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Machine learning in the physical layer of communication systems holds the potential to improve performance
and simplify design methodology. Many algorithms have been proposed; however, the model complexity
is often unfeasible for real-time deployment. The real-time processing capability of these systems has not
been proven yet. In this work, we propose a novel, less complex, fully connected neural network to perform
channel estimation and signal detection in an orthogonal frequency division multiplexing (OFDM) system.
The memory requirement, which is often the bottleneck for fully connected neural networks, is reduced by
≈ 27 times by applying known compression techniques in a three-step training process. Extensive experiments
were performed for pruning and quantizing the weights of the neural network detector. Additionally, Huffman
encoding was used on the weights to further reduce memory requirements. Based on this approach, we propose
the first FPGA-based, real-time capable neural network accelerator, specifically designed to accelerate the
OFDM detector workload. The accelerator is synthesized for a Xilinx RFSoC FPGA, uses small-batch processing
to increase throughput, efficiently supports branching neural networks, and implements superscalar Huffman
decoders.

CCS Concepts: • Computer systems organization→ Real-time system architecture; Real-time systems;
• Applied computing → Telecommunications; • Hardware → Digital signal processing; Reconfig-
urable logic applications; Hardware accelerators; • Computing methodologies→ Neural networks.

Additional Key Words and Phrases: neural networks, OFDM, FPGA, physical layer processing, machine
learning acceleration, real-time
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1 INTRODUCTION
One of the main signal processing tasks in the physical layer of any communication system is
channel estimation and signal detection. In recent years much research interest developed to
replace or extend conventional channel estimation and signal detection algorithms with machine
learning-based algorithms. Speculations on the high importance of physical layer machine learning
in future communication networks such as 6G have been made too [31, 53]. The reason for this
high interest is fourfold:
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• Higher performance over complex or unmodeled channels [47]
• Automatic compensation of hardware impairments [38]
• Increased performance due to the removal of functional block boundaries of traditional
algorithms [47][38]
• Ease of design and processing due to well-established machine learning(ML) techniques

Various architectures have been proposed to realize these benefits. O’Shea et al. proposed an
autoencoder-based system, in which the transmitter and the receiver are both implemented via
neural networks. The transmission channel is modeled as a layer of the autoencoder and the
system is optimized in an end-to-end training session [2] [37]. The autoencoder networks have
the advantage of being able to choose the symbol alphabet depending on the channel conditions.
Other approaches assume a conventional communication system on the transmitter side and
focus on signal detection via machine learning in the receiver. The authors in [45] present a deep
learning-based Viterbi detector.
One modulation technique of special interest is Orthogonal Frequency Division Multiplexing

(OFDM), as it is used in many communication systems such as in the downlink of long term
evolution (advanced) (LTE(A)) [43] and in the downlink of fifth generation (5G) [4]. Various
proposals to perform machine learning-based channel estimation and signal detection in an OFDM
system have been made. The authors in [15] present an OFDM-autoencoder capable of inserting
pilots as required. A receiver-only neural network is presented in [49]. The authors present a
comb-type OFDM system with fixed positions of pilots across the frequency axis. The channel
estimation and signal detection is performed in a single neural network for eight sub-carriers
(SC) at once. The proposals in [15] and [49] incorporate a minimal amount of assumptions about
the underlying communication system and the detectors are purely machine learning-based. In
contrast, model-driven proposals incorporate expert knowledge in the receivers and combine it
with machine learning techniques. The authors in [16] extend a classic OFDM receiver containing
a least square channel estimation and a zero-forcing detection algorithm with a neural network to
increase receiver performance.
A survey laying out opportunities and challenges for deep learning in the physical layer can

be found in [47]. For model-driven approaches, [22] provides a comprehensive survey. Yao et al.
describe applications in the 5G Radio Access Technology Layer [48]. Broader surveys on machine
learning in communications, which also include the physical layer, are presented in [52] and [35].
Despite the algorithmic advancements described above, the deployment of neural networks in

actual receiver hardware has been very limited. In [13] an autoencoder is used in an over-the-air
OFDM system. The autoencoder is first trained offline with a mathematical channel model and
then deployed via two software-defined radios (SDRs). In the deployment stage, the SDRs act
as front ends, and the online training and neural network inference is performed on Graphics
Processing Units (GPUs). However, the inference is not performed in real-time and the feasibility
of the hardware setup for actual real-time deployment is not assessed.

We notice a lack of real-time processing of neural-network-based communication systems in the
literature. The term real-time is often used loosely in the literature. According to [29], a real-time
system is defined as one whose logical correctness is based on both the correctness of the outputs
and their timeliness. This implies that (a). the processing latency has to be below this predetermined
time, and (b). the throughput of the processing system has to be aligned with the rate of data input
to avoid the build-up of input data. Real-time processing is challenging as the model complexity
of many proposed neural network receivers is infeasibly high. Also, the throughput and latency
requirements of communication systems are challenging. In the LTE(A) downlink the OFDM SC
spacing is 15 kHz which leads to a symbol duration of ≈ 66.7𝜇𝑠 [43]. With the new numerologies of
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up to 240 kHz SC spacing in 5G, the symbol duration can be as low as ≈ 4.17𝜇𝑠 [4]. It is not strictly
required to process each symbol within one symbol time, however, latency is a major performance
metric of any receiver.

Field Programmable Gate Arrays (FPGAs) are a popular choice for implementing neural network
inference as they provide the computational power required to accelerate the workload. For the
purpose of accelerating the first real-time OFDM neural network detector, an FPGA is ideal as it
also provides flexibility to explore custom accelerator designs at a low cost compared to application
specific integrated circuits (ASICs). Further, FPGAs are extensively used in base stations, which could
be targeted for future deployment of neural network detectors. Many accelerator designs have been
proposed in the literature in recent years. Multiple factors determine the optimal accelerator design,
including the neural network type, the chosen loop unrolling strategy, the on-chip memory and
off-chip memory characteristics, and the available computing resources amongst others. However, a
typical accelerator will have common elements such as on-chip buffers, computational units, control
logic, host interfaces, and memory interfaces. Surveys on previously proposed FPGA accelerators
can be found in [18] [44].

1.1 Contribution
A novel structure of a neural network for OFDM signal detection and channel estimation in the
receiver is proposed. The algorithmic exploration undertaken in this work is based on [49], however,
the new neural network structure significantly reduces the computational complexity and memory
requirement, making real-time processing possible.

To further reduce thememory requirement, we analyze whether themethods of deep compression
can be applied to our neural network [20]. Deep compression seeks to reduce a given neural
network’s memory requirement by applying three techniques: 1) pruning, 2) quantization, and
3) Huffman coding. Pruning eliminates small weight values which do not contribute much to
the network’s output. Quantization means to represent weights with a low number of bits while
maintaining accuracy. Huffman coding compresses a stream of weights by taking the probability of
each word and assigning shorter codes to more likely occurring words.
Based on the algorithmic improvements and the findings on deep compression, we develop a

custom hardware accelerator specifically for the detector workload. The accelerator processes
one or more neural network detectors. It supports small batch processing, superscalar Huffman
decoding and branching neural networks, making it ideal for detector acceleration.

In short, we claim the first real-time neural network based OFDM detector, enabled by:
• A reduced memory OFDM neural network by a.) improved network structure and b.) com-
pression of the network
• A Real-time capable hardware accelerator tailored to the neural-network-based OFDM detec-
tor workload

1.2 Limitations
Our work focuses on a generic OFDM system for channel estimation and decoding. However,
to put the work in perspective, we provide a comparison to the cellular standard of LTE(A) and
5G wherever appropriate. We focus on the real-time processing of the neural network detector
workload rather than on being fully compatible with 3GPP standards and acknowledge the following
main limitations towards LTE(A) compliance:
• The position of reference signals in the two-dimensional resource element lattice in time
and frequency cannot be chosen dynamically as required by the 3GPP standard for LTE [6].
Instead, at every time instance, the decoder assumes the same interleaving of reference- and
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data- symbols in frequency (i.e. comb-type OFDM system). Further, reference symbols are
not chosen according to the 3GPP standard.
• The modulation scheme is fixed to Quadrature Phase Shift Keying (QPSK), as the neural
network is limited to that. It is not clear in the current state of research how to extend the
training and inference process of neural networks in an efficient way to higher modulation
schemes such as Quadrature Amplitude Modulation (QAM)64 or higher.

