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Abstract
A transient data structure is a package of an ephemeral data
structure, a persistent data structure, and fast conversions
between them. We describe the specification and proof of a
transient stack and its iterators. This data structure is a scaled-
down version of the general-purpose transient sequence data
structure implemented in the OCaml library Sek. Internally,
it relies on fixed-capacity arrays, or chunks, which can be
shared between several ephemeral and persistent stacks. Dy-
namic tests are used to determine whether a chunk can be
updated in place or must be copied: a chunk can be updated
if it is uniquely owned or if the update is monotonic. Using
CFML, which implements Separation Logic with Time Cred-
its inside Coq, we verify the functional correctness and the
amortized time complexity of this data structure. Our verifi-
cation effort covers iterators, which involve direct pointers
to internal chunks. The specification of iterators describes
what the operations on iterators do, how much they cost,
and under what circumstances an iterator is invalidated.

CCS Concepts: • Theory of computation→ Separation
logic; Program specifications; Program verification;
Data structures design and analysis.

Keywords: transient data structure, program verification
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1 Introduction
The algorithms literature establishes a distinction between
ephemeral and persistent data structures [Driscoll et al. 1989].
An ephemeral data structure allows only destructive updates.
This implies that, at a given point in time, only the most
recent version of the data structure is available for use; all
prior versions are lost. In contrast, a persistent data structure
supports nondestructive updates, which produce a new ver-
sion of the data structure, without destroying the previous
version. This implies that every version of the data structure
remains valid forever and that multiple versions can be used
independently of one another.

There are tradeoffs between these two flavors. On the one
hand, an operation on an ephemeral data structure is usually
faster than its counterpart on a persistent data structure. On
the other hand, compared with ephemeral data structures,
persistent data structures are generally easier to use and to
reason about. They remove the need to worry about sharing,
the danger of unintended updates, and the need for undo
operations in backtracking algorithms.
A transient data structure aims to combine the benefits

of ephemeral and persistent data structures. Transient data
structures have been popularized by Clojure; they appear
in the Scala standard library and in several libraries imple-
mented in C++, Python, and JavaScript (§7). In all of these
systems, one uses persistent data structures by default, but
a persistent data structure offers the possibility of creating
a “transient”, that is, an ephemeral copy of the data struc-
ture. The “transient” supports destructive updates and can be
“frozen”, that is, converted back to a persistent data structure.
This is worthwhile because creating, updating, and freezing
a “transient” is cheap.
In our terminology, a transient data structure is simply

a package of an ephemeral data structure, a persistent data
structure, and fast conversions between them.
An example of a useful transient data structure would

be a transient string data structure. Indeed, both ephemeral
and persistent strings are commonly needed. The lack of
one of these variants, or the lack of efficient conversions be-
tween them, can lead to less elegant and/or less efficient code.
A more general example, implemented in OCaml by Char-
guéraud and Pottier [2021], is Sek. This library offers a tran-
sient sequence data structure, that is, an abstract data type
of mutable sequences, an abstract data type of immutable
sequences, and efficient conversions between them. It pro-
vides double-ended sequences: elements can be inserted or
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extracted at either end. It also provides logarithmic-time
random access, splitting, and concatenation operations.

Sek’s ephemeral sequences are adapted from the chunked
sequences data structure [Acar et al. 2014]. At a high level,
a sequence is represented as a balanced tree whose leaves
consist of chunks. Each chunk stores a group of consecutive
elements in a fixed-capacity array. The concept of a chunk is
almost as old as programming itself: chunks typically appear
in the implementation of device drivers, such as the block
device drivers of Linux; they also appear in the double-ended
queues of the C++ STL.

Sek extends Acar et al.’s work [2014] by adding persistent
sequences, by introducing sharing between chunks to allow
efficient conversions, and by introducing dynamic ownership
tests and sharing of prefixes of chunks in order to minimize
the number of copy-on-write operations. The subtle interac-
tion of these features, as well as the nontrivial amortization
arguments required in the complexity analysis of this data
structure, provide a strong motivation for formal verification.

In this work, however, we do not verify Sek itself, because
that would represent a major undertaking: the library is
about 6K lines of OCaml code, not counting blank lines and
comments. Instead, we verify a scaled-down variant of Sek.
We restrict our attention to stacks, that is, single-ended se-
quences. Insertion and extraction are allowed only at one
end; random access, splitting, and concatenation operations
are not supported. This allows us to adopt a simple internal
representation of stacks as lists of chunks, whereas Sek uses
bootstrapped trees of chunks [Acar et al. 2014].
This simplification does not remove the challenges of

reasoning about shared mutable data, dynamic ownership
tests, and dynamic choices between in-place updates and
copies. It does remove the difficulty of reasoning about boot-
strapped trees; however, this aspect has been addressed al-
ready by Charguéraud [2016, §7.5]. A crucial aspect of Sek
that is preserved in our scaled-down variant is its support for
iterators over both ephemeral and persistent data structures.

In summary, in this paper, we formally specify and verify
a transient stack data structure, a scaled-down version of Sek.
We verify both the functional correctness and the amortized
time complexity of this data structure. In this endeavor, we
encounter the following challenges:

• We wish to write specifications that describe both the
functional behavior and the amortized time complexity
of each operation.

• Insofar as possible, we wish to hide the presence of
mutable internal state from users of the persistent API.

• The correctness argument requires proving that our
runtime ownership tests are correct and that our in-
place updates are safe, that is, invisible to users of the
persistent API.

• The complexity argument is tied with sharing and
ownership considerations. In fact, the complexity of

some operations depends on the presence or absence
of internal sharing; in such cases, we wish to provide
two specifications.

• An iterator maintains direct pointers to certain chunks.
We must justify when and why it is safe for the iterator
to access these chunks. The specification must indicate
that an iterator on a persistent data structure remains
valid forever, while an iterator on an ephemeral data
structure is invalidated if the data structure is modified,
except if it is modified by this iterator’s set operation.

We address these challenges in the setting of Separation
Logic with Time Credits [Charguéraud and Pottier 2019]. To
carry out the proof, we use CFML [Charguéraud 2011], an
implementation of this logic inside Coq. Our contributions
include:

• A specification, in Separation Logic with Time Credits,
of the correctness and amortized time complexity of
a transient data structure (a stack) and of its iterators.

• A proof that our implementation of the transient stack
satisfies this specification.

• The first verification, to the best of our knowledge,
of code involving runtime ownership tests based on
unique identifiers.

• A fine-grained treatment of monotonic state, allowing
us to distinguish operations that definitely do not affect
the internal state and operations that may update it
in a manner that preserves the views of other data
structures on the shared state.

• A precise complexity analysis, accounting for the fact
that the cost of operations may depend on the presence
or absence of internal sharing.

The paper is laid out as follows. We present the API of-
fered by our transient stack, explain how stacks are internally
represented, and sketch how the main operations on stacks
are implemented (§2). After a refresher on specification of
ephemeral stacks in Separation Logic (§3), we present a speci-
fication of transient stacks (§4). Then, we give the definitions
of the key “representation predicates” that describe our data
structure, and highlight several aspects of the proof (§5). We
discuss iterators (§6), review the related work (§7), and con-
clude (§8). Our code and proofs are publicly available [Moine
et al. 2021].

2 Transient Stacks
Interface. Our code takes the form of an OCaml module,

which exposes two abstract data types:
• estack for ephemeral stacks,
• pstack for persistent stacks.

Each of these types comes with operations create, push and
pop. These operations have constant time complexity.1 More
precisely, some operations have complexity𝑂 (1), while some

1Throughout the paper, every complexity bound is amortized.
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(* Basic operations on ephemeral stacks. *)

type 'a estack
val ecreate : 'a −> 'a estack

val epush : 'a estack −> 'a −> unit

val epop : 'a estack −> 'a

(* Basic operations on persistent stacks. *)

type 'a pstack
val pcreate : 'a −> 'a pstack
val ppush : 'a pstack −> 'a −> 'a pstack

val ppop : 'a pstack −> 'a pstack ∗ 'a

(* Conversions. *)

val pstack_to_estack : 'a pstack −> 'a estack
val estack_to_pstack : 'a estack −> 'a pstack

Figure 1. OCaml API of transient stacks

have complexity𝑂 (𝐾), where the parameter𝐾 is the capacity
of a chunk. The value of 𝐾 is fixed by the user. We give
precise complexity bounds as part of the specification in §4.
The constant factors for ephemeral operations are smaller
than for their persistent counterparts, motivating the use of
ephemeral operations when performance matters.

Crucially, we provide constant-time conversions between
ephemeral and persistent stacks: this is the hallmark of a
transient data structure. The function pstack_to_estack cre-
ates a fresh ephemeral stack out of a persistent stack. The
chunks that contain the items are not eagerly copied up front:
they are copied in a lazy manner, as items are popped off
the newly-created ephemeral stack. In the reverse direction,
the function estack_to_pstack freezes an ephemeral stack:
that is, it creates a persistent stack out of it. This operation
is destructive: the ephemeral stack is invalidated and must
no longer be accessed.
The types and operations discussed up to this point ap-

pear in Figure 1. In addition, our verified implementation
includes is_empty and peek operations (not discussed in the
paper), iterators on both kinds of stacks (§6), and two copy
operations for ephemeral stacks (§A.1).

