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ABSTRACT
Recent years, local differential privacy (LDP) has been adopted

by many web service providers like Google [23], Apple [33] and

Microsoft [15] to collect and analyse users’ data privately. In this

paper, we consider the problem of discrete distribution estimation

under local differential privacy constraints. Distribution estimation

is one of themost fundamental estimation problems, which is widely

studied in both non-private and private settings. In the local model,

private mechanisms with provably optimal sample complexity are

known. However, they are optimal only in the worst-case sense;

their sample complexity is proportional to the size of the entire

universe, which could be huge in practice. In this paper, we consider

sparse or approximately sparse (e.g. highly skewed) distribution,

and show that the number of samples needed could be significantly

reduced. This problem has been studied recently [1], but they only

consider strict sparse distributions and the high privacy regime.

We propose new privatization mechanisms based on compressive

sensing. Our methods work for approximately sparse distributions

and medium privacy, and have optimal sample and communication

complexity.

CCS CONCEPTS
• Security andprivacy→Privacy-preserving protocols; •Math-
ematics of computing→ Density estimation.

KEYWORDS
locally differential privacy, sparse distribution estimation, compres-

sive sensing.
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1 INTRODUCTION
Discrete distribution estimation [25, 27, 29] from samples is a fun-

damental problem in statistical analysis. In the traditional statistical

setting, the primary goal is to achieve best trade-off between sample

complexity and estimation accuracy. In many modern data analyti-

cal applications, the raw data often contains sensitive information,

e.g. medical data of patients, and it is prohibitive to release them

without appropriate privatization. Differential privacy is one of

the most popular and powerful definitions of privacy [21]. Tradi-

tional centralized model assumes there is a trusted data collector. In

this paper, we consider locally differential privacy (LDP) [8, 28, 40],

where users privatize their data before releasing it so as to keep

their personal data private even from data collectors. Recently, LDP

has been deployed in real world online platforms by several technol-

ogy organizations including Google [23], Apple [33] and Microsoft

[15]. For example, Google deployed their RAPPOR system [23] in

Chrome browser for analyzing web browsing behaviors of users in

a privacy-preserving manner. LDP has become the standard privacy

model for large-scale distributed applications and LDP algorithms

are now being used by hundreds of millions of users daily.

We study the discrete distribution estimation problem under LDP

constraints. The main theme in private distribution estimation is to

optimize statistical and computational efficiency under privacy con-

straints. Given a privacy parameter, the goal to achieve best tradeoff

between estimation error and sample complexity. In the local model,

the communication cost and computation time are also important

complexity parameters. This problem has been widely studied in

the local model recently [3, 3, 6, 20, 23, 25, 26, 30, 37, 40, 41]. Thus

far, the worst-case sample complexity, i.e., the minimum number

of samples needed to achieve a desired accuracy for the worst-

case distribution, has been well-understood [3, 37, 41]. However,

worst-case behaviors are often not indicative of their performance
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in practice; real-world inputs often contain special structures that

allow one to bypass such worst-case barriers.

In this paper, we consider sparse or approximately sparse dis-

tributions 𝑝 ∈ R𝑘 , which are perhaps the most natural structured

distributions. Let 𝑘 be the ambient dimensionality of the distribu-

tion. The goal in this setting is to achieve sublinear (in 𝑘) sample

complexity. This problem has been studied in [1] very recently.

Their method first applies one-bit Hadamard response from [3],

and then projects the final estimate to the set of sparse distributions;

it is proved that this simple idea leads to sample complexity that

only depends on the sparsity 𝑠 . However, there are still several prob-

lems left unresolved. First, the theoretical results in [1] only hold

for strictly sparse distributions, which is too restrictive for many

applications. Second, they only consider the high privacy regime.

A more subtle issue is that, from their algorithm and analyses, the

number of samples needed is implicitly assumed to be larger than 𝑘 .

This is because one-bit HR needs to partition the samples into more

than 𝑘 groups of the same size; otherwise the estimation proce-

dure is not well-defined. Therefore, their technique cannot achieve

sublinear sample complexity even if the distribution is extremely

sparse. It is unclear to us whether their projection-based techniques

can be modified to resolve all these problems. In this paper, we take

a different approach, which resolves the above issues in a unified

way. Our contributions are summarized as follows.

(1) We propose novel privatization schemes based on compres-
sive sensing (CS). Our new algorithms have optimal sample

and communication complexity simultaneously for sparse

distribution estimation. As far as we know, these are the first

LDP schemes that achieve this; and this is the first work to

apply CS techniques in LDP distribution estimation.

(2) Applying standard results in CS theory, our method is im-

mediately applicable to estimating approximately sparse dis-

tributions.

(3) We also generalize our techniques to handle medium privacy

regimes using ideas from model-based compressive sensing.

Our main idea is to do privatization and dimensionality reduction

simultaneously, and then perform distribution estimation in the

lower dimensional space. This can reduce the sample complexity

because the estimation error depends on the dimensionality of the

distribution. The original distribution is then recovered from the

low-dimensional one using tools from compressive sensing. We call

this technique compressive privatization (CP).

1.1 Problem Definition and Results
We consider 𝑘-ary discrete distribution estimation. W.l.o.g., we as-

sume the target distribution is defined on the universe X = [𝑘] :=
[1, 2, · · · , 𝑘], which can be viewed as a 𝑘-dimensional vector 𝑝 ∈ R𝑘
with ∥𝑝 ∥

1
= 1. Let Δ𝑘 be the set of all 𝑘-ary discrete distributions.

Given 𝑛 i.i.d. samples, 𝑋1, · · · , 𝑋𝑛 , drawn from the unknown distri-

bution 𝑝 , the goal is to provide an estimator 𝑝 such that 𝑑 (𝑝, 𝑝) is
minimized, where 𝑑 (, ) is typically the ℓ1 or ℓ2 norm.

Local privacy. In the local model, each 𝑋𝑖 is held by a different

user. Each user will only send a privatized version of their data

to the central server, who will then produces the final estimate. A

privatization mechanism is a randomized mapping 𝑄 that maps

𝑥 ∈ X to 𝑦 ∈ Y with probability 𝑄 (𝑦 |𝑥) for some output set Y.
The mapping𝑄 is said to be 𝜀-locally differential private (LDP) [20]

if for all 𝑥, 𝑥 ′ ∈ X and 𝑦 ∈ Y, we have
𝑄 (𝑦 |𝑥)
𝑄 (𝑦 |𝑥 ′) ≤ 𝑒

𝜀 .

LDP distribution estimation. Let 𝑌 = (𝑌1, 𝑌2, · · ·𝑌𝑛) ∈ Y𝑛 be

the privatized samples obtained by applying𝑄 on𝑋 = (𝑋1, · · · , 𝑋𝑛).
Given privacy parameter 𝜀, the goal of LDP distribution estimation

is to design an 𝜀-LDP mapping 𝑄 and a corresponding estimator

𝑝 : Y𝑛 → Δ𝑘 , such that E[𝑑 (𝑝, 𝑝)] is minimized. Given 𝜀 and 𝛼 , we

are most interested in the number of samples needed (as a function

of 𝜀 and 𝛼) to assure 𝜀-LDP and E[𝑑 (𝑝, 𝑝)] ≤ 𝛼 .

Sparsity. A discrete distribution 𝑝 ∈ △𝑘 is called 𝑠-sparse if the

number of non-zeros in 𝑝 is at most 𝑠 . Let [𝑝]𝑠 be the 𝑠-sparse vector
that contains the top-𝑠 entries of 𝑝 . We say 𝑝 is approximately (𝑠, 𝜆)-
sparse, if ∥𝑝 − [𝑝]𝑠 ∥1 ≤ 𝜆.

Our results. For the high privacy regime, i.e., 𝜀 = 𝑂 (1), existing
studies [3, 23, 25, 37, 40, 41] have achieved optimal sample com-

plexity, which is Θ
(
𝑘2

𝛼2𝜀2

)
for ℓ1 norm error and Θ

(
𝑘

𝛼2𝜖2

)
for ℓ2

norm error. These worst-case optimal bounds have a dependence

on 𝑘 . Our result (informal) for the high privacy regime is summa-

rized as follows; see Theorem 2.2 for exact bounds and results for

approximately sparse distributions.

Theorem 1.1 (Informal). For any 0 < 𝜀 < 1 and 𝛼 > 0, there
is an 𝜀-LDP scheme 𝑄 , which produces an estimator 𝑝 with error
guarantee 𝑑 (𝑝, 𝑝) ≤ 𝛼 . If 𝑝 is 𝑠 sparse, then the sample complexity of

𝑄 is 𝑂
(
𝑠2 log(𝑘/𝑠)

𝜀2𝛼2

)
for ℓ1 error and 𝑂

(
𝑠 log(𝑘/𝑠)
𝜀2𝛼2

)
for ℓ2 error.

We provide two different sample optimal privatization methods;

the first one has one-bit communication cost and the other one is

symmetric (i.e. all users perform the same privatization scheme)

but at the cost of using logarithmic communication. Symmetric

mechanisms could be beneficial in some distributed settings; it is

proved that the communication cost overhead cannot be avoided

[2]. Our CS-based technique can be extended to the medium privacy

regime with 1 ≤ 𝜀 ≤ log 𝑠 (see Section 4). The result is summarized

in the following theorem. See Theorem 4.3 for exact bounds.

Theorem 1.2 (Informal). For any 1 ≤ 𝑒𝜀 , 2𝑏 ≤ 𝑠 and 𝛼 > 0,
there is an 𝜀-LDP scheme𝑄 , which produces an estimator 𝑝 with error
guarantee 𝑑 (𝑝, 𝑝) ≤ 𝛼 with communication no more than 𝑏 bits. If 𝑝

is 𝑠 sparse, then the sample complexity of 𝑄 is𝑂 ( 𝑠2 log𝑘/𝑠
min{𝑒𝜀 ,2𝑏 }𝛼2

) for ℓ1
error and 𝑂 ( 𝑠 log𝑘/𝑠

min{𝑒𝜀 ,2𝑏 }𝛼2
) for ℓ2 error.

