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ABSTRACT
Traditional one-bit compressed stochastic gradient descent can not

be directly employed in multi-hop all-reduce, a widely adopted dis-

tributed training paradigm in network-intensive high-performance

computing systems such as public clouds. According to our the-

oretical findings, due to the cascading compression, the training

process has considerable deterioration on the convergence per-

formance. To overcome this limitation, we implement a sign-bit

compression-based learning synchronization framework, Marsit. It

prevents cascading compression via an elaborate bit-wise operation

for unbiased sign aggregation and its specific global compensation

mechanism for mitigating compression deviation. The proposed

framework retains the same theoretical convergence rate as non-

compression mechanisms. Experimental results demonstrate that

Marsit reduces up to 35% training time while preserving the same

accuracy as training without compression.
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1 INTRODUCTION
In an era of data explosion, there is an increasing demand for vari-

ous fields to launch AI-driven applications in image classification

[1], natural language processing (NLP) [2], and so forth. Behind

these applications are numerous models that have been fit in huge-

size datasets such as ImageNet [3]. To minimize the development

cost, cloud providers, e.g., Amazon AWS, offer various training

paradigms to enable fast AI/ML solution deployment.

Nowadays, multi-hop all-reduce (MAR) training paradigm, in-

cluding ring all-reduce (RAR) [4, 5] and 2D-torus all-reduce (TAR)

[6], substitutes classical single-hop approaches such as parameter

server (PS) and gossip, and becomes the most pervasive synchro-

nization paradigm in high-performance computing (HPC) systems.

For parallel stochastic gradient descent (PSGD) [7], MAR achieves a

better resource utilization under multi-GPU circumstance than PS.
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Rounds Accuracy (%) Time (min)

cascading compression

𝑀 = 3 187 87.2 ± 2.31 11.2

𝑀 = 8 1K+ divergence NA

no compression

𝑀 = 3 129 99.1 ± 0.13 20.7

𝑀 = 8 76 99.2 ± 0.07 10.6

Table 1: TrainingMNIST over AlexNet. The results show the
best test accuracy by setting the stepsize in {0.03, 0.01, 0.005}.

Firstly, all GPUs involve in both the training and synchronization

in MAR, while GPUs in PS architecture are categorized into two

groups separately performing these two functionalities. Secondly,

MAR prevents the network congestion at a single node because

each client is not required to simultaneously process tremendous

transmission requests. As a paradigm that workers are solely per-

mitted to communicate with their neighbors, gossip has made great

success in recent years [8, 9]. However, the performance of gossip

in terms of convergence rate is much slower than MAR, especially

under sparse connections such as ring topology [10].

In network-intensive HPC systems such as public clouds, it is

challenging to transfer a non-compressed gradient among nodes

due to overwhelming bandwidth consumption. With the increasing

size of a deep learningmodel, e.g., 60.2Mweights on ResNet-152 [11]

and 100T on GPT-4 [12], the problem becomes severe because data

transmission takes a significant amount of time. As a promising

communication compression approach, signSGD [13–16] solely

uses an element’s sign to represent itself, where the number of

encoding bits for each real number is dramatically deducted, i.e.,

from single float precision (32 bits) to 1 bit.

Existing signSGD algorithms, albeit well-performed under PS,

have limited performance under MAR, especially when the model

is sufficiently large. Without a centralized coordinator to which

each node independently sends its data, information asymmetry

occurs when MAR leverages a sign matrix that includes all clients’

gradients through cascading compression. Each client inevitably

performs decompression and then compression operation for trans-

mission, accumulating errors. Although cascading compression

can converge at the end for a small-scale environment, empirical

studies in Table 1 manifest its poor performance in comparison

with the non-compressed algorithms. Also, more workers achieves

better performance in non-compressed PSGD, whereas leading to

divergence in the cascading compression scheme.

To alleviate information asymmetry, we propose a framework for

multi-hop all-reduce using sign-bit, named as Marsit. The core idea

is to achieve unbiased sign aggregation by means of an elaborate

bit-wise operation: The sign of an element remains unchanged if

and only if it has the same sign in both vectors, while it follows a

predefined probability distribution if it has different binary values.
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Such an operation supports that the reception and compression

processes can take place in parallel. Furthermore, we introduce a

global compensation mechanism to bridge the gap of compression

error. The design is to equalize the clients’ contribution towards

final gradient because data on the cloud can be shuffled and formed

an identical distribution among workers. To get rid of excess error

accumulation, we periodically operate a full-precision transmission.

Our contributions are summarized as follows:

• Based on the designed one-bit operator and the global compensa-

tion scheme, we implement Marsit to support one-bit transmis-

sion without cascading compression under MAR.

• We prove that the convergence rate for non-convex objectives

is 𝑂 (1/
√
𝑇𝑀) under RAR framework, where 𝑇 and𝑀 represent

the numbers of synchronizations and workers, respectively. The

theoretical result indicates that our algorithm achieves a linear

speedup simultaneously with respect to the number of workers.

To the best of our knowledge, this is the first work that addresses

information asymmetry under MAR;

• We conduct an empirical study to illustrate the effect of our pro-

posed algorithms on RAR and TAR. It is conductedwith ResNet-50

on ImageNet for image recognition. It reduces the communication

cost by around 90% as compared with non-compressed methods

while preserving the same convergence performance.