Internal Representation. We now explain how transient
stacks are represented in memory. (An end user does not
need this information.) Figure 2 presents a drawing where
one ephemeral stack (A) and two persistent stacks (B, C)
appear. The items contained in a stack are pictured as grey
slots. They are stored in fixed-capacity arrays, depicted as
groups of 4 slots.

An ephemeral chunk is a mutable data structure that holds
(1) a pointer data to a fixed-capacity array of size 𝐾 , (2) the
index top of the first empty slot in the data array. In practice,
𝐾 typically lies between 16 and 256; in Figure 2, it is 4.

An ephemeral chunk is either uniquely owned by a specific
ephemeral stack, or shared between an arbitrary number

Figure 2. Internal representation of transient stacks

(* Identifiers, used in runtime ownership tests *)

type id = unit ref

(* Ephemeral chunks: data in fixed-capacity arrays *)

type 'a echunk =
{ data: 'a array; mutable top: int; default: 'a }

(* Shareable chunks: views on ephemeral chunks *)

type 'a schunk =
{ support: 'a echunk; view: int; owner: id option }

type 'a estack = (* Ephemeral stacks. *)

{ mutable front : 'a echunk;
mutable tail : 'a schunk list;
mutable id : id;
mutable spare: 'a echunk option }

type 'a pstack = (* Persistent stack *)

{ pfront: 'a schunk; ptail: 'a schunk list }

Figure 3. Internal type definitions for transient stacks

of ephemeral and persistent stacks. In Figure 2, the shared
ephemeral chunks are represented inside the grey cloud.
An important point is that a stack does not necessarily

“see” the entire content of an ephemeral chunk: its view of
the chunk may be limited to a prefix of the chunk’s elements.
These prefixes are depicted in Figure 2 by blue brackets.

This view and ownership information is held in shareable
chunks. A shareable chunk consists of an immutable data
structure that holds (1) a pointer to an ephemeral chunk,
(2) an identifier that allows determining whether this chunk
is currently uniquely owned or shared (the ownership policy
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is described in detail further on), and (3) a view size.2 In
Figure 2, a shareable chunk is depicted as a small solid blue
square, with an arrow pointing at a prefix of an ephemeral
chunk.

A persistent stack is a nonempty list of shareable chunks,
all of which are considered as “shared”. The front shareable
chunk is stored in a field named pfront, while the remainder
of the list is stored in a field named ptail. The dashed boxes
in Figure 2 represent list cells.

The representation of an ephemeral stack is slightly more
complex. Its front chunk is an ephemeral chunk, stored in
a field named front. Its remaining items chunks form a list
of shareable chunks, each of which may be either uniquely
owned by this ephemeral stack or shared. This list is stored
in the tail field.
A central aspect of the design is how we distinguish be-

tween uniquely-owned and shared chunks, that is, how we
implement runtime ownership tests and transfers. Runtime
ownership tests are needed by some of the operations that
update an ephemeral stack: a uniquely-owned ephemeral
chunk can be updated in place, whereas a shared ephemeral
chunk must be copied before it is updated, unless the update
is monotonic, a situation that is described later on in this
section. Runtime ownership transfers are needed when an
ephemeral stack is frozen: all of the shareable chunks in its
tail list must be marked as potentially shared. A challenge
is to perform such a transfer in constant time. A naïve ap-
proach, where every shareable chunk is explicitly marked
“uniquely owned” or “shared”, would require linear time. Our
solution is to let every ephemeral stack and every shareable
chunk carry an identifier. By convention, if an ephemeral
stack and a shareable chunk carry the same identifier, then
this stack owns this chunk; otherwise, this chunk is shared.
This convention allows an ephemeral stack to abandon the
ownership of all of its shareable chunks, in constant time,
simply by changing its own identifier to a fresh one.

In Figure 2, the ephemeral stack (A) has identifier 3, stored
in its id field. Its tail field contains a list of two shareable
chunks. The first of these has identifier 3, and is therefore
uniquely owned by this ephemeral stack, which is why it
is drawn outside of the “shared cloud”. The second one has
identifier 1, and is therefore not owned by this ephemeral
stack, which is why it is drawn inside the “shared cloud”.

To summarize, an ephemeral chunk is either: (1) owned by
an ephemeral stack, because it is the front chunk of the stack;
or (2) owned by an ephemeral stack, because it is owned by
a shareable chunk that is part of the tail of the stack; or
(3) owned by the “shared cloud”.

The internal type definitions that describe the layout of
our data structures appear in Figure 3. Identifiers have type
2The identifiers that determine ownership could also be stored in ephemeral
chunks rather than in shareable chunks. This choice controls a tradeoff
between minimizing the memory footprint of structures that involve a lot
of sharing and decreasing the cost of accessing ownership identifiers.

unit ref, which means that one can generate a fresh identi-
fier and test the equality of two identifiers in constant time.
The default field in ephemeral chunks contains a default
value that is written into a slot that becomes conceptually
empty. This is necessary in order to avoid memory leaks:
keeping a pointer to an item that is no longer an element of
the stack would prevent the GC from reclaiming this item.
The spare field in ephemeral stacks contains an optional
pointer to an empty ephemeral chunk. Keeping an empty
chunk at hand, instead of letting the GC reclaim it, allows
us to avoid certain “stuttering” scenarios that would lead to
bad time complexity.

Overview of the Operations. To complete the presenta-
tion of transient stacks, we briefly describe the implementa-
tion. Our aim is to give the reader a taste of the arguments
involved in reasoning about this data structure. It is however
possible to skip this section upon first reading.
To pop an item out of a nonempty ephemeral stack, we

pop it out of the front chunk (which is always a uniquely-
owned ephemeral chunk). If the front chunk becomes empty,
then we extract a shareable chunk out of the tail. If this
shareable chunk is uniquely owned, then its support (the
underlying ephemeral chunk) becomes the new front chunk.
Otherwise, its content must be copied into a fresh ephemeral
chunk. This allocation and copy require 𝑂 (𝐾) operations.
Fortunately, this occurs infrequently (at most once per 𝐾
pop operations), so one can prove that the amortized time
complexity of pop is 𝑂 (1).

To push an item into an ephemeral stack, we push it into
its front chunk. If the front chunk is full, however, then we
must first move it into the tail, and install an empty front
chunk in its place. Inserting the front chunk into the tail
requires wrapping it in a new shareable chunk, which we
mark “uniquely owned”, by assigning it the same identifier
as the ephemeral stack. Allocating a fresh empty front chunk
costs 𝑂 (𝐾), but this is needed only when no spare empty
chunk is at hand, and (therefore) occurs at most once per 𝐾
push operations, so the amortized time complexity of push
is𝑂 (1). This amortization argument is definitely nonobvious,
providing motivation for a formal proof.

To pop an item off a persistent stack, we simply decrement
the view field of its front shareable chunk. In case the view
becomes empty, we extract a shareable chunk out of ptail
and make it the new pfront. This takes time 𝑂 (1).
To push an item into a persistent stack, we first examine

its front shareable chunk. If its view size is less than 𝐾 and
is equal to the number of items stored in the underlying
ephemeral chunk, then the situation is favorable: there is a
free slot in the shared chunk that can hold the incoming item.
Visually (Figure 2), this corresponds to a situation where
the blue bracket covers exactly the grey (occupied) slots
and there remains at least one white (unoccupied) slot. In
such a case, the new item is written in the free slot, in time
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(* [e { Stack L] is a notation for [Stack L e] *)

Definition Stack : list A→ loc→ hprop := ...

Lemma create_spec : ∀ d,
SPEC (create d)
PRE ($c1)
POST (fun e⇒ e{ Stack nil).

Lemma push_spec : ∀ L e x,
SPEC (push e x)
PRE ($c2 ★ e{ Stack L)
POST (fun _⇒ e{ Stack (x::L)).

Lemma pop_spec : ∀ L e,
L ≠ nil→
SPEC (pop e)
PRE ($c3 ★ e{ Stack L)
POST (fun x⇒ ∃∃ L', \[L = x::L'] ★ e{ Stack L').

Figure 4. Specification of a standard ephemeral stack

𝑂 (1). This update is performed in place, even though the
chunk is shared, because it cannot affect the views of other
stacks: it is a monotonic update. When the requirements for
a monotonic update are not met, a copy must be performed:
a fresh shared chunk must be initialized with suitable data.
In this unfavorable case, the cost of the operation is 𝑂 (𝐾).
To convert a persistent stack into an ephemeral one, we

allocate and initialize a fresh ephemeral front chunk, and
pick a fresh identifier for this ephemeral stack: this indicates
that the new ephemeral stack does not own any of the shared
chunks in its tail. This operation takes time 𝑂 (𝐾).
To convert an ephemeral stack into a persistent one, we

wrap its front chunk into a shareable chunk, in time 𝑂 (1).
Any shareable chunk that was uniquely owned by this ephe-
meral stack is now regarded as shared. The ephemeral stack
becomes logically invalid, and must no longer be used. Our
specifications statically forbid the use of an invalid stack by
a verified client: see §4.4.

