2108.03758v1 [cs.SE] 8 Aug 2021

arXiv

Tackling Consistency-related Design Challenges of Distributed
Data-Intensive Systems — An Action Research Study’

Susanne Braun
Fraunhofer IESE
Kaiserslautern, Germany
susanne.braun@iese.fraunhofer.de

Frank Elberzhager
Fraunhofer IESE
Kaiserslautern, Germany

frank.elberzhager@iese.fraunhofer.de

ABSTRACT

Background: Distributed data-intensive systems are increasingly
designed to be only eventually consistent. Persistent data is no
longer processed with serialized and transactional access, exposing
applications to a range of potential concurrency anomalies that
need to be handled by the application itself. Controlling concurrent
data access in monolithic systems is already challenging, but the
problem is exacerbated in distributed systems. To make it worse,
only little systematic engineering guidance is provided by the soft-
ware architecture community regarding this issue. Aims: In this
paper, we report on our study of the effectiveness and applicabil-
ity of the novel design guidelines we are proposing in this regard.
Method: We used action research and conducted it in the context
of the software architecture design process of a multi-site platform
development project. Results: Our hypotheses regarding effective-
ness and applicability have been accepted in the context of the
study. The initial design guidelines were refined throughout the
study. Thus, we also contribute concrete guidelines for architecting
distributed data-intensive systems with eventually consistent data.
The guidelines are an advancement of Domain-Driven Design and
provide additional patterns for the tactical design part. Conclu-
sions: Based on our results, we recommend using the guidelines
to architect safe eventually consistent systems. Because of the rel-
evance of distributed data-intensive systems, we will drive this
research forward and evaluate it in further domains.

CCS CONCEPTS

« Software and its engineering — Software design engineer-
ing; Software design tradeoffs; Cloud computing,.

KEYWORDS

eventual consistency, domain-driven design, action research

“This is a post-print of an article published in the conference proceedings
of the 15th ACM/IEEE International Symposium on Empirical Software En-
gineering and Measurement (ESEM) (ESEM 21). It is available online at:
https://doi.org/10.1145/3475716.3475771.

Please cite this version: Susanne Braun, Stefan DefSloch, Eberhard Wolff, Frank
Elberzhager, and Andreas Jedlitschka. 2021. Tackling Consistency-related Design
Challenges of Distributed Data-Intensive Systems — An Action Research Study. In
ACM/IEEE International Symposium on Empirical Software Engineering and Measure-
ment (ESEM) (ESEM ’21), October 11-15, 2021, Bari, Italy. ACM, NewYork, NY, USA,
12 pages. https://doi.org/10.1145/3475716.34757711

Stefan Def3loch
TU Kaiserslautern
Kaiserslautern, Germany
stefan.dessloch@cs.uni-kl.de

Eberhard Wolff
INNOQ
Germany
eberhard.wolff@innoq.com

Andreas Jedlitschka
Fraunhofer IESE
Kaiserslautern, Germany

andreas.jedlitschka@iese.fraunhofer.de

1 INTRODUCTION

With the success of cloud-native and mobile applications, modern
software architectures have become highly distributed. Whether
microservices [47] or mobile applications supporting disconnected
operation — apps and services increasingly need to be resilient to
network partitions, high latency, or temporary unavailability of
services. Therefore, more and more data is being replicated across
different replication nodes (replicas). Updates to replicated data
are propagated asynchronously, without global coordination or
transactional guarantees, i.e., the ACID (Atomicity, Consistency,
Isolation, Durability) [26] guarantees. This can result in concur-
rency and consistency anomalies like lost updates [3], which need
to be handled by the application itself.