2 RELATEDWORKS
Quantization. At the cost of the gradient precision, quantiza-

tion approaches reduce the number of encoding bits for each real

number [17–19]. Although GradiVeQ [20] utilizes singular value

decomposition to achieve linear quantization under RAR, the pro-

cess requires considerable computation consumption such that the

receiving period cannot cover the time length of compression.

signSGD. As a promising approach, signSGD represents the ele-

ments of a gradient using their signs, which reduces the communi-

cation overhead by 32× at every iteration [21]. It has remarkable

performance under PS, including 1-bit Adam [16], SSDM [14] and

majority vote [13]. However, they are not suitable for MAR since

their aggregation process cannot guarantee within one bit at each

transmission.

Other communication compression approaches. There are various
approaches to reduce communication overhead, such as sparsifica-

tion [22, 23] and low rank [24]. However, these approaches may not

have well performance for MAR under some network topologies.

For instance, PowerSGD [24] requires to transmit multiple sequen-

tial vectors at a synchronization, which undermines the training

efficiency under RAR.

3 MOTIVATION
Objectives. Under an𝑀-worker MAR, the objective is to minimize

the cumulative expected loss, which can be formulated as

min

𝒙∈R𝑑
𝐹 (𝒙) = 1

𝑀

𝑀∑︁
𝑚=1

E𝜉𝑚∼D𝑚
[𝑓𝑚 (𝒙, 𝜉𝑚)]︸                     ︷︷                     ︸

:=𝐹𝑚 (𝒙)

, (1)

where D𝑚 is the local data distribution on worker𝑚, 𝑓𝑚 (𝒙, 𝜉𝑚) is
the empirical loss given parameter 𝒙 and stochastic sample 𝜉𝑚 from

D𝑚 , and 𝐹𝑚 (·) is an objective function. Given that the entire train-

ing locates in the cloud, we assume that all the local datasets have

an equal size. Since the objective function is randomly extracted

over a given data distribution, it is a common practice that the bias

does not exist between the expected loss and the empirical one.

3.1 Why Bit Length Expansion Occurs?
In a non-compressed algorithm, MAR naturally requires less com-

munication overhead than PS when synchronizing a model among

all nodes. For example, given a 𝐷-dimension neural network, RAR

requires the consumption of 2 × (𝑀 − 1) × 𝐷 weights, while PS

needs that of 2 ×𝑀 × 𝐷 . In Figure 1a, non-compressed approach

under RAR costs less time than the one under PS.

An operation compatible to MAR should be linear, which al-

lows workers directly aggregate without extra decompression-

compression process [24]. SSDM [14] is one of rare signSGD ap-

proaches that satisfy the requirement of linearity, where its aggre-

gation is to sum up all the sign bit. With the operation, workers

do not fit the transmission elements into one bit under MAR syn-

chronization, but with an upper bound of

⌈
log

2
𝑀
⌉
. As shown in

Figure 1a, such way spends longer time than its PS solution in trans-

mission period due to the growing size of transmission packages.

Therefore, the approach is not efficient under MAR settings and

we are dedicated to implementing a compression framework that

restricts the transmission size by only one bit.

3.2 Why Not Cascading Compression?
For a 𝐷-dimension vector 𝒈, SSDM [14] (denote by Q) compresses

an element 𝑔𝑖 (𝑖 ∈ {0, ..., 𝐷 − 1}) consistent with its sign following

the probability of
1

2
+ |𝑔𝑖 |∥𝒈 ∥2 , where ∥ · ∥ means ℓ2-norm. Apparently,

it is an unbiased compression method. To ensure each transmission

limited in one bit, a client performs the step-by-step sequence:

• Receive aggregated gradient segment(s), including correspond-

ing ℓ2-norm(s) and sign vector(s), from the last worker(s);

• Recover the gradient segment(s) as𝒘 for full precision;

• Aggregate local gradient 𝒗 with decompressed segment(s);

• Compress the assembled segment into a precision-loss one,

i.e., Q(𝒘 + 𝒗);
• Send the compressed segment to the next worker(s).

The workflow, named as cascading compression, is able to broadcast

and unify the updates among clients. Obviously, the expected result

of cascading compression is equivalent to the sum of all gradients.

However, cascading compression has two major shortcomings.

3.2.1 Overwhelming Time Consumption. In contrast to all-reduce
operation, cascading compression inevitably requires additional

decompression-compression steps, which spends more time on
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SSDM (PS)

SSDM (Overflow)
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PSGD (PS)
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(b) Matching rate

Figure 1: Training MNIST over AlexNet with 3 workers. The
comparison of existing approaches on an iteration’s train-
ing time length and matching rate.
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Figure 2: The workflow of Marsit under ring network topology with a total of three workers

synchronization. In Figure 1a, although the approach has signifi-

cant improvement in terms of communication, the decompression-

compression period consumes a large amount of time, making it

inefficient when comparing with the one uder PS and under all-

reduce operation.