3 Ephemeral Stacks in Separation Logic
Before attempting to propose a specification for our transient
stacks, we recall how an ephemeral stack is usually specified
in Separation Logic. Later on (§4), we adapt this standard
specification so that it applies to our ephemeral stacks.
Throughout the paper, we use the concrete syntax of

CFML [Charguéraud 2011], including the “dollar” notation
for time credits. We introduce this syntax as we go.

A heap predicate of type hprop, also known as an assertion,
describes a fragment of the mutable state. A representation
predicate is a heap predicate that describes a mutable data
structure. Its parameters are typically: (1) the mathematical
object that this data structure represents and (2) the address
of this data structure in memory.

Figure 4 gives the type of Stack, the representation pred-
icate for ephemeral stacks. We introduce e{ Stack L as a
short-hand for Stack L e. This heap predicate represents the
unique ownership of the stack, and at the same time asserts
that the memory location e points to a valid stack whose
elements form the list L, whose type is list A. Throughout
the paper, we assume that the type A of the items is fixed.
Our Coq definitions are polymorphic in this type.
The remainder of Figure 4 gives the specifications of the

functions create, push and pop. We describe them next.

Create. The operation create d initializes an empty stack.
Its argument d denotes a default value of type A. The speci-
fication takes the form SPEC (create d) PRE P POST Q, which is
CFML notation for the triple {𝑃}(create d){𝑄}.

The precondition of create is $c1: this means that create
consumes c1 time credits. A time credit [Charguéraud and
Pottier 2019] is a permission to perform one function call
or to execute one iteration of a loop. The function create

consumes a constant number of credits: thus, it has con-
stant time complexity. In Figure 4, the definition of c1 is
not shown. A concrete implementation of stacks would fix
the value of c1. We do so, for example, in Figure 6, where
we instantiate c1 with K+4. The postcondition of create is
fun e⇒ e{ Stack nil. The name e denotes the result of
the operation. Here, the value e is the address of the newly-
created stack. The assertion e{ Stack nil guarantees that
this stack is valid and is empty.
By design, the reasoning rules of Separation Logic with

Time Credits allow unused credits to be stored for later use.
Therefore, all of the complexity bounds given in this paper
are amortized [Tarjan 1985].

Push. The specification of push indicates that, by invok-
ing push e x, one transforms the heap from a state described
by e{ Stack L to one described by e{ Stack (x::L). Further-
more, c2 time credits are consumed, reflecting (again) the
fact that this operation has constant time complexity.

Pop. In the specification of pop, the hypothesis L ≠ nil

requires the stack to be nonempty.3 The specification indi-
cates that the state of the stack evolves from e{ Stack L to
e{ Stack L', where L' is the tail of the list L. It also indicates
that the value x returned by pop must be the head of the
list L. The variable L' is existentially quantified by ∃∃. The
equality L = x::L', which has type Prop, is lifted to the level of
assertions by the square brackets \[...].

4 Specification of Transient Stacks
4.1 Abstract Predicates
We now introduce three abstract predicates that are involved
in the specification of transient stacks.
3This hypothesis could also be placed after the PRE keyword. By convention,
we prefer to place pure hypotheses outside of triples. This improves the
readability of complex specifications and saves a few proof steps.
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Variable A : Type. (* type of stack items *)

Parameter Memory : Type→ Type. (* "cloud" contents *)

Parameter Shared: Memory A → hprop.
Parameter EStack: Memory A → list A → estack_ A → hprop.
Parameter PStack: Memory A → List A → pstack_ A → Prop.

Figure 5. Type of representation predicates in specifications

The set of shared chunks (that is, the “cloud” in Figure 2)
is described by an assertion of the form Shared M. From the
perspective of the user, M is an abstract entity: its type is
Memory, a type whose definition is not revealed. (It is shown
in §5.2.) The user can think of M as a name for the current
state of the shared cloud.
An ephemeral stack is described by an assertion of the

form e{ EStack M L, where e is a memory location and L is
a list of items. Compared with Stack (§3), EStack takes an ad-
ditional parameter M: this reflects the fact that an ephemeral
stack is valid in relation to a certain shared state.
A persistent stack is described by a proposition (of type

Prop) of the form PStack M L p, where p is a Coq record that
describes the persistent stack. As in the previous paragraph,
M is the shared memory, and L is the list of items contained
in the stack. The parameter M is needed because the internal
representation of a persistent stack involves shared chunks.
The reader may wonder why PStack M L p is a proposition,
as opposed to an assertion. This is possible because, pro-
vided the shared cloud is disregarded, a persistent stack is a
pure data structure: the types schunk and pstack in Figure 3
are immutable record types. CFML automatically reflects
immutable OCaml records as Coq records.
Figure 5 gives the Coq types of the three predicates. The

Coq types estack_ A and pstack_ A correspond to the OCaml
types 'a estack and 'a pstack. The type estack_ A is defined
by CFML as a synonym for loc, the type of memory locations.
The type pstack_ A is defined by CFML as a Coq record type.

4.2 Specification of Ephemeral Stacks
The specification of the operations on ephemeral stacks ap-
pears in Figure 6. Compared with the specification of stan-
dard stacks given in Figure 4, it differs in two ways. First, as
previously explained, the assertion e{ Stack L is replaced
with e{ EStack M L to account for the dependence of the
data structure on a shared state. Second, the specification
involves an additional line INV (Shared M). This notation is
syntactic sugar for two occurrences of the assertion Shared M,
one in the precondition and one in the postcondition.4 The
presence and invariance of Shared M reflect the fact that an op-
eration on an ephemeral stack requires access to the shared
state, and does not modify or extend it.

4SPEC (f x) PRE P INV I POST Q, where I is of type hprop, is a notation
for the triple {P ∗ I} (f x) {𝜆y. (Q y) ∗ I}.

Lemma ecreate_spec : ∀ M x,
SPEC (ecreate x)
PRE ($(K+4))
POST (fun e⇒ e{ EStack M nil).

Lemma epush_spec : ∀ M L e x,
SPEC (epush e x)
PRE ($7 ★ e{ EStack M L)
INV (Shared M)
POST (fun _⇒ e{ EStack M (x::L)).

Lemma epop_spec : ∀ M L e,
L ≠ nil→
SPEC (epop e)
PRE ($11 ★ e{ EStack M L)
INV (Shared M)
POST (fun x⇒ ∃∃ L', \[L = x::L'] ★ e{ EStack M L').

Figure 6. Specification of ephemeral stacks

Lemma pcreate_spec : ∀ M x,
SPEC (pcreate x)
MONO M

PRE ($(K+3))
POST (fun M' p⇒ \[PStack M' nil p]).

Lemma ppush_spec : ∀ M L p x,
PStack M L p→
SPEC (ppush p x)
MONO M

PRE ($(K+7))
POST (fun M' p'⇒ \[PStack M' (x::L) p']).

Lemma ppop_spec : ∀ M L p,
PStack M L p→
L ≠ nil→
SPEC (ppop p)
PRE ($7)
INV (Shared M)
POST (fun M' (p',x) ⇒ ∃∃ L', \[L = x::L' ∧ PStack M' L' p']).

Figure 7. Specification of persistent stacks

For the benefit of users who need only ephemeral stacks
and never persistent stacks, it is possible to give to our ephe-
meral stacks the standard specification of Figure 4. To that
end, it suffices to define e{ Stack L as e{ EStack ∅ L. The
assertion Shared ∅ happens to be equivalent to the “empty
heap” assertion \[], so it can be elided. We have verified that
our code admits this simplified specification.
The precondition of ecreate does not require a shared

memory Shared _. The postcondition contains the assertion
e{ EStack M nil, where M is chosen by the user: it may be
a memory that is at hand, or the empty memory ∅ .
The precondition of ecreate requires 𝐾 + 4 time credits,

reflecting the cost of allocating and initializing an array of
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Parameter Extend : Memory A→ Memory A → Prop.

Lemma EStack_mon : ∀ e M M' L, Extend M M'→
(e{ EStack M L) ⊢ (e{ EStack M' L).

Lemma PStack_mon : ∀ p M M' L, Extend M M'→
(PStack M L p)→ (PStack M' L p).

Figure 8. Monotonicity lemmas

size 𝐾 . Ideally, we would like to write 𝑂 (𝐾) in the speci-
fication, instead of 𝐾 + 4, and to set things up so that 𝐾
is not 𝑂 (1), because we wish to distinguish between 𝑂 (1)
and 𝑂 (𝐾). This is made possible in principle by Guéneau’s
work [2019], which develops techniques to handle formal
asymptotic complexity with time credits. Yet, we leave this
aspect to future work, so as to avoid dealing at this stage
with an additional layer of technicality.