Despite these limitations, the work presented is important in that it evaluates the possibility of
deploying full neural-network-based receivers in the future.

1.3 Outline
The rest of this paper is organized as follows. Section 2 introduces the OFDM system we study in
this work as well as the used machine learning techniques, focusing on inference in fully connected
neural networks. In Section 3 we present a reduced complexity neural network and expand on
quantization and pruning techniques used. Section 4 lays out accelerator design considerations to
support the detector workload. In Section 5 we present the proposed FPGA accelerator on circuit
level. Results are presented in Section 6 and conclusions are drawn in section 7.

2 BACKGROUND
This section first discusses the orthogonal frequency division multiplexing (OFDM) system used in
this work which is derived from previous work in the literature. A brief background is provided on
neural networks focusing on fully connected (FC) layers as the proposed network consists of only
fully connected layers.

2.1 Orthogonal Frequency Division Multiplexing
Orthogonal Frequency Division Multiplexing (OFDM) is a commonly used multiple access scheme
in the downlink of wireless communication systems such as LTE(A) and 5G [4, 43]. Symbols can
be arranged along the time- and frequency axis, forming a resource grid containing resource
blocks (RBs). Each RB consists of multiple sub-carriers (SC) on which the transmitted information is
modulated upon. To acquire channel state information, known reference symbols (i.e. pilot symbols)
are typically embedded in equidistant intervals in the resource grid. These reference symbols are
used by the receiver to estimate the channel and aid symbol detection. The neural network proposed
in Subsection 3.1 handles these two tasks in a joint fashion. For a more detailed introduction to
OFDM, channel estimation, and signal detection we refer the interested reader to [36].

2.2 Fully Connected Neural Networks
Neurons are the fundamental computational unit in neural networks and the output of a simple
neuron can be written as

𝑜𝑢𝑡 = Φ

(
𝑁∑
𝑖=1
(w𝑖 × in𝑖 ) + 𝑏

)
. (1)

Where w ∈ R𝑁,1 is the weight vector, in ∈ R1,𝑁 is the input vector and 𝑏, 𝑜𝑢𝑡 ∈ R are the
bias value and the neuron’s output respectively. The activation function Φ calculates the neuron’s
output and is often a non-linear function. The non-linearity is important as it allows a neural
network consisting of multiple layers to act as a universal function approximator [12]. Common
activation functions are Rectified Linear Unit (ReLU) and Sigmoid functions [8]. Multiple neurons
can be connected to the same inputs. Such a grouping is often referred to as a layer, which can be
expressed as the following:
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out = Φ(𝑊 × in + b). (2)
In a fully connected network, each layer’s inputs are connected to the previous layer’s outputs

or to the network’s input in the case of the first layer. The last layer’s outputs out𝑀 are the neural
network’s output. We do not go into further detail regarding training processes but refer the
interested reader to [8, 17]. For inference, the calculations are performed as shown in Algorithm
1. As processing and memory resources are limited, the loops cannot be implemented fully in
parallel in hardware. A loop unrolling strategy has to be conceived to determine which parts of the
algorithm are computed in parallel. We present our strategy in Section 5.

Algorithm 1: Inference in a multi-layered, fully connected neural network considering
multiple input samples in a batch
input :Data: multiple x ∈ R𝑁0

input :Weights:𝑊 = {𝑊1 ∈ R𝑁0,𝑁1 ,𝑊2 ∈ R𝑁1,𝑁2 , ...,𝑊𝑀 ∈ R𝑁𝑀−1,𝑁𝑀 }
input :Bias: 𝐵 = {b1 ∈ R𝑁1 , b2 ∈ R𝑁2 , ..., b𝑀 ∈ R𝑁𝑀 }
output :multiple y𝑀 ∈ R𝑁𝑀

𝑌 = {y0 ∈ R𝑁0 , y1 ∈ R𝑁1 , ..., y𝑀 ∈ R𝑁𝑀 };
foreach x do // Batch Loop

y0 ← x ;
for𝑚 ← 1 to𝑀 do // Layer Loop

for 𝑛 ← 1 to 𝑁𝑀 do // Neuron Loop
y𝑚,𝑛 ← 0 ;
for 𝑖 ← 0 to 𝑁𝑀−1 do // Input Loop

y𝑚,𝑛 ← y𝑚,𝑛 + y𝑚−1,𝑖 ×𝑊𝑚,𝑛,𝑖 ;
end
y𝑚,𝑛 ← Φ(y𝑚,𝑛 + 𝐵𝑚,𝑛) ;

end
end

end

3 OFDM SYSTEM AND NEURAL NETWORK DETECTOR
This section introduces the OFDM system used in this work. Then a novel neural network structure
is proposed which significantly reduces the computational complexity. Further, we use a method to
train this new structure efficiently in a three-step process. First, the network is trained with floating-
point weights and activations. Then, after training with pruned weights has approached a sufficient
accuracy, quantization is introduced in the forward pass of the data through the computational
graph. Thirdly, pruning is introduced in the training process. In the forward pass, a mask is applied,
masking out a predefined percentage of the total number of weights, depending on the magnitude
of the weight.

3.1 OFDM System
Conceptually we follow the OFDM system introduced in [49] and the software scaffold for this
OFDM system is taken from [21]. The data stream is converted from serial to parallel and then
Quadrature Phase Shift Keying (QPSK) modulated. Pilot and data symbols are then interleaved for
each symbol-time to form the transmit vector
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6 Stefan Brennsteiner, Tughrul Arslan, John Thompson, and Andrew McCormick

x[𝑝] := PilotValue[𝑛]; 𝑛 ∈ {1, ..., 𝑁𝑝 }, (3)
x[𝑑] := Data[𝑛]; 𝑛 ∈ {1, ..., 𝑁𝑑 }. (4)

Where 𝑁𝑝 is the number of pilot symbols in the PilotValue vector and 𝑝 ∈ 𝑃 := {1, 𝑃𝑠 , 2𝑃𝑠 , 𝑁𝑝𝑃𝑠 }
are the equidistant indices of the pilots spaced by 𝑃𝑠 . The complex pilot symbols can be chosen
randomly from the symbol alphabet, but remain the same for all packages passed to the detector. In
a similar manner data symbols are assigned to transmit vector elements where 𝑑 ∈ {1, ..., 𝑁 }∧𝑑 ∉ 𝑃 .
The total number of elements in x is 𝑁 . Next, the transmit vector is mapped to 15kHz spaced
sub-carriers via the Inverse Discrete Fourier Transformation (IDFT) and a cyclic prefix is added as

xt [𝑘] =
1
√
𝑁

𝑁−1∑
𝑛=0

x[𝑛]𝑒 𝑗
2𝜋𝑛 (𝑘−𝐿𝐶𝑃 )

𝑁 , (5)

where 𝑘 ∈ {0, ..., 𝑁 + 𝐿𝐶𝑃 − 1} and 𝐿𝐶𝑃 is the cyclic prefix duration in samples [32].
The transmit signal xt is convolved with the channel impulse response of the same WINNER II

channel model h as in [49] and noise is added, forming the receive signal:

yr [k] = xt [𝑘] ⊛ h[𝑘] + n[𝑘] (6)
The noise n ∈ C𝑁 is assumed to be Additive White Gaussian Noise(AWGN). On the receiver side

eq. (5) is reversed by removing the cyclic prefix and by performing a Discrete Fourier Transformation
(DFT) to recover the complex frequency domain symbols y ∈ C𝑁 . In order to allow a real-valued
neural network to perform detection and channel estimation, the complex-valued receiver signals
are converted to a real representation by interleaving real and imaginary values:

yreal [2𝑖] := ℜ(y[𝑖]); (7)
yreal [2𝑖 + 1] := ℑ(y[𝑖]); 𝑖 ∈ {1, .., 𝑁 } (8)

Where yreal ∈ R2𝑁 is the real input vector. The neural network then recovers an estimate of the
transmitted symbol

x̂ = 𝑓𝑁𝑁 (yreal). (9)
The target of the neural network thus is to recover the transmit vector x with as few errors as

possible. The structure of the used OFDM system for training and evaluation is depicted in fig. 1.

