s = Ms(u,w) for every s ∈ [t], u ∈ U , and w ∈ W .
Color every edge (u,w) of Hd with κ(u,w). Since the edges of Hd are colored in at most k = 2t

different colors, by Theorem 6.3, it contains a monochromatic induced cycle C = (U ′,W ′, E′) of
length 2ℓ = 2t+3. Let κ∗ ∈ {0, 1}t be the color of the edges of C.

Claim 1. For all u ∈ U ′ and w ∈W ′ that are not adjacent in C, we have κ∗ ≺ κ(u,w).
Proof. Since every connected component of a bipartite equivalence graph is a biclique, it follows
that for every i ∈ [t], κ∗

i = 1 implies κ(u,w)i = 1 for all u ∈ U ′ and w ∈ W ′. Hence, κ∗ ⪯ κ(u,w).
Furthermore, if u and w are not adjacent in C, we have κ(u,w) ̸= κ∗, as otherwise we would have
h(κ(u,w)) = h(κ∗) = 1 and hence u and w would be adjacent.

Let now I ⊆ [t] be the index set such that i ∈ I if and only if κ∗
i = 0 and there exist u ∈ U ′

and w ∈ W ′ with κ(u,w)i = 1. For every i ∈ I, let Fi = (U ′,W ′, E′
i), where E′

i = {(u,w) | u ∈
U ′, w ∈ W ′, κ(u,w)i = 1}. Note that each Fi is an induced subgraph of the bipartite equivalence
graph defined by the bipartite adjacency matrix Mi, and thus it is itself a bipartite equivalence
graph. By construction and Claim 1, we have that the union ∪i∈IFi contains none of the edges
of C and contains all non-edges between the sets U ′ and W ′, i.e., the union coincides with C.
This implies that beqc(C) ≤ |I| ≤ t. However, by Corollary 6.5, beqc(C) ≥ log 2ℓ − 2 ≥ t + 1, a
contradiction.

Corollary 6.6. Equality is not complete for constant-cost randomized communication.

Corollary 6.7. There is no equality-based labeling scheme for the class of induced subgraphs of the
hypercube.

Acknowledgments
We thank Eric Blais for helpful discussions about this work, and we thank Abhinav Bom-

mireddi, Renato Ferreira Pinto Jr., Sharat Ibrahimpur, and Cameron Seth for their comments on
the presentation of this article. We thank the anonymous reviewers for their comments.

References
[ACFL16] Aistis Atminas, Andrew Collins, Jan Foniok, and Vadim V Lozin. Deciding the bell

number for hereditary graph properties. SIAM Journal on Discrete Mathematics,
30(2):1015–1031, 2016.

[ACHS23] Manasseh Ahmed, Tsun-Ming Cheung, Hamed Hatami, and Kusha Sareen. Commu-
nication complexity of half-plane membership. Technical Report TR23-50, Electronic
Colloquium on Computational Complexity (ECCC), 2023.

[ACLZ15] Aistis Atminas, Andrew Collins, Vadim Lozin, and Victor Zamaraev. Implicit repre-
sentations and factorial properties of graphs. Discrete Mathematics, 338(2):164–179,
2015.

[AHKO22] Jungho Ahn, Kevin Hendrey, Donggyu Kim, and Sang-il Oum. Bounds for the twin-
width of graphs. SIAM Journal on Discrete Mathematics, 36(3):2352–2366, 2022.

57

[Ale92] Vladimir Evgen’evich Alekseev. Range of values of entropy of hereditary classes of
graphs. Diskretnaya Matematika, 4(2):148–157, 1992.

[Ale97] Vladimir Evgen’evich Alekseev. On lower layers of a lattice of hereditary classes of
graphs. Diskretnyi Analiz i Issledovanie Operatsii, 4(1):3–12, 1997.

[All09] Peter Allen. Forbidden induced bipartite graphs. Journal of Graph Theory, 60(3):219–
241, 2009.

[Alo86] Noga Alon. Covering graphs by the minimum number of equivalence relations. Com-
binatorica, 6(3):201–206, 1986.

[ARSV06] Noga Alon, Radoš Radoičić, Benny Sudakov, and Jan Vondrák. A ramsey-type result
for the hypercube. Journal of Graph Theory, 53(3):196–208, 2006.

[ATYY17] Anurag Anshu, Dave Touchette, Penghui Yao, and Nengkun Yu. Exponential separa-
tion of quantum communication and classical information. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, pages 277–288, 2017.

[BBW00] József Balogh, Béla Bollobás, and David Weinreich. The speed of hereditary properties
of graphs. Journal of Combinatorial Theory, Series B, 79(2):131–156, 2000.