Consider a cloud-based digital workspace offering apps and
cognitive services to remote teams. This digital workspace pro-
vides APIs designed to facilitate the development of third-party
workspace apps. Platform services and third-party app services
need to be loosely coupled, autonomous, independent deployment
units and resilient to failures of other services. Pivotal data such
as tasks are stored by different apps and services of the ecosystem.
For example, teams will agree on a particular task management
system as the primary tool for self-organization. In addition, a team
dashboard app displays information relevant to the team, such as
a team mood barometer. The team dashboard also hosts a daily
meeting buddy app presenting a summary of the tasks the user has
worked on since the last daily meeting. The user can indicate when
they start to work on a new task using the buddy app. Such updates
need to be propagated to the primary task management tool. Simi-
larly, updates to tasks in the primary tool need to be propagated
to the buddy app. Consider a user who starts working on a task
and shares this information via the buddy app. At about the same
time, the product owner uses the primary tool to move this task to
the blocked lane and also adds a comment providing the rationale.
As the task management system and the buddy app do not have a
shared infrastructure for storage, there is no central instance for
coordinating these concurrent updates. Instead, the result will be
the existence of two conflicting versions of the task. The imple-
mentation of a generic merge function for conflicting task versions
is more challenging than it might look at first sight. For example,
we can build the super set of all comments from both versions in
order to reconcile the changes to the list of task comments [45].

Susanne Braun, Stefan Defloch, Eberhard Wolff, Frank Elberzhager, and Andreas Jedlitschka

This strategy is fine most of the time. However, it can lead to the
effect that deleted comments re-appear [45]. More challenging is
the question of what the final task status is supposed to be: blocked
or in progress? We could also apply syntactic conflict resolution
strategies such as the last-writer-wins rule to solve this problem,
but then one update will be lost, which is probably worse.

In our experience, it is nearly impossible to implement correct
merge logic in practice. Some conflicts can be correctly resolved in
retrospect, but require additional information such as the common
base version of the conflicting versions. It would be even more
beneficial to know the original intents of the concurrent update
operations causing the conflicting versions. Therefore, a potential
solution can be to use an operation-based update propagation in-
terface [43] and, in addition, design updating operations to form
a lattice so that conflicts can be excluded by design. Lattices are
the foundation of Conflict-Free Replicated Data Types (CRDTs)
[41], ACID 2.0 [28], and the CALM theorem [29] (CALM stands for
Consistency As Logical Monotonicity). But this research has not
yet been successfully transferred into practice.

In our case studies [6, 7, 32], we learned that practitioners of-
ten underestimate the complexity of developing custom update
propagation and conflict resolution schemes. They merely address
consistency and concurrency challenges with trial-and-error. An-
other problem is that only few experts are able to address these
challenges in a targeted way. A summary of our assumptions based
on anecdotal observations is given in [5]. We also learned that
consistency- and concurrency-related challenges need to be con-
sidered already during the functional decomposition of the overall
application domain into different sub-domains and, in particular,
during the design of the sub-domain models. Alas, only little engi-
neering guidance is available that is aimed at the design of domain
models that are safe under concurrent execution of updates running
in parallel on multiple nodes of a distributed system. We refer to
domain models consisting (partly or fully) of eventually consis-
tent data that can be updated safely and concurrently at different
replication nodes as “safe eventually consistent domain models”.
Considering our empirical observations and the results of related
studies [2, 23, 27, 33, 39], we are convinced that concrete design
guidelines in this regard would be beneficial.

We conducted an action research study [42] in a realistic research
setting, focusing on the following research question:

¢ RQ: How can we design safe eventually consistent do-
main models in a targeted way?

We provide the following contributions:

o An initial empirical validation of novel design guidelines we
are proposing in this regard.

e Comprehensive design guidelines extending the tactical de-
sign part of Domain-Driven Design (DDD) [16]. These guide-
lines specifically address consistency- and concurrency-related
design challenges of distributed data-intensive systems.

The design guidelines initially emerged as lessons learned from
two other case studies [7, 32] and were extensively revised in the
course of the study. We applied action research in the context of the
software architecture design process of a medium-sized platform
development project with an overall development budget of 220

person-months. The responsibility of the project team is to deliver
a digital workspace platform as described above.

The remainder of this paper is structured as follows: We provide
an overview of related work in Section 2. Our design method is out-
lined in Section 3, including a description of our design guidelines.
Section 4 details our research design and Section 5 presents the
results and discusses them. Validity threats are examined in Section
6. We summarize key results and conclude the paper in Section 7.

2 BACKGROUND AND RELATED WORK

Kleppmann defines an application as data-intensive “if data is its
primary challenge - the quantity of data, the complexity of data, or
the speed at which it is changing — as opposed to compute-intensive,
where CPU cycles are the bottleneck” [31]. Other works often focus
on the first and the third challenge, while the increasing complexity
of data is often overlooked. Increased complexity of data comes
with increased complexity of our domain models and the software
we need to architect and build. This is an area where DDD shines.
Therefore, we will first give a short introduction to DDD as relevant
background and then discuss related work.