Fig. 1. Neural Network training and evaluation setup for a single neural network detector. Each detector
processing 64 SC has to be trained independently. Conceptually based on [49].
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3.2 Algorithmic Complexity Reduction
The proposed receiver consists of 𝐷 neural network detectors, each of which processes 𝐵 × 𝑆

SC. Where 𝐵 is the number of branches in one detector and 𝑆 is the number of SC processed per
branch. The neural network structure differs significantly from previous work. An entire neural
network needs to be deployed in [49] for the detection of 8 SC, leading to a high number of neural
network weights. We propose to share the first two layers of the neural network detector and
then branch out in the last two layers for each set of SC, as seen in fig. 2. Our experiments show
similar performance of this architecture and the architecture presented in [49], while complexity is
significantly reduced.
On the other hand, if the first two layers are not shared but reduced in size, such that the sum

overall complexity of the neural network is the same as the proposed branching neural network,
we observe a complete loss of performance. This indicates that the first two layers in the branching
neural network are capable of extracting common features important to the detection in all branches.
Our branching neural network takes advantage of this observation.

We chose the number of SC per branch to be eight (denoted by 𝑆 = 8) and the number of branches
per detector to be eight as well (denoted by 𝐵 = 8), leading to 64 SC to be processed per detector.
Each detector is completely independent of the other detectors, i.e. each detector has its own
reception chain as outlined in fig. 1. This is not ideal as multiple narrow-band reception chains are
required on the system level. Future work will investigate the possibilities to integrate all detectors
within one broad-band reception chain (e.g. IDFT/FFT size of 1024 instead of currently 64). For now,
we focus on the real-time processing of the neural networks. We evaluate our design by choosing 𝐷
to be equal or less than 19, which gives us a maximum total of 1216 SC processed. Not considering
the 16 last SC of the 19th detector, this results in 1200 effective SC and the sum-bandwidth of the
occupied channels is 18.015 MHz including the DC sub-carrier. This means that the 19 detectors
can cover all standard bandwidths as specified in LTE-(A).
The resulting graph for each detector has multiple outputs and for each of the 𝐵 branches a

mean square error loss value is calculated as

𝐿𝑏 =
1
2𝑆

2𝑆∑
𝑛=1
(x̂b (𝑛) − x[𝑏 × 2𝑆 + 𝑛])2, (10)

x̂b (𝑛) = x̂[𝑏 × 2𝑆 + 𝑛], (11)
for 𝑏 ∈ {1, ..., 𝐵}, and where x̂ is the estimated symbol value (i.e. the neural network output). The

by the transmitter sent symbol value is x (i.e. the training label). The loss functions are summed to
calculate the total loss as used in the optimization algorithm as

𝐿𝑡𝑜𝑡𝑎𝑙 =

𝐵∑
𝑏=1

𝐿𝑏 . (12)

In our experiments, we train only one detector for 64 SC for simplicity, however, the proposed
hardware accelerator is capable of accelerating multiple detectors with different trained weights
and activations. Results on performance and memory reduction are presented in Subsection 6.1.

3.3 Quantization
Changing the floating-point model parameters to fixed point data types is often referred to as
model quantization. We use the abbreviation BW to mean the bit-width for weights and BA to mean
the bit-width of activations. Two approaches for quantization are common. Firstly, post-training
quantization takes the parameters after training and applies quantization to it. This often affects the
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Fig. 2. Neural network receiver structure consisting of 𝐷 detectors, each consisting of a branching neural
network. On the right the computational graph of one neuron is highlighted.

performance of the network, especially when quantizing to low bit-widths. Secondly, quantization
aware training applies quantization during the training process. Our training approach is based on
[26] where each parameter is still saved as a floating-point number during training. In the forward-
pass, a quantized version of the parameters is used to calculate the loss. In the back-propagation
step, the floating-point parameters are updated. The floating-point representation of the parameters
is required to allow small updates during training. Quantization results are presented in Subsection
6.1

3.4 Pruning
Pruning seeks to reduce the number of total weights in a neural network by considering only
weights with large magnitudes, as weights with small magnitudes don’t contribute much to the
output value of a neuron. In our setup, we use the pruning framework provided by google-research
[1]. During the building of the computational graph additional masking nodes are added, which
mask out selected weights in the forward-pass during training. The pruning framework accepts
a target sparsity parameter which sets a percentage of weights to be masked. In other words,
the pruning is not dependent on an absolute threshold value, but rather removes the specified
percentage of weights with the lowest magnitudes. The masking can be delayed by an arbitrary
number of global training steps. This is useful as first a high accuracy neural network can be
trained before gradually increasing the sparsity until the target sparsity is reached. Using a gradual
increase of sparsity makes converging to a good solution more likely. Pruning results are presented
in Subsection 6.1.
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A real-time deep learning OFDM receiver 9

4 ACCELERATOR DESIGN CONSIDERATIONS
A well-established model to classify neural network accelerators is the roofline model [51]. It
allows classifying the limiting factor in the performance of a design as either memory limited or
computationally limited. The proposed neural network exclusivity consists of fully connected layers
and the number of weights is large. This leads to a memory limited design. Many considerations in
the presented architecture take the memory limitation into account and are measures to mitigate
the effect of a memory limited accelerator. The presented architecture is specifically tuned to the
task of accelerating the above-introduced OFDM detector neural network, which is also the reason
for designing a neural network accelerator instead of relying on a typical abstraction framework
(e.g. [24]). The accelerator distinguishes itself by the following main features:

(1) Each weight memory interface transfers multiple Huffman encoded data-streams in parallel
from memory. The bit-width of the memory interface is shared among multiple weight-
streams and decoupled via First-In, First-Out storage structures (FIFOs), such that each
Huffman decoder can work on a small number of bits, reducing the performance require-
ment per Huffman decoder. Details on the memory interface and the Huffman decoders are
described in Subsection 4.1.

(2) To make the most efficient use of any memory-transferred weights, each weight is used
multiple times on different OFDM symbols. First, multiple OFDM symbols are collected,
before they are processed in small batches. Batch processing is a known technique to increase
performance in certain inference accelerators [41, 50]. We see the application in communica-
tion systems as a good target for batch processing, as it allows a trade-off between latency
and throughput with a given memory performance. Details are described in Subsection 4.2

(3) The computational graph of the proposed OFDM-detector branches after the second fully
connected layer. Switching between two intermediate result buffers in the accelerator allows
efficient storing of intermediate results while processing the remaining layers. Section 5.1
expands on this.