This result provides a characterization on the relationship be-

tween accuracy, privacy, and communication, which is nearly tight.

A tight and complete characterization for dense distribution esti-

mation was obtained in [14].

1.2 Related work
Differential privacy is the most widely adopted notion of privacy

[21]; a large body of literature exists (see e.g. [22] for a comprehen-

sive survey). The local model has become quite popular recently

[8, 28, 40]. The distribution estimation problem considered in this
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paper has been studied in [3, 6, 14, 20, 23, 25, 26, 30, 37, 38, 40, 41].

Among them, [3, 37, 38, 41] have achieved worst-case optimal sam-

ple complexity over all privacy regime. [14] provides a tight charac-

terization on the trade-off between estimation accuracy and sample

size under fixed privacy and communication constraints. Their

results are tight for all privacy regimes, but have not considered

sparsity. Kairouz et al. [25] propose a heuristic called projected de-

coder, which empirically improves the utility for estimating skewed

distributions. They also propose a method to deal with open al-

phabets, which also reduces the dimensionality of the original

distribution first by using hash functions. However, hash functions

are not invertible, so they use least squares to recover the original

distribution, which has no theoretical guarantee on the estimation

error even for sparse distributions. Recently, [1] studied the same

problem as in this work. Their method combined one-bit Hadamard

response with sparse projection onto the probability simplex. Their

methods have provable theoretical guarantees but there are some

technical limitations. They also proposed a method, which com-

bined sparse projection with RAPPOR [23]. It achieves optimal

sample complexity, but the communication complexity of RAPPOR

is 𝑂 (𝑘) bits for each user, where 𝑘 is the domain size of the distri-

bution. Recently, [24] lowered the communication complexity of

RAPPOR to𝑂 (log𝑘) by employing pseudo random generator. This

result is still worse than ours, which only requires 1 bit for each

user. The heavy hitter problem, which is closely related to distri-

bution estimation, is also extensively studied in the local privacy

model [2, 7, 9, 39]. [36] studies 1-sparse linear regression under LDP

constraints. Statistical mean estimation with sparse mean vector is

also studied under local privacy, e.g. [5, 19].

1.3 Preliminaries on Compressive Sensing
Let 𝑥 be an unknown 𝑘-dimensional vector. The goal of compressive

sensing (CS) is to reconstruct 𝑥 from only a few linear measure-

ments [11, 13, 16]. To be precise, let 𝐵 ∈ R𝑚×𝑘 be the measurement

matrix with𝑚 ≪ 𝑘 and 𝑒 ∈ 𝑅𝑚 be an unknown noise vector, given

𝑦 = 𝐵𝑥 + 𝑒 , CS aims to recover a sparse approximation 𝑥 of 𝑥 from

𝑦. This problem is ill-defined in general, but when 𝐵 satisfies some

additional properties, it becomes possible [13, 16]. In particular, the

Restricted Isometry Property (RIP) is widely used.

Definition 1 (RIP). The matrix 𝐵 satisfies (𝑠, 𝛿)-RIP property if
for every 𝑠-sparse vector 𝑥 ,

(1 − 𝛿) ∥𝑥 ∥
2
≤ ∥𝐵𝑥 ∥

2
≤ (1 + 𝛿) ∥𝑥 ∥

2
.

We will use the following results from [10]

Lemma 1.3. If𝐵 satisfies (2𝑠, 1/
√
2)-RIP. Given𝑦 = 𝐵𝑥+𝑒 , there is a

polynomial time algorithm, which outputs 𝑥 that satisfies ∥𝑥 − 𝑥 ∥
2
≤

𝐶√
𝑠
∥𝑥 − [𝑥]𝑠 ∥1 + 𝐷 ∥𝑒 ∥2 for some constant 𝐶, 𝐷 .

For the medium privacy regime, we will use the notion of hier-

archical sparsity and a model-based RIP condition [31, 32].

Definition 2 (Hierarchical sparsity [31]). Let 𝑥 be a 𝑘1𝑘2-
dimensional vector consists of 𝑘1 blocks, each of size 𝑘2 (e.g., 𝑥 =

[𝑥 (1) , · · · , 𝑥 (𝑘1) ]). Then 𝑥 is (𝑠, 𝜎)-hierarchically sparse if at most 𝑠
blocks have non-zero entries and each of these blocks is 𝜎-sparse.

Definition 3 (HiRIP [31]). A matrix 𝐴 ∈ R𝑚×𝑘 , where 𝑘 =

𝑘1 × 𝑘2, is (𝑠, 𝜎)-HiRIP with constant 𝛿 if for all (𝑠, 𝜎)-hierarchically
sparse vectors 𝑥 ∈ R𝑘1𝑘2 , we have

(1 − 𝛿)∥𝑥 ∥2 ≤ ∥𝐴𝑥 ∥2 ≤ (1 + 𝛿)∥𝑥 ∥2 . (1)

Theorem 1.4 (HiRIP of Kronecker product [31]). For any
matrix𝐴 ∈ R𝑀×𝐾 that is (𝑠, 𝛿1) -RIP and any matrix 𝐵 ∈ R𝑚×𝑘 that
is (𝜎, 𝛿2)-RIP, 𝐴 ⊗ 𝐵 ∈ R𝑀𝑚×𝐾𝑘 satisfies (𝑠, 𝜎)-HiRIP with constant
𝛿𝑠,𝜎 ≤ 𝛿1 + 𝛿2 + 𝛿1𝛿2.

Theorem 1.5 (Recovery guarantee for hierarchically sparse

vectors [32]). Suppose matrix 𝐴 ∈ R𝑚×𝑘 (𝑘 = 𝑘1 × 𝑘2) is (3𝑠, 2𝜎)-
HiRIP with constant 1√

3

. Given 𝑦 = 𝐴𝑥 + 𝑒 where 𝑥 ∈ R𝑘 is (𝑠, 𝜎)-
hierarchically sparse, there is a polynomial time algorithm, which
outputs 𝑥 satisfying ∥𝑥 − 𝑥 ∥2 ≤ 𝐶 ∥𝑒 ∥2 for some constant 𝐶 .

2 ONE-BIT COMPRESSIVE PRIVATIZATION
To estimate sparse distributions, Acharya et al. [1] simply add a

sparse projection operation at the end of the one-bit HR scheme

proposed in [2].

One-bit HR. The users are partitioned into 𝐾 groups of the same

size deterministically, with 𝐾 being the smallest power of 2 larger

than 𝑘 . Let 𝑆1, · · · , 𝑆𝐾 be the groups. Since the partition can be

arbitrary, we assume 𝑆 𝑗 := {𝑖 ∈ [𝑛] | 𝑖 ≡ 𝑗 mod 𝐾}. Let 𝐻𝐾 be the

𝐾 × 𝐾 Hadamard matrix and 𝐻𝑖, 𝑗 be the (𝑖, 𝑗)-entry. In one-bit HR,

each user 𝑖 in group 𝑆 𝑗 with a sample 𝑋𝑖 sends a bit 𝑌𝑖 ∈ {0, 1}
distributed as

Pr (𝑌𝑖 = 1) =
{

𝑒𝜀

𝑒𝜀+1 , 𝐻 𝑗,𝑋𝑖 = 1,
1

𝑒𝜀+1 , 𝐻 𝑗,𝑋𝑖 = −1.
(2)

Let 𝑡 𝑗 := 𝑃 (𝑌𝑖 = 1|𝑖 ∈ 𝑆 𝑗 ) for 𝑗 ∈ [𝐾] and t := (𝑡1, · · · , 𝑡𝐾 ). The key
observation is that

𝑒𝜀 + 1
𝑒𝜀 − 1 (2t − 1K) = 𝐻𝐾 · 𝑝. (3)

Let t̂ := (𝑡1, · · · , 𝑡𝐾 ) where 𝑡 𝑗 := 1

|𝑆 𝑗 |
∑
𝑖∈𝑆 𝑗 𝑌𝑖 is the fraction of mes-

sages from 𝑆 𝑗 that are 1. Then t̂ is an unbiased empirical estimator

of t; and 𝑝 = 𝑒𝜀+1
𝐾 (𝑒𝜀−1)𝐻

𝑇
𝐾
(2t−1K) is an unbiased estimate of 𝑝 since

1

𝐾
𝐻𝑇
𝐾
𝐻𝐾 = 𝐼 .

We note that to make the above estimation process well-defined,

the number of samples 𝑛 must be larger than 𝐾 , since otherwise

some group 𝑆 𝑗 will be empty and the corresponding 𝑡 𝑗 is undefined.

Moreover, the proof of [1] relies on the fact that each 𝑡 𝑗 is the

average of |𝑆 𝑗 | i.i.d. Bernoulli random variables, which implies

𝑡 𝑗 − 𝑡 𝑗 is sub-Gaussian with variance
1

|𝑆 𝑗 | . However, if the group

𝑆 𝑗 is empty, this doesn’t hold anymore.

One bit compressive privatization. To resolve the above issue,

our scheme doesn’t apply one-bit HR but a variant of it. The in-

tuition of our compressive privatization mechanism is that when

the distributions are restricted to be sparse, by the theory of com-

pressive sensing, one can use far fewer linear measurements to

recovery a sparse vector. In our CP method (shown in Algorithm

1), we do not require the response matrix to be invertible as the

Hadamard matrix used in one-bit HR. Any matrix𝐴 ∈ {−1, +1}𝑚×𝑘
that satisfies the RIP condition will suffice. More specifically, given
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Algorithm 1: 1-bit Compressive privatization

Result: 𝑝 ∈ Δ𝑘 : an estimate of 𝑝

Input: 𝑋1, · · ·𝑋𝑛 i.i.d from 𝑝 , privacy parameter 𝜀, sparsity

𝑠 , measurement matrix 𝐴 ∈ R𝑚×𝑘
1 For 𝑥 ∈ [𝑚], let 𝐵𝑥 := {𝑦 ∈ [𝑘] : 𝐴(𝑥,𝑦) = 1} be the

columns where the 𝑥th row has 1.

