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ABSTRACT
Co-exploration of an optimal neural architecture and its hardware
accelerator is an approach of rising interest which addresses the
computational cost problem, especially in low-profile systems. The
large co-exploration space is often handled by adopting the idea
of differentiable neural architecture search. However, despite the
superior search efficiency of the differentiable co-exploration, it
faces a critical challenge of not being able to systematically satisfy
hard constraints such as frame rate. To handle the hard constraint
problem of differentiable co-exploration, we propose HDX, which
searches for hard-constrained solutions without compromising the
global design objectives. By manipulating the gradients in the inter-
est of the given hard constraint, high-quality solutions satisfying
the constraint can be obtained.

1 INTRODUCTION
The primary interest ofmostDeep Neural Network (DNN) researches
has been the application performance (i.e., accuracy). However,
it also led to the rapid growth in the network size that require
immense computational resources for execution. In recent years,
numerous schemes have appeared to mitigate the resource problem,
mostly belonging to one of these categories – network-side optimiza-
tion and hardware-side optimization. Network-side optimization
refers to refining the architecture of a neural network to reduce
computations while maintaining a comparable accuracy [28, 31].
Hardware-side optimization often involves improving DNN ex-
ecution efficiency by using optimized hardware, also known as
accelerators [5, 14]. Unfortunately, effort from one side often hin-
ders the benefits coming from the other. For example, the main
advantage of depth-wise separable convolution operation used in
MobileNet [28] comes from its structure which uses a single chan-
nel for its operation. However, Google’s TPU [14], a renowned
accelerator, mainly utilizes channel-level parallelism for gaining
speedup. In consequence, MobileNet results in a poor execution
time on TPUs [10].

Co-exploration of hardware accelerator and network architec-
ture [1, 6, 9, 11, 19, 22, 30] is therefore a natural direction to fulfill
both goals of accuracy and hardware metrics such as latency, energy
consumption and silicon chip area. To address the large search space
of the co-exploration, differentiable co-explorationmethods [6, 9, 19]
are considered as promising approaches due to their ability to
quickly explore the search space compared to its reinforcement
learning based counterparts [1, 11, 20, 22, 30].

Unfortunately, differentiable co-exploration has a serious draw-
back of being unable to deal with hard constraints that are critical
in many real-world scenarios. For instance, an important constraint
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of object detection system [26] is to meet the frame rate of the
camera (e.g., 30 frames per second). In addition, a mobile subsystem
running on a limited battery often has a power budget. Because
differentiable co-exploration methods rely on a single loss function,
they often fail to satisfy the constraints, and have to blindly undergo
a several repetitions of hyper-parameter tuning and re-exploration.

In order to address the problem, we present HDX (Hard-
constrained Differentiable eXploration), which enables hard-
constrained differentiable co-exploration of neural architecture
and hardware accelerator. The key concept of our proposal is a
gradient manipulation method which ensures that the solution
does not drift away from meeting the constraints. In addition to the
gradients from the global loss, we calculate the gradient from the
hardware constraints, which is used to manipulate gradient of the
global loss, if any constraint violations, such that i) the dot product
of the two are positive (i.e., they point to a similar direction), and
ii) the direction can alleviate the violation of the constraints.

To the best of our knowledge, this is the first work that considers
hard constraints in a differentiable co-exploration problem. We con-
duct an extensive amount of evaluation to demonstrate that HDX
can 1) satisfy the hardware constraints even under tight constraints
and 2) search solutions without compromising the quality.

Our contributions can be summarized as follows.

• We propose HDX, a hard-constrained differentiable co-
exploration method for network and accelerator in order
to find valid solutions without trial-and-errors.

• We propose using gradient manipulation to gradually move
solutions towards the constraint-satisfying region.

• We provide an extensive evaluation for HDX to show its
constraint-meeting capability and efficiency.

2 BACKGROUND AND RELATEDWORK
2.1 Neural Architecture Search
Neural Architecture Search (NAS) refers to the technique of au-
tomating the neural network design process. To mitigate its huge
cost (thousands of GPU-hours), Differentiable NAS [21] has been
proposed as an efficient alternative, which converts the problem to
training a supernet that reduces the time cost by a few digits.

Regardless, optimizing solely on network performance is insuffi-
cient as they do not take hardware efficiency into account. Some
recent works [4] that address this issue consider hardware costs by
adding loss terms, and some attempt to reduce the network size for
latency constraints using simple latency models [2, 23]. However,
they only consider the network design, and cannot be used for
co-exploration since the relation between network accuracy and
hardware structure is not reflected in the model.
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Figure 1: A motivational experiment. In each plot, we swept
the value 𝜆𝐶𝑜𝑠𝑡 0.001 to 0.010. It is clear that the trajectory is
not strictly linear to 𝜆𝑐𝑜𝑠𝑡 with high variations.