The above considerations lead to the following loop-unrolling strategy. The batch level loop in
Algorithm 1 is unrolled to the extent that buffering and batch processing of symbols is required. We
call this unrolling factor 𝑃𝐴𝑅_𝑆 . As the second unrolled dimension we chose the neuron loop, such
that multiple neuron outputs can be calculated in parallel. This is advantageous as the available
memory bandwidth can be easily split up into multiple parallel weight streams and as a single
DSP block in the FPGA can be used as a Multiply and ACcumulate (MAC) unit. This parameter
is named 𝑃𝐴𝑅_𝑁 . As the final unrolled dimension we chose the innermost loop of input weights.
This is to reduce the number of required input FIFOs and Huffman decoders, as one chain of FIFOs
and Huffman Decoders can provide up to two weights per clock cycle. This unrolling parameter is
named 𝑃𝐴𝑅_𝐼 .
To showcase the proposed real-time neural network detector architecture we chose a cutting

edge FPGA-platform, namely Alpha Data’s RFSoC ADM-XRC-9R1 [33]. The platform provides
the Xilinx Zynq Ultrascale+ XCZU27DR-2 FPGA and two 8Gb DDR4-2400 SDRAM memory chips
connected to the FPGA fabric [23]. Each memory is capable of providing a theoretical throughput
of 64 bits of data at a rate of 300MHz. On top of that, the FPGA provides 22.5 Mbit of on-chip Ultra
Ram which we utilize as weight memory for some detectors. BRAM resources are used for various
buffers as well as for the storage of bias values.

As will be seen in Subsection 6.1, a quantization of 6 bits for the weights and 16 bits for the activa-
tions provides a good performance/compression trade-off. Some of the below design considerations
assume this quantization, but may also apply to other quantization schemes.
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4.1 Memory Interface and Huffman Decoding
As on-chip memory of even large FPGAs is not sufficient to hold all weights for all detectors,
off-chip memory access is required. The off-chip memory access is the processing bottleneck in
most designs and the memory interface has to be at the center of all design considerations. In the
chosen example platform, two state-of-the-art memory chips are available and the design has to
match the maximum memory performance of 64 bits of data at a rate of 300MHz per memory chip
as close as possible. Utilizing more parallel memory chips or other memory technology, such as
HBM or GDDR5, higher performance could be achieved, but would not show the feasibility of a
neural network based detector on a standard, off-the-shelf platform.

The physical interface to the DDR4 memory is handled by a Xilinx UltraScale Architecture-Based
FPGAs Memory IP [25]. It consists of a physical layer, interfacing the DDR4 memory, a memory
controller, and a user interface block. The user interface provides a standard AXI4 slave interface
as shown in fig. 3a. The AXI interface allows a maximum of 256 words to be transferred per burst
before another addressing phase has to be performed. This limits the effective throughput. The
measured throughput is 256 words per 278 clock cycles or 0.92 words per clock cycle.
The weights are ordered in memory as shown in fig 3b. The memory bandwidth of 64 bits is

divided into eight 8-bit streams. All weight streams are independent of each other. Each detector’s
weights are serialized into the memory with a linearly increasing address.

(a) Off-chip weight access architecture (b) DDR4 memory layout for continuous
address access

Fig. 3. Memory layout and access structure for accessing off-chip weights.

Huffman Decoding is a lossless coding scheme that takes the probability of encoded source
symbols into account [46]. The more common a source symbol is, the shorter the assigned codes are.
This is a good strategy as the typical weight distribution in our detector network follows a normal
distribution. Most neural network accelerators for FPGAs do not consider weight compression
via Huffman decoders. Han et al. propose an accelerator for deep compression according to [20],
however, in the accelerator design Huffman decoding is not considered [19]. There is a research
interest in using Huffman decoding for resource-limited devices [39]. More advanced compression
methods such as the Deflate-algorithm use Huffman coding as part of the algorithm and high-speed
hardware implementations have been proposed [7, 30]. However, we are not aware of hardware
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implementations of these compression algorithms specifically for neural network accelerators. Our
work implements Huffman coding as we follow the deep compression approach from [20].

The eight bit-wide memory streams are chosen to simplify the Huffman decoder. If the bit-width
of the input of the Huffman decoder is much larger than the average length of the codeword and a
new input can be provided every clock cycle, then the Huffman decoder has to decode multiple
codewords per clock cycle to match the throughput of the input. Since the Huffman decoder is a
variable-length code, this would result in high circuit complexity. On the other hand, if the memory
word is divided into too many independent streams, many independent Huffman decoders are
needed. Each of which needs input and output FIFOs for compensating throughput fluctuations.
As a result, the design would require a large number of FPGA resources. To strike this balance
we chose eight Huffman decoders per 64-bit interface. The encoded data is organized as shown
in fig.3b and each of the eight streams is encoded/decoded independently. The architecture of the
proposed Huffman decoder is similar to the parallel decoder of [9], with the difference that up to
two source symbols can be recovered per clock cycle. For simplicity of the hardware, we chose to
concatenate all layers per detector, and then Huffman code the resulting streams. This reduces the
efficiency of the Huffman coding slightly as the per-decoder weight variance is larger than each
single per-layer weight variance. In our trained and quantized network with the above-reported
performance, we achieve a compression rate of 0.780 while the average per-layer compression rate
lays at 0.746. For 6 bit quantization, this leads to an average length of 4.68 bits per weight.
It is important to match the Huffman decoder’s throughput with the memory-, and MAC-

throughput to not create throughput bottlenecks. Since each Huffman decoder is provided with 8
bits at ≈ 92% of all clock cycles and an average of 4.68 bits are required to encode one weight, the
throughput of the Huffman decoder would be too low if it only decoded one weight per clock cycle.
The proposed architecture can recover up to two source symbols per clock cycle and is detailed in
fig. 4a. Each decoder has an input and output FIFO to decouple datarate fluctuations. A counter
keeps track of the valid symbols in the buffer register. If the counter is too low, then eight new bits
are written to the buffer register after the last valid data in the register. Two look-up-based decoders
are available, both work fully in parallel, and can decode up to one codeword per clock cycle each.
The second decoder is connected to 4 bits below the MSB of the buffer register. It speculates that
the first decoder decodes a 4-bit codeword and only validates its results once this is confirmed. The
probability of decoding a 4-bit codeword of any Huffman codebook is

𝑃𝐷𝑒𝑐4𝑏𝑖𝑡𝑚𝑎𝑡𝑐ℎ =

∑
𝑃𝑎𝑙𝑙4𝑏𝑖𝑡𝑐𝑜𝑑𝑒𝑠∑
𝑃𝑎𝑙𝑙𝑐𝑜𝑑𝑒𝑠

. (13)

With the fully trained weights of one of our detectors 𝑃𝐷𝑒𝑐4𝑏𝑖𝑡𝑚𝑎𝑡𝑐ℎ = 0.52. The total average
throughput thus is

𝐻𝑡ℎ𝑟 = (𝑃𝐷𝑒𝑐1𝑀𝑎𝑡𝑐ℎ + 𝑃𝐷𝑒𝑐4𝑏𝑖𝑡𝑚𝑎𝑡𝑐ℎ) ×𝐴𝑣𝑔𝐶𝑜𝑑𝑒𝑙𝑒𝑛
= (1 + 0.5) × 4.68 = 7.02 [𝑏𝑖𝑡𝑠/𝑐𝑙𝑜𝑐𝑘𝑐𝑦𝑐𝑙𝑒] . (14)

The goal of the Huffman decoder is to match its throughput𝐻𝑡ℎ𝑟 as closely as possible to the mem-
ory interface’s throughput. Thememory interface throughput is 8 𝑏𝑖𝑡×0.92 = 7.36 [𝑏𝑖𝑡𝑠/𝑐𝑙𝑜𝑐𝑘𝑐𝑦𝑐𝑙𝑒].
This is slightly larger than the Huffman decoder’s throughput but is a close enough match for good
pipeline performance.