DDD suggests that complex domain designs be based on a model
- the domain model [16]. Trying to maintain one global (canonical)
model often fails in practice as these models become too complex
and ambiguous. Therefore, one central concept of DDD are bounded
contexts. A bounded context defines a clear boundary within which
one specific unified model is valid. It further defines which business
language is valid within this context — the so-called ubiquitous
language, used in models and code and spoken by stakeholders and
developers. In a microservice architecture, one bounded context
usually corresponds to one microservice. The strategic design of
DDD helps to come up with the right bounded context cut. The
tactical design deals with the design of the domain model itself.

2.1 Consistency and Concurrency

Today’s data-intensive systems are highly distributed in order to
achieve higher availability and scalability by exploting increased
parallelism. This trend will continue as “CPU clock speeds are barely
increasing, but multi-core processors are standard, and networks
are getting faster” [31]. But increased “distributed parallelism” poses
new challenges for software engineers. In this section, we provide
an overview of the engineering support already available to date.

ACID transactions [26] provide extensive guarantees. Proper use
of transaction isolation levels [3] can ensure that concurrent data
access is equivalent to serial execution (serializability), completely
eliminating the possibility of concurrency anomalies. Isolation and
atomicity are the foundations of consistency in the original sense of
ACID: If the transaction program itself is correct, data can always
be in a consistent state, as related updates can be executed - from
the perspective of the application — in isolation and in one instant
[25]. ACID consistency is concerned with the internal consistency
of application data, specifically the validity of application invariants
and constraints.

Distributed transactions [9] and sagas [22, 37] span a number
of sub-transactions executed in different systems, e.g., different
services in a service-oriented architecture. Distributed transactions

Tackling Consistency-related Design Challenges of Distributed Data-Intensive Systems — An Action Research Study

and sagas provide the “all-or-nothing” guarantee for related up-
dates that need to be executed together in a distributed system.
Distributed transactions solve this with ACID atomicity, sagas with
compensation. Note that they do not address concurrency issues
arising from eventually consistent replication as outlined above.

As for database replication, it is well known “that transactional
replication is unstable as the workload scales up” [24]. This limita-
tion is still valid today, except for very few databases offering ACID
transactions also on replicated data, e.g., Google Spanner [11, 14].
Brewer proposed BASE (Basically Availaible, Soft State, Eventual
Consistency) [12] in this regard [10, 12]. BASE trades off isolation
for availability by favoring eventual consistency, meaning that up-
dates are propagated only asynchronously. The period between
the successful execution of an update on one replica and the full
propagation to all other replicas is called the inconsistency window
[45]. Eventual consistency only “guarantees” that all replicas will
eventually converge to the same state if update activity ceases [43].
Unlike eventual consistency, strong consistency [43] guarantees
that the last update is always returned to any subsequent access.
During inconsistency windows, applications might read stale data
or even update the same data concurrently, resulting in concurrency
anomalies and conflicts that need to be handled by the application
itself. Implementation of custom code for conflict resolution is a
huge source of human error [4, 31], which is why some researchers
have proposed exploiting “semantic tricks” like commutativity of
update operations to prevent conflicts from happening in the first
place, e.g., [24]. Weikum et al. introduced Multilevel Transactions
for increased concurrency in relational databases [46]. Helland
proposed ACID 2.0 [28] but does not show how to implement it
in practice. Shapiro et al. did extensive research on Conflict-Free
Replicated Datatypes (CRDTs) [41], but currently developers are
limited to a small number of existing data types. Implementation
of custom CRDTs is intellectually demanding and has not been
transferred into practice. Notably, there is the CALM theorem [29],
which defines a class of problems that can be safely implemented
in a distributed system and do not require global coordination.

To conclude, recent approaches focus on application-level consis-
tency and compatibility of “higher-level” operations (e.g., domain
operations) instead of conflict relations of lower-level read and
write operations on the infrastructure layer. Also note how ACID
consistency differs from strong consistency and eventual consis-
tency: The latter are always subject to replicated data and provide
different guarantees regarding the visibility of updates at distinct
replicas. In contrast, ACID consistency includes strong consistency
[10] and all-time validity of domain invariants and constraints.

