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Instrumental variables (IVs), sources of treatment randomization that are conditionally independent of the
outcome, play an important role in causal inference with unobserved confounders. However, the existing
IV-based counterfactual prediction methods need well-predefined IVs, while it’s an art rather than science
to find valid IVs in many real-world scenes. Moreover, the predefined hand-made IVs could be weak or
erroneous by violating the conditions of valid IVs. These thorny facts hinder the application of the IV-
based counterfactual prediction methods. In this paper, we propose a novel Automatic Instrumental Variable
decomposition (AutoIV) algorithm to automatically generate representations serving the role of IVs from
observed variables (IV candidates). Specifically, we let the learned IV representations satisfy the relevance
condition with the treatment and exclusion condition with the outcome via mutual information maximization
and minimization constraints, respectively. We also learn confounder representations by encouraging them to
be relevant to both the treatment and the outcome. The IV and confounder representations compete for the
information with their constraints in an adversarial game, which allows us to get valid IV representations for
IV-based counterfactual prediction. Extensive experiments demonstrate that our method generates valid IV
representations for accurate IV-based counterfactual prediction.
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1 INTRODUCTION
As a representative task in machine learning [13, 14, 23, 35], supervised learning [9, 38] explores
correlations between variables from rich data for prediction. However, in many real applications, a
decision-maker always wants to judge the counterfactual impact of treatment (policy) changes on
the outcome that can not be found in the data. For example, an airline wants to estimate the effect
of prices (i.e. treatment) on customers’ purchase tendency (i.e. outcome) [18]. We may observe that
examples with high prices are often associated with high sales in data sampled during holidays,
which may fool the direct supervised learning approaches to predict that increasing prices would
also lead to high sales at other times. In this case, we can add the observable confounders (i.e.,
holidays, which cause the changes in both the prices and the sales) into training data to correct
the model. Nevertheless, if there exist unobserved confounders (e.g., conferences, which are also
common causes of the prices and the sales but are unknown to the decision-maker), the typical
supervised learning model would still head in the wrong direction.
Instrumental Variables (IVs) [43] are exogenous variables that are correlated to the treatment

but do not directly affect the outcome, which provides an alternative approach for counterfactual
prediction even with the unobserved confounders. Existing IV-based counterfactual prediction
methods mainly adopt a two-stage procedure, which first builds a model to estimate the treatment
based on the IVs, and then predicts the outcome with the estimated treatment. Two-stage least
squares (2SLS) [2] is a well-known method that employs the two-stage procedure with linear
models and obtains homogeneous treatment effects. Recent IV-based counterfactual prediction
works [3, 12, 18, 31, 37] mainly focus on generalizing previous approaches on high-dimensional
and non-linear data. These methods achieve great counterfactual prediction performance, however,
they rely heavily on well-predefined IVs. In many real-world applications, we can hardly have
enough prior knowledge to identify the valid IVs [29] (i.e., the variables that satisfy the relevance,
the exclusion, and the unconfounded instrument conditions, see Sec. 3 for details). Moreover, the
predefined hand-made IVs could be weak or erroneous by violating some of the conditions of the
valid IVs. Therefore, it’s highly demanding to develop a data-driven approach to automatically
obtain valid IVs (or IV representations) for the downstream IV-based counterfactual prediction
methods.
In many real applications, although there are always a large number of observed variables,

few of them satisfy the conditions of the valid IVs. Since finding the valid IVs is difficult, instead,
there are growing works that focus on synthesizing valid summary IVs with IV candidates [29]
(some of them might be invalid IVs, i.e., do not strictly satisfy the conditions of the valid IVs).
Mendelian Randomization (MR) [4] is a popular approach that utilizes genetic markers as the
IVs to perform causal inference [46] among clinical factors. Unweighted/Weighted Allele Scores
(UAS/WAS) [6, 7, 11] that weigh each IV candidate equally or based on the correlation between
them and the treatment are representative methods in MR. However, they need all the IV candidates
to be both valid and independent conditional on the summary IVs. Hartford et al. [19] apply an
ensemble method to select a valid IV set with asymptotical validity. But it not only relies on the
independence and modal validity of IV candidates but also needs high computation costs by running
the downstream IV-based methods with every IV candidate for valid set selection. Kuang et al. [29]
present to model a summary IV as a latent variable and estimate it by utilizing recent advances in
weak supervision that is based on statistical dependencies among the IV candidates. However, this
method is confined to the binary variable setting, limiting its use in many real-world applications.

Inspired by the recent works [20, 44, 47] on causal disentangled representation learning, we argue
that although invalid IV candidates do not satisfy the conditions of the valid IVs strictly, one might
decompose and utilize a part of their information to generate IV representations. Therefore, in this
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paper, we propose a novel Automatic Instrumental Variable decomposition (AutoIV) algorithm
to automatically generate representations serving the role of IVs for counterfactual prediction
with fewer constraints for the IV candidates. Specifically, we first generate the IV representations
from the IV candidates and make them satisfy the relevance condition with the treatment and the
exclusion condition with the outcome via mutual information maximization and minimization
constraints, respectively. We also generate confounder representations by encouraging them to
be relevant to both the treatment and the outcome. The IV and the confounder representations
compete for the corresponding information with their constraints in an adversarial game, which
allows us to obtain valid IV representations for counterfactual prediction with the downstream
IV-based methods.

In summary, the main contributions of this paper are:

● We study the problem of IV-based counterfactual prediction under a more practical setting,
i.e., no valid IVs are available for learning, which is beyond the capability of the previous
IV-based methods.
● We propose a novel Automatic Instrumental Variable decomposition (AutoIV) algorithm to
automatically generate IV representations that satisfy the conditions of the valid IVs from the
IV candidates. It adopts mutual information constraints to control representation learning
process via an adversarial game.
● Extensive experiments show that the proposed method generates valid IV representations
for accurate counterfactual prediction, which is even comparable to directly using the true
valid IVs.

The rest of the paper is organized as follows. In Sec. 2, some related works about IV-based
counterfactual prediction, IV synthesis, and causal representation learning are introduced. In Sec.
3, the definition of the valid IVs and some related IV-based methods are stated. In Sec. 4, our
automatic instrumental variable decomposition algorithm is introduced. In Sec. 5, the results of the
experiments on low-dimensional and high-dimensional are reported. We discuss the investigation
with a future research outlook in Sec. 6.

2 RELATEDWORK
In this section, we briefly review the related works of IV-based counterfactual prediction, IV
synthesis, and causal representation learning in recent years.

2.1 IV-based Counterfactual Prediction
Two-stage least squares (2SLS) [2] is a representative method for IV-based counterfactual predic-
tion with linear models in causal inference researches [1, 25, 27, 46, 48]. Many recent IV-based
counterfactual prediction methods extend 2SLS to non-linear and high-dimensional settings. One
research direction is the generalized method of moments (GMM) [17], which uses moment condi-
tions to estimate model parameters. A recent trend is to combine GMM with machine learning,
like selecting moment conditions via adversarial training [12] and variational reformulation of
GMM with deep neural networks [3]. Another direction is based on kernel approaches, such as a
single-stage kernel approach [31] and a novel method with consistency guarantees [37]. DeepIV
[18] is a recent remarkable study that fits a mixture density network for the treatment and trains
an outcome prediction model with the estimated conditional treatment distribution. All of the
above methods need predefined IVs, and their performance relies on the validity of the given IVs.
However, identifying and obtaining valid IVs may be thorny because their validity conditions are
strict.
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2.2 IV Synthesis
There are growing works [4, 5, 5, 16, 19, 22, 29, 40] that propose to synthesize a valid summary IV
by using the given observed variables (IV candidates) in recent years. Among them, some works
[4, 5] are based on the independence condition of IV candidates, which is a strong restrictive
property [29]. Some approaches [5, 16, 22, 40] perform reliable estimation only when most of the IV
candidates are valid, which is also a strong condition. Hartford et al. [19] adopt ensemble methods
based on the modal validity of the IV candidates, however, it needs expensive computation cost to
select the valid IV set. Unweighted/Weighted Allele Scores (UAS/WAS) [6, 7, 11] weigh each IV
candidate equally or based on the correlation between them and the treatment. Kuang et al. [29]
generalize the allele scores method [6, 7, 11], which builds a summary IV and estimates it with
advanced methods from weak supervision and structure learning. However, it only applies to the
binary variable setting. These previous IV synthesis methods rely on some strong conditions for
the IV candidates and may not be practical in many real scenes, while we present an automatic IV
representation learning algorithm that only needs mild assumptions in this paper. Take the airline
case as an example. When we are looking for valid IVs, e.g., fuel costs, from the IV candidates,
we do not need to assume that they are valid, modal validity, or binary, but only need them to be
correlated with the treatment, i.e., price, and be independent of the unobserved confounders, i.e.,
conferences.

2.3 Causal Representation Learning
Recently, causal representation learning [20, 21, 26, 27, 36, 44, 47] has attracted lots of attention
in many applications [24, 28, 33, 39, 45, 49]. Among these works, Yao et al. [47] propose to reduce
prediction bias by filtering out the nearly IVs. Some works [20, 44] decompose the IV, confounder,
and adjustment representations by encouraging or limiting the correlations between variables.
However, these works are limited to the binary treatment setting. Moreover, they neither give
empirical results to show the effectiveness of the learned IV representations nor make use of
the decomposed IV representations for counterfactual prediction. In contrast, we present a data-
driven IV representation learning algorithm and show its effectiveness by applying the learned
representations to the downstream IV-based methods for accurate counterfactual prediction.