4.2 Small Batch Processing
As the design is memory-bound for off-chip weight access, the throughput of processed OFDM
symbols can be increased by using any read weight on multiple OFDM symbols at once. This is
termed batch processing and is used in certain accelerator designs for model inference [40, 50]. This
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work adds another application to the list where batch processing can be useful. The drawback of
batch processing is of course higher detection latency. The work by Posewsky and Ziener proposes
a hardware implementation of a batch parallel FPGA accelerator [41]. The accelerator in this work
is most noticeable different in that it uses not only batch parallelism, but also other parallelisms as
laid out in the above loop unrolling strategy. Also, the Huffman coding, reordering of input symbols
and multiple buffers for branching is demanded by the communication workload and distinguishes
the proposed accelerator from [41]. The work in [50] focuses on batch processing in CNNs.
The batch processing starts at the symbol-input-buffer which temporarily stores incoming

symbols to be processed later in parallel as shown in fig. 4b. The input buffer accepts two input
16-bit words simultaneously and 128 input words are written per detector and per OFDM symbol
consecutively. For the DRAM accelerator, the input buffer is larger, as it can hold up to nine OFDM
symbols for up to eight different detectors in memory. As the URAM accelerators are working on
one neural network only, a much smaller input buffer is required, which can hold up to 2 symbols.
All input buffers address the BRAM storage in such a way that previously stored OFDM symbols
can be processed by the accelerator in parallel per detector. Writing and reading to the input buffer
are independent, such that while data of one detector is read for processing, the data of another
detector is written to the buffer to be processed next. As the Huffman decoder provides up to two
weight values per clock cycle, the input buffer provides two input values per symbol too. The loop
unrolling strategy also implies that the inputs have to be streamed to the processing unit multiple
times, which is controlled by an input to the buffer.

(a) Huffman Decoder architecture. (b) Input Buffer optimized for small size batch pro-
cessing.

Fig. 4. Huffman Decoder and Input Buffer Architecture.

4.3 Intermediate result buffer with branching support
The proposed accelerator processes each layer consecutively, i.e. no layer-level parallelism is
supported. This is a common strategy but requires the buffering of one layer’s results such that
they can be used in the next layer. In our application, the layer results are small enough to be stored
in an on-chip BRAM buffer - the so-called intermediate result buffer. It consists of two BRAM
blocks that can support the size of up to 1024 Neurons for up to 𝑃𝐴𝑅_𝑆 parallel symbols. The
Accelerator controller chooses which buffers to use in accordance with Table 1. The two buffers
support branching in the computational graph of the neural network model without performance
degradation. The result of the last common layer, layer 2 in this case, is stored in Buffer 2. Buffer 2
is not overwritten until a new detector is calculated. The result in Buffer 2 is used in all calculations
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Fig. 5. Proposed Neural Network Accelerator with Batch processing support, Huffman decoders and multiple
intermediate result buffers for branching support

of layer 3. If branching was not supported by the intermediate result buffer, costly off-chip memory
writes would degrade the detector performance, as each layer would overwrite the layer 2 results.

Table 1. Buffer usage for the branching computa-
tional graph

Layer 1 2 3.1 4.1 .. 3.8 4.8
Source Buffer Input B1 B2 B1 .. B2 B1
Target Buffer B1 B2 B1 Out .. B1 Out

5 REAL-TIME ACCELERATOR DESIGN
By taking the above design considerations into account, we propose a novel neural network
accelerator specifically for the workload in communications. The accelerator has two versions.
One version holds the weight data in off-chip DDR4 memory banks. This version is ultimately
limited by the memory throughput. The second version holds the weights in on-chip Ultra RAM
(URAM) buffers. The available memory bandwidth from URAM to DSP blocks is large (up to 72
bits per clock cycle per URAM). The design is ultimately limited by the number of parallel URAM
blocks per detector. Apart from the weight-access, the biggest difference between the versions
of the accelerator is the setting of 𝑃𝐴𝑅_𝑁 and 𝑃𝐴𝑅_𝑆 . The proposed accelerator architecture is
depicted in fig. 5.
As will be seen in Subsection 6.1, pruning does not provide a major performance benefit as for

a reasonable pruning rate the detector performance is degraded heavily. For this reason, and in
order not to increase the hardware complexity further, pruning is not considered in the accelerator
design.

5.1 Architecture for off-chip weights
In the DRAM accelerator 𝑃𝐴𝑅_𝑁 = 8 and 𝑃𝐴𝑅_𝑆 = 9. The input buffer provides access to collected
symbols for the multiply and accumulate (MAC)-unit. With 𝑃𝐴𝑅_𝑆 = 9, 18 input-values of 9
different symbols are provided to the MAC unit per clock cycle. Similarly, the Huffman lookup
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tables provide 16 weights of 8 weight streams per clock cycle. As the weights are reused on each
symbol it results in 288 MAC calculations per clock cycle. Once the calculations for one set of
output neurons are completed in the MAC unit, the 288 results are transferred to the writeback
buffer in one clock cycle.
The Huffman decoder provides weight indices from 0 to 63 to the accelerator for the 6-bit

quantization, which strikes a good trade-off between accuracy and quantization as shown in
Section 6. These indices are used to lookup an 18-bit fixed point weight value. Per Huffman decoder,
one dual-port index translation ROM is instantiated which can provide separate lookup values for
each layer of the accelerator. As each layer is quantized separately during the training phase, it is
important for performance to also follow this quantization strategy in hardware.

Once the MAC results have been written in the writeback buffer, the 128 values of the two buffers
are added one per clock cycle to form 8 neuron values for 9 symbols. The writeback of data through
the activation unit and into the intermediate result buffer can be executed in series as the layers
of the neural network are large enough to not require the last output data of the previous layer
immediately. On the pass through the activation unit, a bias value is added to each result. This bias
value is stored in a dual-port ROM as an 18-bit fixed point value. For each layer and each detector,
different bias values are stored. All our layers use the RELU activation function, except the output
layers. The RELU function is easy to implement in hardware. The Sigmoid activation function of the
output layer is not implemented in the accelerator, as its main function is to produce a predictive
value between zero and one. It can be implemented in successive hardware or as software function
as the timing of it is not critical.

5.2 Architecture for on-chip weights
The URAM detector architecture is similar to the DRAM one in that it uses the same Huffman
decoders, the same principle of intermediate result andwriteback buffering, and the same activations
unit. Apart from using on-chip URAM weight storage, one of the main differences is that 𝑃𝐴𝑅_𝑁 =

18 and 𝑃𝐴𝑅_𝑆 = 2. Because of the size limitation in the URAM, each accelerator only accelerates
one detector network. As the processing latency is low, 𝑃𝐴𝑅_𝑆 = 2 is sufficient to process the
detector network in real-time. For best usage of the URAM resources, we chose the URAM memory
data-with as 144 bits, utilizing two parallel URAM blocks. The 144 bits translate into 18 Huffman
decoder modules, each receiving 8 bits of the data. 𝑃𝐴𝑅_𝑁 = 18 follows, and a total of 36 MAC
units are utilized. The writeback, activation, and intermediate result buffer are similar to the DRAM
version of the accelerator except for adaptations to the differing parameters 𝑃𝐴𝑅_𝑁 and 𝑃𝐴𝑅_𝑆 .

6 RESULTS AND PERFORMANCE
This section reports the results of the previous design steps from detection performance in terms
of Bit Error Ratio (BER) to real-time capability and accelerator circuit metrics. Table 2 summarizes
the key parameters used to generate the presented results.