[BBW05] József Balogh, Béla Bollobás, and David Weinreich. A jump to the bell number for
hereditary graph properties. Journal of Combinatorial Theory, Series B, 95(1):29–48,
2005.

[BD02] Harry Buhrman and Ronald De Wolf. Complexity measures and decision tree com-
plexity: a survey. Theoretical Computer Science, 288(1):21–43, 2002.

[BD23] Édouard Bonnet and Hugues Déprés. Twin-width can be exponential in treewidth.
Journal of Combinatorial Theory, Series B, 161:1–14, 2023.

[BDS+24a] Édouard Bonnet, Julien Duron, John Sylvester, Viktor Zamaraev, and Maksim
Zhukovskii. Small but unwieldy: A lower bound on adjacency labels for small classes.
In Proceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1147–1165. SIAM, 2024.

[BDS+24b] Édouard Bonnet, Julien Duron, John Sylvester, Viktor Zamaraev, and Maksim
Zhukovskii. Tight bounds on adjacency labels for monotone graph classes. In 51st
International Colloquium on Automata, Languages, and Programming (ICALP 2024).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2024.

[BFS86] László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication
complexity theory. In 27th Annual Symposium on Foundations of Computer Science
(sfcs 1986), pages 337–347. IEEE, 1986.

[BGK+21] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrig-
ant. Twin-width II: small classes. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1977–1996. SIAM, 2021.

[BH21] Jakub Balabán and Petr Hliněnỳ. Twin-width is linear in the poset width. In 16th Inter-
national Symposium on Parameterized and Exact Computation (IPEC 2021). Schloss-
Dagstuhl-Leibniz Zentrum für Informatik, 2021.

58

[BKTW20] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width
i: tractable fo model checking. In 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS), pages 601–612. IEEE, 2020.

[BT95] Béla Bollobás and Andrew Thomason. Projections of bodies and hereditary properties
of hypergraphs. Bulletin of the London Mathematical Society, 27(5):417–424, 1995.

[CER93] Bruno Courcelle, Joost Engelfriet, and Grzegorz Rozenberg. Handle-rewriting hyper-
graph grammars. Journal of computer and system sciences, 46(2):218–270, 1993.

[Cha20] Amit Chakrabarti. One-way randomized communication complexity of
greater-than. Theoretical Computer Science Stack Exchange, 2020. URL:
https://cstheory.stackexchange.com/q/48110 (version: 2020-12-30).

[Cha23] Maurice Chandoo. Logical labeling schemes. Discrete Mathematics, 346(10):113565,
2023.

[CHHS23] Tsun-Ming Cheung, Hamed Hatami, Kaave Hosseini, and Morgan Shirley. Separation
of the factorization norm and randomized communication complexity. In Proceedings
of the Computational Complexity Conference (CCC 2023), 2023. Available at ECCC,
TR22-165.

[CLR20] Victor Chepoi, Arnaud Labourel, and Sébastien Ratel. On density of subgraphs of
Cartesian products. Journal of Graph Theory, 93(1):64–87, 2020.

[CLV19] Arkadev Chattopadhyay, Shachar Lovett, and Marc Vinyals. Equality alone does not
simulate randomness. In 34th Computational Complexity Conference (CCC 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[CS18] Artem Chernikov and Sergei Starchenko. A note on the Erdös-Hajnal property for
stable graphs. Proceedings of the American Mathematical Society, 146(2):785–790, 2018.

[DEG+21] Vida Dujmović, Louis Esperet, Cyril Gavoille, Gwenaël Joret, Piotr Micek, and Pat
Morin. Adjacency labelling for planar graphs (and beyond). Journal of the ACM
(JACM), 68(6):1–33, 2021.

[EHK22] Louis Esperet, Nathaniel Harms, and Andrey Kupavskii. Sketching distances in
monotone graph classes. In Approximation, Randomization, and Combinatorial Opti-
mization. Algorithms and Techniques (APPROX/RANDOM 2022). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2022.

[EHZ24] Louis Esperet, Nathaniel Harms, and Viktor Zamaraev. Optimal Adjacency Labels for
Subgraphs of Cartesian Products. SIAM Journal on Discrete Mathematics, 2024.

[ES35] Paul Erdös and George Szekeres. A combinatorial problem in geometry. Compositio
mathematica, 2:463–470, 1935.

[FGHH24] Yuting Fang, Mika Göös, Nathaniel Harms, and Pooya Hatami. Constant-cost com-
munication does not reduce to k-Hamming distance. arXiv preprint arXiv:2407.20204,
2024.

[FHHH24] Yuting Fang, Lianna Hambardzumyan, Nathaniel Harms, and Pooya Hatami. No com-
plete problem for constant-cost randomized communication. In Proceedings of the Sym-
posium on Theory of Computing (STOC 2024), 2024.