3 PRELIMINARY
By following previous works [3, 37], we assume the relationship between treatment variable 𝑋 and
outcome variable 𝑌 in data generating process is

𝑌 = 𝑔(𝑋) + 𝑒, (1)

where 𝑔(⋅) is an unknown causal response function which is potentially non-linear and continuous,
and 𝑒 is the error term that contains unobserved latent factors (i.e. unmeasured confounders) which
affect both 𝑋 and 𝑌 . Here, we assume the error term 𝑒 is with zero expectation and finite variance
(i.e., E(︀𝑒⌋︀ = 0 and E(︀𝑒2⌋︀ <∞). 𝑒 contains unobserved factors that affect𝑋 , thus 𝑒 would be correlated
with𝑋 , i.e. E(︀𝑒 ⋃︀𝑋 ⌋︀ ≠ 0, which makes𝑋 an endogenous variable and leads to 𝑔(𝑋) ≠ E(︀𝑌 ⋃︀𝑋 ⌋︀. Thus, it
is infeasible to estimate the causal relationship 𝑔(⋅) between𝑋 and 𝑌 via directly estimating E(︀𝑌 ⋃︀𝑋 ⌋︀
from data distribution 𝑃(𝑋,𝑌) because of the confounding effect caused by the unobserved error 𝑒 .
The instrumental variables (IVs) are introduced to solve the endogenous treatment problem as we
introduced previously. Valid IVs (denoted by 𝑍 ) should satisfy the following conditions [3, 18, 37]:
● Relevance. 𝑍 is related to 𝑋 , i.e., P(𝑋 ⋃︀𝑍) ≠ P(𝑋);
● Exclusion. 𝑍 does not directly affect 𝑌 , i.e., P(𝑌 ⋃︀𝑍,𝑋, 𝑒) = P(𝑌 ⋃︀𝑋,𝑒);
● Unconfounded Instrument. 𝑍 should be unconfounded, i.e., E(︀𝑒 ⋃︀𝑍⌋︀ = E(︀𝑒⌋︀.
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Fig. 1. The proposed AutoIV framework. Variables 𝑉 , 𝑋 , and 𝑌 are corresponding to the observed variables,
treatment, and outcome, respectively. Variables 𝑒 are unobserved confounders that are related to both 𝑋 and
𝑌 . AutoIV decomposes representations of instrumental variables 𝑍 and confounders 𝐶 from the observed
variables 𝑉 automatically, then use the learned representations for IV-based counterfactual prediction.

The goal of IV-based counterfactual prediction is to obtain a counterfactual estimation function 𝑔
that is close to the true response function 𝑔. Moreover, if there exists exogenous variable 𝐶 (i.e.,
P(𝑒 ⋃︀𝐶) = P(𝑒)), we can make use of it for more accurate estimation, i.e. 𝑋 = (𝑋 ′,𝐶) and 𝑍 = (𝑍 ′,𝐶),
where 𝑋 ′ and 𝑍 ′ are the true treatment variable and instrumental variable, respectively. Note that
we will also learn confounder representations in our algorithm, which are used as the exogenous
variables 𝐶 in the IV-based counterfactual prediction process.

Previous IV-based counterfactual prediction approaches assume that they have access to the true
valid IVs 𝑍 which strictly satisfy the above conditions. Then, we could identify the causal response
function 𝑔(⋅) based on

E(︀𝑌 ⋃︀𝑍⌋︀ = E(︀𝑔(𝑋)⋃︀𝑍⌋︀ = ∫ 𝑔(𝑋)𝑑P(𝑋 ⋃︀𝑍). (2)

That is, one may first learn P(𝑋 ⋃︀𝑍), then use it to estimate 𝑔(⋅). For example, standard two-stage
least squares (2SLS) method [2] first learns E(︀𝜙(𝑋)⋃︀𝑍⌋︀ with linear basis 𝜙(⋅), then fits 𝑌 by least-
squares regression with the coefficient 𝜙(⋅) that estimated in the first stage. Some non-parametric
works [10, 32] extend the model basis to more complicated mapping functions or regularization,
e.g. polynomial basis. DeepIV [18] is proposed to apply deep neural networks in the two-stage
procedure. It fits a mixture density network 𝐹𝜙(𝑋 ⋃︀𝑍) in the first stage and regresses 𝑌 by sampling
from the estimated mixture Gaussian distributions of 𝑋 . KernelIV [37] is a recent kernel approach
that maps 𝑍 , 𝑋 , and 𝑌 to reproducing kernel Hilbert spaces and perform the two-stage procedure
in that space. DeepGMM [3] extends the existing GMMmethods in the high-dimensional treatment
and IVs setting, which is based on a novel variational reformulation of the optimally-weighted
GMM.
The above existing IV-based counterfactual prediction methods need well-predefined valid IVs.

However, it is an art rather than science to find suitable IVs in real applications. Even worse, the
predefined hand-made IVs could be weak or erroneous by violating the conditions. Without the
valid IVs, the counterfactual prediction performance of these downstream IV-based methods cannot
be guaranteed.
In this paper, we aim to automatically learn valid IV representations that can be applied to the

downstream IV-based methods for accurate counterfactual prediction. The validity of the learned
IV representation determines the accuracy of the downstream counterfactual prediction task.
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4 METHOD
In this section, we propose a novel Automatic Instrumental Variable decomposition (AutoIV)
algorithm to generate decomposed IV and confounder representations from the observed variables.
The proposed framework of AutoIV is shown in Fig. 1. The green part represents all the available
variables, including observed variables𝑉 , treatment variables𝑋 , and outcome variables𝑌 . 𝐸 denotes
unobserved confounders that are related to both 𝑋 and 𝑌 . The observed variables 𝑉 are correlated
with 𝑋 and also might be associated with 𝑌 . Similar to the general setting in recent IV analysis
works [3, 18, 37], observed variables 𝑉 are assumed exogenous, i.e. P(︀𝐸⋃︀𝑉 ⌋︀ = P(︀𝐸⌋︀. Therefore, the
decomposed representations of instrumental variables 𝑍 and confounders 𝐶 are also exogenous,
which satisfies the unconfounded IV condition. Suppose that we have data 𝒟 = {(𝒗𝑖 ,𝒙𝑖 ,𝒚𝑖)}

𝑁
𝑖=1,

our goal is to learn the representations of 𝑍 and 𝐶 from the observed variables 𝑉 based on their
relationships to 𝑋 and 𝑌 with data 𝒟. Then, we use the learned representations for counterfactual
prediction with the downstream IV-based methods introduced in Sec. 3. The validity of the learned
representations determines the accuracy of the IV-based counterfactual prediction.
We first use neural networks to model the representations for 𝑍 and 𝐶 as 𝜙𝑍 (⋅) and 𝜙𝐶(⋅)

with parameters 𝜃𝜙𝑍 and 𝜃𝜙𝐶 , respectively. The observed variables 𝑉 are used as inputs of the
representation networks. We control the information that flows into 𝜙𝑍 (⋅) to be related to 𝑋

and conditionally independent of 𝑌 , which is based on the relevance and exclusion conditions,
respectively. We then let 𝜙𝐶(⋅) be related to both 𝑋 and 𝑌 . These two representation networks
compete for the corresponding information with their constraints in an adversarial game. A
general two-stage counterfactual prediction loss is then employed to further calibrate the learned
representations.

Let 𝐴 and 𝐵 be two random variables that are correlated with each other. We have examples 𝒂𝑖
and 𝒃𝑖 sampled from the distributions of 𝐴 and 𝐵, respectively. We encourage (or discourage) the
relevance between 𝐴 and 𝐵 by maximizing (or minimizing) the mutual information between them.
However, only the samples {(𝒂𝑖 ,𝒃𝑖)}𝑁𝑖=1 are available in our task, but what mutual information
estimation needs is data distributions. Inspired by recent works on contrastive learning and sample-
based mutual information estimation [8, 34], we first learn a variational distribution 𝑞(𝐵⋃︀𝐴) to
approximate P(𝐵⋃︀𝐴). We let positive sample pair to be the sample pair with the same index
(i.e. (𝑎𝑖 , 𝑏𝑖)), and let negative sample pair be the sample pair with the different index (𝑎𝑖 , 𝑏 𝑗)𝑖≠𝑗 .
As we already have the variational approximation 𝑞(𝐵⋃︀𝐴), we can increase (or decrease) the
relevance between 𝐴 and 𝐵 by maximizing (or minimizing) the differences between the variational
approximation of the positive sample pair (i.e. 𝑞(𝑏𝑖 ⋃︀𝑎𝑖)) and that of the negative sample pair (i.e.
𝑞(𝑏 𝑗 ⋃︀𝑎𝑖)). It can intuitively be interpreted that mutual information maximization task is achieved
when there exist distinct differences between the relevance of 𝑎𝑖 to its corresponding 𝑏𝑖 and the
relevance of 𝑎𝑖 to 𝑏 𝑗 (where 𝑖 ≠ 𝑗 ). Meanwhile, mutual information minimization is to reduce
that differences. Although there is deviation between 𝑞(𝐵⋃︀𝐴) and P(𝐵⋃︀𝐴), the estimated mutual
information is still excellent with great variational approximation [8].