6.1 Detection Performance
The training is performed across the range of SNR values from 5dB to 25dB. In our experiments, we
did not notice any significant performance improvement when training separately for each SNR
value. For this reason, SNR values are picked randomly from the discrete set of SNR values in the
training range, such that the receiver is trained for all SNR values in the range simultaneously. In
fig. 6a the comparison with [49] shows that in our training, the performance of the same neural
network structure leads to a 2 dB SNR loss at a BER of 10−2. The source of this discrepancy is not
clear to us. It might have to do with extensive training times, as in [49] 20000 epochs are trained,
whereas in our work a maximum of 2000 epochs are trained for practical reasons. Although our
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Table 2. Key Setup Parameters

Channel Model WINNER II channel model as in [49]
SNR Range 5-25 dB
Pilot- to Data- Symbol Ratio 1/8
Number of training channel realizations 3 Million
Number of testing channel realizations 1 Million
Modulation Type QPSK
Cyclic Prefix length 16 Samples
Number of OFDM SC per Detector 64
Number of Layers 4
Number of Neurons 566,400
FPGA Type Xilinx xczu27dr-ffve1156-2-i
Total Memory Throughput 37.2 GB/s
Clock Frequency 300 MHz

training efforts could not reach the performance of [49], it still outperforms traditional approaches
by a large amount.
Another small performance degradation can be observed in fig. 6a by comparing the proposed

reduced complexity network with the neural network structure from [49] which was trained in our
framework.

(a) Detection performance comparison for various
neural networks for the range of 0dB to 25 dB.

(b) Detection performance loss due to simultaneous
pruning and quantization.

Fig. 6. Performance for quantized and prunned neural network detectors.

Quantization with a weight bit-width of 6 bits and activation bit-width of 16 bits leads to another
small performance degradation at high SNR values. We investigate the effects of quantization to
the network in depth and define the accuracy-loss with respect to the floating-point BER for each
configuration as

𝑄𝐸𝑟𝑟 =
𝐵𝐸𝑅𝑄𝑢𝑎𝑛𝑡

𝐵𝐸𝑅𝐹𝑃
− 1. (15)

, Vol. 1, No. 1, Article . Publication date: October 2021.



16 Stefan Brennsteiner, Tughrul Arslan, John Thompson, and Andrew McCormick

In table 2a the 𝑄𝐸𝑟𝑟 when the detector is trained in a signal to noise ratio (SNR) range from 5 to
25 dB is provided. In table 2b the 𝑄𝐸𝑟𝑟 at 25dB is shown. It can be seen that for higher SNR values
the impact of quantization is larger.

(a) Average performance degradation 𝑄𝐸𝑟𝑟 from eq. (15)
in percent, when training the detector with SNR values
from 5 to 25dB.

Bitwidth Weights [bits]
4 5 6 7 8

6 4057% 2383% 2153% 2001% 297%
8 1610% 505% 297% 226% 223%
10 1167% 259% 85% 68% 52%

Quantization
Aware
Training

Bitwidth
Activations

[bits] 16 1044% 193% 54% 10% 5%
6 4749% 3111% 2111% 2085% 2740%
8 3052% 1131% 524% 318% 306%
10 2516% 751% 229% 85% 66%

Post
Training

Quantization

Bitwidth
Activations

[bits] 16 2277% 558% 112% 19% -8%

(b) Average performance degradation𝑄𝐸𝑟𝑟 from eq. (15)
in percent, when training the detector at 25dB SNR.

Bitwidth Weights [bits]
4 5 6 7 8

6 657.0% 422.0% 388.0% 373.8% 67.1%
8 263.5% 98.8% 67.1% 58.7% 59.8%
10 186.4% 46.3% 18.7% 14.7% 12.9%

Quantization
Aware
Training

Bitwidth
Activations

[bits] 16 163.0% 33.6% 7.2% 1.7% 2.4%
6 768.3% 489.1% 398.1% 368.7% 487.0%
8 479.5% 192.0% 99.7% 75.7% 71.4%
10 390.1% 121.8% 38.5% 20.0% 16.2%

Post
Training

Quantization

Bitwidth
Activations

[bits] 16 345.3% 73.5% 9.7% 6.3% 0.3%

Table 3. Impact of quantization on performance.

Fig. 6b shows the detection performance when pruning is introduced on top of quantization.
The pruning rates of 12.5%, 25%, and 50% are compared to the unpruned, quantized, and floating
point networks. For pruned networks, quantization is started after 500 epochs and pruning after
750 epochs. The total number of trained epochs is 2000. For 8 bit weight quantization, pruning of
12.5% leads to a performance loss of ≈ 5 dB at 25 dB. This is similar to the performance loss when
quantizing weights with 6 bits. The network with 6 bit quantized weights suffers from performance
loss of ≈ 2.5 dB and ≈ 6 dB by pruning it to 12.5% and 25% respectively. The memory requirement
for the configuration of Prun0.125BW8 is ≈ 16% higher than for Prun0BW6 as seen in fig. 7b.
Because of this and the fact that pruning adds additional hardware complexity, pruning is not
considered in the accelerator design.

6.2 Memory Requirement
As a baseline for memory-requirement comparison, we assume single-precision floating-point
parameters with 32 bits per parameter according to [3]. For comparison we include the autoencoder
from [13]. In this design, each sub-carrier requires one autoencoder, making it the most complex
design. Only the receiver network of the autoencoder is considered. Fig. 7a shows significant
savings both from reduced complexity models as well as from quantization. The novel model results
in a memory reduction of ≈ 4.02 times and the quantization with BW=6 and BA=16 results in
another memory reduction of ≈ 5.3 times as compared to 32 bit floating-point weights. Huffman
decoding further reduces the memory requirement by 1

0.780 ≈ 1.28, leading to a total memory
reduction of 4.02 × 5.30 × 1.28 ≈ 27.27 times.
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(a) Memory requirement to process 64 sub-carriers
in comparison to previous work in the literature.

(b) Memory requirement and detection perfor-
mance of various quantization and pruning options.
All activation weights are assumed to be 16 bit ex-
cept floating point activations are 32 bits.

Fig. 7. Memory requirement to process 64 SC for various combinations of quantization and pruning settings.

6.3 Scheduling and Latency
The performance of the presented accelerator is evaluated on the Xilinx ZynqUltrascale+ XCZU27DR-
2 FPGA for up to 1200 SC. We evaluate the performance for multiple numbers of SC commonly used
within standardized LTE numerology [43]. The largest configuration of 1200 SC provides a 20MHz
channel bandwidth at a sub-carrier spacing of 15kHz. One of the main performance metrics of the
accelerator is the detection latency in symbol durations. The measurement in symbol durations is
useful as it makes the latency independent of the underlying OFDM numerology. With 15kHz, the
symbol duration is 𝑇𝑆 = 1

15𝑘𝐻𝑧
≈ 66.7𝜇𝑠 .

As described in Section 5.1 and 5.2, the accelerators allow for buffering and simultaneous
processing of multiple symbols.While one detector is processed, all detectors including the currently
processed one, buffer the newly received symbols. This batch processing has an impact on system
latency. The number of detectors is the main factor for the maximum latency besides the processing
time:

𝐿𝐷𝐷𝑅_𝑚𝑎𝑥 = ⌈𝑁𝐷𝐷𝑅_𝑑𝑒𝑡 ×𝑇𝐷𝐷𝑅_𝑝𝑟𝑜𝑐⌉ +𝑇𝐷𝐷𝑅_𝑝𝑟𝑜𝑐 (16)

𝑁𝐷𝐷𝑅_𝑑𝑒𝑡 is the number of parallel detectors per accelerator.𝑇𝐷𝐷𝑅_𝑝𝑟𝑜𝑐 is the processing time for
each detector. The ceiling function indicates that processing cannot start while a symbol is not
completely received yet. The average detection latency for each of the DRAM accelerators is:

𝐿𝐷𝐷𝑅_𝑎𝑣𝑔 =

∑𝑛
𝑘=1 𝑘

𝑛
+𝑇𝐷𝐷𝑅_𝑝𝑟𝑜𝑐 =

𝑛 + 1
2 +𝑇𝐷𝐷𝑅_𝑝𝑟𝑜𝑐 ;𝑤𝑖𝑡ℎ 𝑛 = ⌈𝑁𝐷𝐷𝑅_𝑑𝑒𝑡 ×𝑇𝐷𝐷𝑅_𝑝𝑟𝑜𝑐⌉ . (17)