59

[Fit19] Matthew Fitch. Implicit representation conjecture for semi-algebraic graphs. Discrete
Applied Mathematics, 259:53–62, 2019.

[FK09] Pierre Fraigniaud and Amos Korman. On randomized representations of graphs using
short labels. In Proceedings of the twenty-first annual symposium on Parallelism in
algorithms and architectures - SPAA 2009. ACM Press, 2009.

[GPT22] Jakub Gajarskỳ, Michał Pilipczuk, and Szymon Toruńczyk. Stable graphs of bounded
twin-width. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 1–12, 2022.

[GPW18] Mika Göös, Toniann Pitassi, and Thomas Watson. The landscape of communication
complexity classes. Computational Complexity, 27(2):245–304, 2018.

[Har20] Nathaniel Harms. Universal communication, universal graphs, and graph labeling. In
11th Innovations in Theoretical Computer Science Conference (ITCS 2020). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

[HH22] Hamed Hatami and Pooya Hatami. The implicit graph conjecture is false. In 2022
IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages
1134–1137. IEEE, 2022.

[HHH22] Lianna Hambardzumyan, Hamed Hatami, and Pooya Hatami. A counter-example to
the probabilistic universal graph conjecture via randomized communication complexity.
Discrete Applied Mathematics, 322:117–122, 2022.

[HHH23] Lianna Hambardzumyan, Hamed Hatami, and Pooya Hatami. Dimension-free bounds
and structural results in communication complexity. Israel Journal of Mathematics,
253(2):555–616, 2023.

[HHM23] Hamed Hatami, Kaave Hosseini, and Xiang Meng. A Borsuk-Ulam lower bound for
sign-rank and its applications. In Proceedings of the 55th Annual ACM SIGACT Sym-
posium on Theory of Computing (STOC 2023), 2023.

[HHP+22] Hamed Hatami, Pooya Hatami, William Pires, Ran Tao, and Rosie Zhao. Lower bound
methods for sign-rank and their limitations. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022).
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

[HIK11] Richard Hammack, Wilfried Imrich, and Sandi Klavžar. Handbook of product graphs.
CRC press, 2011.

[HSZZ06] Wei Huang, Yaoyun Shi, Shengyu Zhang, and Yufan Zhu. The communication complex-
ity of the hamming distance problem. Information Processing Letters, 99(4):149–153,
2006.

[HWZ22] Nathaniel Harms, Sebastian Wild, and Viktor Zamaraev. Randomized communication
and implicit graph representations. In Proceedigns of the Symposium on Theory of
Computing (STOC 2022), 2022.

[HZ24] Nathaniel Harms and Viktor Zamaraev. Randomized communication and implicit rep-
resentations for matrices and graphs of small sign-rank. In Proceedings of the 2024

60

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1810–1833.
SIAM, 2024.

[KL15] Sergey Kitaev and Vadim Lozin. Words and graphs. Springer, 2015.

[KM12] Ross J Kang and Tobias Müller. Sphere and dot product representations of graphs.
Discrete & Computational Geometry, 47(3):548–568, 2012.

[KNR92] Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of graphs.
SIAM Journal on Discrete Mathematics, 5(4):596–603, 1992.

[KNR99] Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication
complexity. Computational Complexity, 8(1):21–49, 1999.

[LNP80] László Lovász, J Nešetšil, and Ales Pultr. On a product dimension of graphs. Journal
of Combinatorial Theory, Series B, 29(1):47–67, 1980.

[LV08] VV Lozin and J Volz. The clique-width of bipartite graphs in monogenic classes.
International Journal of Foundations of Computer Science, 19(2):477–494, 2008.

[LZ17] Vadim Lozin and Viktor Zamaraev. The structure and the number of P7-free bipartite
graphs. European Journal of Combinatorics, 65:143–153, 2017.

[Mad67] Wolfgang Mader. Homomorphieeigenschaften und mittlere kantendichte von graphen.
Mathematische Annalen, 174(4):265–268, 1967.

[MNSW98] Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data struc-
tures and asymmetric communication complexity. Journal of Computer and System
Sciences, 57(1):37–49, 1998.

[MS14] Maryanthe Malliaris and Saharon Shelah. Regularity lemmas for stable graphs. Trans-
actions of the American Mathematical Society, 366(3):1551–1585, 2014.

[Mul89] John H Muller. Local structure in graph classes. 1989.

[New91] Ilan Newman. Private vs. common random bits in communication complexity. Infor-
mation processing letters, 39(2):67–71, 1991.