4.1 Learning IV Representations
We aim to learn the IV representations that satisfy the conditions of the valid IVs (see Sec. 3), i.e.,
relevance, exclusion, and unconfounded instrument. Since we have already assumed the exogeneity
of the observed variables𝑉 by following previous works [3, 18, 37], and the learned representations
always satisfy the unconfounded instrument condition, we only need to make the learned IV
representations satisfy the relevance condition with the treatment and the exclusion condition with
the outcome.
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Learning relevance. The relevance condition, i.e., P(𝑋 ⋃︀𝑍) ≠ P(𝑋), requires IV representations
𝜙𝑍 (𝑉 ) to be correlated with the treatment 𝑋 . Therefore, we encourage the information of 𝑉
that is related to 𝑋 to enter the IV representations 𝜙𝑍 (𝑉 ). We first use variational distribution
𝑞𝜃𝑍𝑋

(𝑋 ⋃︀𝜙𝑍 (𝑉 )) with neural network parameters 𝜃𝑍𝑋 to approximate the true conditional distribu-
tion P(𝑋 ⋃︀𝜙𝑍 (𝑉 )). The log-likelihood loss function of variational approximation 𝑞𝜃𝑍𝑋

(𝑋 ⋃︀𝜙𝑍 (𝑉 ))

with 𝑁 samples is given as:

ℒ
𝐿𝐿𝐷
𝑍𝑋 = −

1
𝑁

𝑁

∑
𝑖=1

log𝑞𝜃𝑍𝑋
(𝒙𝑖 ⋃︀𝜙

𝑍
(𝒗𝑖)). (3)

We minimize Eq. (3) to get optimal variational approximation 𝑞
𝜃𝑍𝑋

(𝑋 ⋃︀𝜙𝑍 (𝑉 )) with parameters
𝜃𝑍𝑋 . To increase the relevance between the IV representations and the treatment, we maximize the
mutual information between them with

ℒ
𝑀𝐼
𝑍𝑋 = −

1
𝑁 2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
(log𝑞𝜃𝑍𝑋

(𝒙𝑖 ⋃︀𝜙
𝑍
(𝒗𝑖)) − log𝑞𝜃𝑍𝑋

(𝒙 𝑗 ⋃︀𝜙
𝑍
(𝒗𝑖))), (4)

where log𝑞𝜃𝑍𝑋
(𝒙𝑖 ⋃︀𝜙

𝑍 (𝒗𝑖)) represents the conditional log-likelihood of positive sample pair (𝜙𝑍 (𝒗𝑖),𝒙𝑖)
and 𝑞𝜃𝑍𝑋

(𝒙 𝑗 ⋃︀𝜙
𝑍 (𝒗𝑖)𝑖≠𝑗 represents the negative sample pair (𝜙𝑍 (𝒗𝑖),𝒙 𝑗)𝑖≠𝑗 . We minimize Eq.(4) to

optimize the IV representations 𝜙𝑍 (𝑉 ) for relevance condition via maximizing differences between
the positive and negative sample pairs.

Learning exclusion. The exclusion condition requires IV representations to be related to the
outcome 𝑌 only through the treatment 𝑋 and unobserved error 𝑒 , i.e. P(𝑌 ⋃︀𝑍,𝑋, 𝑒) = P(𝑌 ⋃︀𝑋,𝑒).
Since 𝑒 is unobserved, we employ a more strict condition instead, i.e., 𝑍 á 𝑌 ⋃︀𝑋 . Therefore, we
minimize mutual information between 𝑍 and 𝑌 conditional on 𝑋 . Similarly, we first use variational
distribution 𝑞𝜃𝑍𝑌

(𝑌 ⋃︀𝜙𝑍 (𝑉 )) with parameters 𝜃𝑍𝑌 to approximate the true conditional distribution
P(𝑌 ⋃︀𝜙𝑍 (𝑉 )). The log-likelihood loss function for 𝑞𝜃𝑍𝑌

(𝑌 ⋃︀𝜙𝑍 (𝑉 )) is given as

ℒ
𝐿𝐿𝐷
𝑍𝑌 = −

1
𝑁

𝑁

∑
𝑖=1

log𝑞𝜃𝑍𝑌
(𝒚𝑖 ⋃︀𝜙

𝑍
(𝒗𝑖)). (5)

The optimal variational approximation 𝑞
𝜃𝑍𝑌

(𝒚𝒊 ⋃︀𝜙
𝑍 (𝒗𝒊)) is achieved with parameters 𝜃𝑍𝑌 by mini-

mizing Eq. (5). The IV representations 𝜙𝑍 (𝑉 ) should be independent of the outcome 𝑌 given the
treatment 𝑋 , we achieve it by minimizing the mutual information between them. Since the treat-
ments 𝑋 are continuous random variables, we consider the constraints of conditional independence
with smooth weight𝑤𝑖 𝑗 , and the loss function for mutual information minimization between IV
representations 𝜙𝑍 (𝑉 ) and the outcome 𝑌 is given as:

ℒ
𝑀𝐼
𝑍𝑌 =

1
𝑁 2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
(𝜔𝑖 𝑗 ⋅ (log𝑞𝜃𝑍𝑌

(𝒚𝑖 ⋃︀𝜙
𝑍
(𝒗𝑖)) − log𝑞𝜃𝑍𝑌

(𝒚 𝑗 ⋃︀𝜙
𝑍
(𝒗𝑖)))). (6)

Different frommutual informationmaximization in learning relevance, we let the positive ((𝜙𝑍 (𝒗𝑖),𝒚𝑖))
and negative (𝜙𝑍 (𝒗𝑖),𝒚 𝑗) sample pairs have close a log-likelihood expectation to make the IV
representations 𝜙𝑍 (𝑉 ) and the outcome 𝑌 conditional independent. 𝜔𝑖 𝑗 is the weight of each pair
of positive and negative samples, and we determine it by the discrepancy between 𝒙𝑖 and 𝒙 𝑗 in
RBF kernel:

𝜔𝑖 𝑗 = softmax(𝑒−
∏︁𝒙𝑖−𝒙 𝑗 ∏︁

2

2𝜎2 ), 𝑖, 𝑗 = 1, 2, ..., 𝑁 , (7)
where 𝜎 is a hyperparameter, we use 0.5 for it in our experiments. The weight of positive and
negative sample pairs increases when their treatments 𝑋 have closer distance. In other words, we
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would like to pay attention to the pairs which have close 𝑋 values for our conditional independent
constraints.

4.2 Learning Confounder Representations
We also decompose and learn the representations of confounders that are correlated to both the
treatment and outcome. They are used as exogenous variables 𝐶 for counterfactual prediction
(see Sec. 3). We let the generated confounder representations, i.e. 𝜙𝐶(𝑉 ), are both correlated to
the treatment 𝑋 and outcome 𝑌 variables. With the similar procedure in learning IV representa-
tions, we first use variational distribution 𝑞𝜃𝐶𝑋

(𝑋 ⋃︀𝜙𝐶(𝑉 )) to approximate conditional distribution
P(𝑋 ⋃︀𝜙𝐶(𝑉 )), and the corresponding log-likelihood loss function is given as:

ℒ
𝐿𝐿𝐷
𝐶𝑋 = −

1
𝑁

𝑁

∑
𝑖=1

log𝑞𝜃𝐶𝑋
(𝒙𝑖 ⋃︀𝜙

𝐶
(𝒗𝑖)), (8)

Optimal approximation 𝑞
𝜃𝐶𝑋

(𝑋 ⋃︀𝜙𝐶(𝑉 )) with parameter 𝜃𝐶𝑋 is obtained by minimizing (8). We
then minimize the loss function of mutual information maximization between confounder repre-
sentations 𝜙𝐶(𝑉 ) and the treatment 𝑋 :

ℒ
𝑀𝐼
𝐶𝑋 = −

1
𝑁 2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
(log𝑞𝜃𝐶𝑋

(𝒙𝑖 ⋃︀𝜙
𝐶
(𝒗𝑖)) − log𝑞𝜃𝐶𝑋

(𝒙 𝑗 ⋃︀𝜙
𝐶
(𝒗𝑖))). (9)

The pairs of positive sample (𝜙𝐶(𝒗𝑖),𝒙𝑖) and negative sample (𝜙𝐶(𝒗𝑖),𝒙 𝑗) are used to increase
the relevance between 𝐶 and 𝑋 . Also, the variational distribution 𝑞𝜃𝐶𝑌

(𝑌 ⋃︀𝜙𝐶(𝑉 ) for conditional
distribution P(𝑌 ⋃︀𝜙𝐶(𝑉 )) and its mutual information maximization loss function is given as:

ℒ
𝐿𝐿𝐷
𝐶𝑌 = −

1
𝑁

𝑁

∑
𝑖=1

log𝑞𝜃𝐶𝑌
(𝒚𝑖 ⋃︀𝜙

𝐶
(𝒗𝑖)), (10)

ℒ
𝑀𝐼
𝐶𝑌 = −

1
𝑁 2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
(log𝑞𝜃𝐶𝑌

(𝒚𝑖 ⋃︀𝜙
𝐶
(𝒗𝑖)) − log𝑞𝜃𝐶𝑌

(𝒚 𝑗 ⋃︀𝜙
𝐶
(𝒗𝑖))). (11)

We minimize Eq. (10) to get optimal variational approximation 𝑞
𝜃𝐶𝑌

(𝑌 ⋃︀𝜙𝐶(𝑉 )) with parameter 𝜃𝐶𝑌 ,
and minimize Eq. (11) to encourage the confounder representations 𝜙𝐶(𝑉 ) and the outcome 𝑌 to
be relevant.