2.2 DNN-Accelerator Co-exploration
The early work on the co-exploration utilize variants of reinforce-
ment learning, or evolutionary algorithm to leverage its simplic-
ity [1, 11, 13, 20, 22, 30]. Each candidate network is trained for
evaluation, while the accelerator design is analyzed for hardware
efficiency. These values create rewards used by the agent to create
the next candidate solution. However, they all inherit the same
problem from RL-based NAS methods in which they require ex-
pensive training to evaluate each candidate solution. To worsen
the matter, co-exploration requires even larger network/hardware
search space than searching only for networks.

In such regard, differentiable approaches were adopted to co-
exploration [19]. Auto-NBA [9] used a differentiable accelerator
search engine to build a joint-search pipeline, and DANCE [6]
trained auxiliary neural networks for hardware search and cost
evaluation. However, none of the above properly addresses the hard
constraint problem. In this work, we propose a holistic method of
handling hard constraints on differentiable co-exploration.

3 MOTIVATIONAL EXPERIMENT
The most straightforward and naïve way to handle hard constraints
within differentiable co-exploration would be to tune the relative
weight to the hardware cost. For example, below is the loss function
used in differentiable co-exploration [6, 9].

L𝑜𝑠𝑠 = L𝑜𝑠𝑠𝐶𝐸 + 𝜆𝐶𝑜𝑠𝑡𝐶𝑜𝑠𝑡𝐻𝑊 , (1)
which is designed co-optimize accuracy and hardware cost simulta-
neously, and 𝜆𝐶𝑜𝑠𝑡 balances the two terms1. By increasing 𝜆𝐶𝑜𝑠𝑡 ,
one can indirectly instruct the search process to consider hardware
metrics more. However, giving a larger penalty does not directly
lead to reduction in the value of a constrained metric. Figure 1
plots how changing 𝜆𝐶𝑜𝑠𝑡 in Eq. (1) from 0.001 to 0.010 affects the
latency/energy and the classification error for CIFAR-10 dataset.
Searches were done three times for each setting and plotted with
the same colors with large dots for their averages. Even though
some trend is observed that depends on 𝜆𝐶𝑜𝑠𝑡 , inconsistency in
both direction and variance of the trajectory is more dominant.

Consider a scenario where a designer wants to design a neu-
ral network-accelerator architecture pair with latency under some
constraint (e.g., 33.3ms), using the conventional co-exploration
1It is different from hyperparameters of typical machine learning formulation where
the two terms serve toward a single objective.

methods. The designer would try searching with some initial 𝜆𝐶𝑜𝑠𝑡
and try adjusting the value over the course of multiple searches.
However, such inconsistency between 𝜆𝐶𝑜𝑠𝑡 and the latency makes
it extremely difficult to obtain the adequate solution, not to men-
tion the huge time cost of performing the search numerous times.
Despite the difficulties that lie in tackling a hard-constrained co-
exploration problem, designing an effective strategy is necessary.

4 HARD-CONSTRAINED CO-EXPLORATION
4.1 Problem Definition
The mathematical formulation of hard-constrained differentiable
co-exploration is as below:

argmin
𝛼,𝛽

(L𝑜𝑠𝑠𝑁𝐴𝑆 (𝑤∗, 𝑛𝑒𝑡 (𝛼)) + 𝜆𝐶𝑜𝑠𝑡𝐶𝑜𝑠𝑡𝐻𝑊 (𝑒𝑣𝑎𝑙 (𝛼, 𝛽))),

s.t. 𝑤∗ = argmin
𝑤

(L𝑜𝑠𝑠𝑁𝐴𝑆 (𝑤,𝑛𝑒𝑡 (𝛼))), 𝑡 ≤ 𝑇, (2)

where 𝑡 denotes the current value of constrained metric such as
latency or energy, and𝑇 is the target value (e.g., 33.3ms for latency).
𝛼 and 𝛽 denote network architecture parameters and hardware ac-
celerator configuration, respectively.𝑤 is the weights of the NAS
supernet and 𝑛𝑒𝑡 (𝛼) is the current dominant network architec-
ture selected. 𝑒𝑣𝑎𝑙 (𝛼, 𝛽) indicates the hardware metrics evaluated
for 𝛼 and 𝛽 . The objective of co-exploration is expressed using
two distinct evaluation metrics, which are neural architecture loss
(L𝑜𝑠𝑠𝑁𝐴𝑆 ) and hardware cost (𝐶𝑜𝑠𝑡𝐻𝑊 ) defined from the user.

4.2 Differentiable Co-exploration Framework
Although our main contribution is that we enable hard constraints,
we explain our framework for the co-exploration since they are
closely related. Figure 2 illustrates the overall architecture of the
proposed method, being similar to existing methods [6, 9]. Figure 2
(a) is the network search module. This module searches for network
architecture by choosing a path from the supernet. The network
structure is then fed to the evaluator module.