4.3 Specification of Persistent Stacks
Persistent stacks, contrary to ephemeral stacks, do operate
on the shared state. To achieve persistence, it is fundamental
that the shared state evolve monotonically: any view on a
prefix of a shared chunk must be preserved when the shared
state evolves. The manner in which the shared state evolves
is modeled by a preorder Extend M M'. The definition of this
preorder is not revealed to the user. All that matters is that
an evolution of the shared state preserves the meaning of
existing ephemeral stack and persistent stacks: this is ex-
pressed by the two lemmas shown in Figure 8. There, the
symbol ⊢ denotes entailment of assertions.
Every operation on persistent stacks requires a shared

state described by Shared M and produces a shared state de-
scribed by Shared M', for some M' such that Extend M M' holds.
For example, the operation ppush p x, shown below, features
a pure precondition PStack M L p and a pure postcondition
PStack M' (x::L) p', where p' denotes the result stack.

Lemma ppush_spec_without_syntactic_sugar : ∀ M L p x,
PStack M L p→
SPEC (ppush p x)
PRE ($(K+7) ★ Shared M)
POST (fun p'⇒ ∃∃ M', \[Extend M M'] ★ Shared M'

★ \[PStack M' (x::L) p']).

Because many specifications involve this pattern where the
shared state evolves monotonically, we introduce an ad hoc
notation: we write MONO M before the precondition, and bind M'
as an extra argument of the postcondition.5 The specifica-
tions in Figure 7 illustrate the use of this syntactic sugar.

5When expanding the notation MONO, Coq determines which predicate
Shared and which preorder Extend are desired, based on the type of M,
thanks to a type class. In general, the MONO notation applies to any𝑀 of
type 𝑇 for which there is a predicate 𝑅 of type T → hprop and a pre-
order ≤𝑇 . The notation SPEC (f x) MONO M PRE P POST Q stands for the
triple {R M ★ P} (f x) {𝜆 y. ∃∃ M', [M ≤𝑇 M'] ★ R M' ★ (Q M' y)}.

Lemma pstack_to_estack_spec : ∀ M L p,
PStack M L p→
SPEC (pstack_to_estack p)
PRE ($(2∗K+7))
INV (Shared M)
POST (fun e⇒ e{ EStack M L).

Lemma estack_to_pstack_spec : ∀ M L e,
SPEC (estack_to_pstack e)
MONO M

PRE ($2 ★ e{ EStack M L)
POST (fun M' p⇒ \[PStack M' L p]).

Figure 9. Specification of the conversions

4.4 Specification of the Conversion Operations
The specification of the conversion operations appears in
Figure 9. The function pstack_to_estack expects a persistent
stack whose logical model is a list L and produces a new ephe-
meral stack whose logical model is also L. The precondition
establishes that the operation has constant time complexity.
Because this operation reads but does not modify the shared
state, the specification INV (Shared M) suffices.
The function estack_to_pstack requires an ephemeral

stack whose logical model is L and produces a persistent
stack whose model is also L. The original ephemeral stack is
invalidated, that is, the permission to access it is lost: indeed,
the assertion EStack M L does not appear in the postcondition.
The shared state evolves monotonically during the operation,
because the uniquely-owned chunks of the ephemeral stack
become shared and are moved into the shared state.

5 Overview of the Proof
We now explain how the predicates presented in §4 are de-
fined and give insights about the key points of the proof.

5.1 Representation of Ephemeral Chunks
The predicate c{ EChunk L describes an ephemeral chunk
at address c, whose items form the list L. Its definition ap-
pears in Figure 10. Two points-to assertions claim the unique
ownership of the chunk record6and of its data array. The aux-
iliary proposition EChunk_inv, a conjunction of pure propo-
sitions, captures the pure part of the invariant. It states that
the data array has size K, that its first top elements are the
elements of the list L (in reverse order, because the front of
the array corresponds to the bottom of the stack), and that
the remaining slots of the array store the default value.

A chunk can be viewed as a stack of bounded capacity. It
is convenient to define the operations empty, push, and pop

6The field names associated with OCaml records appear in Coq with an
extra “quote” symbol, which is automatically added by CFML to avoid name
clashes. Thus, whereas the OCaml record type echunk has three fields
data, top, default, the Coq record type echunk_ has three fields data',
top', default'.
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Record EChunk_inv

(L:list A) (D:list A) (top:int) (default:A) : Prop :=
{ efront : ∀ i, 0 ≤ i < top→ D[i] = (rev L)[i];
etail : ∀ i, top ≤ i < K → D[i] = default;
elength : length L = top ∧ length D = K;
etop : 0 ≤ top ≤ K }.

Definition EChunk (L:list A) (c:echunk_ A) : hprop :=
∃∃ (data:loc) (D:list A) (top:int) (default:A),
c{ `{ data' := data; top' := top; default' := default }

★ data{ Array D

★ \[EChunk_inv L D top default].

Figure 10. Representation of ephemeral chunks

at the level of chunks, so as to use them as building blocks
in the implementation of stacks. The specification of these
operations is essentially the same as in the case of a standard
stack (Figure 4). The only difference is that push requires the
chunk not to be full (specifications are given in §A.3).

5.2 Representation of the Shared State
Next, we present the definition of the predicate Shared M and
of the preorder Extend M M'. We must begin by defining the
type Memory, which is the type of M. These definitions appear
in Figure 11. (The type ref_ unit is defined by CFML as loc.)

The definition of the type Memory indicates that amemory M
is a record that holds two components. First, it holds a map
of locations (addresses of ephemeral chunks) to lists of items
(items stored in the chunks). This map describes the content
of the shared cloud. Second, it holds a set of the identifiers
that may appear in shared shareable chunks. This is the
set of the identifiers that are no longer associated with an
ephemeral stack. We write ∅ for the empty memory, a record
whose components are both empty.

Keeping track of the set of shared identifiers is useful for
the following reason. When we generate a fresh identifier
for an ephemeral stack, we must prove that this identifier is
distinct from every identifier carried by an existing share-
able chunk—otherwise, an unintended “ownership capture”
would occur. Our solution is to let the shared state include
the unique ownership of all shared identifiers. Thus, when
we generate a new identifier, the standard Separation Logic
axiom x{ Ref () ∗ y{ Ref () ⊢ x ≠ y allows us to prove that
no such collision can occur.
The predicate Shared M, which appears next in Figure 11,

claims the ownership of the ephemeral chunks and identifiers
described by the memory M. Its definition is straightforward;
it relies on the Group combinator, an iterated separating con-
junction over a finite map.7

7Group R G is defined as follows:
Definition Group (a A:Type) (R:A→ a→ hprop) (G:map a A) : hprop :=
(Map.fold (fun x X acc→ x{ R X★ acc) \[] G)★ \[finite G].

Record Memory : Type :=
{ echunks : map (echunk_ A) (list A)
ids : map (ref_ unit) unit }.

Definition Shared (M:Memory A) : hprop :=
Group EChunk M.echunks ★ Group Ref M.ids.

Definition Extend (M M':Memory A) : Prop :=
let E := M.echunks in

let E' := M'.echunks in

(∀ x, x ∈ dom E→ (x ∈ dom E') ∧ (Suffix E[x] E'[x]))
∧ (dom M.ids) ⊆ (dom M'.ids).

Figure 11. Representation of the shared memory

Figure 11 ends with the definition of Extend M M'. This pre-
order describes how the shared state evolves. It asserts that
(1) a chunk that is allocated in M is also allocated in M'; (2) if
in state M this chunk contains a list of items L, then in state M'
it must contain a list that extends L; and (3) the set of shared
identifiers grows over time.
Initially, the user may create an empty shared memory

out of thin air, using the entailment \[] ⊢ Shared ∅ . Although
the specification of every operation mentions a single in-
stance of the predicate Shared, a user may wish to work
with several instances of this predicate, and may eventually
need to merge two such instances into one. We prove an
entailment lemma that allows this: Shared M1 ★ Shared M2 ⊢
∃∃ M, Shared M ★ \[Extend M1 M ∧ Extend M2 M].

5.3 Shareable Chunks
A central aspect of our contribution is the setup of the repre-
sentation predicates for shareable chunks. Several concerns
must be taken into account. On the one hand, we wish to ver-
ify the elementary operations on shareable chunks only once,
under the assumption that it is permitted to access to the
support of the shareable chunk—that is, the underlying ephe-
meral chunk. The predicate SChunk captures this assumption.
On the other hand, we need to describe the ownership policy
that applies to the support of a shareable chunk.Within a per-
sistent stack, the support of every shareable chunk is owned
by the shared state. Within an ephemeral stack, the support
of a shareable chunk may be owned either by the stack or
by the shared state, depending on the outcome of the com-
parison between the identifier of the shareable chunk and
the identifier of the stack. These situations are described by
two more predicates, SChunkShared and SChunkMaybeOwned.