[Nik20] Sasho Nikolov. One-way randomized communication complexity of greater-
than. Theoretical Computer Science Stack Exchange, 2020. URL:
https://cstheory.stackexchange.com/q/48108 (version: 2020-12-29).

[Nis93] Noam Nisan. The communication complexity of threshold gates. Combinatorics, Paul
Erdos is Eighty, 1:301–315, 1993.

[NK96] Noam Nisan and Eyal Kushilevitz. Communication Complexity. Cambridge University
Press, 1996.

[NMP+21] Jaroslav Nešetřil, Patrice Ossona de Mendez, Michał Pilipczuk, Roman Rabinovich,
and Sebastian Siebertz. Rankwidth meets stability. In Proceedings of the 2021 ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 2014–2033. SIAM, 2021.

[NP24] Moni Naor and Eugene Pekel. Adjacency sketches in adversarial environments. In Pro-
ceedings of the Symposium on Discrete Algorithms (SODA), pages 1067–1098. SIAM,
2024.

61

[PS86] Ramamohan Paturi and Janos Simon. Probabilistic communication complexity. Jour-
nal of Computer and System Sciences, 33(1):106–123, 1986.

[PSW20] Toniann Pitassi, Morgan Shirley, and Thomas Watson. Nondeterministic and random-
ized boolean hierarchies in communication complexity. In 47th International Collo-
quium on Automata, Languages, and Programming (ICALP 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2020.

[Rad64] Richard Rado. Universal graphs and universal functions. Acta Arithmetica, 4(9):331–
340, 1964.

[RS86] Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-
width. Journal of algorithms, 7(3):309–322, 1986.

[RS15] Sivaramakrishnan Natarajan Ramamoorthy and Makrand Sinha. On the communica-
tion complexity of greater-than. In 2015 53rd Annual Allerton Conference on Commu-
nication, Control, and Computing (Allerton), pages 442–444. IEEE, 2015.

[RY20] Anup Rao and Amir Yehudayoff. Communication Complexity and Applications. Cam-
bridge University Press, 2020.

[Sağ18] Mert Sağlam. Near log-convexity of measured heat in (discrete) time and consequences.
In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS),
pages 967–978. IEEE, 2018.

[Sch99] Edward R Scheinerman. Local representations using very short labels. Discrete math-
ematics, 203(1-3):287–290, 1999.

[Smi88] D. V. Smirnov. Shannon’s information methods for lower bounds for probabilistic
communication complexity. Master’s thesis, Moscow University, 1988.

[Spi03] Jeremy P Spinrad. Efficient graph representations. American Mathematical Society,
2003.

[SS22] André Schidler and Stefan Szeider. A sat approach to twin-width. In 2022 Proceedings
of the Symposium on Algorithm Engineering and Experiments (ALENEX), pages 67–
77. SIAM, 2022.

[SZ94] Edward R Scheinerman and Jennifer Zito. On the size of hereditary classes of graphs.
Journal of Combinatorial Theory, Series B, 61(1):16–39, 1994.

[Vio15] Emanuele Viola. The communication complexity of addition. Combinatorica,
35(6):703–747, 2015.

[Yao03] Andrew Chi-Chih Yao. On the power of quantum fingerprinting. In Proceedings of the
thirty-fifth annual ACM symposium on Theory of computing, pages 77–81, 2003.

A Missing Proofs from Section 3

A.1 Probability Boosting and Derandomization

Proposition 3.4. Let F be a class of graphs. For any δ ∈ (0, 1/2), there is an adjacency sketch
with error δ and size at most O(SK(Fn) · log 1

δ). Equivalently, if there is a PUG U = (Un)n∈N for
F with size |Un|, then there is a PUG U ′ = (U ′

n)n∈N for F with error δ and |U ′
n| ≤ |Un|O(log(1/δ)).

62

Proof. Write s(n) := SK(Fn) and let G ∈ Fn. Then there is a distribution S over functions
sk : V (G) → {0, 1}s(n) and a decoder D : {0, 1}s(n)×s(n) → {0, 1} satisfying the definition of an
adjacency sketch. Consider the following adjacency sketch. Sample sk1, . . . , skk independently from
S. To each vertex x ∈ V (G) assign the label sk′(x) = (sk1(x), . . . , skk(x)). On input (sk′(x), sk′(y)),
the decoder will output majority(D(sk1(x), sk1(y)), . . . , D(skk(x), skk(y))).

For each i ∈ [k], let Xi = 1 if D(ski(x), ski(y)) = 1[(x, y) ∈ E(G)] and Xi = 0 otherwise; and let
X = ∑k

i=1Xi. Observe that for each i ∈ [k],E[Xi] ≥ 2/3, so E[X] ≥ 3k/2. Then, by the Chernoff
bound, the probability that the decoder fails is

P[X ≤ k/2] ≤ P[X ≤ E[X]/3] ≤ e− k
3 .