2 Divide the 𝑛 users into𝑚 sets 𝑆1, · · · , 𝑆𝑚 deterministically

by assigning all 𝑖 ≡ 𝑗 mod𝑚 to 𝑆 𝑗 for 𝑖 ∈ [𝑛].
3 ∀𝑗 ∈ [𝑚] and ∀𝑖 ∈ 𝑆 𝑗 , the distribution of the one-bit

message 𝑌𝑖 is

Pr (𝑌𝑖 = 1) =
{

𝑒𝜀

𝑒𝜀+1 , 𝑋𝑖 ∈ 𝐵 𝑗
1

𝑒𝜀+1 , otherwise

(4)

Let t̂ := (𝑡1, · · · , 𝑡𝑚) where ∀𝑗 ∈ [𝑚], 𝑡 𝑗 := 1

|𝑆 𝑗 |
∑
𝑖∈𝑆 𝑗 𝑌𝑖 is

the fraction of messages from 𝑆 𝑗 that are 1.

4 Apply Lemma 1.3, with 𝑦 = 𝑒𝜀+1√
𝑚 (𝑒𝜀−1) (2t̂ − 1𝑚), 𝐵 = 1√

𝑚
𝐴

and sparsity 𝑠; let 𝑝 be the output

5 Compute the projection of 𝑝 onto Δ𝑘 , denoted as 𝑝 .

target sparsity 𝑠 , we require 1√
𝑚
𝐴 to satisfy (𝑠, 1/

√
2)-RIP. The pri-

vatization scheme for each user is almost the same as in one-bit

HR, with the Hadamard matrix being replaced by the matrix 𝐴

above; and clearly this also satisfies 𝜀-LDP. In this case, the relation

between t and 𝑝 in (3) now becomes to

𝑒𝜀 + 1
𝑒𝜀 − 1 (2t − 1m) = 𝐴 · 𝑝. (5)

On the server side, since 𝐴 is not necessarily invertible, we need to

use sparse recovery algorithms to estimate 𝑝 . More specifically, we

reformulate (5) as

𝑒𝜀 + 1
√
𝑚(𝑒𝜀 − 1)

(2t̂ − 1𝑚) =
1

√
𝑚
𝐴 · 𝑝 + 2(𝑒𝜀 + 1)

√
𝑚(𝑒𝜀 − 1)

(t̂ − t). (6)

Then we can directly apply Lemma 1.3 to compute a sparse vector 𝑝 ,

with 𝑙2 error, i.e. ∥𝑝 − 𝑝 ∥2, proportional to 2(𝑒𝜀+1)√
𝑚 (𝑒𝜀−1) ∥ t̂ − t∥2. Note

E[∥ t̂ − t∥2] is the MSE of the empirical estimator t̂, which only

depends on𝑚 rather than on 𝑘 . Moreover, Lemma 1.3 can handle

approximately sparse vectors, and thus the above argument is im-

mediately applicable to the setting when 𝑝 is only approximately

sparse. The result is summarized in the following theorem.

Theorem 2.1 (high privacy regime). Given any matrix 𝐴 ∈
{±1}𝑚×𝑘 with 1√

𝑚
𝐴 satisfies (𝑠, 1/

√
2)-RIP, assume 𝜀 = 𝑂 (1) and

𝑝 is 𝑠-sparse, then for a target error 𝛼 , the sample complexity of
our method is 𝑂 ( 𝑚

𝜀2𝛼2
) for ℓ2 error and 𝑂 ( 𝑠𝑚𝜀2𝛼2

) for ℓ1 error. The ℓ2
result also holds for (𝑠,

√
𝑠𝛼)-sparse 𝑝 and the ℓ1 result also holds for

(𝑠, 𝛼)-sparse 𝑝 . The communication cost for each user is 1 bit.

Proof. We first consider the case for ℓ2 error. Since Δ𝑘 is convex,
∥𝑝 − 𝑝 ∥2 ≤ ∥𝑝 − 𝑝 ∥2. By Lemma 1.3, we know:

E [∥𝑝 − 𝑝 ∥2] ≤
𝐶
√
𝑠
∥𝑝 − [𝑝]𝑠 ∥1 + 𝐷 ·

2(𝑒𝜀 + 1)
√
𝑚(𝑒𝜀 − 1)

E
[
∥ t̂ − t∥2

]
,

(7)

where 𝐶 and 𝐷 are absolute constants. Since t̂ is an empirical esti-

mator of t, we have

E2
[
∥ t̂ − t∥2

]
≤ E

[
∥ t̂ − t∥2

2

]
=

𝑚∑︁
𝑦=1

1

|𝑆𝑦 |2
∑︁
𝑗 ∈𝑆𝑦

Var(𝑌𝑗 ) ≤
𝑚2

4𝑛
, (8)

where the first inequality is from Jensen’s inequality and the last

inequality is from that 𝑌𝑗 ∈ {0, 1}. Combining (7) and (8) yields

that,

E [∥𝑝 − 𝑝 ∥2] ≤
𝐶
√
𝑠
∥𝑝 − [𝑝]𝑠 ∥1 + 𝐷 ·

𝑒𝜀 + 1
𝑒𝜀 − 1

√︂
𝑚

𝑛
. (9)

When 𝑝 is 𝑠 sparse, the first term in (9) is 0. Thus, when 𝑛 ≥ 𝑏𝑚
𝛼2𝜀2

for some large enough constant 𝑏, the expected ℓ2 error is at most 𝛼 .

For (𝑠,
√
𝑠𝛼)-sparse 𝑝 , the first error term in (9) is bounded by𝑂 (𝛼),

thus the result still holds for approximately sparse case. For ℓ1 error,

we use 𝐿1 projection in the final step, which means projection by

minimizing 𝐿1 distance. In this way, when 𝑝 is 𝑠 sparse, we have

∥𝑝 − 𝑝 ∥1 ≤ ∥𝑝 − 𝑝 ∥1 + ∥𝑝 − 𝑝 ∥1 ≤ 2∥𝑝 − 𝑝 ∥1 ≤ 2

√
2𝑠 ∥𝑝 − 𝑝 ∥2

(10)

where the first inequality is from triangle inequality, the second

inequality is from the 𝐿1 projection and the last inequality is from

Cauchy-Schwartz and the fact that 𝑝−𝑝 is 2𝑠-sparse. Thus to achieve
an ℓ1 error of 𝛼 , it’s sufficient to get an estimate with 𝛼 ′ = 𝛼/

√
𝑠

error for ℓ2. The sample complexity is 𝑂 (𝑠𝑚/𝜀2𝛼2). For ℓ1 error

with 𝑝 being (𝑠, 𝛼)-sparse, now 𝑝 − 𝑝 is (2𝑠, 𝛼)-sparse. We have

∥𝑝 − 𝑝 ∥1 = ∥ [𝑝 − 𝑝]2𝑠 ∥1 + ∥(𝑝 − 𝑝) − [𝑝 − 𝑝]2𝑠 ∥1
≤
√
2𝑠 ∥𝑝 − 𝑝 ∥2 + 𝛼.

Then, the ℓ1 result follows by a similar argument as for the exact

sparse case. □

2.1 Guarantees on Random Matrices
The measurement matrix we use is 𝐵 = 1√

𝑚
𝐴, where the entries of

𝐴 ∈ {−1, +1}𝑚×𝑘 are i.i.d. Rademacher random variables, i.e., takes

+1 or −1with equal probability. It is known that for𝑚 ≥ 𝑂 (𝑠 log 𝑘𝑠 ),
𝐵 satisfies (𝑠, 1/

√
2)-RIP with probability 1 − 𝑒−𝑚 [4]. By Theorem

2.1, we have the following theorem.

Theorem 2.2. For𝑚 = 𝑂

(
𝑠 log 𝑘𝑠

)
and 𝜀 = 𝑂 (1), if the entries

of 𝐴 are i.i.d. Rademacher random variables, then with probability

at least 1 − 𝑒−𝑚 , our method has sample complexity 𝑂
(
𝑠 log (𝑘/𝑠)
𝜀2𝛼2

)
for ℓ2 error, and 𝑂

(
𝑠2 log (𝑘/𝑠)

𝜀2𝛼2

)
for for ℓ1 error. The ℓ2 result holds

for (𝑠,
√
𝑠𝛼)-sparse 𝑝 and the ℓ1 result holds for (𝑠, 𝛼)-sparse 𝑝 . The

communication cost for each user is 1 bit.

Lower bound. [1] proves a lower bound of 𝑛 = Ω( 𝑠
2
log (𝑘/𝑠)
𝜀2𝛼2

) on
the sample complexity for ℓ1 error with 𝜀 = 𝑂 (1). This matches our

bound up to a constant.

3 SYMMETRIC COMPRESSIVE
PRIVATIZATION

The one-bit compressive privatization scheme is asymmetric, where

users in different groups apply different privatization schemes. In
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this section, we introduce a symmetric version of compressive pri-

vatization, which could be easier to implement in real applications.

To estimate an unknown distribution 𝑝 ∈ R𝑘 , all previous sym-

metric LDP mechanisms essentially apply a probability transition

matrix 𝑄 mapping 𝑝 to 𝑞, where 𝑞 is the distribution of the priva-

tized samples. The central server get 𝑛 independent samples from

𝑞, from which it computes an empirical estimate of 𝑞, denoted as

𝑞, and then computes an estimator of 𝑝 from 𝑞 by solving 𝑄𝑝 = 𝑞.