Since conditional on the confounders that contain IV information would introduce bias in causal
inference [42], also, if the information of confounders (i.e. the variables correlated to𝑌 ) is embedded
in the IV representations would influence the exclusion condition. Therefore, we minimize mutual
information between the IV representations 𝜙𝑍 (𝑉 ) and confounder representations 𝜙𝐶(𝑉 ) to
regularize the learned information in the generated representations. The variational distribution
𝑞𝜃𝑍𝑋

(𝜙𝐶(𝑉 )⋃︀𝜙𝑍 (𝑉 ) for conditional distribution P(𝜙𝐶(𝑉 )⋃︀𝜙𝑍 (𝑉 )) and the mutual information
minimization loss function are given as:

ℒ
𝐿𝐿𝐷
𝑍𝐶 = −

1
𝑁

𝑁

∑
𝑖=1

log𝑞𝜃𝑍𝐶
(𝜙𝐶(𝒗𝑖)⋃︀𝜙

𝑍
(𝒗𝑖)), (12)

ℒ
𝑀𝐼
𝑍𝐶 =

1
𝑁 2

𝑁

∑
𝑖=1

𝑁

∑
𝑗=1
(log𝑞𝜃𝑍𝐶

(𝜙𝐶(𝒗𝑖)⋃︀𝜙
𝑍
(𝒗𝑖)) − log𝑞𝜃𝐶𝑌

(𝜙𝐶(𝒗 𝑗)⋃︀𝜙
𝑍
(𝒗𝑖))). (13)

We minimize Eq. (12) to learn accurate variational approximation 𝑞𝜃𝑍𝑋
(𝜙𝐶(𝑉 )⋃︀𝜙𝑍 (𝑉 ) for the

conditional distribution P(𝜙𝐶(𝑉 )⋃︀𝜙𝑍 (𝑉 )), and use the variational approximation to regularize the
IV and confounder representations via minimizing Eq. (13).

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



Auto IV: Counterfactual Prediction via Automatic Instrumental Variable Decomposition 111:9

In the above procedure with mutual information constraints, the IV representations 𝜙𝑍 (𝑉 )

attempt to extract information that is correlated to the treatment 𝑋 and conditional independent
to the outcome 𝑌 , while the confounder representations 𝜙𝐶(𝑉 ) are encouraged to be correlated
to both 𝑋 and 𝑌 . We also employ a regularization term to encourage the information to enter
one of the extracted representations. Therefore, the two representation networks compete for the
corresponding information with their constraints in an adversarial game, which allows us to get
valid IV and confounder representations. We then introduce the general IV-based counterfactual
prediction procedure to further improve the learned representations in the following.

4.3 Representation Calibration
We combine mutual information-based representation learning with a general two-stage counter-
factual prediction procedure to further calibrate the learned representations. More concretely, we
first regress 𝑋 on IV and confounder representations, i.e., 𝜙𝑍 (𝑉 ) and 𝜙𝐶(𝑉 ),

ℒ𝑋 =
1
𝑁

𝑁

∑
𝑖=1

𝑙(𝒙𝑖 , 𝑓
𝑋
(𝜙𝑍

(𝒗𝑖), 𝜙
𝐶
(𝒗𝑖))), (14)

where 𝑓 𝑋 is the first-stage (treatment) regression network with parameter 𝜃 𝑓 𝑋 , and 𝑙(⋅, ⋅) measures
square error in our experiments. We then use the estimated treatment 𝑋 (in the first stage) to
regress the outcome 𝑌 in the second stage:

ℒ𝑌 =
1
𝑁

𝑁

∑
𝑖=1

𝑙(𝑦𝑖 , 𝑓
𝑌
(𝜙𝐶(𝑣𝑖), 𝑓

𝑒𝑚𝑏
(𝑓 𝑋 (𝜙𝑍

(𝑣𝑖), 𝜙
𝐶
(𝑣𝑖))))), (15)

where 𝑓 𝑒𝑚𝑏 is an embedding network with parameter 𝜃 𝑓 𝑒𝑚𝑏 for expanding the dimension of 𝑋 , 𝑓 𝑌
is the second-stage (outcome) regression network with parameter 𝜃 𝑓 𝑌 . ℒ𝑋𝑟

and ℒ𝑌𝑟 are minimized
to optimize the parameters of representation, treatment, embedding, and outcome networks to
further improve the decomposed representations.
Note that we assume that the candidate IVs are independent of the unobserved confounders.

Based on our regularization term, the decomposed IV representations meet the relevance and
exclusion assumptions. Besides, effect homogeneity and monotonicity assumption are often used
in the analysis of instrumental variables. Based on the structural equation model, our algorithm
models a homogeneity IV to estimate the accurate structural function of the treatment on the
outcome [15, 41, 43].

4.4 Model Optimization
As weminimize Eq. (3), (5), (8), (10), and (12) to optimize the parameters 𝜃𝑍𝑋 , 𝜃𝑍𝑌 , 𝜃𝐶𝑋 , 𝜃𝐶𝑌 , and 𝜃𝑍𝐶 ,
respectively, each variational distribution approximates the corresponding conditional distribution.
We simplify the expression by combining all the variational approximation loss as

ℒ
𝐿𝐿𝐷
= ℒ

𝐿𝐿𝐷
𝑍𝑋 +ℒ

𝐿𝐿𝐷
𝑍𝑌 +ℒ

𝐿𝐿𝐷
𝐶𝑋 +ℒ

𝐿𝐿𝐷
𝐶𝑌 +ℒ

𝐿𝐿𝐷
𝑍𝐶 . (16)

Notice that each loss term in Eq. (16) optimizes the corresponding parameters and will not interact
with each other. We then combine all the mutual information constraints loss functions of Eq. (4),
(6), (9), (11), and (13) as

ℒ
𝑀𝐼
= ℒ

𝑀𝐼
𝑍𝑋 +ℒ

𝑀𝐼
𝑍𝑌 + 𝛼(ℒ

𝑀𝐼
𝐶𝑋 +ℒ

𝑀𝐼
𝐶𝑌 ) + 𝜂ℒ

𝑀𝐼
𝑍𝐶 , (17)

where 𝛼 and 𝜂 are hyper-parameters tuned on a held-out validation set. Eq. (17) is minimized to
optimize the representation networks 𝜙𝑍 (⋅) and 𝜙𝐶(⋅) with parameters 𝜃𝜙𝑍 and 𝜃𝜙𝐶 . Eq. (14) is
minimized to optimize parameters of the representation and treatment networks (i.e., 𝜃𝜙𝑍 , 𝜃𝜙𝐶 ,
and 𝜃 𝑓 𝑋 ), and Eq. (15) is minimized to optimize the parameters of the representation, embedding,
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Algorithm 1 AutoIV: Automatic IV Decomposition

Input: Training set 𝒯 = (𝒗𝑖 ,𝒙𝑖 ,𝒚𝑖)
𝑁𝑇

𝑖=1; variational distribution parameters 𝜃𝑍𝑋 , 𝜃𝑍𝑌 , 𝜃𝐶𝑋 , 𝜃𝐶𝑌 ,
and 𝜃𝑍𝐶 ; IV and confounder representation networks 𝜙𝑍 (⋅;𝜃𝜙𝑍 ) and 𝜙𝐶(⋅;𝜃𝜙𝐶 ), respectively;
treatment regression, embedding, and outcome regression networks 𝑓 𝑋 (⋅;𝜃 𝑓 𝑋 ), 𝑓 𝑒𝑚𝑏(⋅;𝜃 𝑓 𝑒𝑚𝑏 ),
and 𝑓 𝑌 (⋅;𝜃 𝑓 𝑌 ), respectively; hyperparameters 𝛼 and 𝜂; training epochs𝑀 ; batchsize 𝐵.

Output: Well-trained 𝜙𝑍 (⋅;𝜃𝜙𝑍 ) and 𝜙𝐶(⋅;𝜃𝜙𝐶 )

1: Initialize Adam optimizer and all the parameters;
2: for 𝑒𝑝𝑜𝑐ℎ = 1 to𝑀 do
3: Randomly sample 𝐵 examples from 𝒯 ;
4: Update variational distribution parameters 𝜃𝑍𝑋 , 𝜃𝑍𝑌 , 𝜃𝐶𝑋 , 𝜃𝐶𝑌 , 𝜃𝑍𝐶 by minimizing ℒ𝐿𝐿𝐷 as

Eq. (16);
5: Update representation networks parameters 𝜃𝜙𝑍 and 𝜃𝜙𝐶 by minimizing ℒ𝑀𝐼 as Eq. (17);
6: Update representation and treatment regression network parameters 𝜃𝜙𝑍 , 𝜃𝜙𝐶 , 𝜃 𝑓 𝑋 by

minimizing ℒ𝑋 as Eq. (14);
7: Update representation, embedding, and outcome regression network parameters 𝜃𝜙𝑍 , 𝜃𝜙𝐶 ,

𝜃 𝑓𝑒𝑚𝑏
, 𝜃 𝑓 𝑌 by minimizing ℒ𝑌 as Eq. (15).