3.2.2 Performance Deterioration. Notably, the second step cannot

actually represent the real aggregation results. In this case, the error

accumulates and spreads over the network, which deteriorates the

training performance. Besides, it is not suitable to use the ℓ2-norm

to achieve unbiased compression because its value is so large that

the new compressed sign is more likely biased to the received

one, even if the actual aggregation sign should be the opposite

one. As demonstrated in Figure 1b, among the applicable settings,

cascading compression has the lowest matching rate (i.e., around

56%) measured by the sign of non-compression aggregation value.

Following remark compares the performance between cascading

compression under RAR and centralized training under PS.

Remark.We assume that the ℓ2-norm of any gradients are bounded

by a non-negative scalar 𝐺 . Suppose SSDM [14] is achieved as un-

biased estimator under centralized training and cascading compres-

sion, where the expected update value is equivalent to the update

of non-compression algorithm. For training a deep neural network

where the value of 𝐷 is quite large, the upper bound of gradient

deviation, i.e., the Euclidean distance between the expected result

and the actual update, for cascading compression explodes rapidly

with𝑀 , while centralized training does not exist.
1

4 MARSIT
In this section, we first provide a holistic insight for Marsit. Then,

in Section 4.1 and Section 4.2, we present the technical details and

the theoretical analysis, respectively.

Due to the lack of centralized server under MAR, all workers

should maintain a global model locally, the parameters of which

are always consistent with others. Figure 2 illustrates the pipeline

of Marsit under RAR, a common paradigm for MAR using ring

1
The detailed proofs for the remark and Theorem 1 in this paper is available in the

appendix

network topology. Each worker possesses a compensation vector

and a gradient, and aggregates them into a standalone vector. Then,

they partition the vector into several segments and exchanges them

at the synchronization phase which consists of a reduce period

(highlighted in green and marked as R) and a gather period (high-

lighted in blue and marked as G). In the reduce period, i.e., R1 and

R2, a worker processes the received message with corresponding

local segment and sends it to the next worker. Here we exemplify

with R1 and depict the procedures in the gray box. The left part of

the gray box presents how the message transfers among workers,

while the right takes the message transferring from worker 3 to

worker 1 (highlighted in azure) as an example and exhibits how to

aggregate the received vector and the local vector. In the gather

period, i.e., G1 and G2, a worker substitutes corresponding local

segment with the received information and transmits it to the next

worker. The relevant processes have been widely adopted in [4, 5].

After the synchronization phase, all clients reach to a consensus

and holds the same gradient which is used to update the global

model and the local compensation vector.

4.1 Implementation Details
Here we discuss the key operations with in-depth justifications.

Generally, the workflow lies in two phases: one-bit synchronization

in each round to reduce the communication cost, and full-precision

synchronization executed every 𝐾 rounds to periodically eliminate

the error accumulation. The full implementation is given in Algo-

rithm 1 to demonstrate the workflow behind Marsit, and Algorithm

2 is to illustrate how we can apply Marsit to existing optimizers

like stochastic gradient descent (SGD).

4.1.1 Global Model Synchronization (Line 4–8 in Algorithm 1). No
matter which phase it is, Marsit synchronizes the gradients through

MAR. Full-precision synchronization has been widely discussed in

the previous studies [4–6, 25], which is equivalent to the aggrega-

tion result under PS, we mainly focus on the synchronization using

sign bit only in this part.

As illustrated in Figure 2, both receiving vector 𝑣𝑖 and local com-

pression 𝑣∗
𝑖
(Line 5 in Algorithm 1) run in parallel, which reduces a



Algorithm 1:Marsit (worker𝑚)

Require :Synchronization index 𝑡 , number of communication

rounds for full-precision synchronization 𝐾 , gradient

𝑔
(𝑚)
𝑡 , compensation vector 𝑐

(𝑚)
𝑡 , global stepsize 𝜂𝑠

1 Calculate the update by 𝑔
(𝑚)
𝑡 ← 𝑔

(𝑚)
𝑡 + 𝑐 (𝑚)𝑡 ;

2 Split 𝑔
(𝑚)
𝑛 into𝑀 parts, and denote by 𝑔

(𝑚)
𝑡,𝑖

,∀𝑖 ∈ {0, ..., 𝑀 − 1};
3 if mod(t, K) ≠ 0 then
4 for 𝑖 ← 0 to𝑀 − 1 do
5 Receive the sign vector 𝑣𝑖 in parallel with

• Calculate the sign vector by 𝑣∗
𝑖
← sgn

(
𝑔
(𝑚)
𝑡,𝑖

)
;

6 Update the transmission sign vector via 𝑣𝑖 ← 𝑣𝑖 ⊙ 𝑣∗𝑖 ;
7 Send 𝑣𝑖 to the next worker;

8 end
9 Aggregate the global update via 𝑔𝑡 ← 𝜂𝑠 ·

(⋃𝑀−1
𝑖=0 𝑣𝑖

)
;

10 Update compensation vector via 𝑐
(𝑚)
𝑡+1 ← 𝑔

(𝑚)
𝑡 − 𝑔𝑡 ;

11 else
12 Aggregate the global update via 𝑔𝑡 ← 1

𝑀

∑𝑀
𝑚=1 𝑔

(𝑚)
𝑡 ;

13 Update compensation vector via 𝑐
(𝑚)
𝑡+1 ← 0;

14 end
Return :The global update 𝑔𝑡 , compensation vector 𝑐

(𝑚)
𝑡+1

great amount of time in comparison with the cascading compres-

sion. Since both 𝑣𝑖 and 𝑣
∗
𝑖
are a sign-bit vector, a problem raises

on how to aggregate both vectors without additional compression-

decompression processes. Therefore, we define a novel bit-wise

operator ⊙ to ensure these two vectors compatible with each other.