The key is to design an appropriate 𝑄 such that it satisfies privacy

guarantees and achieves low recovery error. The error of 𝑝 = 𝑄−1𝑝
is dictated by the estimation error of 𝑞 and the spectral norm of𝑄−1.
In our symmetric scheme, we map 𝑝 to a much lower dimensional

𝑞, and then 𝑞 with similar estimation error can be obtained with

much less number of samples. However, now 𝑄 is not invertible; to

reconstruct 𝑝 from 𝑞, we use sparse recovery [12, 13].

Privatization. Our mechanism 𝑄 is a mapping from [𝑘] to [𝑚].
For each 𝑥 ∈ [𝑘], we pick a set 𝐶𝑥 ⊆ [𝑚], which will be specified

later, and let 𝑛𝑥 = |𝐶𝑥 |. Our privatization scheme 𝑄 is given by the

conditional probability of 𝑦 given 𝑥 :

𝑄 (𝑦 |𝑥) :=
{

𝑒𝜀

𝑛𝑥𝑒
𝜀+𝑚−𝑛𝑥 if 𝑦 ∈ 𝐶𝑥 ,
1

𝑛𝑥𝑒
𝜀+𝑚−𝑛𝑥 if 𝑦 ∈ [𝑚]\𝐶𝑥 .

(11)

Note 𝑄 (𝑦 |𝑥) is an 𝑚-ary distribution for any 𝑥 ∈ [𝑘]. For each
𝑥 ∈ [𝑚], we define its incidence vector as 𝐼𝑥 ∈ {−1, +1}𝑚 such

that 𝐼𝑥 ( 𝑗) = +1 iff 𝑗 ∈ 𝐶𝑥 . Let 𝐴 ∈ R𝑚×𝑘 be the matrix whose 𝑥-th

column is 𝐼𝑥 . Each user 𝑖 with a sample 𝑋𝑖 generates 𝑌𝑖 according

to (11) and then send 𝑌𝑖 to the server with communication cost

𝑂 (log𝑚) bits.

Sufficient conditions for 𝑄 . The difference between our mecha-

nism, RR [40] and HR [3] is the choice of each 𝐶𝑥 , or equivalently

the matrix 𝐴. In RR, 𝐶𝑥 = {𝑥} for all 𝑥 ∈ [𝑘], while in HR, 𝐴 is

the Hadamard matrix. In our privatization method, any matrix 𝐴

whose column sums are close to 0 and that satisfies RIP will suffice.

More formally, given target error 𝛼 , privacy parameter 𝜀 and target

sparsity 𝑠 , we require 𝐴 to have the following 2 properties:

• P1: (1 − 𝛽)𝑚
2
≤ 𝑛𝑖 ≤ (1 + 𝛽)𝑚

2
for all 𝑖 ∈ [𝑘], with 𝛽 ≤ 𝜀

2

and 𝛽 ≤ 𝑐𝛼 for some 𝑐 depending on the error norm.

• P2: 1√
𝑚
𝐴 satisfies (𝑠, 𝛿)-RIP, where 𝑠 is the target sparsity

and 𝛿 ≤ 1/
√
2.

In [3], Hadamard matrix is used to specify each set𝐶𝑥 . The propor-

tion of +1 entries is exactly half in each column of 𝐻 (except for

the first column), and thus P1 is automatically satisfied with 𝛽 = 0.

Since Hadamard matrix is othornormal, it is (𝑘, 0)-RIP.

3.1 Estimation Algorithm
We first show how to model the estimation of 𝑝 as a standard

compressive sensing problem. Recall 𝑛𝑖 is the number of +1’s in
the 𝑖th column of 𝐴. Let 𝑞 ∈ Δ𝑚 be the distribution of a privatized

sample, given that the input sample is distributed according to

𝑝 ∈ Δ𝑘 . Then, for each 𝑗 ∈ [𝑚], we have

𝑞 𝑗 =

𝑘∑︁
𝑖=1

𝑝𝑖 ·𝑄 (𝑌 = 𝑗 |𝑋 = 𝑖)

=
∑︁
𝑖:𝑗 ∈𝐶𝑖

𝑒𝜀 · 𝑝𝑖
𝑛𝑖𝑒

𝜀 +𝑚 − 𝑛𝑖
+

∑︁
𝑖:𝑗 ∈[𝑘 ]\𝐶𝑖

𝑝𝑖

𝑛𝑖𝑒
𝜀 +𝑚 − 𝑛𝑖

.

By writing the above formula in the matrix form, we get

𝑞 =

(
𝑒𝜀 − 1

2

𝐴 + 𝑒
𝜀 + 1
2

𝐽

)
𝐷𝑝, (12)

where 𝐽 ∈ R𝑚×𝑘 is the all-one matrix and 𝐷 is the diagonal matrix

with 𝑑𝑖 =
1

𝑛𝑖𝑒
𝜀+𝑚−𝑛𝑖 in the 𝑖th diagonal entry. As mentioned above,

the matrix
1√
𝑚
𝐴 to be used will satisfy RIP. We then rewrite (12) to

the form of a standard noisy compressive sensing problem

(𝑒𝜀 + 1)
(𝑒𝜀 − 1)

(√
𝑚𝑞 − 1

√
𝑚

)
︸                        ︷︷                        ︸

𝑦

=
1

√
𝑚
𝐴︸︷︷︸

𝐵

(𝐷 ′𝑝)︸︷︷︸
𝑥

+ 𝑒𝜀 + 1
√
𝑚(𝑒𝜀 − 1)

𝐽 (𝐷 ′ − 𝐼 )𝑝︸                        ︷︷                        ︸
𝑒

.

where 1 ∈ R𝑚 is the all-one vector, 𝐼 ∈ R𝑘×𝑘 is the identity matrix

and 𝐷 ′ = 𝑚 (𝑒𝜀+1)
2

𝐷 . The exact 𝑞 is also unknown, and we can only

get an empirical estimate 𝑞 from the privatized samples. So, we

need to add a new noise term that corresponds to the estimation

error of 𝑞, and the actual under-determined linear system is

(𝑒𝜀 + 1)
(𝑒𝜀 − 1)

(√
𝑚𝑞 − 1

√
𝑚

)
=

1

√
𝑚
𝐴𝐷 ′𝑝 + 𝑒𝜀 + 1

√
𝑚(𝑒𝜀 − 1)

𝐽 (𝐷 ′ − 𝐼 )𝑝︸                        ︷︷                        ︸
𝑒1

+
√
𝑚(𝑒𝜀 + 1)
𝑒𝜀 − 1 (𝑞 − 𝑞)︸                  ︷︷                  ︸

𝑒2

. (13)

Given the LHS of (13),
1√
𝑚
𝐴 and a target sparsity 𝑠 , we reconstruct

𝐷 ′𝑝 by applying Lemma 1.3. Then compute 𝑝 ′ = 𝐷 ′−1𝐷 ′𝑝 (𝐷 ′ is
known) and project it to the probability simplex. The pseudo code

of the algorithm is presented in Algorithm 2.

3.2 Privacy Guarantee and Sample Complexity
In this section, we will provide the privacy guarantee and sample

complexity of our symmetric privatization scheme. All the proofs

are in the supplementary material.

Lemma 3.1 (Privacy Guarantee). If (1− 𝛽)𝑚
2
≤ 𝑛𝑖 ≤ (1 + 𝛽)𝑚

2

for all 𝑖 ∈ [𝑘] and 0 ≤ 𝛽 < 1, then the privacy mechanism 𝑄 from
(11) satisfies (𝜀 + 2𝛽)-LDP.

When the matrix 𝐴 used in (11) satisfies(1 − 𝜀)𝑚
2
≤ 𝑛𝑖 ≤

(1 + 𝜀)𝑚
2
for all 𝑖 ∈ [𝑘], then 𝑄 is 3𝜀-LDP. We can rescale 𝜀 in

the beginning by a constant to ensure 𝜀-LDP, which will only affect

the sample complexity by a constant factor. Next we consider the

estimation error. By Lemma 1.3, the reconstruction error depends

on the ℓ2 norm of 𝑒1 and 𝑒2 in (13).

Lemma 3.2. For a fixed 𝛽 ∈ [0, 0.5), if 𝑛𝑖 ∈ (1 ± 𝛽)𝑚
2
for all

𝑖 ∈ [𝑘], then ∥𝑒1∥2 ≤
𝛽

1−𝛽 ≤ 2𝛽 .
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Algorithm 2: Symmetric compressive privatization

Result: 𝑝 ∈ Δ𝑘 : an estimate of 𝑝

Input: 𝑋1, · · · , 𝑋𝑛 i.i.d from 𝑝 , privacy parameter 𝜀, sparsity

𝑠 , 𝐴 ∈ R𝑚×𝑘
1 ∀𝑥 ∈ [𝑘], Let 𝐶𝑥 := {𝑦 : 𝐴(𝑦, 𝑥) = 1}. Let 𝑛𝑥 be the number

of +1 in the 𝑥-th column of 𝐴. Then for each 𝑋𝑖 , 𝑖 ∈ [𝑛],
the privatized sample 𝑌𝑖 is generated according to the

following distribution

Pr[𝑌𝑖 = 𝑦 |𝑋𝑖 = 𝑥] =
{

𝑒𝜀

𝑛𝑥𝑒
𝜀+𝑚−𝑛𝑥 𝑦 ∈ 𝐶𝑥 ,
1

𝑛𝑥𝑒
𝜀+𝑚−𝑛𝑥 otherwise

2 𝑞 = (0, 0, · · · 0) ∈ R𝑚 , 1 = (1, 1, · · · , 1) ∈ R𝑚
3 for 𝑖 ← 1 to𝑚 do

4 𝑞 [𝑖] =
∑𝑛
𝑗=1 I(𝑌𝑗=𝑖)

𝑛

5 end
6 Apply Lemma 1.3, with 𝑦 =

(𝑒𝜀+1)
(𝑒𝜀−1)

(√
𝑚𝑞 − 1

)
, 𝐵 = 1√

𝑚
𝐴

and sparsity 𝑠; let 𝑓 be the output

7 Compute 𝑝 ′ = 𝐷 ′−1 𝑓 , and then compute the projection of 𝑝 ′

onto the set Δ𝑘 , denoted as 𝑝

8 return 𝑝

Lemma 3.3. E [∥𝑒2∥2] ≤ 𝑒𝜀+1
𝑒𝜀−1

√︃
𝑚
𝑛 .