The evaluator network 𝑒𝑣𝑎𝑙 () is the key to the differentiable
co-exploration that enables the gradient to flow into the supernet,
considering the relation between the hardware accelerator. It is
a composition of two subnetworks: a hardware generator 𝑔𝑒𝑛()
and an estimator 𝑒𝑠𝑡 (). The hardware generator takes the neural
architecture parameters as inputs and uses them to output the opti-
mal hardware implementation (𝛽 from Eq. 2). It is jointly trained
during the co-exploration so that the generator does not depend on
certain cost function, and can adapt to the constraint. The estimator
network outputs the hardware-related metrics by taking output of
the generator and the network. It is pre-trained according to the
network and the accelerator search space. For pre-training the esti-
mator, traditional (non-differentiable) cost estimation frameworks
such as MAESTRO [18], Timeloop [25], and Accelergy [29] are used
as ground truth. After pre-training, the estimator is frozen during
the exploration and is only used to infer the hardware cost given a
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Figure 2: Overall structure of HDX.

network architecture. With these, we convert Eq. 2 as below:
argmin

𝛼
(L𝑜𝑠𝑠𝑁𝐴𝑆 (𝑤∗, 𝑛𝑒𝑡 (𝛼)) + 𝜆𝐶𝑜𝑠𝑡𝐶𝑜𝑠𝑡𝐻𝑊 (𝑒𝑠𝑡 (𝛼,𝑔𝑒𝑛(𝑣∗, 𝛼)))),

s.t. 𝑤∗ = argmin
𝑤

(L𝑜𝑠𝑠𝑁𝐴𝑆 (𝑤,𝑛𝑒𝑡 (𝛼))),

𝑣∗ = argmin
𝑣

(𝐶𝑜𝑠𝑡𝐻𝑊 (𝑒𝑠𝑡 (𝛼,𝑔𝑒𝑛(𝑣, 𝛼)))), (3)

where 𝑣 is the weights for the hardware generator.

4.3 Enabling Hard-Constraints with Gradient
Manipulation

In addition to the differentiable co-exploration methodology, we
suggest the novel idea of gradient manipulation as an effective
solution to the hard constraint problem. Direct manipulation of
gradients is a strategy often used in achieving multiple goals, such
as in continual learning [27] or differential equations [15]. In this
paper, we present a solution to apply gradient manipulation to the
co-exploration problem in the interest of satisfying hard constraints.

The diagrams on Figure 2 (b) and (c) show a high-level abstraction
of our gradient manipulation method. The main idea is to artificially
generate a force that can push the gradient in the direction that
agrees with the constraint. The conditions under which the method
is applied to compute the new gradient 𝑔 are defined as below:

𝑔 =


𝑔L𝑜𝑠𝑠 , if 𝑡 ≤ 𝑇

or 𝑡 > 𝑇 ∧ 𝑔L𝑜𝑠𝑠 · 𝑔C𝑜𝑛𝑠𝑡 ≥ 0,
𝑚𝛼 + 𝑔L𝑜𝑠𝑠 , otherwise

(4)

𝑔C𝑜𝑛𝑠𝑡 =
𝜕max(𝑡 −𝑇, 0)

𝜕𝛼
. (5)

In the above equation, 𝑔L𝑜𝑠𝑠 is the original gradient from the
global loss function defined as

L𝑜𝑠𝑠 = L𝑜𝑠𝑠𝑁𝐴𝑆 + 𝜆𝐶𝑜𝑠𝑡 ·𝐶𝑜𝑠𝑡𝐻𝑊 , (6)
as in Eq. 3, and 𝑔C𝑜𝑛𝑠𝑡 is the gradient of constraint loss that we
define as: C𝑜𝑛𝑠𝑡 =𝑚𝑎𝑥 (𝑡 −𝑇, 0). Note that 𝑡 is a function of 𝛼 , and
thus can be backpropagated to find the gradient with respect to 𝛼 . In
an ideal case where the 𝑡 ≤𝑇 , the constraint is already met so we do
nothing. In the unfortunate case when the constraint is still not met,

we calculate for the dot product of the two gradients to determine
the agreement in their directions. If 𝑔L𝑜𝑠𝑠 ·𝑔C𝑜𝑛𝑠𝑡≥ 0 (i.e., the angle
between two gradients is less than 90°), it means gradient descent
update will contribute towards satisfying the constraint. Thus it
is interpreted as an agreement in direction and the same 𝑔L𝑜𝑠𝑠 is
used unmodified. Figure 2 (b) depicts this scenario. However, if they
disagree as illustrated in Figure 2 (c) (i.e., 𝑔L𝑜𝑠𝑠 · 𝑔C𝑜𝑛𝑠𝑡< 0), we
force the gradient to shift its direction by𝑚𝛼 , which is obtained
from (𝑚𝛼 +𝑔L𝑜𝑠𝑠 ) · 𝑔C𝑜𝑛𝑠𝑡≥ 0 to guarantee decrease in target cost
after gradient descent. It can be reformulated as 𝑚𝛼 · 𝑔C𝑜𝑛𝑠𝑡 +
𝑔L𝑜𝑠𝑠 ·𝑔C𝑜𝑛𝑠𝑡 = 𝛿 where 𝛿≥ 0 is a small value for ensuring gradual
movement towards satisfying the constraint.