In this update process, if an index on both vectors is the same, then

the transmission vector at this points remains unchanged. How-

ever, considering element inconsistency between 𝑣𝑖 and 𝑣
∗
𝑖
, we use

a transient vector, 𝑣 , which predetermines the transmitted binary

value when confronted with inconsistent elements. It follows a

Bernoulli distribution: Let 𝑏 𝑗 be the probability for the element 𝑗 of

vector 𝑣∗
𝑖
(denote by 𝑣∗

𝑖, 𝑗
) at worker𝑚 that marks as 1 in vector 𝑣 :

𝑏 𝑗 =

{
(𝑚 − 1)/𝑚 𝑣∗

𝑖, 𝑗
= 0

1/𝑚 𝑣∗
𝑖, 𝑗

= 1

Bernoulli

=⇒ 𝑣 𝑗 =

{
1 𝑝𝑟 = 𝑏 𝑗

0 Otherwise

(2)

Note that the process can take place in parallel with the receiving

stage but after the calculation of 𝑣∗
𝑖
. With the transient vector 𝑣 ,

the updated operator ⊙ between 𝑣𝑖 and 𝑣
∗
𝑖
should be expressed as:

𝑣𝑖 ⊙ 𝑣∗𝑖 = (𝑣𝑖 AND 𝑣∗
𝑖
) OR (𝑣𝑖 XOR 𝑣∗𝑖 AND 𝑣). By mathematical

analysis, the expected value of the sign bit is equivalent to the

average of the sign bits among all clients.

4.1.2 Global Model Update (Line 9 and Line 12 in Algorithm 1).
The value 𝑔𝑡 depends on whether the synchronization is under full

precision. If the transmission is sign-bit only, Line 9 returns 𝑔𝑡 that

comes from a vector of signs multiplying a global learning rate. As

for full-precision synchronization in Line 11, extra learning rate

is not necessary since 𝑔
(𝑚)
𝑡 has included the local stepsize. The

purpose for this update is to eliminate the accumulated error and

accelerate the training process. In Figure 3, we demonstrate there

exists a trade-off between the final accuracy and the additional

communication costs due to full precision synchronizations, by

choosing different system parameter 𝐾 .

Algorithm 2:Marsit-driven SGD (worker𝑚)

Input : Initial Point �̃�0, local stepsize 𝜂𝑙 , global stepsize 𝜂𝑠 ,
number of communication rounds for full-precision

synchronization 𝐾 , number of global synchronizations 𝑇

1 Initialize local compensation gradient 𝑐
(𝑚)
0
← 0;

2 for 𝑡 ← 0 to 𝑇 − 1 do
3 Randomly sample 𝜉

(𝑚)
𝑘

from local data D𝑚 ;

4 Compute local stochastic gradient 𝑔
(𝑚)
𝑡 ← ∇𝑓𝑚

(
�̃�𝑡 ; 𝜉

(𝑚)
𝑘

)
;

5 𝑔𝑡 , 𝑐
(𝑚)
𝑡+1 ← Marsit(𝑡 , 𝐾 , 𝜂𝑙𝑔

(𝑚)
𝑡 , 𝑐 (𝑚)𝑡 , 𝜂𝑠);

6 Update the parameters through �̃�𝑡+1 ← �̃�𝑡 − 𝑔𝑡 ;
7 end
Output :The final model �̃�𝑇
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(a) Epoch and Accuracy

𝐾
Time

(min)

Acc.

(%)

Bits

1 40.18 93.42 32

50 22.05 92.28 1.62

100 21.34 91.73 1.31

200 22.38 92.00 1.16

∞ 18.78 90.75 1

(b) Convergence results

Figure 3: Training CIFAR-10 over AlexNet by evaluating var-
ious values of 𝐾 . (a) indicates the relation between epoch
and accuracy; and (b) depicts the convergence result. 𝐾 =

∞ means 𝐾 is greater than the maximum communication
rounds, i.e., 400 in this case.

4.1.3 Global Compensation Mechanism (Line 10 and Line 13 in Al-
gorithm 1). At the beginning of the model training, we initialize

the local compensation gradient with a zero vector (Line 1 in Al-

gorithm 2) by default. All clients have the consensus on how to

update the global model, i.e., 𝑔𝑡 at Line 9 in Algorithm 1, which

is a vector containing binary value only to indicate the sign of

each element. Unlike traditional compensation approaches under

single-hop synchronization, a client in Marsit cannot obtain how

much it contributes to the aggregation under multi-hop synchro-

nization. Based on the independent and identical data distribution

on cloud training, every client compresses and obtains the same

gradient in expectation. Thus, we apply an identical local compen-

sation amount for each client, which then combines into the global

compensation. Considering the accumulated error could be quite

large, we periodically reset the error by means of full-precision

synchronization, where the compensation vector can be set to 0. As

we can see in Figure 3, although greater 𝐾 costs less time to reach

the stable point, they have smaller convergence accuracy. Also,

greater 𝐾 may not always speed up the convergence progress, for

instance, when 𝐾 changes from 100 to 200, more time is required

to realize the convergence feature.