Combining Lemma 3.2, 3.3 and Lemma 1.3, we can bound the

estimation error.

Theorem 3.4 (Estimation error). If 𝐴 satisfies two properties
in Section 3, for some constant 𝐶 ,

E
[𝑝 − 𝑝 ′

2

]
≤

(
1 + 𝛽

2

) (
2𝐷𝛽 + 𝐷 (𝑒

𝜀 + 1)
𝑒𝜀 − 1

√︂
𝑚

𝑛

)
+

(
1 + 𝛽

2

)
2
(
𝐶
√
𝑠
∥𝑝 − [𝑝]𝑠 ∥1

)
.

The sample complexity to achieve an error 𝛼 and 𝜀-LDP for

0 ≤ 𝜀 ≤ 1 is summarized as follows.

Corollary 3.4.1. If 𝐴 satisfies two properties in section 3 with
𝛽 ≤ 𝑐𝛼/4𝐷 , with 𝑐 = 1 for ℓ2 error and 𝑐 = 1√

𝑠
for ℓ1 error, and

𝑝 is 𝑠 sparse, the sample complexity of our symmetric compressive
privatization scheme is𝑂 ( 𝑚

𝜖2𝛼2
) for ℓ2 error and𝑂 ( 𝑠𝑚𝜖2𝛼2

) for ℓ1 error.
The ℓ2 result also holds for (𝑠,

√
𝑠𝛼)-sparse 𝑝 and the ℓ1 result also

holds for (𝑠, 𝛼)-sparse 𝑝 . The communication cost for each user is
log𝑚 bits.

This corollary can be directly derived by applying a similar proof

as that of Theorem 2.1, so we omit the proof here.

3.3 Guarantees on Random Matrices
The response matrix we used here is 𝐵 = 1√

𝑚
[𝐴𝑚

2

;−𝐴𝑚
2

], where
𝐴𝑚

2

is a
𝑚
2
× 𝑘 Rademacher matrix. It can be easily shown that, if

𝑚 = Ω(𝑠 log 𝑘𝑠 ), 𝐵 is (𝑠, 1√
2

)-RIP with probability 1 − 𝑒−𝑚 . At the

same time, 𝐵 satisfies P1 with 𝛽 = 0. Thus by Corollary 3.4.1, we

get the following result.

Theorem 3.5. For𝑚 = Ω(𝑠 log 𝑘𝑠 ), if 𝐴 is defined as above, then
with probability at least 1 − 𝑒−𝑚 , our symmetric compressive pri-

vatization scheme has sample complexity 𝑂
(
𝑚
𝜀2𝛼2

)
for ℓ2 error, and

𝑂

(
𝑠𝑚
𝜀2𝛼2

)
for for ℓ1 error. The ℓ2 result holds for (𝑠,

√
𝑠𝛼)-sparse 𝑝 and

the ℓ1 result holds for (𝑠, 𝛼)-sparse 𝑝 . The communication cost for
each user is log𝑚 = 𝑂 (log 𝑠 + log log𝑘) bits.

Communication lower bound . Note that the sample complex-

ity is the same as that of one-bit compressive privatization. But

the communication complexity is log𝑚 bits. [2] proves that, for

symmetric schemes, the communication cost is at least log𝑘 − 2 for
general distribution estimation. Thus, even if the sparse support

is known, the communication cost is at least log 𝑠 − 2 bits. Our

symmetric scheme requires log 𝑠 + log log𝑘 bits, which is optimal

up to a log log𝑘 additive term.

4 RECURSIVE COMPRESSIVE
PRIVATIZATION FOR MEDIUM PRIVACY
REGIMES

For high privacy regime 𝜀 = 𝑂 (1), we have provided symmetric

and asymmetric privatization schemes that both achieve optimal

sample and communication complexity. For medium privacy regime

1 < 𝑒𝜀 < 𝑘 , the relationship between sample complexity, privacy,

and communication cost become more complicated. Recently, [14]

provides a clean characterization for any 𝜀 and communication

budget 𝑏 for dense distributions. Interestingly, they show that the

complexity is determined by the more stringent constraint, and the

less stringent constraint can be satisfied for free. In this section, we

provide an analogous result for sparse distribution estimation for

privacy regime where 1 ≤ 𝑒𝜀 ≤ 𝑠 .
Our RCP scheme (shown in Algorithm 3) consists of three steps

including random permutation, privatization and estimation. Let

𝑋 be a element sampled from 𝑝 , which is viewed as a one-hot

vector. Let 𝐴 be a measurement matrix and 𝑌 = 𝐴𝑋 . Since E[𝑌 ] =
𝐴E[𝑋 ] = 𝐴𝑝 , we want to get an estimator of 𝑝 by recovering from

the empirical mean of 𝑌 . In one-bit CP, 𝐴 is a Rademacher matrix,

while in RCP, we use the kronecker product of two RIP matrices.

In other words, 𝐴 = 𝐴1 ⊗ 𝐴2, where 𝐴1 and 𝐴2 both satisfy RIP

condition. It’s known from kronecker compressive sensing [17] that

𝐴 also satisfies 𝑠-RIP if both𝐴1 and𝐴2 satisfy 𝑠-RIP. However, 𝑠-RIP

condition is too stringent for𝐴2, since𝐴2 measures each block of 𝑝

and the sparsity of each block could be much less than 𝑠 on average.

We use hierarchical compressive sensing. To make the distribu-

tion 𝑝 hierarchically sparse (see definition 2), we first randomly

permute 𝑝 in the beginning and let 𝑝 ′ be the resulting distribution.

Thus the sparsity of each block in 𝑝 ′ is roughly 𝑠/𝐿, where 𝐿 is

the number of blocks, and hence 𝑝 ′ is nearly (𝐿, 𝑠/𝐿)-hierarchically
sparse.

Hierarchical sparsity after random permutation. Let 𝑃 be a

random permutation matrix, which is public information. Each user

𝑖 with sample 𝑋𝑖 first compute 𝑋 ′
𝑖
= 𝑃𝑋𝑖 . So 𝑝

′ = 𝑃𝑝 . We divide

𝑝 ′ into 𝐿 consecutive blocks, then each of the 𝐿 blocks of 𝑝 ′ has
sparsity around

𝑠
𝐿
with high probability. Let E be the event that

𝑠𝑖 ≤ (1 + 𝛽)
𝑠

𝐿
, for all 𝑖 ∈ [𝐿], for some 𝛽 > 0, (16)
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Algorithm 3: Recursive Compressive Privatization

Result: 𝑝 ∈ Δ𝑘 : an estimate of 𝑝

Input: 𝑋1, · · ·𝑋𝑛 i.i.d. samples from 𝑝 , privacy parameter 𝜀,

sparsity 𝑠 , matrix 𝐴1 ∈ R𝐿×𝐿 , 𝐴2 ∈ R𝑚×
𝐾
𝐿 where

𝐾 = 2
⌈log

2
𝑘 ⌉

and 𝐿 = min{2𝑏 , 2 ⌈log2 𝑒𝜀 ⌉ }, public
random permutation matrix 𝑃 ∈ R𝐾×𝐾 . (We

represent 𝑋1, · · · , 𝑋𝑛 as one-hot vectors.)

1 Divide the 𝑛 users into𝑚 groups 𝑆1, · · · , 𝑆𝑚 :

𝑆 𝑗 := {𝑖 ∈ [𝑛] | 𝑖 ≡ 𝑗 mod𝑚}.
2 ∀𝑗 ∈ [𝑚] and ∀𝑖 ∈ 𝑆 𝑗 , pad (𝐾 − 𝑘) zeroes to the end of 𝑋𝑖

and get permuted sample 𝑋 ′
𝑖
= 𝑃𝑋𝑖 .

3 Define

𝑄 𝑗 (𝑋 ′𝑖 ) = [(𝐴2) 𝑗 · 𝑋 ′(1)𝑖
, · · · , (𝐴2) 𝑗 · 𝑋 ′(𝐿)𝑖

] ∈ {−1, 0, 1}𝐿 .
The privatized output �̂� 𝑗 (𝑋 ′𝑖 ) is defined as follows

�̂� 𝑗 (𝑋 ′𝑖 ) =
{
𝑄 𝑗 (𝑋 ′𝑖 ), w.p.

𝑒𝜀

𝑒𝜀+2𝐿−1
𝑄 ′ ∈ Q\{𝑄 𝑗 (𝑋 ′𝑖 )}, w.p.

1

𝑒𝜀+2𝐿−1
(14)

where Q = {±𝑒1,±𝑒2, · · · ,±𝑒𝐿} is the collection of 2𝐿

standard basis vectors.