Moreover, in the casewhere the support is uniquely owned,
we maintain the invariant that the view of the shareable
chunk on its support is full. That is, the view coincides with
the data; it is never a strict prefix of the data. Some of our
auxiliary predicates carry a Boolean parameter align which
indicates when this requirement is imposed.
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The representation predicates used for shareable chunks
are defined in Figure 12, and are described next.

The proposition SChunk_inv align S L s captures the inter-
nal invariant of a shareable chunk s. The parameter S is the
list of all items stored in the underlying ephemeral chunk.
The parameter L is the suffix of length s.view of the list L;
it represents the limited view that this shareable chunk has
onto its support. If the Boolean parameter align is true, then
the lists L and S must coincide.

The assertion s{ SChunk align S L describes a shareable
chunk that owns its support. As explained earlier, an op-
eration on a shareable chunk needs access to its support,
which is why this assertion is useful. However, ownership of
the support is temporary: we typically extract it from some-
where else (either an ephemeral stack or the shared state)
and return it afterwards.

The assertion s{ SChunkUniquelyOwned L denotes a share-
able chunk s that is uniquely owned. It is a specialization
of SChunk with an “alignment” constraint; that is, align is
instantiated with true. In contrast with the assertions that
follow, it does not depend on the shared memory M.

The pure proposition SChunkShared M L s describes a share-
able chunk s that appears in a persistent stack. Its support
(an ephemeral chunk) must be owned by the shared state:
thus, the address of its support must appear in the domain
of the map M.echunks. The expression (M.echunks)[s.support']
denotes the list of all elements stored in the support. This
is why we instantiate the parameter S of SChunk_inv with
this list. Meanwhile, the list L represents the limited view
of this shareable chunk onto its support. The specifications
of “push” and “pop” operations on shared chunks appear in
Appendix A.4.

Finally, the assertion s{ SChunkMaybeOwned M id L depicts
a shareable chunk s that appears in an ephemeral stack
whose identifier is id. If the identifier of s is equal to id, then
this assertion boils down to s{ SChunkUniquelyOwned L. Oth-
erwise, it is equivalent to \[SChunkShared M L s], a pure asser-
tion, which does not imply the ownership of the support.
Regarding the verification of the elementary operations

on shareable chunks, two aspects are worth mentioning.
First, we must verify that an operation on a uniquely-owned
shareable chunk maintains the alignment property. Second,
we must verify that the cost of a push operation is𝑂 (1) when
alignment holds, whereas it is 𝑂 (𝐾) otherwise.

5.4 Persistent Stacks
Figure 13 presents the representation predicate for persistent
stacks, which takes the form PStack M L p. Throughout the
figure, L denotes the list of all items in the stack, LF is the list
of items in the front chunk, and LS, a list of lists, describes
the items in the remaining (shareable) chunks.
The proposition Stack_inv L LF LS asserts that the list L

is indeed the concatenation of LF with all of the lists in LS,
each of which must have length K. (That is, every shareable

Record SChunk_inv

(align:bool) (S L:list A) (s:schunk_ A) : Prop :=
let v := s.view' in
{ ssize : 0 ≤ v ≤ length S;
slist : Suffix L S;
slength : length L = v;
salig : align→ v = length S; }.

Definition SChunk

(align:bool) (S L:list A) (s:schunk_ A) : hprop :=
s.support'{ EChunk S

★ \[SChunk_inv align S L s].

Definition SChunkUniquelyOwned

(L:list A) (s:schunk_ A) : hprop :=
s{ SChunk true L L.

Definition SChunkShared

(M:Memory A) (L:list A) (s:schunk_ A) : Prop :=
s.support' ∈ dom (M.echunks)

∧ SChunk_inv false (M.echunks)[s.support'] L s.

Definition SChunkMaybeOwned

(M:Memory A) (id:id_) (L:list A) (s:schunk_ A) : hprop :=
If s.owner' = Some id

then s{ SChunkUniquelyOwned L

else \[SChunkShared M L s]

Figure 12. Representation of shareable chunks

Record Stack_inv

(L:list A) (LF:list A) (LS:list (list A)) : Prop :=
{ stack_list : L = LF ++ concat LS;
stack_tail_full : Forall (fun xs⇒ length xs = K) LS;
stack_tail_nil : LF = nil→ LS = nil }.

Definition valid_id (M : Memory A) (id:option Id.t_) :=
match id with

| None⇒ True

| Some x⇒ x ∈ dom M.ids end.

Record PStack_inv

(M:Memory A) (L:list A) (p:pstack_ A)
(LF:list A) (LS:list (list A)) : Prop :=
let pf := p.pfront' in
let pt := p.ptail' in
{ pstack_stack : Stack_inv L LF LS;
pstack_chunks :
Forall2 (SChunkShared M) (LF::LS) (pf::pt)

pstack_version :
Forall (fun p⇒ valid_id M p.owner') (pf::pt) }.

Definition PStack

(M:Memory A) (L:list A) (p:pstack_ A) : Prop :=
∃ LF LS, PStack_inv M L p LF LS.

Figure 13. Representation of persistent stacks
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Definition potential_push

(NF:int) (spare:option (echunk_ A)) : int :=
match spare with

| None⇒ 1 + NF

| Some _⇒ 0 end.

Definition potential_pop

(NF:int) (tail:list (schunk_ A)) (id:id_) : int :=
match tail with

| nil⇒ 0
| p::_ ⇒ If p.owner' = Some id

then 0
else 2 + K − NF end.

Record EStack_inv

(M:Memory A) (id:id_) (tail:list (schunk_ A))
(L:list A) (LF:list A) (LS:list (list A)) : Prop :=
{ estack_stack : Stack_inv L LF LS;
estack_tail_ids : Forall (fun p⇒
valid_id M p.owner' ∨ p.owner' = Some id) tail }.

Definition EStack

(M:Memory A) (L:list A) (e:estack_ A) : hprop :=
∃∃ front tail spare id LF LS,
e{ `{ front' := front; tail' := tail;

spare' := spare; id' := id }
★ front{ EChunk LF

★ tail{ ListOf (SChunkMaybeOwned M id) LS
★ spare{ OptionOf (EChunk nil)
★ id{ Ref tt

★ \[EStack_inv M id tail L LF LS]
★ $(potential_push NF spare + potential_pop NF tail id).

Figure 14. Representation of ephemeral stacks

chunk in the tail must be full.) It also enforces an invariant
that allows a fast emptiness test: if the front chunk is empty,
then the whole stack is empty.
We distinguish the predicates Stack_inv and PStack_inv

because the former is used also for ephemeral stacks. The
additional properties imposed by PStack_inv capture the fact
that every shareable chunk in the tail is in fact shared: that is,
(1) it is described by the predicate SChunkShared, and (2) its
identifier must be a member of the set of shared identifiers
M.ids, a property that is expressed by the predicate valid_id.

5.5 Ephemeral Stacks
The representation predicate e{ EStack M L is defined at the
bottom of Figure 14, and is explained next. First, a points-to
assertion claims the ownership of the 4-field record at ad-
dress e. Second, the assertion front{ EChunk LF claims the
ownership of the ephemeral front chunk, whose items form
the list LF. Third, the tail is described as a list of shareable
chunks, each of which may or may not be uniquely owned,

as prescribed by the predicate SChunkMaybeOwned M id, where
id is the identifier of this ephemeral stack.

The combinator ListOf, a higher-order representation pred-
icate [Charguéraud 2016], is standard in CFML. The combi-
nator ListOf R LS xs denotes the fold operation of the repre-
sentation predicate R, pairwise over the items from the lists
LS and xs, over the separating logic monoid.8

Coming back to the definition of EStack, the next assertion,
spare{ OptionOf (EChunk nil), claims the ownership of the
spare chunk if it is present, and indicates that this spare
chunk must be empty. The combinator OptionOf, not shown,
is analogous to ListOf.

The assertion id{ Ref tt asserts that an ephemeral stack
owns its identifier. When an ephemeral stack is converted
into a persistent stack, the ownership of this identifier is
transferred to the shared state—a purely logical operation.

The proposition EStack_inv M id tail L LF LS captures the
pure invariants associated with ephemeral stacks. It includes
those that are common with persistent stacks, described by
Stack_inv, and adds the property estack_tail_ids, which
states that every shareable chunk in the tail carries an iden-
tifier that is either id, the identifier of this ephemeral stack,
or a shared identifier.

Last but not least, the definition of EStack includes a num-
ber of time credits. They represent the potential of the data
structure, in the traditional terminology of amortized com-
plexity analysis [Tarjan 1985]. These credits have been set
aside and can be used to pay for infrequent expensive opera-
tions. Roughly, potential_push NF spare is needed to pay for
the next allocation of a fresh front chunk, unless an empty
spare chunk is already at hand; and potential_pop NF tail id
accounts for the cost of the copy operation that is required if
a shared chunkmust be extracted out of the tail. The function
potential_pop is nonzero only when the tail is nonempty
and begins with a shared shareable chunk.