4.2 Theoretical Guarantees
To theoretically analyze the convergence results for Marsit, we have

the following assumption for Problem (1), which are ubiquitously

applied to [14, 21, 23].

Assumption 1. Problem (1) satisfies the following constraints:



Model Dataset # parameters Batch size

Top-1 Accuracy (%)

PSGD signSGD EF-signSGD SSDM Marsit-100 Marsit

AlexNet CIFAR-10 23M 8192 82.38 80.74 82.25 81.89 82.30 81.58

ResNet-20 CIFAR-10 0.27M 8192 93.42 88.92 91.85 89.18 92.18 90.15

ResNet-18 ImageNet 11M 6144 69.18 67.17 68.14 68.10 68.96 68.40
ResNet-50 ImageNet 25M 6144 74.87 72.74 73.89 73.35 74.35 74.10
DistilBERT IMDb review 8.3B 512 92.16 89.12 90.57 91.41 90.13 90.26

Table 2: Accuracy of existing works on different models training for different datasets.

(1) Smoothness: All function 𝐹𝑚 (·)’s are continuous differentiable
and their gradient functions are 𝐿-Lipschitz continuous with 𝐿 > 0;

(2) Bounded variance: For any worker𝑚 and vector 𝒙 ∈ R𝑑 , there
exists a scalar 𝜎 ≥ 0 such that E𝜉∼D𝑚 ∥∇𝑓𝑚 (𝒙, 𝜉) − ∇𝐹𝑚 (𝒙) ∥22 ≤ 𝜎2.

Based on the preceding assumptions, the following theorem holds:

Theorem 1. Under Assumption 1, by setting local learning rate
for 𝜂𝑙 =

√︁
𝑀/𝑇 and the global learning rate 𝜂𝑠 =

√︁
1/𝑇𝐷 , the upper

bound for Algorithm 2 using RAR-based should be:

min

𝑡 ∈{0,...,𝑇−1}
E ∥∇𝐹 (�̃�𝑡 )∥22 ≤ O

(
1

√
𝑀𝑇

)
+ O

(
𝐾 (𝐾 + 1)

𝑇

)
where we treat 𝐹∗ − 𝐹 (�̃�1), 𝐿 and 𝜎 as constants.

Remark. Given that the value of 𝐾 is much smaller than the value

of 𝑇 , our approach can achieve a convergence rate of 𝑂 (1/
√
𝑀𝑇 ),

which achieves linear speedup with the number of the workers. In

other words, the more GPUs participate in the model training, the

faster Marsit reaches a stable point.

5 EXPERIMENTAL SETUP
We evaluate our proposed framework on scenarios that meet the

requirement of current industrial needs and cover the most rep-

resentative model training instances on the public clouds. In this

section, the problem we explore mainly lies in these two categories:

(i) whether there exists a significant accuracy drop in comparison

with non-compression methods; (ii) how fast a model achieves

convergence in comparison with existing compression approaches

under MAR.

Datasets, models and tasks. Our experiments consist of three

datasets: CIFAR-10 [26], ImageNet [3] and IMDb reviews [27]. The

first two datasets are frequently used for image classification and

consist of 60K 32×32 and 14M 224×224 colored images, respectively.

The last one is for sentiment analysis with 50K movie reviews.

The models vary among the datasets: AlexNet [28] and ResNet-20

[11] for CIFAR-10, ResNet-18 and ResNet-50 for ImageNet, and

DistilBERT [29] for IMDb reviews.

Implementation. The experiments are conducted onHuawei Cloud,

where we deploy a cluster with 32 nodes and each node carries 2

Nvidia T4 GPUs. The underlying training framework is supported

by Pytorch distributed computing package
2
. We implement Marsit

on RAR [4, 5], a classical MAR implementation over ring network

topology, and 2D-torus all-reduce (TAR), a state-of-the-art MAR

scheme over 2D-torus network topology. Marsit can be easily ex-

tended to other all-reduce paradigms including segmented-ring

all-reduce [25] and tree all-reduce [24].

2
https://pytorch.org/tutorials/intermediate/dist_tuto.html

Baselines. We implement multiple baselines to evaluate the per-

formance of Marsit. PSGD [7] is implemented under MAR with full

precision, i.e., 32 bits. For EF-signSGD [30], signSGD with majority

vote [21] and SSDM [14], we extend them to MAR by dynamically

changing the bit length. We also utilize Elias coding [31] to compact

the transmission message among nodes.

Optimizers and hyper-parameters. To reduce the frequency of

the communications among nodes, clients perform multiple local

updates between two successive synchronizations. The optimizer

for image classification task is Momentum, and Adam for sentiment

analysis. Marsit-100 refers to the setting where local gradients

operate full-precision synchronization every 100 communication

rounds (i.e., 𝐾 = 100), while Marsit does not have full-precision

synchronization. For ImageNet and CIFAR-10, the initial learning

rate is set to 0.1 and 0.03, respectively, and decays by a factor of

10 every full-precision synchronization. For DistilBERT, we use a

constant learning rate of 5e-5.