This is at most δ when k = 3 ln(1/δ).

Proposition 3.5. For any hereditary graph class F , there is an adjacency labeling scheme of size
O(SK(F) · logn). If there is a randomized algorithm which produces the adjacency sketch in time
poly(n), then there is a randomized algorithm which produces the adjacency labels in expected time
poly(n).

Proof. Let G ∈ Fn. Using Proposition 3.4 for δ = 1/n2, we obtain an adjacency sketch with error
probability δ and size c(n) = O(SK(Fn) · log(1/δ)) = O(SK(Fn) · logn). For a fixed sketch function
sk : V (G) → {0, 1}c(n), write ∆sk for the number of pairs x, y such that the decoder outputs the
incorrect value on input sk(x), sk(y). Then, by the union bound, for a randomly chosen sketch
function sk,

E[∆sk] ≤ δ
(
n

2

)
≤ 1/2n .

Then there exists a fixed sk with ∆sk ≤ 1/2n < 1 so ∆sk = 0; this sk is an adjacency labeling
scheme for G. Furthermore, for µ = E[∆sk], Markov’s inequality gives

P[∆sk > 0] = P[∆sk ≥ 1] = P[∆sk ≥ 2nµ] ≤ µ

nµ
= 1/2n ,

so a random sk function is a (deterministic) adjacency labeling scheme for G with probability at
least 1/2. Therefore, if there is a randomized algorithm producing the adjacency sketch in time
poly(n), then from the proof of Proposition 3.4 we see that we can produce the random sk function
with a randomized algorithm in time poly(n); in expectation we must sample 2 instances of sk to
find one with ∆sk = 0. It takes time at most poly(n) to check that all the labels are correct, since
we must check n2 pairs of vertices.

A.2 Lower Bound from Greater-Than

A.2.1 Proof of the lower bound

For the proof of the next statement, let us briefly describe the message passing (SMP) model of
communication. In this model, given (private) inputs x, y ∈ [n] to problem fn : [n]× [n]→ {0, 1},
Alice and Bob use shared randomness to send random messages A(x), B(y) to a third-party referee,
who must output fn(x, y) with probability at least 2/3 over the choice of messages. The complexity
of the protocol is maxx,y max(|A(x)|, |B(y)|). It is known that on domain [n], the SMP complexity
of Greater-Than is Θ(logn), in contrast to the two-way randomized communication complexity,
which is Θ(log logn), where the upper bound is due to [Nis93] (see discussion in Appendix A.2.2).
Proposition 3.11. If a hereditary graph class F is not stable, then SK(F) = Ω(logn).

63

Proof. This follows from the fact that an adjacency sketch for F can be used to construct a com-
munication protocol for Greater-Than in the public-coin SMP model of communication. The
construction is as follows. Let D be the decoder for an adjacency sketch for F . Given inputs
x, y ∈ [n], Alice and Bob can compute GTn(x, y) in the SMP model by choosing a graph G ∈ F
with ch(G) = n, so there exist disjoint sets of vertices {a1, . . . , an}, {b1, . . . , bn} such that (ai, bj)
are adjacent if and only if i ≤ j. Since F is hereditary, the induced subgraph H ⊏ G on vertices
{a1, . . . , an, b1, . . . , bn} is in F . Alice and Bob draw random sketches sk(ax), sk(by) according to the
adjacency sketch for H, and send them to the referee, who outputs D(sk(ax), sk(by)). This com-
munication protocol has complexity at most SK(F), so by the lower bound on the SMP complexity
of Greater-Than, we must have SK(F) = Ω(logn).

A.2.2 Bibliographic remark on Greater-Than

Recall the lower bound for Greater-Than:

Theorem A.1. Any public-coin randomized SMP communication protocol for Greater-Than on
domain [n] requires Ω(logn) bits of communication.

Lower bounds for the Greater-Than problem in various models appear in [KNR99, MNSW98,
Vio15, RS15, ATYY17]. The above theorem is stated in [KNR99] and [MNSW98]; in the latter it is
also credited to [Smi88]. In [KNR99] the theorem is stated for one-way private-coin communication;
the result for public-coin SMP communication follows from the fact that public-coin protocols
for problems with domain size n can save at most O(log logn) bits of communication over the
private-coin protocol due to Newman’s theorem [New91]. We remark that the tight lower bound of
Ω(log logn) for Greater-Than in the two-way communication model follows from Theorem A.1
since there is at most an exponential gap between SMP and two-way communication.