For updating 𝛼 and 𝑤 , we solve for optimal 𝑚𝛼 with respect
to 𝛼 , which are the parameters for the network architecture. To
minimize the effect of𝑚𝛼 on 𝑔L𝑜𝑠𝑠 , we use a pseudoinverse-based
solution that is known to minimize the size of | |𝑚𝛼 | |22 as below:

𝑚∗
𝛼 =

−(𝑔L𝑜𝑠𝑠 · 𝑔C𝑜𝑛𝑠𝑡 ) + 𝛿

| |𝑔C𝑜𝑛𝑠𝑡 | |22
𝑔C𝑜𝑛𝑠𝑡 . (7)

In order to control the magnitude of the pull, we use a small mul-
tiplying factor 𝑝 > 0 on 𝛿 . The policy for updating 𝛿 using 𝑝 is as
follows: Some initial value 𝛿0 exists for 𝛿 . If the target metric fails
to meet the constraint, 𝛿 is multiplied by 1+𝑝 to strengthen the pull
(𝛿 ′

= (1 + 𝑝)𝛿). In the other case when the constraint is satisfied, 𝛿
is reset to its initial value (𝛿 ′

= 𝛿0).
Note that we also train 𝑣 , weights for the hardware generator us-

ing gradient descent. Thus we compute for𝑚∗
𝑣 in the same manner,

but use 𝑔C𝑜𝑠𝑡𝐻𝑊
in place of 𝑔L𝑜𝑠𝑠 for updating the generator.

Although a single constraint is already a challenging target,
our method can be further generalized to accommodate multiple
constraints. Now the gradient is modified only in the direction
of individual constraints that do not comply. We provide a more
generalized formulation:

𝑔 =


𝑔L𝑜𝑠𝑠 , if

∧𝑛
𝑖=1 (𝑡𝑖 ≤ 𝑇𝑖 )

or
∨𝑛

𝑖=1 (𝑡𝑖 > 𝑇𝑖 ) ∧ 𝑔L𝑜𝑠𝑠 · 𝑔C𝑜𝑛𝑠𝑡 ≥ 0,
𝑚𝛼 + 𝑔L𝑜𝑠𝑠 , otherwise

(8)

𝑔C𝑜𝑛𝑠𝑡 =
𝜕
∑𝑛
𝑖=1max(𝑡𝑖 −𝑇𝑖 , 0)

𝜕𝛼
. (9)

4.4 Implementation Details
Hardware cost function. In this work, we choose the inference

latency, energy, and the chip area as the widely used hardware
metrics. Considering all of them, a commonly used cost function is
multiplying them (i.e., EDP, EDAP) as in [6, 9]. However, we found
that the energy is usually easier to optimize for, and using such
cost function unfairly favors energy-oriented designs. Therefore,
we use a balanced weighted sum for the cost function as below.

𝐶𝑜𝑠𝑡𝐻𝑊 = 𝐶𝐸𝐸𝑛𝑒𝑟𝑔𝑦 +𝐶𝐿𝐿𝑎𝑡𝑒𝑛𝑐𝑦 +𝐶𝐴𝐴𝑟𝑒𝑎. (10)
Estimator and Generator Network. Following [6], we model

both the estimator and generator with five-layer Multi-Layer Per-
ceptron (MLP) with residual connections. To train the estimator,
we first build a dataset by randomly sampling 10.8M network-
accelerator pairs (2.95e−9 % of the total search space) from our
search space which are evaluated on hardware metrics using
Timeloop [25] and Accelergy [29]. Using this dataset, the estimator



Hong, et al.

is trained for 200 epochs with the batch size of 256. The weight
update is done using Adam optimizer with the learning rate of
1e-4. The accuracy of the estimator was over 99% for all metrics,
being powerful enough as an engine for co-exploration. The gen-
erator is randomly initialized and jointly trained with the NAS
supernet. As the manipulated gradient from the hard-constraint is
back-propagated, the generator learns to create accelerators that
comply with the constraint on given neural network architecture.

Search Space.Weuse ProxylessNAS [4] as a NAS backbonewith
path sampling to train 𝛼 . It consists of multiple settings of MBConv
operation with kernel size {3, 5, 7} and expand ratio {3, 6}. The total
number of layers is 18 and 21 for CIFAR-10 [16] and ImageNet [17]
dataset, respectively. However, our method is orthogonal to the
NAS implementation and has the flexibility to choose from any
differentiable NAS algorithms, such as DARTS [21] or OFA [3].