2.2 Software Engineering Guidance

Microservices blur the boundaries in the discussion of transactional
replication vs. eventual consistency and distributed transactions vs.
sagas because they usually need both replication and distribution
of data. Regarding replication, pivotal domain objects such as an
order object in an e-commerce system often have to be stored by
multiple microservices. Even though these duplicated domain ob-
jects are modeled individually in different bounded contexts, they
still represent the same real-world concept and are therefore kind
of replicated at the application level. At the same time, distributed

transactions or sagas are needed as chances are low that use cases
will always require updates to be executed only in single microser-
vices. Correspondingly, most of the available software engineering
guidance on “data consistency” is related to microservices, e.g.,
[21, 27, 33, 36].

Practitioners are discussing the use of event sourcing [19] for
asynchronous propagation of updates between microservices [35],
similar to the idea of state-machine replication [40]. As event sourc-
ing was originally not intended for this, it seems to be a violation
of the information hiding principle, as the event log should be
private for an event-sourced object. An alternative pattern is to
combine CQRS (Command Query Responsibility Segregation) [20]
with the transactional outbozpattern for propagation of commands
(updates) between microservices [34, 38]. In the context of CQRS,
eventual consistency originally referred to the inconsistencies be-
tween the command model and the query model. In non-distributed
settings, this is uncritical, as the processing of commands and asyn-
chronous updating of the query model can be synchronized with
local transactions. However, this is not the case in distributed sys-
tems with application-level data replication. To summarize: though
these patterns can be used for update propagation, they do not offer
any guidance for addressing potentially emerging consistency and
concurrency anomalies.

Apart from microservice architectures, Kleppmann [31] can
serve as a starting point, but does not provide in-depth software
architecture guidance such as design patterns. To maintain ACID
consistency, DDD has the aggregates pattern. Aggregates are clus-
ters of domain objects that need to be updated atomically so that
aggregate-internal consistency and domain invariants can be main-
tained. DDD therefore suggests updating aggregates in the context
of ACID transactions [16]. To avoid performance issues stemming
from database isolation, DDD further suggests modeling aggregates
to be only as large as strictly necessary and preferably updating
only one aggregate in one transaction [16, 44].

Unfortunately, our literature research did not yield empirical
studies that directly investigated the efficacy of engineering meth-
ods for the safe architecting of distributed data-intensive systems
with eventually consistent data. Other studies, already quoted in the
introduction [2, 23, 27, 33, 39], are only distantly related but assert
our assumptions: The resulting design challenges are demanding
and more design guidance would be appreciated by practitioners.

3 DESIGN METHOD

Our design guidelines! aim at achieving two goals:

1. Goal: semantic compatibility of domain operations to
allow them to run concurrently and conflict-free at different
replicas.

2. Goal: minimizing the chance of conflicts with an opti-
mized design of domain objects.

Our design guidelines therefore consist of two documents, each
dedicated to one goal: the “Domain Operations Design Guide” as-
sists in achieving the first goal, and the “Domain Objects Design

! The version of the guidelines used during the study is provided in the replication
package: https://doi.org/10.6084/m9.figshare.14988405

Susanne Braun, Stefan Defloch, Eberhard Wolff, Frank Elberzhager, and Andreas Jedlitschka

Guide” aids in reaching the second goal. The final document struc-
ture of our design guides is given in Table 1. Each document pro-
vides some 20 pages of content.

3.1 Domain Operations Design Guide

The domain operations design guide assists software engineers in
designing compatible domain operations. Compatible operations
can safely be re-executed on all nodes (potentially on a different
state) and still correctly produce the same intended updates as dur-
ing the original execution. We refer to the latter property as the
ability of domain operations to tolerate partial execution order. A
detailed description of this property and how to achieve it during
operational design is given in the guide. In addition, compatible
design of operations guarantees the eventual absence of lost up-
dates [5]. In this regard, we distinguish two basic types of updates:
incremental updates and true blind updates. The guide makes use of
best practices using UML models and code snippets for illustrating
the two types. It also uses anti-patterns to further facilitate learning
of the design methodology (see Table 1).