8: end for

and outcome networks (i.e., 𝜃𝜙𝑍 , 𝜃𝜙𝐶 , 𝜃 𝑓 𝑒𝑚𝑏 , and 𝜃 𝑓 𝑌 ). We optimize Eq. (16), (17), (14), and (15)
for the corresponding parameters alternately to get optimal decomposed representations of IVs
and confounders. Finally, we use the generated representations for counterfactual prediction with
downstream IV-based methods to testify the validity of the learned representations. The whole
optimization procedure of our AutoIV algorithm is stated in Algorithm 1.

5 EXPERIMENTS
In this section, we show the empirical evaluation of applying AutoIV to different downstream
IV-based methods for counterfactual prediction. The validity of the learned IV representations
determines the accuracy of counterfactual prediction of the downstream methods. We implement
the experiments with Python on a device with CPU Intel Xeon Gold 6254, GPU Nvidia RTX 2080TI,
and memory 64MB.

We list the representative IV-based methods introduced previously and used in our experiments
in the following.

1. DirectNN: directly regress the outcome on the treatment with neural networks. It does not
use any information of the IVs, and can be considered as the general supervised learning.

2. 2SLS (van): vanilla two-stage least squares with linear models.
3. 2SLS (poly): two-stage least squares with polynomial basis and ridge regularization.
4. 2SLS (NN): two-stage regression with neural networks structure.
5. DeepIV [18]: fit the treatment with the IVs via optimizing a mixture density network in the

first stage, and then fit the outcome by sampling from the mixture density network. We use
its original implementation 1.

6. KernelIV[37]: a recent kernel method that performs two-stage procedure in reproduce kernel
Hilbert spaces. We implement it with Python by referring its original MATLAB version 2.
The results of ours and original MATLAB version are consistent.

1https://github.com/jhartford/DeepIV
2https://github.com/r4hu1-5in9h/KernelIV
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Fig. 2. Response function estimation in low-dimensional scenarios.

Fig. 3. Performance of AutoIV by varying representation dimensions.

7. DeepGMM[3]: a variational method based on optimally-weighted GMM . We use its imple-
mentation in CausalML 3.

We compare our algorithm AutoIV with the following baseline methods: (1) TrueIV: use true
valid IVs as a prior; (2) RandIV: use random variables (sampled from the same distribution of the
true valid IVs) as IVs; (3) UAS:[11] use equally weight to synthesize IVs from the IV candidates;
(4) WAS:[6] synthesize IVs by weighting the IV candidates based on their correlation to the
treatment. We use the above methods to generate IVs (IV representations) and feed them to the
downstream IV-based counterfactual prediction methods to testify the validity of the generated IVs
(IV representations). To evaluate the performance of these IV synthesis methods under different IV
candidates validity scenarios, we set: (1) w/ 𝑍 : parts of the valid IVs are given in the IV candidates,
and (2) w/o 𝑍 : no valid IVs are given in the IV candidates. The latter setting is more practical in
real-world applications and would make the task of synthesizing valid IVs (IV representations)
more challenging as well as the IV-based counterfactual prediction.

3https://github.com/CausalML/DeepGMM

J. ACM, Vol. 37, No. 4, Article 111. Publication date: August 2018.



111:12 Trovato and Tobin, et al.

Table 1. Results (MSE±Std) in low-dimensional scenarios over 20 runs.

Methods IV step abs linear poly2d poly3

DirectNN - 2.86 ± 0.08 2.38 ± 0.05 0.71 ± 0.06 2.34 ± 0.17 1.71 ± 0.07

2SLS (van)

RandIV 2.72 ± 0.82 2.61 ± 0.40 0.33 ± 0.31 1.75 ± 0.80 1.69 ± 0.77
TrueIV 0.77 ± 0.07 2.05 ± 0.10 0.09 ± 0.06 0.40 ± 0.04 0.25 ± 0.06
UAS (w/o 𝑍 ) 3.41 ± 0.17 3.59 ± 0.17 0.95 ± 0.10 3.02 ± 0.23 2.34 ± 0.07
UAS (w/ 𝑍 ) 2.15 ± 0.14 2.76 ± 0.12 0.28 ± 0.04 1.76 ± 0.14 1.25 ± 0.08
WAS (w/o 𝑍 ) 3.39 ± 0.16 3.58 ± 0.17 0.94 ± 0.10 3.00 ± 0.23 2.32 ± 0.07
WAS (w/ 𝑍 ) 2.10 ± 0.18 2.76 ± 0.08 0.28 ± 0.09 1.72 ± 0.18 1.25 ± 0.10
AutoIV (w/o 𝑍 ) 1.20 ± 1.96 1.11 ± 0.09 0.00 ± 0.00 0.22 ± 0.13 0.21 ± 0.06
AutoIV (w/ 𝑍 ) 0.38 ± 0.03 1.41 ± 0.87 0.00 ± 0.00 0.21 ± 0.08 0.19 ± 0.04

2SLS (poly)

RandIV 2.18 ± 0.70 2.21 ± 0.38 0.87 ± 0.15 1.85 ± 0.71 1.28 ± 0.28
TrueIV 0.86 ± 0.16 1.96 ± 0.13 0.11 ± 0.07 0.43 ± 0.07 0.28 ± 0.06
UAS (w/o 𝑍 ) 3.37 ± 0.14 3.48 ± 0.28 0.98 ± 0.06 3.00 ± 0.18 2.32 ± 0.13
UAS (w/ 𝑍 ) 2.11 ± 0.17 2.51 ± 0.31 0.28 ± 0.04 1.63 ± 0.12 1.23 ± 0.09
WAS (w/o 𝑍 ) 3.34 ± 0.15 3.55 ± 0.28 0.98 ± 0.06 2.92 ± 0.22 2.30 ± 0.11
WAS (w/ 𝑍 ) 2.06 ± 0.19 2.50 ± 0.28 0.28 ± 0.10 1.59 ± 0.17 1.26 ± 0.09
AutoIV (w/o 𝑍 ) 0.39 ± 0.02 0.41 ± 0.11 0.00 ± 0.00 0.17 ± 0.08 0.19 ± 0.05
AutoIV (w/ 𝑍 ) 0.39 ± 0.02 0.28 ± 0.04 0.00 ± 0.00 0.28 ± 0.21 0.18 ± 0.04

2SLS (NN)

RandIV 1.26 ± 0.04 2.09 ± 0.26 0.97 ± 0.05 0.99 ± 0.07 1.02 ± 0.02
TrueIV 1.04 ± 0.12 1.99 ± 0.20 0.14 ± 0.02 0.58 ± 0.06 0.32 ± 0.08
UAS (w/o 𝑍 ) 2.46 ± 0.09 3.33 ± 0.32 0.97 ± 0.05 2.19 ± 0.15 2.08 ± 0.06
UAS (w/ 𝑍 ) 1.26 ± 0.04 2.12 ± 0.34 0.97 ± 0.05 0.99 ± 0.07 1.02 ± 0.03
WAS (w/o 𝑍 ) 2.45 ± 0.06 3.42 ± 0.31 0.97 ± 0.05 2.20 ± 0.12 2.13 ± 0.10
WAS (w/ 𝑍 ) 1.82 ± 0.17 2.68 ± 0.20 0.36 ± 0.09 1.61 ± 0.15 1.17 ± 0.10
AutoIV (w/o 𝑍 ) 0.47 ± 0.17 0.50 ± 0.18 0.30 ± 0.23 0.50 ± 0.16 0.33 ± 0.16
AutoIV (w/ 𝑍 ) 0.37 ± 0.09 0.35 ± 0.06 0.25 ± 0.09 0.45 ± 0.30 0.26 ± 0.14

DeepIV

RandIV 1.50 ± 0.09 1.76 ± 0.33 0.90 ± 0.05 1.41 ± 0.11 1.15 ± 0.11
TrueIV 1.34 ± 0.09 1.69 ± 0.26 0.72 ± 0.05 1.33 ± 0.12 1.01 ± 0.09
UAS (w/o 𝑍 ) 1.64 ± 0.11 1.95 ± 0.30 0.93 ± 0.06 1.53 ± 0.21 1.28 ± 0.13
UAS (w/ 𝑍 ) 1.59 ± 0.08 1.82 ± 0.24 0.71 ± 0.06 1.37 ± 0.13 1.13 ± 0.07
WAS (w/o 𝑍 ) 1.77 ± 0.16 1.81 ± 0.29 0.94 ± 0.07 1.49 ± 0.15 1.34 ± 0.12
WAS (w/ 𝑍 ) 1.59 ± 0.12 1.76 ± 0.30 0.70 ± 0.07 1.38 ± 0.12 1.08 ± 0.09
AutoIV (w/o 𝑍 ) 0.66 ± 0.16 0.90 ± 0.13 0.70 ± 0.18 0.80 ± 0.14 0.86 ± 0.12
AutoIV (w/ 𝑍 ) 0.72 ± 0.17 0.86 ± 0.08 0.63 ± 0.11 0.71 ± 0.20 0.67 ± 0.13