4 For each 𝑗 ′ ∈ [𝑚𝐿] such that 𝑗 ′ ≡ 𝑗 (mod𝑚) and

𝑗 ′ = 𝑗 + (𝑡 − 1) ·𝑚, the server computes

𝑞 𝑗 ′ =
𝑚

𝑛

(
𝑒𝜀 + 2𝐿 − 1
𝑒𝜀 − 1

) ∑︁
𝑖∈𝑆 𝑗
(𝐴1)𝑡 · �̂� 𝑗 (𝑋 ′𝑖 ). (15)

5 Let 𝑞 := (𝑞1, · · · , 𝑞𝑚𝐿). Apply Theorem 1.5 with 𝑦 = 1√
𝑚𝐿

𝑞,

measurement matrix
1√
𝑚𝐿
(𝐴1 ⊗ 𝐴2) and hierarchical

sparsity (𝐿, (1 + 𝛽) 𝑠
𝐿
); let 𝑝 ′ be the output. Let 𝑝 be the

first 𝑘 elements of 𝑃−1𝑝 ′.
6 Compute the projection of 𝑝 onto Δ𝑘 , denoted as 𝑝 .

where 𝑠𝑡 is the sparsity of the 𝑡th block in 𝑝 ′. For notation conve-

nience, we simply use 𝑋𝑖 to denote the permuted one-hot sample

vector of user 𝑖 . By concentration inequalities, E happens with

high probability. One twist here is that we cannot apply standard

Chernoff-Hoeffding bound, since the sparsity in each block is not

a sum of i.i.d. random variables. But random permutation random

variables are known to be negatively associated (see e.g. [35]), so

the concentration bounds still holds. We have the following lemma,

the proof of which is provided in the supplementary material.

Lemma 4.1. Event E holds with probability at least 1 − 𝐿𝑒−
𝛽2𝑠

2𝐿 ,
and when E happens, 𝑝 ′ is (𝐿, (1 + 𝛽) 𝑠

𝐿
)-hierarchically sparse.

Privatization. In our privatization step, the response matrix is of

the form 𝐴 = 𝐴1 ⊗ 𝐴2, where 𝐴2 ∈ R𝑚×
𝑘
𝐿 and 𝐴1 ∈ R𝐿×𝐿 are two

±1 matrices. User 𝑖 will send a privatized version of 𝑌𝑖 = 𝐴𝑋𝑖 . Let

𝑎𝑖 𝑗 be the (𝑖, 𝑗)-entry of 𝐴1, then

𝑌𝑖 = 𝐴𝑋𝑖 =


𝑎11𝐴2 · · · 𝑎1𝐿𝐴2

.

.

.
. . .

.

.

.

𝑎𝐿1𝐴2 · · · 𝑎𝐿𝐿𝐴2



𝑋
(1)
𝑖
.
.
.

𝑋
(𝐿)
𝑖

 ,
where the one-hot sample vector𝑋𝑖 is divided into 𝐿 blocks. Since𝑋𝑖
has only one non-zero, the vector 𝑌𝑖 can be encoded with𝑚 + log𝐿

bits, where log𝐿 bits is to specified the block index ℓ that contains

the non-zero of 𝑋𝑖 and𝑚 bits is for 𝐴2𝑋
(ℓ)
𝑖

. However, this is still

too large, so user will only pick one bit from 𝐴2𝑋
(ℓ)
𝑖

, which is

the 𝑗th bit if 𝑖 ∈ 𝑆 𝑗 . Then the user privatize the 1 + log𝐿 bits

using RR mechanism [40] with alphabet size 2
2𝐿
. More formally,

let 𝑄 𝑗 (𝑋𝑖 ) = [(𝐴2) 𝑗 · 𝑋 (1)𝑖 , · · · , (𝐴2) 𝑗 · 𝑋 (𝐿)𝑖
] ∈ {−1, 0, 1}𝐿 , which

is also a one-hot vector. Let ℓ be the block index such that 𝑋
(ℓ)
𝑖

≠ 0,

then the ℓth bit in 𝑄 𝑗 (𝑋𝑖 ) is the only non-zero entry, which has

value (𝐴2) 𝑗 ·𝑋 (ℓ)𝑖 . Then the user computes a privatization of𝑄 𝑗 (𝑋𝑖 )
(see (14) in Algorithm 3) with 2

2𝐿
-RR. Clearly the communication

cost is 𝑙 = log
2
𝐿 + 1 bits.

Estimation via hierarchical sparse recovery. By Definition 2,

𝑝 ′ is (𝐿, (1 + 𝛽) 𝑠
𝐿
)-hierarchical sparse. To recover 𝑝 ′, by Theorem

1.4 and 1.5,
1√
𝐿
𝐴1 and

1√
𝑚
𝐴2 are required to satisfy 3𝐿-RIP and

2(1+𝛽)𝑠
𝐿

-RIP condition respectively. Since 𝐴1 is square, we can use

the Hadamard matrix 𝐻𝐿 . For 𝐴2, we use a Rademacher matrix

with number of rows𝑚 = Θ
(
(1 + 𝛽) 𝑠 log(𝑘/(1+𝛽)𝑠)

𝐿

)
, so that

1√
𝑚
𝐴2

satisfies
2(1+𝛽)𝑠

𝐿
-RIP. Let 𝑞 = 𝐴𝑝 ′, which is equivalent to

1

√
𝑚𝐿

𝑞 =
1

√
𝑚𝐿

𝐴𝑝 ′ + 1

√
𝑚𝐿
(𝑞 − 𝑞). (17)

In the estimation algorithm (step 5 in Algorithm 3), we use 𝑞 to

recover 𝑝 ′. By Theorem 1.5, we have

E[∥𝑝 − 𝑝 ∥2] ≤ E[∥𝑝 ′ − 𝑝 ′∥2] ≤
1

√
𝑚𝐿
E[∥𝑞 − 𝑞∥2] (18)

Thus, the estimation error of 𝑝 is bounded by the error of 𝑞. The

following lemma gives an upper bound on the error of 𝑞.

Lemma 4.2. ∀𝑗 ′ ∈ [𝑚𝐿],E
[ (
𝑞 𝑗 ′ − 𝑞 𝑗 ′

)
2

]
≤ 𝑚

𝑛

(
𝑒𝜀+2𝐿−1
𝑒𝜀−1

)
2

.

Note that we require𝑚 = 𝐶 ′ · (1+𝛽)𝑠 log(𝑘/(1+𝛽)𝑠)
𝐿

for some ab-

solute constant 𝐶 ′. It can be seen that the error in Lemma 4.2 is

minimized when 𝐿 = Θ(𝑒𝜀 ) and decreasing as 𝐿 increases from 1

to Θ(𝑒𝜀 ). Note that the communication cost is log𝐿 + 1. Thus, if
we are further given a communication budget 𝑏, we need to set

𝐿 ≤ 2
𝑏−1

. When 𝑒𝜀 < 2
𝑏
, the best 𝐿 is 𝑒𝜀 , which leads to optimal

error. If 𝑒𝜀 ≥ 2
𝑏
, i.e., communication becomes the more stringent

constraint, then set 𝐿 = 2
𝑏
. In other words, 𝐿 = min{2𝑏 , 𝑒𝜀 }. Com-

bining (18) and Lemma 4.2, we have the following results on the

sample complexity for medium privacy 1 ≤ 𝑒𝜀 ≤ 𝑠 .

Theorem 4.3. Given 𝜀 and a communication budget 𝑏, with 1 ≤
𝑒𝜀 , 2𝑏 ≤ 𝑠 and let 𝐿 = min{2𝑏 , 𝑒𝜀 }. For𝑚 = Θ( (1+𝛽)𝑠 log(𝑘/(1+𝛽)𝑠)

𝐿
),

with probability at least 1 − 𝐿𝑒−
𝛽2𝑠

2𝐿 − 𝑒−𝑚 , our scheme is 𝜀-LDP and
has communication cost log𝐿 + 1, and the sample complexity for ℓ2
error is𝑂

(
(1 + 𝛽) 𝑠 log(𝑘/(1+𝛽)𝑠)

𝐿𝛼2

)
; for ℓ1 error, the sample complexity

is 𝑂
(
(1 + 𝛽) 𝑠

2
log(𝑘/(1+𝛽)𝑠)

𝐿𝛼2

)
.

The parameter 𝛽 is from Lemma 4.1. Please refer to the appendix

for more discussion.
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(a) Unif (10) (b) Unif (25) (c) Geo(0.6) (d) Geo(0.8)

Figure 1: ℓ1-error for 𝑘 = 10000,𝑚 = 500, 𝜀 = 1. Sparse projection means 𝐿2 projection onto simplex with sparsity constraint.

(a) Unif (10) (b) Unif (25) (c) Geo(0.6) (d) Geo(0.8)

Figure 2: ℓ1-error for 𝑘 = 1000000,𝑚 = 500, 𝜀 = 1. For one bit HR, since the method requires the number of sample larger than 𝑘 ,
thus the estimation result of one-bit HR starts from 𝑛 = 1000000 in the figure.

5 EXPERIMENTS
We conduct experiments comparing our method with HR [3] and

its one-bit version equipped with sparse projection. To implement

our recovery process, we use the orthogonal matching pursuit

(OMP) algorithm [34]. We test the performances on two types of

(approximately) sparse distributions: 1) geometric distributions

Geo(𝜆) with 𝑝 (𝑖) ∝ (1 − 𝜆)𝑖𝜆; and 2) sparse uniform distributions

Unif (𝑠) where |supp(𝑝) | = 𝑠 and 𝑝 (𝑖) = 1

𝑠 for 𝑖 ∈ supp(𝑝).
In our experiments, the dimensionality of the unknown distri-

bution is 𝑘 ∈ {10000, 1000000}, and the value of𝑚 in our method

is set to 500. The default value of the privacy parameter is 𝜀 = 1.

Here we provide the results of different algorithms on Geo(0.8),
Geo(0.6), Unif (10) and Unif (25).

We record the estimation errors of different methods with vary-

ing number of samples 𝑛 ∈ {50000, 100000, · · · , 1000000}. Note that
geometric distributions are not strictly sparse. For approximately

sparse distributions, the sparsity parameter 𝑠 is chosen such that

the distributions are roughly (𝑠, 0.1)-sparse in our experiment. We

assume that the value of 𝑠 is provided to the recovery algorithm.

We simulate 10 runs and report the average ℓ1 errors. The results

are shown in Figure 1 and Figure 2.