We use Eyeriss [5] as the accelerator’s backbone architecture. It
is composed of a two-dimensional Processing Element (PE) array
where each PEs has a Multiply-Accumulate (MAC) unit attached
to a register file. Therefore, hardware accelerator design space
comprises PE array size from 12×8 to 20×24, register file size per
PE from 16B to 256B. In addition, the search space includes dataflow
of Weight-Stationary (WS) similar to [14], Output-Stationary (OS)
similar to [8] and Row-Stationary (RS) similar to [5].

5 EXPERIMENTS
5.1 Experimental Environment
We have conducted experiments on HDX using CIFAR-10 [16] and
ImageNet [17] dataset. For all the hardware metrics (latency, energy,
and chip area) reported, we have used the direct evaluation on the
designed hardware from Timeloop [25] and Accelergy [29] instead
of the values outputted by the estimator to avoid any possible
error in the learned model. Evaluation of network accuracy is done
by training the final network architecture, which we train from
scratch for 300 epochs using the batch size of 64. We use SGD
optimizer with Nesterov momentum [24], and cosine learning rate
scheduling with 0.008 as its initial value, while weight decay term
and momentum is 1e-3 and 0.9 respectively. Augmentation for the
train data is adopted from AutoAugment [7], on both dataset.

5.2 Comparison with Existing Methods
Table 1 lists the existing differentiable co-exploration methods in
comparison with HDX. We compare the following methods:

• NAS → HW: A plain differentiable NAS [4] only, followed by
an exhaustive hardware search using Timeloop [25].

• Auto-NBA [9]: A differentiable co-exploration method that di-
rectly searches for hardware parameters using gradient descent,
where the relation between hardware and the DNN is expressed
as a lookup table.

• DANCE [6]: State-of-the-art differentiable co-exploration
method without hard constraints where the generator and esti-
mator are modeled as neural networks.

• DANCE + Soft Constraint: To represent a reasonable approach
for considering constraints with existing solutions, we have
added a soft-constraint term 𝜆𝑆𝑜 𝑓 𝑡 ·𝑚𝑎𝑥 (𝑡/𝑇 − 1, 0) as in [12].

• HDX: The proposed method with 𝑝 = 1e−2.

Method Hard
Constraint

NN-HW
Relation

Search with 60 FPS Constraint
#Searches Cost* Avg. Err. (%)

NAS [4]→ HW search ✗ ✗ 5.0 10.9h 7.26
Auto-NBA [9] ✗ ✓ 6.8 10.2h 5.67
DANCE [6] ✗ ✓ 6.6 12.2h 5.32
DANCE + Soft const. [12] ✗ ✓ 4.9 9.1h 5.36
HDX (Proposed) ✓ ✓ 1 2.0h 4.65

*GPU-hours
Table 1: Comparison of Differentiable Co-explorations

As displayed in Table 1, HDX is the only method that considers
hard constraints with differentiable co-exploration.

For a quantitative comparison, we devised an algorithm for
finding constrained solution using co-exploration without hard-
constraints. Because a constrained metric (e.g., latency) being too
low often means an inefficient solution (in terms of other metrics
(e.g., accuracy and energy), we set the criteria of having a solu-
tion of 50%~100% of the target constraint. A rough sketch of the
algorithm similar to binary search is given below:

(1) Choose a control parameter (𝜆𝑆𝑜 𝑓 𝑡 and 𝜆𝐶𝑜𝑠𝑡 ) that indirectly
affects the metric under constraint (e.g., latency).

(2) Perform a search using the default control parameter value.
(3) Perform searches by doubling the control parameter each

step until the metric is under the constraint.
(4) If the metric is under 50% of the target value, shrink the

control parameter in a binary search manner.
Note that the problem cannot exactly be solved by binary search,
because of huge per-search variations and non-linear relations as
demonstrated in Section 3. In the actual implementation, more
features are added to deal with corner cases and to avoid falling
into wrong parameter region (which can happen from per-search
variations). We ran the algorithm 100 times and report the average.
We also report the average error as a proxy to the solution quality.

As presented in Table 1, all baselines require multiple searches
to find constraint-satisfying solutions. For DANCE, it takes 6.6
searches with 12.2 GPU-hours on average and 4.9 searches and
9.1 GPU-hours on even with soft constraints. On the other hand,
HDX always searches for constraint-satisfying solutions in a single
search. Furthermore, the number of searches for baselines strongly
depend on the choice of the default value of control parameter.
Guessing a right initial parameter is difficult, and could result in
even larger repetition cost. This advocates the need for HDX.