Leading to a combined detection latency of:

𝐿𝑎𝑣𝑔 =
𝑁𝐷𝐷𝑅_𝑑𝑒𝑡 × 𝐿𝐷𝐷𝑅_𝑎𝑣𝑔

𝑁𝑑𝑒𝑡

+
𝑁𝑈𝑅𝐴𝑀_𝑑𝑒𝑡 × 𝐿𝑈𝑅𝐴𝑀_𝑎𝑣𝑔

𝑁𝑑𝑒𝑡

. (18)
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As each URAM accelerator processes only one detector (𝑁𝑑𝑒𝑡 = 1), 𝐿𝑈𝑅𝐴𝑀_𝑎𝑣𝑔 is equal to
𝑇𝑈𝑅𝐴𝑀_𝑝𝑟𝑜𝑐 . Because each accelerator processes one or more detectors which are assigned during
design time, each detector’s throughput has to be

𝑇𝑃𝑘 =
𝑃𝐴𝑅_𝑆𝑘

𝑇𝑘
𝑝𝑟𝑜𝑐 × 𝑁𝑘

𝑑𝑒𝑡

> 1. (19)

Where 𝑘 is the detector index. If the throughput falls below the value of 1, symbols will build up
at the input and the processing latency will continuously increase. Since the physical input buffers
have limited capacity it eventually will result in data loss, which violates the real-time condition. As
the assignment of detectors to accelerators is fixed, a build-up of symbols at one or more detectors
might even happen if the total system throughput satisfies the following condition:

𝑇𝑃 =

𝑁𝑎𝑐𝑐∑
𝑘=1

𝑇𝑃𝑘 > 1. (20)

Table 4 shows the accelerator allocation for maximum performance for different numbers of
processed SC. First URAM accelerators are allocated to maximize performance. The latency is given
according to eqs. (16) to (18). The throughput per detector and the total throughput in terms of
symbols according to eqs. (19) and (20) are shown respectively. Up to 13 detectors can be deployed
while the real-time condition still holds. The average throughput per detector is 1.4 symbols per 𝑇𝑆
and all symbols can be processed in time. A maximum symbol latency of 11.52 symbols, and an
average latency of 3.67 symbols results. The 13 detectors amount to a total of 832 QPSK modulated
SC allowing a bitrate of 832 × 15𝑘𝐻𝑧 × 2 = 24.96𝑀𝑏𝑖𝑡𝑠

𝑠
including pilot symbols. For 900 SC, the

throughput in the DRAM accelerators is too small in our configuration, although the average
throughput per detector would be sufficient as indicated by the coloring of the last row in table 4.
For 1200 SC, each of the DRAM accelerator’s throughput, as well as the average throughput, is too
low as indicated by the red coloring.

6.4 Circuit Metrics
Each DRAM accelerator is clocked at 300 MHz. This clock is provided by the physical DDR interface
IP and is dependent on the connected memory chips. The memory chip is clocked at 1200 MHz and
transfers 8 bit of data per positive and negative clock-edge. This translates into a bus with 64 bits
data-width at a transfer rate of 300 MHz (single clock-edge). The URAM accelerator’s maximum
frequency is 300 MHz as well. The critical paths are manifold, with the most noticeable ones being
in the accelerator’s control logic and in the flexible shift mechanic of the Huffman decoder’s buffer
register.
Table 5 shows the average resource usage per single accelerator and fig. 8 shows the average

allocation of resources per submodule per accelerator. We notice that for the DRAM accelerator,
more than half of all CLB resources and slightly less than half the BRAM resources are used by
the physical memory interfaces. The DRAM accelerator uses more resources, but can also process
multiple detectors.

6.5 Accelerator Efficiency Evaluation
To assess the implementation efficiency of the proposed accelerator, we compare the measured
performance in terms of operations per second with its theoretical maximum performance. This
theoretical maximum performance assumes that all computational units perform useful computa-
tions every clock cycle and that the available memory bandwidth transports data continuously at its
maximum capacity. The measure of operations per second is adequate to assess performance as it
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Table 4. Accelerator performance in terms of processing latency, throughput and real-time capability for
different number of SC. Latency is calculated according to eqs. (16) to (18) and throughput according to
eqs. (19) and (20). Green fields indicate sufficiently large throughput for real-time processing according to
eq. (19).

Bandwidth[MHz] 1.4 3 5 10 11.52 15 20

Number of SC 72 180 300 600 832 900 1200

Required Accelerators (Number of SC / 64) 1.125 2.8125 4.6875 9.375 13 14.0625 18.75
URAM Accelerator Processing Latency [Sym] 1.087
URAM Accelerator Throughput [Sym/TS] 1.840
DRAM Accelerator Processing Latency [Sym] 2.519
Allocated URAM accelerators 2 3 5 6 6 6 6
Allocated DRAM accelerators 0 0 0 2 2 2 2
Detectors per DRAM accelerator1/accelerator2 0/0 0/0 0/0 3/1 3/3 5/4 7/6
Maximum DRAM accelerator latency [Sym] - - - 11.52 11.52 17.52 23.52
DRAM accelerator 1 throughput [Sym/TS] - - - 1.19 1.19 0.71 0.51
DRAM accelerator 2 throughput [Sym/TS] - - - 3.57 1.19 0.89 0.60
Average DRAM accelerator latency [Sym] - - - 4.76 6.26 8.51 11.51
Average symbol latency [Sym] 1.09 1.09 1.09 2.56 3.67 5.54 8.22
Maximum throughput [Sym/TS] 4.35 6.52 10.87 18.19 18.19 18.19 18.19
Average throughput per detector [Sym/TS] 2.17 2.17 2.17 1.82 1.40 1.21 0.96

Table 5. Average FPGA resource utilization for each accelerator version. Non-integer number of resources
result from averaging the resources over multiple accelerators.

CLB
LUTs

CLB
Registers

Block
RAM

URAM
Blocks DSPs

DRAM
Accelerator 17.5k 17.5k 91.5 0.00 154

URAM
Accelerator 8k 3.7k 49 12.00 80.7

directly relates to the throughput of an accelerator for a given neural network. Table 6 lays out the
maximum achievable performance given the DSP utilization and the available memory bandwidth.
It can be seen that both accelerators are memory-bound, as expected, for fully connected network
accelerators. The measured detector performance was obtained by digital simulation and was found
to be 9.6% and 15.3% lower than the theoretical maximum performance of the DRAM and URAM
accelerator respectively. This inefficiency is mostly due to the varying length of the weight streams
after Huffman coding. Some streams can have regions where the decoders can only decode one
datum per clock which leads to a stall of the processing elements. The benefit of the Huffman
compression still outweighs this inefficiency though.

Table 7 compares our work with previously proposed neural network accelerators. It is important
to notice that the latency and throughput figures have been extracted for fully connected layers
from the previous work for a fair comparison. The utilization figures have been extracted where
possible. From the comparison, it can be noticed that even though our DRAM accelerator has much
smaller memory bandwidth available, its throughput is considerably larger than the throughput in
[34] and [42]. This can be attributed to a few factors: the weight quantization to 6 bit, the Huffman
compression, and the batch-processing, to which we attribute the highest performance gain. In
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(a) Resource utilization for two DRAM accelerators

(b) Resource utilization for six URAM accelerators

Fig. 8. Resource usage per sub module per type of accelerator for two DRAM accelerators and six URAM
accelerators.