6 Iterators
The library Sek, which motivates our work, features effi-
cient iterators. Several iterators may concurrently operate
on the same sequence. For example, one can use two iterators
to copy items from one sequence segment into another se-
quence segment, a “blit” operation. In this paper, we consider
iterators that are similar to Sek’s. They are implemented as
mutable records and contain direct pointers into chunks that
are part of a stack’s internal representation.

8The definition of ListOf is as follows.

Fixpoint ListOf (A B:Type)
(R:A → B → hprop) (LS:list A) (xs:list B) : hprop :=
match LS,xs with

| nil, nil⇒ \[]
| L::LS, x::xs⇒ x{ R L ★ xs{ ListOf R LS

| _, _⇒ \[False] end.
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An iterator on an ephemeral stack supports a set oper-
ation which replaces the current item, that is, the item to
which the iterator currently points. If the current item lies
in a uniquely-owned shareable chunk, the write operation
can be performed in place, in constant time. If it lies in a
shared shareable chunk, a copy is necessary: a new chunk
and a new shareable chunk must be allocated. In the latter
case, the tail of the stack, a singly-linked list of shareable
chunks, must also be updated with this new shareable chunk.
Because this update can take place at an arbitrary depth in
the list, it requires linear time. (In Sek, which uses a tree
structure, it requires only logarithmic time.)
When a chunk is copied, the existing iterators that point

directly to this chunk become invalid, and must no longer be
used. Our specification must impose this restriction. Yet, it
cannot expose precisely when a copy takes place and which
existing iterators might be affected: after all, the existence
of chunks, and the manner in which chunks are shared, are
supposed to be implementation details. We address this prob-
lem via an over-approximation: our specification states that
updating an ephemeral stack invalidates all existing iterators
on this stack, except the iterator used to perform the update.

We use the word “invalidation” in a static sense: our spec-
ification forbids the use of an iterator that is considered
invalid, and does not specify what happens at runtime if the
user violates the rule and uses such an iterator anyway. If
desired, we could add dynamic validation instructions, so
as to keep track of validity and fail at runtime if the user
attempts to use an invalid iterator.
The key ideas of our formalization of iterators are the

following. First, to specify when iterators are invalidated,
we follow Pottier [2017] and expose (abstract names for)
internal states in representation predicates. Second, in order
to allow direct pointers deep into the data structure, we
let these concrete states include the addresses of internal
chunks. Third, we distinguish two different use cases for set,
and present a specification that is tailored for the common
special case where an ephemeral stack owns all of its chunks,
that is, for the special case where there is no sharing at all.
By using conditionals in pre- and postconditions, we are able
to establish two specifications for set while examining its
source code only once.

Our formalization also includes iterators on persistent se-
quences. To avoid duplication of work, we factor the aspects
that are common to iterators on ephemeral and persistent
sequences. In the interest of space, we discuss only iterators
on ephemeral sequences.

Interface. Figure 15 presents the API of iterators on ephe-
meral stacks. When it is created, an iterator points to the
item at the top of the stack. Calling move moves the iterator
to the next item, and can move it past the last item. (If the
iterator already points to the last item, calling move makes
it point to a virtual item that lies “one-past-the-end”.) The

type 'a iterator
val iter_on_estack : 'a estack −> 'a iterator

val finished : 'a iterator −> bool

val move : 'a iterator −> unit

val get : 'a iterator −> 'a
val set : 'a iterator −> 'a −> unit

Figure 15. API of iterators on ephemeral stacks

type 'a iterator =
{ mutable focused : 'a echunk;
mutable fview : int;
mutable fid : id;
rest : 'a schunk list ref;
mutable traveled : int;
uestack : 'a estack }

Figure 16. Implementation of iterators on ephemeral stacks

operations get and set read and replace the current item.
The operation finished returns true if the iterator points
past the last item.

Implementation. Figure 16 presents the internal repre-
sentation of iterators. The field focused is a pointer to the
ephemeral chunk that contains the current item. The field
fview contains the index of the current item within this
chunk. This index is updated by move. The field fid is a local
copy of the identifier of the shareable chunk which contains
this ephemeral chunk.9 This identifier is used to enable a
dynamic ownership test during a set operation. The field
rest holds a suffix of the tail of the ephemeral stack. It is used
to keep track of the chunks that remain to be traversed; its
head chunk is extracted when the traversal of the currently
focused chunk is completed. The field traveled keeps track
of the number of chunks that have already been completely
traversed. The field uestack is a pointer to the ephemeral
stack that the iterator traverses. These two pieces of infor-
mation are needed during a set operation, when the chunk
under focus must be copied and the new chunk must be
inserted at this position in the tail of the ephemeral stack.

Specification. An iterator is described by an assertion
of the form it{ Iterator st i, where it is the address of
the iterator, i is the index of the current item, and st is an
abstract name for the current internal state of the stack.

In addition to the predicate e{ EStack M L, we introduce
a new predicate, e{ EStackInState st M L, where a name st
appears. They are related by the equivalence law:

(e{ EStack M L) ⊣⊢ (∃∃ st, e{ EStackInState st M L).

A declarative reading of this law is that “a stack is a stack in
some internal state”. From a more operational point of view,
9When the current item belongs to the front chunk, the field fid is set to
the identifier of the ephemeral stack, to reflect ownership of that chunk.
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Lemma iter_on_estack_spec : ∀ st M L e,
SPEC (iter_on_estack e)
PRE ($2)
INV (e{ EStackInState st M L)
POST (fun it⇒ it{ Iterator st 0).

Lemma finished_spec_ephemeral : ∀ st M L e it i,
SPEC (finished it)
PRE ($1)
INV (e{ EStackInState st M L ★ it{ Iterator st i)
POST (fun b⇒ b = isTrue (i = length L)).

Lemma get_spec_ephemeral : ∀ st M L e it i,
i ≠ length L →
SPEC (get it)
PRE ($3)
INV (Shared M ★ e{ EStackInState st M L

★ it{ Iterator st i)
POST (fun x⇒ x = L[i]).

Lemma move_spec_ephemeral : ∀ st M L e it i,
i ≠ length L →
SPEC (move it)
PRE ($4 ★ it{ Iterator st i)
INV (e{ EStackInState st M L)
POST (fun _⇒ it{ Iterator st (i+1)).

Lemma set_spec_with_sharing : ∀ st M L e it i x,
i ≠ length L →
SPEC (set it x)
PRE ($(length L + K + 10)

★ it{ Iterator st i

★ e{ EStackInState st M L)
INV (Shared M)
POST (fun _⇒ ∃∃ st', it{ Iterator st' i

★ e{ EStackInState st' M (L[i:=x])).

Lemma set_spec_without_sharing : ∀ st L e it i x,
i ≠ length L →
SPEC (set it x)
PRE ($6 ★ e{ EStackInState st ∅ L)
INV (it{ Iterator st i)
POST (fun _⇒ e{ EStackInState st ∅ (L[i:=x])).

Figure 17. Specification of iterators

by using this law from left to right and by eliminating the
existential quantifier, one introduces a fresh abstract name st
for the current internal state of the stack. By introducing an
existential quantifier and using this law from right to left,
one forgets the name of the current internal state.
The ability to name the internal state of a stack is useful,

because it allows us to state that “the iterator it is valid as
long as the stack remains in the state st”, that is, as long as
the stack is not updated.

To call push e or pop e, one must provide the assertion
e{ EStack M L. If an assertion e{ EStackInState st M L is
currently at hand, then one must use the above equivalence
law from right to left, thereby forgetting the name of the
current internal state of the stack e. One can then no longer
prove that the stack is in the state st. Therefore, all existing
iterators on this stack become unusable, as intended, since
we wish to view all existing iterators as invalid after the
stack has been updated.
The specification of iterators appears in Figure 17. We

write L[i] for the i-th element of the list L, and L[i:=x] for an
update of this list at index i. An operation on an iterator it
requires it{ Iterator st i and e{ EStackInState st M L,
both of which refer to a common internal state st. The op-
erations get and set additionally require Shared M, because
they need access to the shared chunks.
As mentioned earlier, we provide two specifications for

set. The first specification indicates that set has complexity
𝑂 (𝑛 + 𝐾), where 𝑛 is the length of the stack. It is always
applicable, but pessimistic. The second specification can be
exploited only in the special case where there is no sharing,
that is, where M is the empty memory ∅. In this case, set has
complexity𝑂 (1) and does not invalidate concurrent iterators,
as the internal state remains unmodified.
As long as one works with an ephemeral stack without

performing any conversion or copy-with-sharing operation,
the shared state M remains empty, so every set operation is
guaranteed to be cheap and to preserve the validity of all
existing iterators.

Proof. Internally, an internal state st is defined as a record
of (1) the address of the stack, (2) its unique identifier, and
(3) the list of its shareable chunks. This list contains the
addresses of all ephemeral chunks involved in the represen-
tation of this stack and all of the identifiers used to determine
which chunks are uniquely owned by this stack.