5.3 Co-exploration Results
Figure 3 plots the co-exploration experimental results frommultiple
techniques on CIFAR-10 dataset. In the experiments, we have set
two different constraints for the latency: 16.6ms (60 fps) and 33.3ms
(30 fps). For all co-exploration methods, we obtain five solutions
by varying 𝜆𝐶𝑜𝑠𝑡 from 0.001 to 0.005 to fairly compare the various
design points obtained by each approach. For 𝑁𝐴𝑆 → 𝐻𝑊 , we
obtain 10 solutions of various range for reference, because directly
applying 𝜆𝐶𝑜𝑠𝑡 is infeasible. For DANCE and Auto-NBA, the black
markers are unconstrained, and colored markers are obtained with
soft constraint of the corresponding colors.

In all experiments, we have used 𝐶𝐸 = 2.9, 𝐶𝐿 = 6.2, and 𝐶𝐴 =

1.0 from Eq. 10, which makes the difference scale of each metric
approximately the same to make a fair comparison. For the NAS
only method,𝐶𝑜𝑠𝑡𝐻𝑊 was used only for the hardware design phase.
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Figure 3: Co-exploration results. (left) and (mid) represent
the latency and (right) represent the hardware cost. Colored
marks are methods with constraints of the same color.

Figure 3 (left) and (mid) show the relation between error and
latency. The colored horizontal bars represent the two latency tar-
gets we applied. It can be easily seen that all solutions found by
HDX satisfy the given hard constraints regardless of the value of
𝜆𝐶𝑜𝑠𝑡 . Furthermore, all solutions have the latency right below the
constraint, showing that the solutions did not over-optimize for
the constrained metric (latency). DANCE [6] and Auto-NBA [9]
were able to exploit the trade-off between hardware metrics and
accuracy, but has no control over meeting the constraint. Even with
soft-constraint terms, they mostly failed to obtain in-constraint
solutions. Auto-NBA at a glance seems to be slightly better at meet-
ing the constraints, but it is because its baseline method favors
hardware-efficient solutions over high-accuracy ones, not because
of its ability to meet the constraint, exemplified by the fact that
there is no solution with high accuracy, or latency under 16.6ms.

5.4 Solution Quality Found by HDX
In this subsection, we demonstrate that HDX can 1) handle con-
straints from all three metrics (latency, energy, and chip area),
2) handle multiple constraints, and 3) obtain solutions of good
overall quality. Figure 3 (right) plots 𝐶𝑜𝑠𝑡𝐻𝑊 and error together,
which allows evaluating quality of the solutions in terms of Pareto-
optimality. Because Figure 3 (left) and (mid) overlook the other
metrics, comparing the 𝐶𝑜𝑠𝑡𝐻𝑊 together is required to be fair.

From the plot, it is clear that quality of solutions from HDX is
better than the NAS→HW method, and has no degradation from
the existing co-exploration methods. In fact, the tightly constrained
(16.6ms) solutions even find better solution than those of the exist-
ing solutions in terms of Pareto-optimality.

Table 2: Results Showing the Quality of Solutions

Index Constrained Lat. (ms) E (mJ) Area (mm2) Error (%) 𝐶𝑜𝑠𝑡𝐻𝑊 Loss

A

Anchor 69.23 37.00 2.53 4.10 ± 0.16 21.84 0.632

Latency 43.99 21.79 2.10 4.20 ± 0.07 13.87 0.624
Energy 51.98 29.18 2.53 4.38 ± 0.17 17.44 0.630
Chip Area 64.00 34.82 2.53 4.05 ± 0.06 20.56 0.629
All 63.72 12.09 1.86 4.12 ± 0.18 13.29 0.623

B

Anchor 49.65 27.53 2.53 4.22 ± 0.06 16.67 0.638

Latency 48.02 27.33 2.53 4.27 ± 0.09 16.41 0.644
Energy 95.02 24.45 1.89 4.05 ± 0.10 20.76 0.648
Chip Area 54.74 29.81 2.53 4.11 ± 0.13 17.96 0.645
All 41.32 08.59 1.86 4.35 ± 0.05 09.50 0.629

*Bold colored numbers indicate that they are
under constraint of the same colored non-bold numbers.
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Figure 4: Sensitivity to 𝑝 on HDX. The red lines represents
latency constraint at 33.3 ms.

To further study the quality of the solutions found by HDX,
we have conducted another set of experiments. We selected a few
solutions found from DANCE method as ‘Anchor’ solutions and
listed them in Table 2. From those, we chose either one or all three
of the hardware metrics to be fixed as the hard constraint, and
performed co-explorations using HDX. Because it is guaranteed
that such solution exists, a good method should be able to find a
solution meeting the constraint, of at least a similar quality. As
in the Section 5.3, all of the 8 cases we have examined succeeded
in finding a valid solution. Furthermore, all the solutions show
similar global loss values from the anchor solutions as shown in
the rightmost column.