However, as noted in a CSTheory StackExchange question of Nikolov [Nik20], the complete proof
is not provided in either of [KNR99, MNSW98]. The same lower bound for quantum communication
complexity is proved in [ATYY17], which implies the above result. A direct proof for classical
communication complexity was suggested as an answer to [Nik20] by Chakrabarti [Cha20]; we
state this direct proof here for completeness and we thank Eric Blais for communicating this
reference to us. We require the Augmented-Index communication problem and its lower bound
from [MNSW98].

Definition A.2 (Augmented-Index). In the Augmented-Index communication problem, Alice
receives input x ∈ {0, 1}k and Bob receives an integer i ∈ [k] along with the values xj for all j > i.
Bob should output the value xi.

Theorem A.3 ([MNSW98]). Any public-coin randomized one-way communication protocol for
Augmented-Index requires Ω(k) bits of communication.

Proof of Theorem A.1, [Cha20]. Given inputs x ∈ {0, 1}k and i ∈ [k] to the Augmented Index
problem, Bob constructs the string y ∈ {0, 1}k where yj = xj for all j > i and yi = 0, and yj = 1
for all j < i. Consider the numbers a, b ∈ [2k] where the binary representation of a is x, with bit
k being the most significant and bit 1 the least significant, and the binary representation of b is y,
with the bits in the same order. If xi = 1, then since yi = 0 and yj = xj for j > i, it holds that
b < a. If xi = 0, then since yj = xj for j ≥ i and yj = 1 for j < i it holds that b ≥ a. Therefore,
computing Greater-Than on inputs a, b will solve Augmented Index. By Theorem A.3, the
communication cost of Greater-Than for n = 2k is at least Ω(k) = Ω(logn).

64

A.3 Missing Proof for Equality-Based Labeling

Proposition 3.26. The following are equivalent for a hereditary graph class F :

1. F admits a constant-size equality-based labeling scheme;

2. The graph class F reduces to the class of equivalence graphs;

3. The communication problem AdjF reduces to Equality.

Therefore, if F admits a constant-size equality-based labeling scheme, it admits a constant-size
adjacency sketch (and hence a constant-size PUG).

Proof. We prove the equivalence between items (1) and (3). The equivalence between items (2)
and (3) holds essentially by definition. Suppose F admits an (s, k)-equality based labeling scheme
where s, k are constants. For any matrix M ∈ AdjF , which is the adjacency matrix of GM ∈ F ,
two players with inputs x, y can use s calls to the Equality oracle to send the prefix p(x) ∈ {0, 1}s
to the other player. They may then use k2 calls to the Equality oracle to compute the entries of
the matrix Qx,y, from which they can compute the output Dp(x),p(y)(Qx,y) of the decoder.

Now, suppose AdjF reduces to Equality. By Proposition 3.18, AdjF matrix-reduces to
QS(Equality). Notices that QS(Equality) is the set of bipartite adjacency matrices of bipartite
equivalence graphs, and any bipartite equivalence graph G = (X,Y,E) can be defined by a pair
of functions a : X → [|X|] and b : Y → [|Y |] such that for every x ∈ X and y ∈ Y , x and y
are adjacent in G if and only if 1[a(x) = b(y)] = 1. This implies that for every n1 × n2 matrix
M ∈ AdjF there is a function h : {0, 1}k → {0, 1} and maps ai : [n1] → [n1], bi : [n2] → [n2],
i ∈ [k], such that for any x ∈ [n1] and y ∈ [n2]

M(x, y) = h(1[a1(x) = b1(y)],1[a2(x) = b2(y)], . . . ,1[ak(x) = bk(y)]) . (1)

We then obtain a constant-size equality-based labeling scheme for F by assigning to each vertex x
of GM ∈ F with adjacency matrix M ∈ AdjF a label consisting of a prefix encoding the function h,
and the equality codes a1(x), . . . , ak(x), b1(x), . . . , bk(x), and defining the decoder as the function
which computes Equation 1.

B The Lattice of Hereditary Graph Classes
We briefly survey some known facts about the lattice of hereditary graph classes, which may help
to put our new questions about constant-size PUGs and constant-cost communication complexity
into context. In Appendix B.1 we describe how the lattice is partitioned into “layers” based upon
the speed of the class, and in Appendix B.2 we describe the “minimal” hereditary graph classes at
different speeds, and how stability relates to these minimal classes.

The hereditary graph classes form a lattice, since for any two hereditary graph classes F and
H, it holds that F ∩ H and F ∪ H are also hereditary graph classes. In this section we review
the structure of this lattice, and give some basic results that place the set of constant-PUG classes
within this lattice. For an illustrated summary of this section, see Figure 10.