6 NUMERICAL RESULTS AND ANALYSIS
Performance Analysis. Table 2 summarizes Top-1 accuracy of all

test datasets. Compared to PSGD, the state-of-the-art compression

approaches suffer from a noticeable accuracy drop in both image

classification and sentiment analysis tasks. For instance, signSGD

has up to 5% decreasing. Moreover, in most cases, Marsit-100 and/or

Marsit outperforms the existing approaches and achieves nearly the

same final accuracy as PSGD. In CIFAR-10 training, Marsit with pe-

riodical full-precision synchronization (e.g., Marsit-100) has better

performance than the one without full-precision synchronization,

while they do not have distinct differences in both ImageNet and

IMDb review datasets.

Figure 4a shows time-to-accuracy performance for ResNet-50 on

ImageNet. Among these six approaches, non-compression approach,

i.e., PSGD, takes a large amount of time, while Marsit achieves large

speedups (1.5x) to reach a similar accuracy.

Communication Efficiency. Marsit has a significant reduction in

communication cost compared to the other five baselines. From

Figure 4b, our algorithm requires 90% less communication budget,

when compared to PSGD, and reduces communication cost by 70%,

when compared to the existing signSGD approaches. In the mean

time, with a smaller communication budget, our algorithm still

preserves the same convergence rate as other baselines.

In Figure 4b, given the same amount of communication overhead,

Marsit andMarsit-100 always have higher accuracy than other base-

lines. Specifically, when Marsit and Marsit-100 reach convergence,

other signSGD methods only attain accuracy around 50%.

https://pytorch.org/tutorials/intermediate/dist_tuto.html
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Figure 4: Experiments for training ResNet50 on ImageNet
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Figure 5: Experiments on training AlexNet for CIFAR-10 un-
der TAR and RAR

Performance under Various MAR settings. Figure 5 presents the
results of Marsit and its baselines under RAR and TAR. For each

method, we measure its average training time in each communica-

tion round and split the time into three phases, namely, computation

(grey), compression (red) and communication (blue). We notice that

Marsit introduces minor compression overheads to prepare for the

real-time aggregation. Among these six approaches, it is clear that

Marsit and/or Marsit-100 spends the least time in communication

compared with other baselines. For TAR paradigm, each baseline

takes less time to communicate. For RAR paradigm, the communi-

cation time dominates the computation time and Marsit requires

less training time between two successive synchronizations.

7 CONCLUSION
This paper proposes a synchronization framework, Marsit, that

achieves one-bit transmission under multi-hop all-reduce. In this

framework, we design a bit-wise operation to support the receiving

and the compression undertake simultaneously. Besides, we intro-

duce a global compensationmechanism tomitigate the compression

deviation. Based on the structure, we offer a theoretical guarantee

that it achieves the same convergence rate as the non-compression

approach using the optimizer of SGD. Empirical studies present

that our proposed approach can achieve a similar test accuracy to

the non-compression version while using less training time by 35%.
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A PROOF FOR CASCADING COMPRESSION
SSDM. An element 𝑣 𝑗 in vector 𝒗 is compressed for {+1,−1} following the probability that:

˜sign

(
𝑣 𝑗
)
=

{
+1, 𝑝𝑟 = 1

2
+ 𝑣𝑗

2∥𝒗 ∥
−1, 𝑝𝑟 = 1

2
− 𝑣𝑗

2∥𝒗 ∥

where ˜sign(·) refers to the compression operator. In such an operation, the expected value for ˜sign

(
𝑣 𝑗
)
is 𝑣 𝑗/∥𝒗∥. Therefore, E ˜sign(𝒗) = 𝒗/∥𝒗∥.

Since the ℓ2-norm ∥𝒗∥ is a constant, SSDM can achieve unbiased update with the gradient ∥𝒗∥ · ˜sign(𝒗), which we define as Q(𝒗).
Suppose the gradients calculated by all clients are 𝑠 (1) , ..., 𝑠 (𝑀) ∈ R𝐷 . Following lists various model updates, including

• Non-compression approach: 𝑠1
△
= 1

𝑀

∑𝑀
𝑚=1 𝑠

(𝑚)

• SSDM under PS: 𝑠2
△
= 1

𝑀

∑𝑀
𝑚=1 Q

(
𝑠 (𝑚)

)
• SSDM using cascading compression: 𝑠3

△
= 1

𝑀
Q

(
...Q

(
𝑠 (1)

)
+ ... + 𝑠 (𝑀)

)
︸                             ︷︷                             ︸
𝑀 recursive compressions

Since the compressor Q is unbiased, the equality that E(𝑠2) = E(𝑠3) = 𝑠1 holds. It is universally acknowledged that the update under MAR is

equivalent to that under PS. In this part, we aim to evaluate the deviation between the compression and the non-compression results, i.e.,

∥𝑠2 − 𝑠1∥2
2
for SSDM under PS and ∥𝑠3 − 𝑠1∥2

2
for SSDM using cascading compression. Prior to analyzing these two bounds, we introduce a

assumption that widely adopts in [14, 21]:

Assumption 2 (Bounded gradient). For any worker𝑚 ∈ {1, ..., 𝑀} and vector 𝒙 ∈ R𝐷 , a scalar 𝐺 ≥ 0 satisfies

E
𝑠 (𝑚)2

2

≤ 𝐺2 .