It can be seen from the numerical results that the performances

of our compressive privatization approach are significantly better

than the previous worst-case sample optimal methods like HR,

which is aligned with our theoretical bounds. For small 𝑘 , which

is much smaller than sample size 𝑛, e.g. 𝑘 = 10000, the one-bit

HR with sparse projection is well-defined and the performance

compared to our method is almost the same; this is not surprising

as both method has the same (theoretical) sample complexity. Note,

HR with sparse projection is better than with non-sparse projection.

On the other hand, when 𝑘 is much larger e.g. 𝑘 = 1000000, one-bit

HR is not well-defined when the number of samples is less than

𝑘 . In this case, we append zeros in the groups where there is no

samples. However, the accuracy is much worse than our methods

(see Figure 2). We note that HR with sparse projection still performs

well in this case, but each user incurs log𝑘 bits of communication;

our one-bit CP only needs one bit to achieve the same accuracy.

For our symmetric CP method, the communication cost, which is

log 𝑠 + log log 𝑘𝑠 , is also lower than HR.

6 CONCLUSION
In this paper, we study sparse distribution estimation in the local

differential privacy model. We propose a compressive sensing based

method, which overcome the limitations of the projection based

method in [1]. For high privacy regime, we provide asymmetric

and symmetric schemes, both of which achieves optimal sample

and communication complexity. We also extend compressive priva-

tization to medium privacy regime, and obtain near-optimal sample

complexity for any privacy and communication constraints.
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A MISSING PROOF FROM SECTION 3
A.1 Proof of Lemma 3.1

Proof. Observe that for any 𝑥1, 𝑥2 ∈ [𝑘], we have

max

𝑦∈[𝑚]

𝑄 (𝑦 |𝑥1)
𝑄 (𝑦 |𝑥2)

≤
𝑛𝑥2𝑒

𝜀 +𝑚 − 𝑛𝑥2
𝑛𝑥1𝑒

𝜀 +𝑚 − 𝑛𝑥1
𝑒𝜀 .

By assumption,

𝑛𝑥2𝑒
𝜀 +𝑚 − 𝑛𝑥2

𝑛𝑥1𝑒
𝜀 +𝑚 − 𝑛𝑥1

≤
((1 + 𝛽)𝑚

2
)𝑒𝜀 +𝑚 − ((1 + 𝛽)𝑚

2
)

((1 − 𝛽)𝑚
2
)𝑒𝜀 +𝑚 − ((1 − 𝛽)𝑚

2
)

=
1 + 𝛽 · 𝑒𝜀−1𝑒𝜀+1
1 − 𝛽 · 𝑒𝜀−1𝑒𝜀+1

≤ 1 + 𝛽/2
1 − 𝛽/2 ≤ 1 + 2𝛽.

where the second inequality is from
𝑒𝜀−1
𝑒𝜀+1 ≤

1

2
for 𝜀 ∈ (0, 1) and the

last inequality is from 0 ≤ 𝛽 ≤ 1. It follows that

max

𝑥1,𝑥2,𝑦∈[𝑘 ]

𝑄 (𝑦 |𝑥1)
𝑄 (𝑦 |𝑥2)

≤ max

𝑥1,𝑥2∈[𝑘 ]

𝑛𝑥2𝑒
𝜀 +𝑚 − 𝑛𝑥2

𝑛𝑥1𝑒
𝜀 +𝑚 − 𝑛𝑥1

𝑒𝜀

≤ (1 + 2𝛽)𝑒𝜀 = 𝑒𝜀+ln(1+2𝛽) ≤ 𝑒𝜀+2𝛽 .

The last inequality is from ln(1 + 𝑥) ≤ 𝑥 for 𝑥 > −1. □

A.2 Proof of Lemma 3.2
Proof. By definition

∥𝑒1∥2 =
 𝑒𝜀 + 1
√
𝑚(𝑒𝜀 − 1)

𝐽 (𝐷 ′ − 𝐼 )𝑝

2

=
𝑒𝜀 + 1

√
𝑚(𝑒𝜀 − 1)

√︃
((𝐷 ′ − 𝐼 )𝑝)𝑇 · 𝐽𝑇 𝐽 · ((𝐷 ′ − 𝐼 )𝑝)

≤ 𝑒𝜀 + 1
𝑒𝜀 − 1

∑︁
𝑖

|𝑑 ′𝑖 − 1|𝑝𝑖 ,

where 𝑑 ′
𝑖
=

𝑚 (𝑒𝜀+1)/2
𝑛𝑖𝑒

𝜀+𝑚−𝑛𝑖 . By the assumption 𝑛𝑖 ∈ (1 ± 𝛽)𝑚
2
for all

𝑖 ∈ [𝑘], we have

|𝑑 ′𝑖 − 1| =
|𝑚/2 − 𝑛𝑖 | (𝑒𝜀 − 1)
𝑛𝑖𝑒

𝜀 +𝑚 − 𝑛𝑖
≤ 𝛽𝑚(𝑒𝜀 − 1)/2
𝑛𝑖𝑒

𝜀 +𝑚 − 𝑛𝑖

≤ 𝛽𝑚(𝑒𝜀 − 1)/2
(1 − 𝛽)𝑚

2
𝑒𝜀 + 𝑚

2
− 𝛽𝑚

2

=
𝛽 (𝑒𝜀 − 1)

(1 − 𝛽) (𝑒𝜀 + 1) .

Thus, ∥𝑒1∥2 ≤ 𝛽

1−𝛽 , which completes the proof. □

A.3 Proof of Lemma 3.3
Proof. Let 𝑌1, 𝑌2, · · · , 𝑌𝑛 be the privatized samples received by

the server. We have, for each 𝑖 ∈ [𝑚], 𝑞𝑖 =
∑𝑛
𝑗=1

I(𝑌𝑗=𝑖)
𝑛 , where I is

the indicator function.ThusE[𝑞𝑖 ] = 𝑞𝑖 andVar[𝑞𝑖 ] = 𝑞𝑖 (1−𝑞𝑖 )
𝑛 ≤ 𝑞𝑖

𝑛 .

It follows that

E
[
∥𝑞 − 𝑞∥

2

]
≤

√︃
E

[
∥𝑞 − 𝑞∥2

]
=

√︄∑︁
𝑖

Var(𝑞𝑖 ) ≤
√︂

1

𝑛

where the first inequality is from Jensen’s inequality. Multiplying√
𝑚𝑒𝜀+1
𝑒𝜀−1 on both sides of the inequality will conclude the proof. □

A.4 Proof of Theorem 3.4
Proof. Let 𝑝 ′ = 𝐷 ′𝑝 . By definition of 𝑝 ′, we have

∥𝑝 − 𝑝 ′∥2 = ∥𝐷 ′−1𝑝 − 𝐷 ′−1 𝑓 ∥2 ≤ max

𝑖

1

𝑑 ′
𝑖

·
𝑝 ′ − 𝑓 

2

where 𝑑 ′
𝑖
=
𝑚 (𝑒𝜀+1)/2
𝑛𝑖𝑒

𝜀+𝑚−𝑛𝑖 and 𝑓 is the output of the recovery algorithm
(step 7 in Algorithm 2). Since∀𝑖 ∈ [𝑘], 𝑛𝑖 ≤ (1+𝛽) ·𝑚

2
for 0 ≤ 𝛽 ≤ 1,

then we have𝑝 − 𝑝 ′
2
≤ max

𝑖

1

𝑑 ′
𝑖

·
𝑝 ′ − 𝑓 

2
≤ (1 + 𝛽 · 𝑒

𝜀 − 1
𝑒𝜀 + 1 )

𝑝 ′ − 𝑓 
2

≤ (1 + 𝛽
2

)
𝑝 ′ − 𝑓 

2
.

By Lemma 1.3, we have𝑝 ′ − 𝑓 
2
≤ 𝐶
√
𝑠
∥𝑝 ′ − [𝑝 ′]𝑠 ∥1 + 𝐷 ∥𝑒1 + 𝑒2∥2

≤ max

𝑖

1

𝑑 ′
𝑖

· 𝐶√
𝑠
∥𝑝 − [𝑝]𝑠 ∥1 + 𝐷 (∥𝑒1∥2 + ∥𝑒2∥2) .

Note max𝑖
1

𝑑′
𝑖

≤ (1 + 𝛽/2) as 𝑛𝑖 ≤ (1 + 𝛽) · 𝑚
2
for all 𝑖 . By Lemma

3.2, 3.3, we get

E[
𝑝 − 𝑝 ′

2
] ≤

(
1 + 𝛽

2

) (
2𝐷𝛽 + 𝐷 (𝑒

𝜀 + 1)
𝑒𝜀 − 1

√︂
𝑚

𝑛

)
+

(
1 + 𝛽

2

)
2
(
𝐶
√
𝑠
∥𝑝 − [𝑝]𝑠 ∥1

)
,

which proves the theorem. □

B MISSING PROOF FROM SECTION 4
B.1 Proof of Lemma 4.1

Proof. By symmetry, we only consider the sparsity of one spe-

cific block, say the first one. Let 𝑘1 =
𝑘
𝐿
be the size of a block. Let

𝑠1 denote the sparsity, i.e. the number of non-zero entries, of the

first block. Then, we have

𝑠1 =

𝑘1∑︁
𝑗=1

1{𝑝 ′𝑗 ≠ 0}

where 1{𝑝 ′
𝑗
≠ 0} is an indicator to describe whether the 𝑗-th

position of 𝑝 ′ is nonzero. By direct calculation, we can get that

E[1{𝑝 ′
𝑗
≠ 0}] =

(𝑘−1
𝑠−1

)
/
(𝑘
𝑠

)
= 𝑠

𝑘
. Thus, E[𝑠1] = 𝑠𝑘1

𝑘
= 𝑠

𝐿
. Since

𝑝 ′ is a random permutation of 𝑝 , 1{𝑝 ′
1
≠ 0}, · · · , 1{𝑝 ′

𝑘1
≠ 0} are

negatively associated (NA) [35]. By Chernoff-Hoeffding bounds for

NA variables [18, 35], we can get that

Pr [𝑠1 ≥ (1 + 𝛽)E[𝑠1]] ≤
(

𝑒𝛽

(1 + 𝛽) (1+𝛽)