B.1 The Speed of Hereditary Graph Families

The speed |Fn| of a hereditary graph class cannot be arbitrary. Classic results of Alekseev [Ale92,
Ale97], Bollobás & Thomason [BT95], and Scheinerman & Zito [SZ94] have classified some of the
possible speeds of hereditary graph classes. Scheinerman & Zito [SZ94] and Alekseev [Ale97] showed
that the four smallest layers of hereditary graph classes are the following:

65

stable not stable

poly(n) universal
graphs (IGQ positive)

const PUG

no poly(n)
universal

graph
no const PUG

planar graphs

interval graphs

communication
problems

randomized
constant

deter-
ministic
constant

F

Adj

Adj

F

constant speed

polynomial speed

exponential speed

factorial speed

superfactorial speedsuperfactorial speed

factorial speedfactorial speed

Figure 9: The relationship between layers of the lattice of hereditary graph classes (on the right),
and communication complexity (on the left). The stability condition partitions the factorial layer. The
red regions, indicating the existence of graph classes with no constant-size PUG and no poly(n)-size
universal graph, are due to [HH22, HHH22].

1. The constant layer contains classes F with log |Fn| = Θ(1), and hence |Fn| = Θ(1),

2. The polynomial layer contains classes F with log |Fn| = Θ(logn),

3. The exponential layer contains classes F with log |Fn| = Θ(n),

4. The factorial layer contains classes F with log |Fn| = Θ(n logn).

The graph classes with subfactorial speed (the first three layers) have simple structure [SZ94, Ale97].
As demonstrated by earlier examples, the factorial layer is substantially richer and includes many
graph classes of theoretical or practical importance. Despite this, no general characterization is
known for them apart from the definition.

The first three slowest layers correspond exactly to constant-cost deterministic communication
proplems, under the equivalence between communication problems and hereditary graph classes
described in Section 3.2. Scheinerman [Sch99] showed that a hereditary class F admits a constant-
size adjacency labeling scheme (i.e. a constant-cost deterministic communication protocol for AdjF)
if and only if it belongs to the constant, polynomial, or exponential layer. Such classes have a
bounded number of equivalence classes of vertices, where two vertices x, y are equivalent if their
neighborhoods satisfy N(x) \ {y} = N(y) \ {x}.

Proposition B.1. A communication problem f admits a constant-cost deterministic protocol if
and only if F(f) is in the constant, polynomial, or exponential layer. A hereditary graph class F is
in the constant, polynomial, or exponential layer if and only if there is a constant-cost deterministic
protocol for AdjF .

On the other hand, adjacency labels for a factorial class must have size Ω(logn) since graphs
in the minimal factorial classes can have Ω(n) equivalence classes of vertices, and each equivalence
class requires a unique label. So there is a jump in label size from O(1) (in the subfactorial layers)
to Ω(logn) (in the factorial layers), so that there is no hereditary graph class with label size between

66

O(1) and Ω(logn). The original version of this paper conjectured that a similar gap between O(1)
and Ω(logn) should occur for adjacency sketching too; but this is not true, see [HHH22].

B.2 Minimal Factorial Families

The factorial layer has a set of 9 minimal classes, which satisfy the following:

1. Every factorial class F contains at least one minimal class;

2. For each minimal class M, any hereditary subclass M′ ⊂M has subfactorial speed.

These classes were identified by Alekseev [Ale97], and similar results were independently obtained
by Balogh, Bollobás, & Weinreich [BBW00]. Each minimal factorial class is either a class of
bipartite graphs, or a class of co-bipartite graphs (i.e., complements of bipartite graphs), or a class
of split graphs (i.e., graphs whose vertex set can be partitioned into a clique and an independent
set). Six of the minimal classes are the following:

• M◦◦ is the class of bipartite graphs of degree at most 1.

• M•◦ is the class of graphs whose vertex set can be partitioned into a clique and an independent
set such that ever vertex in each of the parts is adjacent to at most one vertex in the other
part.

• M•• is the class of graphs whose vertex set can be partitioned into two cliques such that
every vertex in each of the parts is adjacent to at most one vertex in the other part.

• L◦◦, L•◦,L•• are defined similarly to the classes M◦◦, M•◦, M••, respectively, with the
difference that vertices in each of the parts are adjacent to all but at most one vertex in the
other part.