Next, we first analyze the upper bound for the deviation under PS paradigm:

Theorem 2. Under Assumption 2, the upper bound for ∥𝑠2 − 𝑠1∥2
2
is O(𝐷𝐺2).

Proof. Based on the expression of the variance,

E

 1

𝑀

𝑀∑︁
𝑚=1

Q
(
𝑠 (𝑚)

)
− 1

𝑀

𝑀∑︁
𝑚=1

𝑠 (𝑚)
2
2

= E

 1

𝑀

𝑀∑︁
𝑚=1

Q
(
𝑠 (𝑚)

)2
2

− E
 1

𝑀

𝑀∑︁
𝑚=1

𝑠 (𝑚)
2
2

≤ E
 1

𝑀

𝑀∑︁
𝑚=1

Q
(
𝑠 (𝑚)

)2
2

≤ 1

𝑀

𝑀∑︁
𝑚=1

𝑠 (𝑚)2
2

·
 ˜sign

(
𝑠 (𝑚)

)2
2

≤ 𝐷𝐺2

where the second last inequality is based on Cauchy–Schwarz inequality, and the last inequality follows Assumption 2 and the sign matrix

containing 𝐷 (+1)s or (−1)s, i.e.,
 ˜sign

(
𝑠 (𝑚)

)2
2

= 𝐷,∀𝑚 ∈ {1, ..., 𝑀}. □

Then, the following theorem analyzes the boundary of cascading compression:

Theorem 3. Under Assumption 2, the upper bound for the deviation of cascading compression is

∥𝑠3 − 𝑠1∥22 ≤
(2𝐷)𝑀𝐺2

𝑀
(3)

Proof. Similar to Theorem 2, we have:

E

 1

𝑀
Q

(
...Q

(
𝑠 (1)

)
+ ... + 𝑠 (𝑀)

)
− 1

𝑀

𝑀∑︁
𝑚=1

𝑠 (𝑚)
2
2

≤ E
 1

𝑀
Q

(
...Q

(
𝑠 (1)

)
+ ... + 𝑠 (𝑀)

)2
2

≤ 𝐷

𝑀2
E
Q (

...Q
(
𝑠 (1)

)
+ ... + 𝑠 (𝑀−1)

)
+ 𝑠 (𝑀)

2
2

≤ 2𝐷

𝑀2
E
Q (

...Q
(
𝑠 (1)

)
+ ... + 𝑠 (𝑀−1)

)2
2

+ 2𝐷𝐺2

𝑀2
≤ 𝐺2

𝑀2

𝑀∑︁
𝑚=1

(2𝐷)𝑚 ≤ 𝐺
2

𝑀
(2𝐷)𝑀

where the third last inequality is based on ∥𝑎 + 𝑏∥2
2
≤ 2∥𝑎∥2

2
+ 2∥𝑏∥2

2
and follows Assumption 2, while the last inequality is based on a

common sense that 𝐷 ≥ 1. Generally speaking, the dimension of a neural network is far larger than the number of workers, i.e., 𝐷 >> 𝑀 ,

and therefore, current bound is tighter than the result 𝐺2 (2𝐷)𝑀+1/𝑀2
. □



Obviously, when𝑀 = 1 such that the training under PS paradigms is equivalent to that under cascading compression, they have consistent

upper bound. Although both theorems show the upper bound, PS paradigm is unlike cascading compression approach that explodes rapidly

with respect to the number of workers𝑀 .

B PROOF FOR MARSIT (THEOREM 1)
By constructing an auxiliary array {𝑦} such that 𝑦𝑡 = 𝑥𝑡 −𝑐𝑡 , where 𝑐𝑡 =

∑𝑀
𝑚=1 𝑐

(𝑚)
𝑡 /𝑀 , we analyze its recursive function from the following

two aspects:

• 𝑐𝑡+1 = 0:

𝑦𝑡+1 = 𝑥𝑡+1 = 𝑥𝑡 −
1

𝑀

𝑀∑︁
𝑚=1

(
𝜂𝑙𝑔
(𝑚)
𝑡 + 𝑐 (𝑚)𝑡

)
= 𝑦𝑡 −

𝜂𝑙

𝑀

𝑀∑︁
𝑚=1

𝑔
(𝑚)
𝑡 (4)

• 𝑐𝑡+1 ≠ 0:

𝑦𝑡+1 = 𝑥𝑡+1 − 𝑐𝑡+1 = 𝑥𝑡 − 𝑔𝑡 −
1

𝑀

𝑀∑︁
𝑚=1

(
𝜂𝑙𝑔
(𝑚)
𝑡 + 𝑐 (𝑚)𝑡 − 𝑔𝑡

)
= 𝑦𝑡 −

𝜂𝑙

𝑀

𝑀∑︁
𝑚=1

𝑔
(𝑚)
𝑡 (5)

Let 𝑔𝑡 =
∑𝑀
𝑚=1 𝑔

(𝑚)
𝑡 /𝑀 and 𝑔

(𝑚)
𝑡 here only means ∇𝑓𝑚

(
𝑥𝑡 ; 𝜉

(𝑚)
𝑘

)
in this proof. Obviously, regardless the value of 𝑐𝑡+1, the recursive function

is 𝑦𝑡+1 = 𝑦𝑡 − 𝜂𝑙𝑔𝑡 . According to L-smooth assumption for the non-convex objectives, we have:

E𝐹 (𝑦𝑡+1) − 𝐹 (𝑦𝑡 ) ≤ E ⟨∇𝐹 (𝑦𝑡 ) , 𝑦𝑡+1 − 𝑦𝑡 ⟩ +
𝐿

2

E ∥𝑦𝑡+1 − 𝑦𝑡 ∥22

= −𝜂𝑙E ⟨∇𝐹 (𝑦𝑡 ) ,∇𝐹 (𝑥𝑡 )⟩ +
𝐿𝜂2
𝑙

2

E

 1

𝑀

𝑀∑︁
𝑚=1

𝑔
(𝑚)
𝑡

2
2

≤ −𝜂𝑙
2

(1 − 𝐿𝜂𝑙 ) ∥∇𝐹 (𝑥𝑡 )∥22 +
𝜂𝑙𝐿

2

2

E ∥𝑦𝑡 − 𝑥𝑡 ∥22 +
𝐿𝜂2
𝑙
𝜎2

2𝑀
(6)

where the last inequality is based on the unbiased estimator for the calculated gradient, i.e., ∇𝑓𝑚
(
𝑥𝑡 ; 𝜉

(𝑚)
𝑘

)
. Next, we will find the bound for

E ∥𝑦𝑡 − 𝑥𝑡 ∥22, which is equivalent to E ∥𝑐𝑡 ∥22. Algorithm 1 performs the full precision synchronization every 𝐾 rounds and therefore, there

exists a 𝑡0 > 𝑡 − 𝐾 such that 𝑐𝑡0 = 0. Following analyzes the case that 𝑐𝑡 is a non-zero vector:

E ∥𝑐𝑡 ∥22 = E ∥𝑐𝑡−1 + 𝜂𝑙𝑔𝑡−1 − 𝜂𝑠𝑔𝑡−1∥
2

2

≤
(
1 + 1

𝐾

)
E ∥𝑐𝑡−1∥22 + (1 + 𝐾)E ∥𝜂𝑙𝑔𝑡−1 − 𝜂𝑠𝑔𝑡−1∥

2

2

≤
𝑡−1∑︁
𝜏=𝑡0

(
1 + 1

𝐾

)𝑡−1−𝜏
· (1 + 𝐾)E ∥𝜂𝑙𝑔𝜏 − 𝜂𝑠𝑔𝜏 ∥22

≤ 3(1 + 𝐾) ·
𝑡−1∑︁
𝜏=𝑡0

E ∥𝜂𝑙𝑔𝜏 − 𝜂𝑠𝑔𝜏 ∥22

≤ 6𝜂2
𝑙
(1 + 𝐾)

𝑡−1∑︁
𝜏=𝑡0

E ∥𝑔𝜏 ∥22 + 6𝜂
2

𝑠 (1 + 𝐾)
𝑡−1∑︁
𝜏=𝑡0

E ∥𝑔𝜏 ∥22

= 6𝜂2
𝑙
(1 + 𝐾)

𝑡−1∑︁
𝜏=𝑡0

E ∥∇𝐹 (𝑥𝜏 )∥22 + 6𝜂
2

𝑙
(1 + 𝐾)𝐾 · 𝜎

2

𝑀
+ 6𝜂2𝑠 (1 + 𝐾)𝐾𝐷 (7)

where the first inequality is based on (𝑎 + 𝑏)2 ≤ (1 + 1

𝐾
)𝑎2 + (1 + 𝐾)𝑏2, and the last equality is according to ∥𝑔𝜏 ∥2

2
= 𝐷 because it is only

constituted with {+1,−1} for all 𝐷 dimensions. Suppose the optimal solution for the non-convex objective 𝐹 (·) is 𝐹∗. Therefore, plugging the
result from Equation 7 into Equation 6, and summing Equation 6 for all 𝑡s from 0 to 𝑇 , we have:

𝐹∗ − 𝐹 (𝑥0) ≤
𝑇−1∑︁
𝑡=0

(E𝐹 (𝑦𝑡+1) − 𝐹 (𝑦𝑡 ))

≤ −𝜂𝑙
2

(
1 − 𝐿𝜂𝑙 − 3𝐿2𝜂2𝑙 𝐾 (𝐾 + 1)

) 𝑇−1∑︁
𝑡=0

∥∇𝐹 (𝑥𝑡 )∥22 +
𝜂𝑙𝐿

2𝑇

2

(
6𝜂2
𝑙
(1 + 𝐾)𝐾 · 𝜎

2

𝑀
+ 6𝜂2𝑠 (1 + 𝐾)𝐾𝐷

)
+
𝐿𝜂2
𝑙
𝜎2𝑇

2𝑀

By setting 𝜂𝑙 =
√︁
𝑀/𝑇 and 𝜂𝑠 = 1/

√
𝑇𝐷 , and assuming that 𝑇 is sufficiently large, i.e., 𝑇 ≥ 9𝐿2𝐾2 (𝐾 + 1)2, we can obtain the desired

conclusion.
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