5.5 Results from ImageNet Dataset
Table 3 shows the co-exploration results from ImageNet dataset [17],
under 125 ms constraint. As displayed in the table, HDX always
succeeded in finding a solution within constraint where the others
often failed to satisfy. Furthermore, the Top-1 error and the global
loss shows that the quality of the solution found by HDX is not
compromised at all, compared to DANCE or its variant.

5.6 Sensitivity Study on Pulling Magnitude
In HDX, the only hyperparameter is 𝑝 that controls the pulling mag-
nitude. Figure 4 illustrates how the global loss and latency changes
over latency-constrained (33.3 ms) explorations, with varying 𝑝 of
1e-2, 7e-3, and 4e-3.

Regardless of the value of 𝑝 , the curve for the constrained value
shows a similar trend. At the beginning, the global loss becomes
mainly optimized, while the latency stays steady. During this phase
the pulling magnitude 𝛿 (See Eq. 7) is still growing, and is not strong
enough to make meaningful changes. At certain point, 𝛿 becomes
strong enough to pull the solution towards lowering latency. When
the latency satisfies the constraint, global loss starts to decrease
while maintaining the latency. There is no significant discrepancy
between the final solution in the global loss and the latency, which
shows that HDX is insensitive to the hyperparameter 𝑝 .

Table 3: Experimental Results for ImageNet

Method in-const? Lat. (ms) Error (%) CostHW Loss

NAS→HW ✗ 242.92 24.84 46.29 1.99
✗ 135.39 28.83 24.26 2.17

DANCE ✗ 165.98 25.46 29.37 2.04
✓ 121.58 25.28 25.92 2.09

DANCE+Soft Const. ✗ 188.69 25.09 33.14 1.99
✓ 105.65 26.37 25.58 2.08

HDX (Proposed) ✓ 92.06 25.01 24.48 1.98
✓ 112.11 25.20 22.63 2.00
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Figure 5: Searched network and accelerator for 60 fps and 30
fps constraints. (𝑚,𝑛) refersMBConv blockwith𝑚×𝑚 kernel
and 𝑛 expand ratio.

5.7 Analysis on the Searched Solutions
Fig. 5 visualizes the network and accelerator searched for 60 fps (a)
and 30 fps (b) constraints. For the found design pair (a), the design
contains relatively smaller kernels, more layers, and a powerful
accelerator. To meet a tight constraint while maintaining accuracy,
the network has small kernels, mainly of 3×3. Using smaller kernels
quadratically reduces the number of multiplications. Therefore,
decreasing the kernel size and increasing number of layers is a good
choice for reducing inference latency. Looking at the accelerator
design, it has relatively large PE array (16×16) to achieve low latency.
It takes weight stationary (WS) dataflow, which is known to have
low latency. In addition, there are some kernels with high channel
expand ratio in the network. WS exploits channel parallelism for
fast execution, and thus has advantage over the found network.

On the other hand, in the design for 30 fps (b), the design settles
at a solution that can optimize the energy consumption while satis-
fying the constraint. The design uses larger kernels in the network
and row stationary (RS) dataflow in the accelerator. RS is known
to have good energy efficiency [5], and exploits parallelism from
spatial dimensions of kernel and the activation. Thus, having larger
kernels have advantages on RS dataflow. To reduce the energy
consumption, the design has fewer PEs (12×8), larger RFs to save
off-chip access energy, and fewer layers in the network.

6 CONCLUSION
In this paper, we proposed HDX, a hard-constrained differentiable
co-exploration method. By conditionally applying gradient manip-
ulation that moves the solution towards meeting the constraints,
hard constraints can be reliably satisfied with high-quality solu-
tions. We believe this proposal would ease the development of DNN
based systems by a significant amount.

ACKNOWLEDGMENTS
This work has been supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government (MSIT)
(2022R1C1C1008131, 2022R1C1C1011307), and Institute of Informa-
tion & communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (MSIT) (2020-0-01361, Arti-
ficial Intelligence Graduate School Program (Yonsei University)).

REFERENCES
[1] M. S. Abdelfattah et al. 2020. Best of Both Worlds: AutoML Codesign of a CNN

and its Hardware Accelerator. In DAC.
[2] M. Berman et al. 2020. AOWS: Adaptive and Optimal Network Width Search

with Latency Constraints. In CVPR.
[3] H. Cai et al. 2019. Once-for-All: Train One Network and Specialize it for Efficient

Deployment. In ICLR.
[4] H. Cai, L. Zhu, and S. Han. 2019. ProxylessNAS: Direct Neural Architecture

Search on Target Task and Hardware. In ICLR.
[5] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze. 2016. Eyeriss: An Energy-Efficient

Reconfigurable Accelerator for Deep Convolutional Neural Networks. IEEE JSSC
(2016).