KernelIV

RandIV 1.55 ± 0.17 4.79 ± 0.13 0.94 ± 0.11 1.04 ± 0.02 1.10 ± 0.15
TrueIV 1.24 ± 0.11 3.67 ± 0.68 0.67 ± 0.06 1.01 ± 0.02 0.99 ± 0.03
UAS (w/o 𝑍 ) 3.15 ± 0.28 5.42 ± 0.13 0.92 ± 0.11 2.41 ± 0.14 1.86 ± 0.09
UAS (w/ 𝑍 ) 2.37 ± 0.32 5.04 ± 0.21 0.67 ± 0.06 1.77 ± 0.07 1.22 ± 0.38
WAS (w/o 𝑍 ) 3.22 ± 0.44 5.39 ± 0.16 0.94 ± 0.11 2.48 ± 0.26 1.88 ± 0.09
WAS (w/ 𝑍 ) 2.40 ± 0.24 4.81 ± 0.40 0.67 ± 0.06 1.77 ± 0.09 1.04 ± 0.02
AutoIV (w/o 𝑍 ) 0.93 ± 0.05 1.07 ± 0.05 0.92 ± 0.08 1.03 ± 0.09 0.90 ± 0.36
AutoIV (w/ 𝑍 ) 0.80 ± 0.17 0.90 ± 0.04 0.78 ± 0.09 0.78 ± 0.27 0.89 ± 0.10

DeepGMM

RandIV 2.03 ± 0.62 2.53 ± 0.31 0.86 ± 0.21 2.16 ± 0.48 1.35 ± 0.43
TrueIV 1.03 ± 0.10 1.69 ± 0.28 0.12 ± 0.05 0.48 ± 0.08 0.32 ± 0.14
UAS (w/o 𝑍 ) 3.65 ± 0.13 2.23 ± 0.76 1.00 ± 0.07 3.53 ± 0.65 2.32 ± 0.32
UAS (w/ 𝑍 ) 2.23 ± 0.07 2.33 ± 0.60 0.47 ± 0.04 1.75 ± 0.19 1.12 ± 0.14
WAS (w/o 𝑍 ) 3.74 ± 0.14 2.21 ± 0.81 1.01 ± 0.07 3.47 ± 0.50 2.31 ± 0.31
WAS (w/ 𝑍 ) 2.22 ± 0.18 2.33 ± 0.59 0.43 ± 0.10 1.75 ± 0.18 1.13 ± 0.15
AutoIV (w/o 𝑍 ) 0.71 ± 0.36 0.66 ± 0.58 0.44 ± 0.29 0.38 ± 0.48 0.37 ± 0.36
AutoIV (w/ 𝑍 ) 0.69 ± 0.43 0.35 ± 0.42 0.28 ± 0.30 0.22 ± 0.17 0.24 ± 0.17
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Table 2. Ablation experiments of AutoIV.

Methods ℒ𝑍𝑋𝑚
+ℒ𝑍𝑌𝑚 ℒ𝐶𝑋𝑚

+ℒ𝐶𝑌𝑚 ℒ𝐶𝑍𝑚
ℒ𝑋𝑟
+ℒ𝑌𝑟 Results

DeepIV

✓ ✓ ✓ 0.95 ± 0.05
✓ ✓ ✓ 0.92 ± 0.06
✓ ✓ ✓ 0.96 ± 0.06
✓ ✓ ✓ 0.98 ± 0.06
✓ ✓ ✓ ✓ 0.86 ± 0.08

KernelIV

✓ ✓ ✓ 0.91 ± 0.09
✓ ✓ ✓ 0.98 ± 0.11
✓ ✓ ✓ 1.11 ± 0.15
✓ ✓ ✓ > 10
✓ ✓ ✓ ✓ 0.90 ± 0.04

DeepGMM

✓ ✓ ✓ 0.49 ± 0.25
✓ ✓ ✓ 0.60 ± 0.62
✓ ✓ ✓ 0.68 ± 0.31
✓ ✓ ✓ 0.73 ± 0.57
✓ ✓ ✓ ✓ 0.35 ± 0.42

Fig. 4. Performance of AutoIV by varying the training data size.

5.1 Low-dimensional Scenarios
Similar to [3], we first implement experiments in low-dimensional scenarios (i.e., all the variables
are in low-dimensional), and the data generating process is:

𝑌 = 𝑔(𝑋) + 𝑒 + 𝜎, 𝑋 = 𝑍1 + 𝑒 +𝛾, 𝑍 ∼ Unif((︀−3, 3⌋︀2)
𝑉 = (︀𝑍 ;𝛾 ;𝜎⌋︀, 𝑒 ∼ 𝒩 (0, 1), 𝛾, 𝜎 ∼ 𝒩 (0, 0.1),

(18)

where 𝑍 are the true valid IVs used as prior in the TrueIV baseline, while RandIV replaces it by
randomly sampling from the same distribution of 𝑍 . 𝜎 and 𝛾 are noise. Variables𝑉 are observed and
used as the IV candidates which is composed by concatenating 𝑍 , 𝛾 , and 𝜎 . 𝑒 is an unobserved error
term that is correlated to both the treatment 𝑋 and the outcome 𝑌 , 𝑔 is the true response function
that chosen from the following settings (some are different from [3] to increase the difficulty of
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Fig. 5. Results of sensitivity analysis of the hyperparameters 𝛼 (left) and 𝜂 (right) in the AutoIV algorithm.

Table 3. Results of high-dimensional experiments on MNIST data with representation dimension as 5, 10,
and 15.

Methods Scenarios RandIV TrueIV AutoIV-5 AutoIV-10 AutoIV-15

2SLS(van)
MNIST𝑍 1.688 ± 0.229 0.986 ± 0.030 0.994 ± 0.045 1.046 ± 0.055 0.995 ± 0.042
MNIST𝐶 1.657 ± 0.170 1.022 ± 0.046 0.999 ± 0.040 1.031 ± 0.053 1.018 ± 0.047
MNIST𝑍𝐶 2.053 ± 0.307 1.780 ± 0.283 1.006 ± 0.041 1.019 ± 0.040 0.999 ± 0.033

2SLS(poly)
MNIST𝑍 1.792 ± 1.411 0.977 ± 0.032 0.444 ± 0.142 0.604 ± 0.304 0.530 ± 0.207
MNIST𝐶 1.491 ± 1.307 0.982 ± 0.041 0.426 ± 0.053 0.533 ± 0.207 0.676 ± 0.306
MNIST𝑍𝐶 1.327 ± 0.570 1.001 ± 0.027 0.703 ± 0.219 0.928 ± 0.065 0.976 ± 0.036

2SLS(NN)
MNIST𝑍 1.382 ± 0.110 1.045 ± 0.068 0.663 ± 0.219 0.369 ± 0.066 0.336 ± 0.043
MNIST𝐶 1.352 ± 0.073 1.074 ± 0.077 0.785 ± 0.196 0.374 ± 0.072 0.323 ± 0.046
MNIST𝑍𝐶 1.501 ± 0.068 1.427 ± 0.076 0.967 ± 0.081 0.881 ± 0.142 0.829 ± 0.224

DeepIV
MNIST𝑍 1.102 ± 0.0912 1.030 ± 0.054 0.875 ± 0.135 0.891 ± 0.053 0.985 ± 0.117
MNIST𝐶 1.221 ± 0.107 1.590 ± 0.402 0.956 ± 0.118 1.111 ± 0.144 1.191 ± 0.088
MNIST𝑍𝐶 1.163 ± 0.240 1.269 ± 0.336 1.047 ± 0.033 1.191 ± 0.119 1.088 ± 0.106

KernelIV
MNIST𝑍 0.978 ± 0.034 0.984 ± 0.038 0.968 ± 0.037 0.967 ± 0.034 0.941 ± 0.044
MNIST𝐶 0.979 ± 0.038 0.979 ± 0.038 0.960 ± 0.033 0.972 ± 0.037 0.977 ± 0.034
MNIST𝑍𝐶 0.984 ± 0.034 0.984 ± 0.034 0.944 ± 0.052 0.966 ± 0.036 0.966 ± 0.036

DeepGMM
MNIST𝑍 1.040 ± 0.213 0.586 ± 0.225 0.229 ± 0.333 0.064 ± 0.091 0.124 ± 0.227
MNIST𝑋 1.108 ± 0.255 0.923 ± 0.086 0.122 ± 0.182 0.204 ± 0.309 0.495 ± 0.394
MNIST𝑍𝐶 1.051 ± 0.242 0.471 ± 0.129 0.026 ± 0.019 0.012 ± 0.009 0.014 ± 0.014

counterfactual prediction):

step ∶ 𝑔(𝑋) =
)︀⌉︀⌉︀
⌋︀
⌉︀⌉︀]︀

−1 𝑋 ≥ 0
0 𝑋 < 0

Linear ∶ 𝑔(𝑋) = −𝑋

poly2d ∶ 𝑔(𝑋) = −0.1 ∗𝑋 2
− 0.4 ∗𝑋

poly3d ∶ 𝑔(𝑋) = 0.05 ∗𝑋 3
+ 0.1 ∗𝑋 2

− 0.8 ∗𝑋
abs ∶ 𝑔(𝑋) = ⋃︀𝑋 ⋃︀

(19)