The other three minimal classes motivate our focus on the stable factorial classes. They are defined
as follows. For any k ∈ N, recall that the half-graph (see Figure 2) is the bipartite graph H◦◦

k with
vertex sets {a1, . . . , ak} and {b1, . . . , bk}, where the edges are exactly the pairs (ai, bj) that satisfy
i ≤ j. The threshold graph H•◦

k is the graph defined the same way, except including all edges (ai, aj)
where i ̸= j. The co-half-graph H••

k is the graph defined the same way as the threshold graph but
also including all edges (bi, bj) for i ̸= j. We define the following hereditary classes:

C◦◦ := cl{H◦◦
k : k ∈ N} , C•◦ := cl{H•◦

k : k ∈ N} , C•• := cl{H••
k : k ∈ N} .

Proposition B.2 ([Ale97]). The minimal factorial classes are

M◦◦,M•◦,M••,L◦◦,L•◦,L••, C◦◦, C•◦, C•• .

See Figure 10. It is clear from the definitions that the classes C◦◦, C•◦, C•• are not stable, while
the other minimal classes are. The following statement is easily proved from Proposition 3.11.
Fact B.3. M◦◦,M•◦,M••,L◦◦,L•◦,L•• admit constant-size equality-based labeling schemes (and
therefore constant-size PUGs), while C◦◦, C•◦, C•• have PUGs of size nΘ(1).

A consequence of Ramsey’s theorem is that a hereditary graph class F is stable if and only if
it does not include any of C◦◦, C•◦, C••:
Proposition B.4. Let F be a hereditary class of graphs. Then F has bounded chain number if
and only if C◦◦, C•◦, C•• ̸⊆ F .

67

not stablestable
sp

ee
d

constant

polynomial

exponential

superfactorial

∅

O(1) determ.
labeling scheme

Ω(log n)
determ.
labeling
scheme

L••L•◦L◦◦M••M•◦M◦◦

C••C•◦C◦◦

O(1) adjacency
sketch

O(1) adjacency
sketch

Ω(log n)
adjacency
sketch

Bell numbers

Figure 10: Overview of our results (in green) in relation to the lattice of hereditary graph classes.
Circles are minimal factorial classes; purple shapes are minimal classes above the Bell numbers.

Unlike standard universal graphs, PUGs exhibit a large quantitative gap between the chain-like
graphs and the other minimal factorial classes, suggesting that stable factorial classes behave much
differently than other factorial classes and may be worth studying separately, which has not yet
been done in the context of understanding the factorial layer of graph classes.

The Bell numbers threshold. There is another speed threshold within the factorial layer: the
Bell numbers threshold. The Bell number Bn is the number of different set partitions of [n], or
equivalently the number of n-vertex equivalence graphs; asymptotically it is Bn ∼ (n/ logn)n.
Similarly to the factorial layer itself, there is a set of minimal classes above the Bell numbers.
However, unlike the factorial layer, the set of minimal classes above the Bell numbers is infinite,
and it has been characterized explicitly [BBW05, ACFL16]. Once again, the classes C◦◦, C•◦, C••

are minimal. This means that all hereditary classes below the Bell numbers are stable. Structural
properties of these classes were given in [BBW00], which can be used to prove the following.

Proposition B.5. Let F be a hereditary graph class. Then:

1. If F is a minimal class above the Bell numbers, then F admits a constant-size equality-based
labeling scheme (and therefore a constant-size PUG), unless F ∈ {C◦◦, C•◦, C••}.

2. If F has speed below the Bell numbers, then F admits a constant-size equality-based labeling
scheme (and therefore a constant-size PUG).

The proof of this statement is routine, given the structural characterization of these graph
classes in [BBW00, BBW05, ACFL16], and we omit it.

68

	1 Introduction
	1.1 Communication Complexity
	1.2 Implicit Graph Representations
	1.3 Subsequent Work
	1.4 Organization

	2 Preliminaries
	2.1 Notation and Terminology
	2.2 Communication Complexity
	2.3 Adjacency Labeling Schemes, Universal Graphs, and Factorial Classes

	3 Connections: Randomized Communication and Implicit Representations
	3.1 Adjacency Sketching and Probabilistic Universal Graphs
	3.2 Communication-to-Graph Correspondence
	3.3 Reductions
	3.4 Equality-Based Labeling Schemes
	3.5 Basic Adjacency Sketches

	4 Question I. New Examples of Constant-Cost Communication
	4.1 Computing Small Distances and First-Order Formulae
	4.2 Graph Products

	5 Question II. Structure: Stability is Sometimes Sufficient
	5.1 Interval & Permutation Graphs
	5.2 Monogenic Bipartite Graphs

	6 Question III. Equality is Not Complete
	A Missing Proofs from Section 3
	A.1 Probability Boosting and Derandomization
	A.2 Lower Bound from Greater-Than
	A.3 Missing Proof for Equality-Based Labeling

	B The Lattice of Hereditary Graph Classes
	B.1 The Speed of Hereditary Graph Families
	B.2 Minimal Factorial Families