In order to verify set just once, we derive the two spec-
ifications in Figure 17 from a single specification that uses
conditionals. This specification is shown in Appendix A.5.

7 Related Work
7.1 Verification Frameworks and Techniques

Verification Frameworks. A traditional approach to pro-
gram verification involves annotating the code with specifi-
cations and invariants, using a tool (based on Hoare logic) to
produce proof obligations, then transmitting these proof obli-
gations to automated theorem provers. Müller and Shankar
[2021] provide a survey of this “deductive” form of program
verification. Practical systems include Boogie [Barnett et al.
2005], KeY [Ahrendt et al. 2014], and Why3 [Filliâtre and
Paskevich 2013].

Separation Logic [Reynolds 2002] improves onHoare Logic
by allowing more modular forms of reasoning about muta-
ble state. O’Hearn [2019] gives a comprehensive survey of
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its applications. Separation Logic can be exploited by auto-
mated and semi-automated tools, such as Infer [Calcagno
and Distefano 2011], VeriFast [Jacobs and Piessens 2008],
and Viper [Müller et al. 2017], or embedded in interactive
proof assistants. For example, CFML [Charguéraud 2021] and
Iris [Jung et al. 2018] are embedded in Coq; Steel [Fromherz
et al. 2021] is embedded in 𝐹★𝐹★𝐹★ [Swamy et al. 2016].
Another approach to program verification involves first

verifying a pure program, expressed in the logic of a proof
assistant. Then, out of this high-level code, one extracts exe-
cutable code, expressed either in a functional programming
language (such as OCaml or Haskell) or in a low-level im-
perative language. In some cases, this refinement process is
guided by the user and involves interactive proofs. For exam-
ple, Bedrock [Chlipala 2013] refines Coq definitions down to
assembly language; the Isabelle Refinement Framework re-
fines Isabelle/HOL code down to imperative SML [Lammich
2016, 2019] or LLVM IR [Haslbeck and Lammich 2021].

Verification of Time Bounds. Worst-case bounds on
execution time can sometimes be obtained via an automated
analysis [Hoffmann et al. 2017]. However, fully automated
analyses are often limited to polynomial or poly-log bounds,
and usually cannot be applied to algorithms that involve a
nontrivial complexity argument.

These limitations may be overcome by performing interac-
tive proofs. Time credits are a lightweight yet very expressive
extension to Separation Logic that allows establishing worst-
case time complexity bounds. Time credits, introduced in
Separation Logic by Atkey [2011] and in a type system by
Pilkiewicz and Pottier [2011], have been formalized in Coq
and used in practice (in CFML) by Charguéraud and Pottier
[2015, 2019]. Several extensions of time credits have been
studied. Guéneau [2019] introduces negative time credits
and investigates the use of the big-𝑂 notation at scale. Mével
et al. [2019] introduce time receipts, a related notion, and
encode them in Iris. Haslbeck and Lammich [2021] introduce
multiple currencies of time credits. Haslbeck and Nipkow
[2018] compare the expressiveness of several program logics
that can establish time complexity bounds.

Verification Involving Monotonicity Arguments. Our
specification explicitly exposes the existence of a shared in-
ternal state, whose nature remains abstract, and whose evolu-
tion is monotonic. This is a common pattern. Monotonic state
has been studied in several contexts, beginning with ghost
monotonic references [Pilkiewicz and Pottier 2011] or simple
type systems equipped with monotonic references [Gordon
et al. 2013], and continuing with more powerful dependent
type systems and program logics, such as 𝐹★𝐹★𝐹★ [Ahman et al.
2018] and Iris [Timany and Birkedal 2021].
It is also common practice to hide the existence of this

internal state. In a sequential setting, this can be done by
using the anti-frame rule [Pottier 2008]. In a concurrent
setting, this can be done by creating an Iris invariant [Jung

et al. 2018; Timany and Birkedal 2021]. CFML does not allow
hiding an internal state in such a way. This may be less
convenient for end users, but we do not believe that this is
a severe problem. Indeed, the fact that the internal state is
not hidden allows us to distinguish the cases 𝑀 = ∅ and
𝑀 ≠ ∅ in the specification of the set operation on iterators
(Figure 17). If it was hidden, we would have to record the
absence or presence of sharing in some other way.

7.2 Verification of Data Structures
Verification of Data Structures. There is a large panel

of work on the verification of data structures and algorithms.
Nipkow et al. [2020] present a survey that focuses on verified
textbook algorithms. Here, we highlight a few results, so as
to give an idea of the kind of data structures that state-of-
the-art program verification tools can handle.
In the area of purely functional data structures, Sozeau

[2007] formalizes finger trees in Coq, and Danielsson [2008]
uses Agda to verify the amortized time complexity of the
dequeue operation of finger trees, using Okasaki’s variant of
the banker’s method [1999] to annotate each thunk with its
cost. Charguéraud [2010] uses CFML to verify about half of
Okasaki’s book [1999], which contains a large collection of
purely functional data structures. Chen et al. [2015] verify
the FSCQ file system in Coq, and extract executable Haskell
code. More recently, Nipkow et al. [2021] use Isabelle/HOL
to verify a number of textbook functional algorithms, and
introduce manually-crafted cost functions to reason about
time complexity [Nipkow 2015; Nipkow and Brinkop 2019].

In the realm of imperative data structures, Chlipala [2011]
uses Bedrock to verify hash tables and binary search trees.
Charguéraud and Pottier [2019] use CFML to verify Union-
Find, including its amortized complexity bound; Guéneau
et al. [2019] use it to verify a state-of-the-art incremental
cycle detection algorithm. The Isabelle Refinement Frame-
work is used by Lammich [2020] to verify Introsort (which is
used in the GNU C++ Standard Library) and Pdqsort. Mohan
et al. [2021] use VST to verify C implementations of Dijk-
stra’s, Kruskal’s, and Prim’s algorithms. Their work includes
the verification of a priority queue, including the bottom-up
construction of the heap and the operations for increasing
or decreasing a key.

Verification of Iterators on Collections. Containers,
also known as collections, are an important class of data
structures. A ubiquitous operation consists in iterating over
the elements of a collection. This operation can be presented
to the end user in various guises such as first-order iterators
and higher-order iteration schemes. Regardless of which is
chosen, writing a sound, expressive specification for this
operation is surprisingly tricky. A number of authors have
worked on the specification of iterators, including Krish-
naswami et al. [2009], Haack andHurlin [2009], Lammich and
Meis [2012], Polikarpova et al. [2015], Filliâtre and Pereira
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[2016], and Pottier [2017]. The manner in which we describe
iterator invalidation in the specification, using an abstract
state token, follows Pottier’s work [2017].

Verification of Persistent Data Structures. Our per-
sistent stacks are fully persistent: any version can be read
and updated, producing a new version. There exist several
weaker notions of persistence. Driscoll et al. [1989] describe
partial persistence, where old versions can be read but not up-
dated. Conchon and Filliâtre [2008] describe semi-persistence,
which allows read and write access only to the current ver-
sion (that is, the most recently created version) and to its
ancestors. They propose an ad hoc program logic, equipped
with an automated decision procedure, to check that a client
program makes legal use of a semi-persistent data structure.

Mehnert et al. [2012] use Separation Logic to specify and
verify a Java implementation of “snapshotable trees”. These
trees support read-only snapshots. They also support itera-
tors, which cannot mutate the underlying tree and are inval-
idated by an update of this tree. The authors use an abstract
predicate that describes one tree together with all of its snap-
shots and iterators. The shared state is hidden in this abstract
predicate and is not visible to the end user. The implemen-
tation does not mutate shared data, but the authors believe
that their proof technique also applies to more efficient im-
plementations where shared data is modified.

7.3 Chunk-Based and Transient Data Structures
Data Structures involving Chunks. Storing elements

in chunks, rather than storing them individually, allows for
close-to-optimal memory usage and leads to greatly im-
proved constant factors in the time complexity of many
operations. For example, the C++ STL includes implementa-
tions of deques represented as circular vectors of fixed-sized
chunks and ropes represented as binary trees of variable-
sized chunks. Chunks can also be used in tree-shaped data
structures at the leaves or at every node.

Catenable and Splittable Sequence Data Structures.
A general-purpose representation of strings (or sequences)
should offer efficient operations for sequential and random
access, for concatenating two strings, and for extracting
substrings (or, equivalently, splitting strings). One challenge
is to design a data structure with good asymptotic complexity.
A further challenge is to design one that moreover has good
performance in practice.
Regarding the first challenge, Kaplan and Tarjan [1996]

present functional catenable sorted lists, which support “push”
and “pop” operations in time 𝑂 (1), while also supporting
splitting and concatenation in logarithmic time. Their struc-
ture is an instance of a finger search tree, a type of tree
that has been extensively studied since the 1970s [Guibas
et al. 1977]. Hinze and Paterson [2006] present finger trees,
achieving similar bounds with a simpler implementation.