We sample 500 samples for training, validation, and test, respectively. The values of 𝑍 , 𝑋 , and 𝑌 are
standardized to avoid numerical problems. The representation dimensions of 𝑍 and 𝐶 are set to
the same, which is a hyper-parameter (the robustness of it is discussed in the later experiments).
We plot the true and the estimated response function (i.e., 𝑔 and 𝑔) in Figure 2. If the IVs fed in
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Conv 5 × 5𝑠1, 32
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FC 512

FC 64

FC emb_dim

Classification
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Fig. 6. Convolutional networks for MNIST data. The data are sampled on the penultimate fully-connected
(FC) layer.

each method are more valid, the estimated response function would be more closer to the true
response function (blue line). We find that (1) RandIV (orange line) fails badly in each case, while
TrueIV achieves significantly better performance than RandIV, which indicates that IV information
is necessary for removing confounding effect; (2) AutoIV (red line) achieves comparable or even
better performance than TrueIV. It is may because AutoIV employs mutual information constraints
as well as the representation calibration to further improve the IV representations validity, i.e.,
enhancing the relevance of the generated IV representations to the treatment and the exclusion to
the outcome.

To further improve the difficulty of the task, we then provide a more challenging data generating
process by introducing confounders 𝐶:

𝑌 = 𝑔(𝑋) +𝐶1...6 + 𝑒 + 𝜎, 𝑋 = 𝑍1...2 +𝐶1...6 + 𝑒 +𝛾

𝑍 ∼ Unif((︀−0.5, 0.5⌋︀2), 𝐶 ∼ Unif((︀−0.5, 0.5⌋︀6)
𝑒 ∼ 𝒩 (0, 1), 𝛾, 𝜎 ∼ 𝒩 (0, 0.1), 𝑉 = (︀𝑍 ;𝐶1∶4;𝛾 ;𝜎⌋︀

(20)

where 𝐶1...6 denotes 𝐶1 +𝐶2 + ... +𝐶6, 𝑍1...2 denotes 𝑍1 +𝑍2. 𝐶1∶4 is used as a part of IV candidates
for IV representation learning, while 𝐶5∶6 is directly employed for the downstream counterfactual
prediction methods. We report Mean Square Error (MSE) and standard error (Std) of the predicted
counterfactual outcome over 20 runs in Table 1. Similarly, we first find that RandIV performs poorly
than TrueIV, indicating that valid IVs are important for removing confounding effect and accurate
counterfactual prediction. Besides, the UAS, WAS, and AutoIV methods under w/ 𝑍 setting achieve
significantly better performance than w/o 𝑍 setting, which is probably because the validity of the
IV candidates allows IV synthesis methods to generate more valid IV representations. It is worth
noting that most of the results under w/o Z setting with AutoIV method show better counterfactual
prediction performance even compared with other methods under w/ Z setting. It suggests that
AutoIV generates valid IV representations even there is no IV candidate is valid, and we attribute
the success to the powerful ability of AutoIV in information control that makes the learned IV
representations effectively satisfy the relevance and the exclusion conditions of the valid IVs for
accurate counterfactual prediction.
Since representation dimension is a hyperparameter of the AutoIV algorithm, we design ex-

periments by changing the representation dimension as 1, 2, 4, 8 (the true response function 𝑔 is
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Table 4. Results of high-dimensional scenarios on MNIST data with different data composition.

𝑑𝑍 : 5, 𝑑𝐹 : 10, 𝑑𝐴: 4, 𝑑𝑈 : 1
Methods Scenarios RandIV TrueIV AutoIV

DirectNN
MNIST𝑍 1.0314 ± 0.0584 - -
MNIST𝐶 1.3136 ± 0.1213 - -
MNIST𝑍𝐶 1.5746 ± 0.1054 - -

2SLS(van)
MNIST𝑍 1.8015 ± 0.4056 0.9827 ± 0.0403 0.9897 ± 0.0469
MNIST𝐶 1.6923 ± 0.3306 0.9880 ± 0.0417 1.0100 ± 0.0820
MNIST𝑍𝐶 1.8393 ± 0.3410 1.4693 ± 0.1897 1.0064 ± 0.0296

2SLS(poly)
MNIST𝑍 0.9996 ± 0.0573 0.9783 ± 0.0378 0.4085 ± 0.1414
MNIST𝐶 0.9757 ± 0.0446 0.9666 ± 0.0397 0.4965 ± 0.1397
MNIST𝑍𝐶 0.9815 ± 0.0325 0.9816 ± 0.0324 0.8666 ± 0.1465

2SLS(NN)
MNIST𝑍 1.1456 ± 0.1052 0.7765 ± 0.0358 0.2601 ± 0.0273
MNIST𝐶 1.3150 ± 0.1590 0.8302 ± 0.0693 0.3698 ± 0.0473
MNIST𝑍𝐶 1.2535 ± 0.0574 1.1636 ± 0.0886 0.7349 ± 0.2369

DeepIV
MNIST𝑍 1.0356 ± 0.1509 1.2036 ± 0.2065 0.8174 ± 0.1286
MNIST𝐶 1.1665 ± 0.2003 1.0873 ± 0.1486 1.1090 ± 0.1750
MNIST𝑍𝐶 1.5355 ± 0.2431 1.2730 ± 0.2021 1.0168 ± 0.0727

KernelIV
MNIST𝑍 0.9791 ± 0.0392 0.9827 ± 0.0374 0.9583 ± 0.0477
MNIST𝐶 0.9671 ± 0.0370 0.9671 ± 0.0370 0.9604 ± 0.0408
MNIST𝑍𝐶 0.9826 ± 0.0339 0.9826 ± 0.0339 0.9673 ± 0.0351

DeepGMM
MNIST𝑍 0.9679 ± 0.1546 0.5502 ± 0.2183 0.3052 ± 0.3722
MNIST𝐶 1.1639 ± 0.2048 0.9097 ± 0.0944 0.1827 ± 0.2632
MNIST𝑍𝐶 1.0206 ± 0.1458 0.4286 ± 0.0566 0.0074 ± 0.0058

𝑑𝑍 : 10, 𝑑𝐹 : 5, 𝑑𝐴: 4, 𝑑𝑈 : 1
Methods Scenarios RandIV TrueIV AutoIV

DirectNN
MNIST𝑍 1.3030 ± 0.0706 - -
MNIST𝐶 1.2205 ± 0.0799 - -
MNIST𝑍𝐶 1.8299 ± 0.1313 - -

2SLS(van)
MNIST𝑍 2.0021 ± 0.1951 0.9894 ± 0.0282 1.0096 ± 0.0515
MNIST𝐶 1.7111 ± 0.1561 0.9826 ± 0.0474 1.0242 ± 0.0331
MNIST𝑍𝐶 1.9091 ± 0.2820 0.9990 ± 0.0394 0.9981 ± 0.0543

2SLS(poly)
MNIST𝑍 2.5048 ± 2.3093 0.9878 ± 0.0298 0.6709 ± 0.2765
MNIST𝐶 2.0190 ± 1.5183 0.9761 ± 0.0440 0.3794 ± 0.0876
MNIST𝑍𝐶 1.6373 ± 0.6966 0.9692 ± 0.0310 0.8461 ± 0.1283

2SLS(NN)
MNIST𝑍 1.3283 ± 0.1149 0.8832 ± 0.0789 0.4526 ± 0.1766
MNIST𝐶 1.1980 ± 0.0629 0.9304 ± 0.0505 0.3484 ± 0.0229
MNIST𝑍𝐶 1.3864 ± 0.0744 1.0940 ± 0.0645 0.6992 ± 0.1224

DeepIV
MNIST𝑍 1.1037 ± 0.1253 1.1432 ± 0.1797 0.9850 ± 0.1336
MNIST𝐶 1.2980 ± 0.0987 1.1619 ± 0.2628 1.0055 ± 0.1111
MNIST𝑍𝐶 1.1620 ± 0.2386 1.5090 ± 0.4130 0.9963 ± 0.0733

KernelIV
MNIST𝑍 0.9815 ± 0.0219 0.9839 ± 0.0276 0.9404 ± 0.0547
MNIST𝐶 0.9771 ± 0.0427 0.9771 ± 0.0427 0.9613 ± 0.0379
MNIST𝑍𝐶 0.9769 ± 0.0326 0.9769 ± 0.0326 0.9523 ± 0.0335

DeepGMM
MNIST𝑍 1.0743 ± 0.1008 0.7820 ± 0.2455 0.0367 ± 0.0535
MNIST𝐶 1.0260 ± 0.1733 0.9021 ± 0.1084 0.2259 ± 0.2791
MNIST𝑍𝐶 1.1627 ± 0.2468 0.4830 ± 0.1252 0.0107 ± 0.0082