)E[𝑠1 ]
= 𝑒E[𝑠1 ] (𝛽−(1+𝛽) ln (1+𝛽)) (19)

It can be easily verified that

𝛽 − (1 + 𝛽) ln (1 + 𝛽) ≤
{
− 𝛽

2

4
𝛽 <= 4,

− 𝛽
4

otherwise

≤ −1
4

min{𝛽2, 𝛽}

(20)
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Combining (19), (20) and E[𝑠1] = 𝑠
𝐿
yields that

Pr

[
𝑠1 ≥ (1 + 𝛽)

𝑠

𝐿

]
≤ 𝑒−

min{𝛽2,𝛽}𝑠
4𝐿 (21)

The proof is then completed by applying union bound over all 𝐿

sections. □

B.2 Proof of Lemma 4.2
Proof. For any 𝑗 ∈ [𝑚], we have

E[�̂� 𝑗 (𝑋 ′𝑖 )] = E𝑝 [E𝜀 [�̂� 𝑗 (𝑥) |𝑋
′
𝑖 = 𝑥]] (22)

When 𝑋 ′
𝑖
is fixed to be 𝑥 ∈ Q where Q := {±𝑒1, · · · ,±𝑒𝐿} and we

only consider the randomness from the privatization, we have

E𝜀
[
�̂� 𝑗 (𝑥)

]
=

𝑒𝜀

𝑒𝜀 + 2𝐿 − 1𝑄 𝑗 (𝑥) +
∑︁

𝑄′∈Q\{𝑄 𝑗 (𝑋 ′𝑖 ) }

1

𝑒𝜀 + 2𝐿 − 1

=
(𝑒𝜀 − 1)

𝑒𝜀 + 2𝐿 − 1 ·𝑄 𝑗 (𝑥) (23)

By the definition of 𝑄 𝑗 , we can get

E
[
𝑄 𝑗

(
𝑋 ′𝑖

) ]
=


(𝐴2) 𝑗 · 𝑝 ′ (1)

(𝐴2) 𝑗 · 𝑝 ′ (2)
.
.
.

(𝐴2) 𝑗 · 𝑝 ′ (𝐿)


(24)

Combining (22), (23) and (24) yields that

E[�̂� 𝑗 (𝑋 ′𝑖 )] =
(𝑒𝜀 − 1)

𝑒𝜀 + 2𝐿 − 1


(𝐴2) 𝑗 · 𝑝 ′ (1)

(𝐴2) 𝑗 · 𝑝 ′ (2)
.
.
.

(𝐴2) 𝑗 · 𝑝 ′ (𝐿)


(25)

Recall that 𝑞 = 𝐴 · 𝑝 ′ and 𝐴 = 𝐴1 ⊗ 𝐴2. For 𝑗
′ ≡ 𝑗 (mod𝑚) and

𝑗 ′ = 𝑗 + (𝑡 − 1)𝑚, by (25), we have

E[𝑞 𝑗 ′] =
𝑚

𝑛
· 𝑒
𝜀 + 2𝐿 − 1
𝑒𝜀 − 1

∑︁
𝑖∈𝑆 𝑗
(𝐴1)𝑡 · E[�̂� 𝑗 (𝑋 ′𝑖 )]

= (𝐴1)𝑡 ·
[
(𝐴2) 𝑗 · 𝑝

′ (1) , · · · , (𝐴2) 𝑗 · 𝑝
′ (𝐿)

]
= 𝑞 𝑗 ′

where the last equality is from the definition of kronecker product.

Hence, 𝑞 𝑗 ′ is an unbiased estimator for 𝑞 𝑗 ′ . Thus,

E[(𝑞 𝑗 ′ − 𝑞 𝑗 ′)2] = Var(𝑞 𝑗 ′) =
𝑚

𝑛

(
𝑒𝜀 + 2𝐿 − 1
𝑒𝜀 − 1

)
2

Var
(
(𝐴1)𝑡 · �̂� 𝑗 (𝑋 ′𝑖 )

)
≤ 𝑚
𝑛

(
𝑒𝜀 + 2𝐿 − 1
𝑒𝜀 − 1

)
2

where the inequality is from that (𝐴1)𝑡 · �̂� 𝑗 (𝑋 ′𝑖 ) only takes value

in {+1,−1}. The proof is completed. □

B.3 Proof of Theorem 4.3
Proof. From the analysis of estimation error in section 4, we

know that

E[∥𝑝 − 𝑝 ∥2] ≤ E[∥𝑝 ′ − 𝑝 ′∥2] ≤
1

√
𝑚𝐿
E[∥𝑞 − 𝑞∥2]

By Lemma 4.2, we can get

E[∥𝑝 − 𝑝 ∥2] ≤ E[
𝑝 ′ − 𝑝 ′

2
] ≤ 1

√
𝑚𝐿
E[∥𝑞 − 𝑞∥2]

(𝑎)
≤

√︂
1

𝑚𝐿
E

[
∥𝑞 − 𝑞∥2

2

]
=

√√
1

𝑚𝐿

∑︁
𝑗 ′∈[𝑚𝐿]

E
[
(𝑞 𝑗 ′ − 𝑞 𝑗 ′)2

]
(𝑏)
≤

√︂
𝑚

𝑛

(
𝑒𝜀 + 2𝐿 − 1
𝑒𝜀 − 1

) (𝑐)
≤

√︂
𝑚

𝑛

(
3𝑒𝜀 − 1
𝑒𝜀 − 1

)
where (𝑎) is from Jensen’s inequality and (𝑏) is from Lemma 4.2

and (𝑐) is from 𝐿 = min{𝑒𝜀 , 2𝑏 }.
(1) 𝜀 = 𝑂 (1). In this case, we can set 𝐿 = 1 directly and the

communication is 1 bit now. The event E then holds with

probability 1, hence𝑚 = 𝑠 log(𝑘/𝑠). Since 𝜀 = 𝑂 (1), 3𝑒𝜀−1𝑒𝜀−1 =

𝑂 ( 1𝜀 ). Thus E[∥𝑝 − 𝑝 ∥2] = 𝑂

(√︃
𝑠 log(𝑘/𝑠)

𝑛𝜀2

)
, which is the

same error bound as that in one-bit CP for high privacy.

Note that 𝐴1 is 1 now, 𝐴 = 𝐴1 ⊗ 𝐴2 = 𝐴2 ∈ R𝑚×𝑘 is a

Rademacher matrix. Therefore, for high privacy, if we set

𝐿 = 1, our scheme is exactly one-bit CP.

(2) 𝜀 = 𝜔 (1). We mainly consider medium privacy case, where

𝜀 = 𝜔 (1) and 𝑒𝜀 ≤ 𝑠 . In this case,
3𝑒𝜀−1
𝑒𝜀−1 = 𝑂 (1). Hence,

we have that E[∥𝑝 − 𝑝 ∥
2
] = 𝑂

(√︃
(1+𝛽)𝑠 log(𝑘/(1+𝛽)𝑠)

𝑛𝐿

)
(note

𝑚 = 𝑂

( (1+𝛽)𝑠 log(𝑘/(1+𝛽)𝑠)
𝐿

)
).When𝑛 ≥ 𝑐 · (1+𝛽)𝑠 log(𝑘/(1+𝛽)𝑠)

𝐿𝛼2

for some large enough constant 𝑐 , the expected ℓ2 error is at

most 𝛼 . For ℓ1 error, we have

E[∥𝑝 − 𝑝 ∥
1
] ≤ 2

√
2𝑠E[

𝑝 ′ − 𝑝 ′
2
]

Thus to achieve an ℓ1 error of 𝛼 , it’s sufficient to get an esti-

mate with 𝛼 ′ = 𝛼/2
√
2𝑠 for E[∥𝑝 ′ − 𝑝 ′∥

2
]. The sample com-

plexity is 𝑂

( (1+𝛽)𝑠2 log(𝑘/(1+𝛽)𝑠)
𝐿𝛼2

)
. Since the event E holds

with probability at least 1 − 𝐿𝑒−
min{𝛽2,𝛽}𝑠

4𝐿 and the RIP condi-

tion holds with probability at least 1 − 𝑒−𝑚 , by union bound,

we can achieve the sample complexity above with probability

1−𝐿𝑒−
min{𝛽2,𝛽}𝑠

4𝐿 −𝑒−𝑚 , where𝑚 =
(1+𝛽)𝑠 log(𝑘/(1+𝛽)𝑠)

𝐿
. When

min{𝛽2, 𝛽} = 4𝐿 log(𝐿/𝛿)
𝑠 , the error probability from E is less

than 𝛿 . If 𝐿 log(𝐿/𝛿) = 𝑂 (𝑠), then min{𝛽2, 𝛽} = 𝑂 (1) which
means 𝛽 = 𝑂 (1). In this case, with probability 1 − 𝛿 − 𝑒−𝑚 ,

the sample complexity for ℓ2 error is 𝑂

(
𝑠 log(𝑘/𝑠)
𝐿𝛼2

)
and for

ℓ1 error is 𝑂

(
𝑠2 log(𝑘/𝑠)

𝐿𝛼2

)
. When 𝑠 ≪ 𝐿 log(𝐿/𝛿) and 𝐿 ≤ 𝑠 ,

min{𝛽2, 𝛽} = 𝑂 (log(𝑠/𝛿)) which means 𝛽 = 𝑂 (log(𝑠/𝛿)).
For general distribution under medium privacy regime, the

sample complexity for ℓ1 error is at least Ω( 𝑘
2

𝐿𝛼2
) [14], which

implies a lower bound of Ω( 𝑠2
𝐿𝛼2
) for 𝑠-sparse distributions.

Thus the sample complexity blows up by at most a logarith-

mic factor.

□
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