In the aforementioned structures, constant-time opera-
tions suffer from large constant factors. Acar et al. [2014]
measure that, when pushing and popping integer values,
a carefully optimized C++ implementation of finger trees
is over 20 times slower than an STL deque. To tame these
constant factors, the Haskell package “yi” [Bernardy 2021]
instantiates finger trees with chunks of characters in the
leaves. However, the repeated concatenation of small strings
results in a degenerate tree where each chunk stores only
two items [Acar et al. 2014, §2].

Acar et al. [2014] present an ephemeral chunked sequence
that achieves constant time “push” and “pop” operations at
either end, logarithmic-time splitting and concatenation, and
requires space (2 + 𝑂 (1)/𝐾) · 𝑛 in the worst case to store
𝑛 elements.

Transient Data Structures. Transience has been popu-
larized by the Clojure programming language [Hickey 2006],
based on the seminal ideas of Bagwell [2001]. A definition
of transience is given by L’Orange [2014]: in his view, a
collection is persistent by default, but the programmer can
work with a transient version of the collection, that is, an
ephemeral copy. The motivation for transience is to support
efficient batched updates.
We give a slightly different, yet essentially equivalent,

definition of transience: a transient data structure is one that
offers an ephemeral variant, a persistent variant, and efficient
conversions between the two.
Clojure’s transients have inspired the authors of many

other programming languages and libraries. Transient vec-
tors and hash-maps can be found in Scala’s standard library,
in the JavaScript library immutable.js [Byron 2021], in the
Haskell library persistent−vectors [Ravitch 2020], and in
the Python library pyrsistent [Gustafsson 2021].
An interesting line of work is focused on Relaxed Radix

Balanced (RRB) vectors and trees [Stucki et al. 2015], which
provide logarithmic-time split and concat operations. RRB
vectors have been implemented in the C++ library immer by
Bolívar Puente [2017].

We are not aware of other work verifying the correctness
or complexity of a transient data structure.

8 Conclusion
We have verified a scaled-down version of the Sek library,
which presents the same nontrivial chunk ownership policy
and the same optimization patterns in the implementation of
iterators as the full-fledged Sek. Our verified implementation
represents roughly 250 lines of OCaml code, and involves
roughly 1400 lines of specifications and auxiliary definitions,
and 1800 lines of proofs. In the future, we look forward to
tackle the challenge of verifying the actual Sek library.
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A Additional Specifications
A.1 Copy Functions
This section presents two functions for creating copies of
ephemeral stacks: one for making a totally independent copy
in linear time, and one for making a copy with maximal
sharing in constant time. These two functions admit the same
functional specification, but lead to different time bounds.

(* Copy functions *)

val cp_without_sharing : 'a estack −> 'a estack

val cp_with_sharing : 'a estack −> 'a estack

The function cp_without_sharing takes as input an ephe-
meral stack, and returns a totally independent ephemeral
stack, which uniquely owns all of the chunks involved in its
tail. This function copies all the elements and runs in linear
time.

The function cp_with_sharing takes as input an ephemeral
stack, and returns another ephemeral stack that shares with
the first one all the chunks used to represent the tail. During
this operation, the identifier of the input stack is replaced
with a fresh identifier, to ensure that the input stack loses
the unique ownership of all the chunks from its tail—these
chunks are “migrated into the could”. The copy-with-sharing
operation only needs to copy elements from the front chunk,
that is, at most K elements.

Both of these functions are useful. Indeed, a copy without
sharing guarantees constant time complexity for set opera-
tions performed via iterators (see §6). A copy with sharing,
on the contrary, allows to obtain two independent ephemeral
structures without paying upfront a linear cost.

The two functions are specified as shown below.

Lemma cp_with_sharing_spec : ∀ e M L,
SPEC (cp_with_sharing e)
MONO M

PRE ($(3∗K + 4) ★ e{ EStack M L)
POST (fun M' e' ⇒ e'{ EStack M' L ★ e{ EStack M' L).

Lemma cp_without_sharing_spec : ∀ e M L,
SPEC (cp_without_sharing e)
PRE ($(4∗(length L) + 2∗K + 4))
INV (Shared M ★ e{ EStack M L)
POST (fun e'⇒ e'{ EStack ∅ L).

A.2 Conversions that Preserve their Argument
The conversion operation estack_to_pstack destructs the
ephemeral stack that it freezes. However, it is sometimes
useful to take a persistent snapshot of an ephemeral struc-
ture without destroying it. To that end, we introduce the
operation estack_to_pstack_preserving.

This operation returns a persistent stack with the same
contents as the ephemeral stack, without modifying the log-
ical contents of the ephemeral stack. Internally, the opera-
tion first builds a shallow copy of the ephemeral stack, then
freezes the copy, thereby preserving the original. Concretely:
let estack_to_pstack_preserving e =
estack_to_pstack (cp_with_sharing e)

The specification appears below. It follows from the specifi-
cations of estack_to_pstack and cp_with_sharing.
Lemma estack_to_pstack_preserving_spec : ∀ e M L,
SPEC (estack_to_pstack_preserving e)
MONO M

PRE ($(3∗K + 7) ★ e{ EStack M L)
POST (fun M' p ⇒ \[PStack M' L p] ★ e{ EStack M' L).

A.3 Specifications for Ephemeral Chunks
The specification of operations on ephemeral chunks are es-
sentially the same as the specification of standard ephemeral
stacks, with the only difference that the push operation fea-
tures a precondition asserting that the chunk is not already
full, reflecting the fact that chunks have a bounded capacity.
Definition IsFull A (L:list A) : Prop :=
length L = K.

Lemma echunk_empty_spec : ∀ x,
SPEC (echunk_empty a)
PRE ($(K+1))
POST (fun c⇒ c{ EChunk (@nil A)).

Lemma echunk_push_spec : ∀ L c x,
˜ (IsFull L)→
SPEC (echunk_push c x)
PRE ($1 ★ c{ EChunk L)
POST (fun _⇒ c{ EChunk (x::L)).

Lemma echunk_pop_spec : ∀ L c,
L ≠ nil →
SPEC (echunk_pop c)
PRE ($3 ★ c{ EChunk L)
POST (fun x⇒ ∃∃ L', c{ EChunk L' ★ \[L = x::L']).

A.4 Specifications for Shareable Chunks
We present below two specifications for two operations on
shareable chunks.
The first specifications use the SChunk predicate, which

captures the ownership of its support ephemeral chunk.
Lemma schunk_pop_spec : ∀ align S L s,
L ≠ nil→
SPEC (schunk_pop s)
PRE ($3 ★ s{ SChunk align S L)
POST (fun '(s',x) ⇒ ∃∃ L', s'{ SChunk false S L'

★ \[L = x::L' ∧ s'.support' = s.support'
∧ s'.owner' = s.owner']).
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Lemma schunk_push_spec : ∀ align S L s x,
˜ IsFull L→
SPEC (schunk_push s x)
PRE ($(2 + if align then 0 else K+2)

★ s{ SChunk align S L)
POST (fun s'⇒ \[s'.owner' = s.owner' ∨ s'.owner' = None]
★ (if align

then s'{ SChunk align (x::S) (x::L)
else hor

(s'{ SChunk align (x::S) (x::L)
★ \[s.support' = s'.support'])
(s{ SChunk align S L

★ s'{ SChunk true (x::L) (x::L)))).

Note that schunk_push_spec uses the hor predicate, which
is the Separation Logic disjunction (i.e., disjunction lifted to
heap predicates).
Next we present specifications for the same functions,

but in terms of the SChunkShared predicate, which does not
own its support. These specifications are derived from the
previous ones.

Lemma schunk_pop_spec : ∀ M L s,
SChunkShared M L s→
L ≠ nil→
SPEC (schunk_pop s)
PRE ($3)
INV (Shared M)
POST (fun '(s',x)⇒
∃∃ L', \[SChunkShared M L' s' ∧ L = x::L'

∧ s'.owner' = s.owner']).

Lemma schunk_push_spec : ∀ M L s x,
SChunkShared M L s→
˜ IsFull L→
SPEC (schunk_push s x)
MONO M

PRE ($(K+4))
POST (fun M' s'⇒ \[SChunkShared M' (x::L) s'

∧ (s'.owner' = s.owner' ∨ s'.owner' = None)] ).

A.5 A Common Specification for the Set Operation
In §6, we presented two specifications for the “set” opera-
tion. The two specifications are derived from one common
specification, shown below, with respect to which the code
is verified.

Lemma set_spec : ∀ e st M L it i x,
i ≠ length L →
SPEC (set it x)
PRE ($(If M = ∅ then 6 else length L + K + 10)

★ e{ EStackInState st M L ★ it{ Iterator st i)
INV (Shared M)
POST (fun _⇒ ∃∃ st', e{ EStackInState st' M (L[i:=x])

★ it{ Iterator st' i ★ \[M = ∅ → st = st']).
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