[6] K. Choi et al. 2021. DANCE: Differentiable Accelerator/Network Co-Exploration.
In DAC.

[7] E. D. Cubuk et al. 2019. AutoAugment: Learning Augmentation Strategies From
Data. In CVPR.

[8] Z. Du et al. 2015. ShiDianNao: Shifting vision processing closer to the sensor. In
ISCA.

[9] Y. Fu et al. 2021. Auto-NBA: Efficient and Effective Search Over the Joint Space
of Networks, Bitwidths, and Accelerators. In ICML.

[10] S. Gupta and B. Akin. 2020. Accelerator-aware Neural Network Design using
AutoML. arXiv preprint arXiv:2003.02838 (2020).

[11] C. Hao et al. 2019. FPGA/DNN Co-Design: An Efficient Design Methodology for
IoT Intelligence on the Edge. In DAC.

[12] Y. Hu, X. Wu, and R. He. 2020. TF-NAS: Rethinking Three Search Freedoms of
Latency-Constrained Differentiable Neural Architecture Search. In ECCV.

[13] W. Jiang et al. 2019. Accuracy vs. Efficiency: Achieving Both Through Fpga-
Implementation Aware Neural Architecture Search. In DAC.

[14] N. P. Jouppi et al. 2017. In-Datacenter Performance Analysis of a Tensor Process-
ing Unit. In ISCA.

[15] J. Kim et al. 2021. DPM: A Novel Training Method for Physics-Informed Neural
Networks in Extrapolation. In AAAI.

[16] A. Krizhevsky, G. Hinton, et al. Learning Multiple Layers of Features from Tiny
Images. http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. Imagenet Classification with
Deep Convolutional Neural Networks. In NeurIPS.

[18] H. Kwon et al. 2020. MAESTRO: A Data-Centric Approach to Understand Reuse,
Performance, and Hardware Cost of DNN Mappings. IEEE Micro (2020).

[19] Y. Li et al. 2020. EDD: Efficient Differentiable DNN Architecture and Implemen-
tation Co-Search for Embedded AI Solutions. In DAC.

[20] Y. Lin, M. Yang, and S. Han. 2021. NAAS: Neural Accelerator Architecture Search.
In DAC.

[21] H. Liu, K. Simonyan, and Y. Yang. 2019. DARTS: Differentiable Architecture
Search. In ICLR.

[22] Q. Lu et al. 2019. On Neural Architecture Search for Resource-Constrained
Hardware Platforms.. In ICCAD.

[23] N. Nayman, Y. Aflalo, A. Noy, and L. Zelnik-Manor. 2021. HardCoRe-NAS:
Hard Constrained diffeRentiable Neural Architecture Search. arXiv preprint
arXiv:2102.11646 (2021).

[24] Y. E. Nesterov. 1983. A Method for Solving the Convex Programming Problem
with Convergence Rate𝑂 (1/𝑘2) . Dokl. Akad. Nauk SSSR (1983).

[25] A. Parashar et al. 2019. Timeloop: A Systematic Approach to DNN Accelerator
Evaluation. In ISPASS.

[26] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. 2016. You Only Look Once:
Unified, Real-time Object Detection. In CVPR.

[27] G. Saha, I. Garg, and K. Roy. 2021. Gradient Projection Memory for Continual
Learning. In ICLR.

[28] M. Sandler et al. 2018. MobileNetv2: Inverted Residuals and Linear Bottlenecks.
In CVPR.

[29] Y. N. Wu, J. S. Emer, and V. Sze. 2019. Accelergy: An Architecture-Level Energy
Estimation Methodology for Accelerator Designs. In ICCAD.

[30] L. Yang et al. 2020. Co-Exploration of Neural Architectures and Heterogeneous
ASIC Accelerator Designs Targeting Multiple Tasks. In DAC.

[31] S. Zhou et al. 2016. DoReFa-Net: Training Low Bitwidth Convolutional Neural
Networks with Low Bitwidth Gradients. arXiv preprint arXiv:1606.06160 (2016).

http://www.cs.utoronto.ca/~kriz/learning-features-2009-TR.pdf

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Neural Architecture Search
	2.2 DNN-Accelerator Co-exploration

	3 Motivational Experiment
	4 Hard-Constrained Co-exploration
	4.1 Problem Definition
	4.2 Differentiable Co-exploration Framework
	4.3 Enabling Hard-Constraints with Gradient Manipulation
	4.4 Implementation Details

	5 Experiments
	5.1 Experimental Environment
	5.2 Comparison with Existing Methods
	5.3 Co-exploration Results
	5.4 Solution Quality Found by HDX
	5.5 Results from ImageNet Dataset
	5.6 Sensitivity Study on Pulling Magnitude
	5.7 Analysis on the Searched Solutions

	6 Conclusion
	Acknowledgments
	References