Table 6. Theoretical and measured accelerator performance

Accelerator Performance DRAM URAM
Measured Detector Performance without Activations

Number of weights in detector network 566400 566400
Processed symbols per second [Sym/s] 15000 15000
Accelerator throughput [Sym/Ts] 1.19 1.84
Detectors per accelerator 3 1
Performance [GOP/s] 30.36 15.64
Theoretical Maximum Performance based on DSP Utilization

Accelerator frequency 3E+08 3E+08
Number of DSPs per Accelerator 154 80.67
Theoretical maximum performance based
on the number of DSP [GOP/s] 46.2 24.20

Theoretical Maximum Performance based on Memory Bandwidth
Buswidth [Bytes] 8 18
Busspeed [MHz] 300 300
Memory throughput [MB/s] 2400 5400
AXI-Interface throughput reduction factor 0.91 -
Average number of bits per weight [bits] 4.68 4.68
Average number of weights processed
per second [MWeights/s] 3733.33 9230.8

Maximum batch size 9 2
Theoretical maximum performance
based on memory bandwidth [GOP/s] 33.60 18.46
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Table 7. Accelerator performance comparison

This Work
[34] [42] [10] One DRAM

Accelerator
All

Accelerators
Model Alexnet VGG16-SVD Alexnet OFDM Detector
Quantization fixed 8 bit dynamic 16 bit fixed 16 bit fixed 6 bit
FPGA Stratix-V GXA7 Zynq XC7Z045 Arria 10 RFSoC (Ultrascale+)
Feature Node 28nm 28nm 20nm 16nm
Clock Frequency[MHz] 100 150 300 300

External Memory 2 DDR3 x64 1 DDR3 x64 1 DDR4 x64 1 DDR4 x8 2 DDR4 x8 +
6 URAM x18

Throughput
Memory Bandwidth [GB/s]a 12.8-29.87b 4.2 17 2.40 37.2
Weights in the FC Layers 59M 73M 59M 566k 7.4M
Average Latency FC Layers [ms] 2.83 61.18 125.5c 0.0187 0.24
FC Layer Throughput [GOP/s] 20.72 1.20 1382.00 30.33 154.56

Utilization
DSP Utilization 256 780 1476 154 788
Logic Utilizationd 15.48Ke 310.27K 246K 35.04K 139.88K
BRAM/URAM Utilization 213/- 486/- 2487/- 91.5/- 477/72

a1GB =̂ 1e9B
bNot clearly specified, estimation based on DDR3 specification

cProcesses the FC layers in batches of 128 after calculating all preceding layers first. As the FC layers are at the end of the
network we can get a rough estimate based on the average image latency ( 1

1020 img/s = 0.98 ms/img) multiplied by the batch
size of 128.

dXilinx FPGAs in Total CLBs (Registers + LUTs) and Altera FPGAs in ALMs
eResources directly associated to FC6&FC7&FC8 Layers

addition, also the older technology nodes of 28 nm and the lower operating frequencies in [34] and
[42] are contributing factors. The design in [10] makes use of batch processing for its FC layers
and uses a batch size of 128. We estimate the latency for the Alexnet calculation in [10] to be 125.5
ms as compared to the latency for the same neural network in [34] of 12.75 ms. This shows how a
large batch size like this trades off throughput for latency. Our design achieves ≈ 9 times lower
throughput than [10] with ≈ 2 times the total memory bandwidth. However, it’s batch size is ≈ 14
times and 64 times smaller for the DDR- and URAM- accelerator respectively.

6.6 Comparison with Traditional Approaches
6.6.1 Computational Resources. The neural network based detector outperforms traditional ap-
proaches significantly as seen in fig. 6a. This gain in performance comes at the expense of com-
putational complexity. For example, a modified Minimum Mean Square Error (MMSE) FPGA
implementation is reported in [14]. Timing is not reported in detail, but resource utilization of LUTs,
Registers, and DSP blocks is very low. The memory requirement with ≈ 150 kilo bytes is within
the same order of magnitude as what is needed in our design to process 64 SC. The accelerator
in [14] however, processes 840 SC. The work in [11] presents a linear MMSE detector that shows
reduced complexity by low-rank-approximating via singular value decomposition. Assuming a
rank of 6, and 8 pilots per 64 SC, the number of complex multiplications for estimating the channel
transfer function is reported as 105. This is much lower than the required number of operations in
our neural network. The channel estimator and OFDM equalizer provided in Mathworks’ Wireless
HDL toolbox implement basic least square channel estimation and zero-forcing or minimum mean

, Vol. 1, No. 1, Article . Publication date: October 2021.



22 Stefan Brennsteiner, Tughrul Arslan, John Thompson, and Andrew McCormick

square error equalization [27, 28]. Both designs achieve a clock frequency of 244.6 MHz on the
Xilinx Zynq- 7000 ZC706 evaluation board. Their hardware resource requirements are shown in
table 8. The resource usage in terms of LUTs is comparable to the URAM accelerator, while DSP
and memory resources are far lower.

Table 8. Resource usage in Mathworks’ OFDM channel estimator and equalizer

Resource Channel
Estimator [28] Equalizer [27] Total [28] + [27] URAM

Accelerator
Slice LUTs 2684 7380 10064 7976

Slice Registers 1184 8063 9247 3656
DSPs 6 24 30 80

Block RAMs 1.5 0 1.5 49
URAMs - - - 12

6.6.2 Latency. The LTE-A user-plane latency is typically specified to be less than 10ms [43, Chapter
27]. However the processing time is specified by 3GPP as 1.5ms for UEs [5]. Comparing this time
with the maximum latency for the DRAM accelerator of 11.52 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 =̂ 0.77𝑚𝑠 and the URAM
accelerator of 2.52 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 =̂ 0.17 𝑚𝑠 , this seems possible. However, a typical OFDM receiver
consists of more than just channel estimation and detection circuits. The latency of the traditional
approaches in [27, 28] depends on the detailed setting of the block, but is within the range of a few
clock cycles up to 951 clock cycles for more advanced settings. This shows, that in comparison to
the neural network based accelerator, there is a large gap in latency. Whether or not this latency is
acceptable will be determined by the specific design and use case.

7 CONCLUSION
This paper proposes the first neural network detector for an OFDM communication system with
real-time capability. The proposed detector utilizes a simplified structure of a previously reported
neural network performing efficient channel estimation and detection. Three main techniques of
deep compression were explored, namely pruning, quantization, and weight encoding. The network
complexity could be reduced this way, however, reduced performance was observed when pruning
and quantization are applied simultaneously. As memory throughput and memory size have been
limiting factors, our efforts achieved a memory requirement reduction of ≈ 27 times. A neural
network accelerator specifically designed to accelerate the targeted fully connected neural network
was developed. The accelerator has three features making it uniquely suitable for processing the
proposed neural network in real-time. It allows for processing multiple symbols simultaneously
in a batch. Loaded weights are used on multiple symbols and throughput is increased. Multiple
intermediate result buffers allow for efficient branching in the neural network. High-performance
Huffman decoders with a decoding rate larger than 1 allow efficient usage of weight buffering
FIFOs. Our design can be expanded by instantiating more accelerators, however, in our platform
containing the Xilinx RFSoC, we achieve real-time processing for 832 sub-carriers with an average
detection latency of ≈ 3.7 OFDM symbols. The thereby enabled datarate including pilots is just
under 25 Mbit/s.
We consider the presented work an important step towards deployable, neural network based

detector solutions in communication systems. Even though the application of compression tech-
niques reduced the memory requirement significantly, the computational complexity and memory
requirements is still far beyond that of traditional approaches. The improved performance can
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justify this much larger complexity to some extend, however we also recognize the need for further
research in the area. The computational complexity and memory requirements need to be reduced
further. Techniques that combine well-established communication algorithms with deep learning
techniques (i.e. model-driven designs) could help with this. Also in terms of flexibility, improve-
ments are needed. Frame structures as specified in mobile communication standards and higher
modulation orders such as QAM64 need to be supported. Form an FPGA perspective, the trend to
highly integrated high bandwidth memory (HBM) and larger on-chip memories can mitigate the
current memory limitations.
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