𝑑𝑍 : 10, 𝑑𝐹 : 10, 𝑑𝐴: 4, 𝑑𝑈 : 1
Methods Scenarios RandIV TrueIV AutoIV

DirectNN
MNIST𝑍 1.3170 ± 0.0568 - -
MNIST𝐶 1.3577 ± 0.0742 - -
MNIST𝑍𝐶 1.6820 ± 0.1113 - -

2SLS(van)
MNIST𝑍 1.6878 ± 0.2286 0.9861 ± 0.0297 1.0464 ± 0.0552
MNIST𝐶 1.6570 ± 0.1699 1.0223 ± 0.0460 1.0312 ± 0.0527
MNIST𝑍𝐶 2.0527 ± 0.3070 1.7801 ± 0.2825 1.0192 ± 0.0399

2SLS(poly)
MNIST𝑍 1.7924 ± 1.4106 0.9771 ± 0.0315 0.6043 ± 0.3041
MNIST𝐶 1.4912 ± 1.3071 0.9824 ± 0.0414 0.5331 ± 0.2065
MNIST𝑍𝐶 1.3272 ± 0.5701 1.0008 ± 0.0267 0.9277 ± 0.0652

2SLS(NN)
MNIST𝑍 1.3819 ± 0.1103 1.0454 ± 0.0675 0.3687 ± 0.0656
MNIST𝐶 1.3521 ± 0.0727 1.0743 ± 0.0768 0.3740 ± 0.0722
MNIST𝑍𝐶 1.5010 ± 0.0678 1.4271 ± 0.0759 0.8810 ± 0.1422

DeepIV
MNIST𝑍 1.1016 ± 0.0912 1.0304 ± 0.0535 0.8910 ± 0.0529
MNIST𝐶 1.2205 ± 0.1069 1.5897 ± 0.4022 1.1111 ± 0.1439
MNIST𝑍𝐶 1.2625 ± 0.2401 1.2693 ± 0.3363 1.1914 ± 0.1190

KernelIV
MNIST𝑍 0.9777 ± 0.0336 0.9838 ± 0.0383 0.9668 ± 0.0341
MNIST𝐶 0.9793 ± 0.0377 0.9793 ± 0.0377 0.9724 ± 0.0368
MNIST𝑍𝐶 0.9842 ± 0.0339 0.9842 ± 0.0339 0.9658 ± 0.0358

DeepGMM
MNIST𝑍 1.0401 ± 0.2125 0.5864 ± 0.2247 0.0640 ± 0.0906
MNIST𝐶 1.1075 ± 0.2546 0.9226 ± 0.0857 0.2038 ± 0.3093
MNIST𝑍𝐶 1.0513 ± 0.2420 0.4711 ± 0.1292 0.0123 ± 0.0094

set to abs) and the results are shown in Figure 3. We find that 2SLS (poly) and 2SLS (NN) is not
robust enough to the changes of representation dimensions, which is may because their models
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are relatively simple. We also see that DeepIV and KernelIV in both w/ 𝑍 and w/o 𝑍 settings are
robust to the representation dimensions. While we note that DeepGMM method performs better in
larger representation dimension setting, which is may because DeepGMM relies more heavily on
parameter size, and higher dimensions bring more parameters in the fully-connected layer of the
neural networks for DeepGMM.

AutoIV is a data-driven decomposed representation learning method, hence we implement exper-
iments with different training data size settings (𝑔 is set to abs) as shown in Figure 4. It illustrates
that AutoIV achieves great performance in different training data size settings. Moreover, larger
data size will increase the decomposed representation learning performance and counterfactual
prediction accuracy. However, it is not evident that the performance of other baseline methods is
related to the training data size.
We then give sensitivity analysis of the hyperparameters, i.e. 𝛼 and 𝜂 in our algorithm. We

show the performance of each method in the search space of each hyperparameter in Figure 5.
It illustrates that in general the performance of our AutoIV algorithm is robust to 𝛼 and 𝜂 with
different downstream IV-based methods in counterfactual prediction.

To show the effectiveness of each part of the AutoIV algorithm, we conduct ablation studies by
removing each component, including representation learning of 𝑍 (ℒ𝑀𝐼

𝑍𝑋 + ℒ
𝑀𝐼
𝑍𝑌 ), representation

learning of 𝐶 (ℒ𝑀𝐼
𝐶𝑋 +ℒ

𝑀𝐼
𝐶𝑌 ), decomposed regularization (ℒ𝑀𝐼

𝐶𝑍 ), and counterfactual prediction (ℒ𝑋 +
ℒ𝑌 ). We implement the experiments (𝑔 is set to abs) on DeepIV, KernelIV, and DeepGMM, and
the results are reported in Table 2. It shows that the necessity of each component in our AutoIV
algorithm. Moreover, the two-stage procedure is shown important for further representation
calibration. It is becausemutual information constraints only control the information flow, but do not
effectively enable them to be effective IV representations. While the general two-stage calibration
process utilizes the gathered information to further synthesize powerful IV representations.

5.2 High-dimensional Scenarios
Following [3], we then implement experiments in high-dimensional scenarios with hand-written
digit datasets MNIST [30]. To further testify the representation learning ability of AutoIV, we
consider more complicated data composition that observed variables 𝑉 contain: (1) IVs 𝑍 , (2)
confounders 𝐹 (i.e., variables that are related to 𝑋 and 𝑌 ), (3) adjustments 𝐴 (i.e., variables that are
only related to 𝑌 ), (4) and unconcerned variables 𝑈 (i.e., variables that are independent of both the
treatment 𝑋 and outcome 𝑌 ). The data generating process is given as:

𝑌 = 𝑔(𝑋) + E(︀𝐹 ⌋︀ + E(︀𝐴⌋︀ + 𝑒, 𝑋 = E(︀𝑍⌋︀ + E(︀𝐹 ⌋︀ + 𝑒

𝑍 ∼ 𝒩 (0, 1)𝑑𝑍 , 𝐹 ∼ 𝒩 (0, 1)𝑑𝐹 , 𝐴 ∼ 𝒩 (0, 1)𝑑𝐴

𝑈 ∼ 𝒩 (0, 1)𝑑𝑈 , 𝐶 = (︀𝐹,𝐴,𝑈 ⌋︀, 𝑉 = (︀𝑍 ;𝐶⌋︀, 𝑒 ∼ 𝒩 (0, 1),

(21)

where 𝑑𝑍 , 𝑑𝐹 , 𝑑𝐴, 𝑑𝑈 are the dimensions of 𝑍 , 𝐹 , 𝐴,𝑈 respectively. Since UAS and WAS are only
valid in the linear setting and are not competent to handle high-dimensional non-linear data, hence
we compare RandIV, TrueIV, and AutoIV in the experiments of high-dimensional scenarios. Sine
the non-linearity and high-dimension of data increase the difficulty of the task, we only consider w/
Z setting in these experiments. The response function 𝑔 is set to be abs. We then give the following
experimental settings:

MNISTZ ∶ 𝑍
Conv
←Ð MNSITrand

MNISTC ∶ 𝐶
Conv
←Ð MNSITrand

MNISTZC ∶ 𝑍
Conv
←Ð MNSITrand,𝐶

Conv
←Ð MNSITrand

(22)
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where MNSITrand denotes randomly sampling from MNIST datasets. We adopt convolutional
architecture (see Figure 6) to handle original MNIST images by following [3, 18], 𝑍 and 𝐶 are
sampled on the penultimate fully-connected (FC) layer with given dimensions.

We sample 1000 data points for training, validation, and test, respectively. We set 10, 10, 4, and 1
for 𝑑𝑍 , 𝑑𝐹 , 𝑑𝐴, and 𝑑𝑈 , respectively, and let representation dimension be 5 (AutoIV-5), 10 (AutoIV-10),
15 (AutoIV-15). The results are reported in Table 3 with MSE and standard error of 20 runs. We
find that the results of each method with AutoIV are significantly better than those with RandIV
and superior to those with TrueIV. From the settings of AutoIV-5, AutoIV-10, and AutoIV-15, we
see that the performance of AutoIV algorithm is robust to the change of representation dimension,
showing its effectiveness in IV representation learning.

We then analyze the performance of AutoIV with different dimensions of data composition and re-
port the results in Table 4. It indicates that AutoIV is competent to generate valid IV representations
in different data composition settings. All the experimental settings again show AutoIV’s powerful
representation learning ability in generating valid IV representation for accurate counterfactual
prediction, which is even better than directly using the true valid IVs.
Overall, these results highlight the great decomposed representation learning ability of our

AutoIV algorithm in automatically generating the representation serving the role of IVs for accurate
IV-based counterfactual prediction.

6 CONCLUSIONS
In this paper, we tackle the problem of decomposing and generating valid IV representations
from the observed variables (i.e. the IV candidates). We relax the assumptions and conditions
used by previous methods in handling this problem. We propose a novel Automatic Instrumental
Variable decomposition (AutoIV) algorithm to decompose and learn valid representations of IVs
automatically from the observed variables. We learn the IV representations by employing mutual
information constraints, making the learned IV representations satisfy the conditions of the valid IVs
in an adversarial game. Extensive empirical results in both low-dimensional and high-dimensional
scenarios show the effectiveness of the AutoIV algorithm in generating IV representations and using
them for IV-based counterfactual prediction with the downstream methods. The proposed AutoIV
algorithm is an important addition to the toolkit of causal inference and IV-based counterfactual
prediction.
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