3.2 Domain Objects Design Guide

Depending on the domain, it might not always be feasible to come
up with a design where all domain operations are compatible with
each other. In this case, an optimized design of the domain objects
can reduce the chance of conflicts. An optimal aggregate cut can
lead to a significant reduction of a model’s conflict potential. Simi-
lar to coming up with an optimal bounded context cut, designing
an optimal aggregate cut is demanding. If distinct domain objects
have differing update characteristics, this can be an indicator that
these domain objects need not be updated atomically and therefore
also need not be clustered within the same aggregate boundary
[16, 44]. But “differing update characteristics” is vague and does
not provide concrete guidance on how to apply this principle sys-
tematically during the design process. To approach this in a more
targeted way, we provide concrete classification criteria related to
aggregate update behavior and use these to derive a taxonomy of
six different aggregate classes [7]. We mainly distinguish trivial and
non-trivial aggregates. Trivial aggregates, such as immutable and
derived aggregates, rule out the possibility of conflicts, whereas
non-trivial aggregates have a certain potential for conflicts depend-
ing on their concrete class membership. For each aggregate class,
we provide concrete classification criteria, examples, and further
guiding questions to facilitate classification. Based on the taxonomy,
we also provide concrete design best practices for the construction
of aggregate cuts with minimum conflict potential (see Table 1).

4 RESEARCH DESIGN

The aim of the study is to evaluate software architecture design
guidelines supporting practitioners in tackling consistency-related
design challenges of distributed data-intensive systems. Real-world
software architectures are long-lived and complex. It is thus nearly
impossible to measure any effects related to real-world software ar-
chitecture problems in controlled experiments [17]. In case studies,
researchers are usually only allowed to observe and not permitted
to drive forward any changes to established software architecture
practices, e.g., by proposing a new design technique. We therefore

decided to conduct our study under the action research paradigm
[42], as it allows researchers to collaborate with practitioners in
the context of real projects.

4.1 Context

The case company, Fraunhofer-Gesellschaft, is a large group of
applied research institutions in Germany obliged to realize one
third of its turnover from projects with industry customers. The
studied organization, Fraunhofer IESE, is doing applied software en-
gineering research. It also offers IT consultancy services to industry
customers. It employs more than 100 computer science researchers
and eleven full-time developers. The problem of missing design
guidelines was originally identified at the case organization during
a software development project conducted between 2014 and 2016
on behalf of a large manufacturer of agricultural machinery [6, 32].

At the end of 2018, a multi-site platform development project was
started at the case organization together with two other medium-
sized software development companies. The goal of this project is to
develop a minimum-viable product (MVP) of a digital workspace as
outlined in the introduction (see Section 1). The workspace platform
was designed according to the microservices architecture paradigm.
The idea was to develop open host services and corresponding
published languages [16] for the platform-wide asynchronous prop-
agation of updates to pivotal aggregates, such as tasks or meetings,
which were expected to be independently stored and updated in
different platform services or apps. As the application domain is
the remote work domain, web clients should also be able to sup-
port disconnected operation. Thus, client-specific bounded context
models needed to be replicated to edge devices with an eventually
consistent replication scheme. Correspondingly, the design chal-
lenges addressed by our guidelines were a potential issue in this
project and qualified the project as validation context.

The overall software development project budget is 220 person-
months; the budget of the development team at the case organi-
zation is 92 person-months. At the date of writing, the platform
project has more than 30 git repositories and more than 20 microser-
vices. Development activities started in 2019 with sprint zero and
a small team consisting of a product owner, a lead software archi-
tect, and two full-stack developers. In 2020, the regular multi-site
development process started applying a combination of Agile and
Lean principles. At the case organization, three full-time-equivalent
developers and one full-time-equivalent UX designer as well as
one full-time-equivalent product owner were staffed to the project.
Other experts, such as data scientists, as well as data privacy experts
were temporarily involved depending on the project phase and the
tasks. In Q1 and Q2 of 2021, the development team at the case orga-
nization was reduced to one part-time product owner, one part-time
UX designer, and two part-time full-stack developers who spent ap-
prox. 60%, 30%, 50%, and 80%, respectively, of their working time in
the development team. The two development teams at the industry
sites each had three developers and one project manager working
in the team on average. Due to delays, the second industry team’s
development activities could only begin in March 2021 and will
continue after the first official release of the MVP in July 2021 until
the end of 2021. Multi-site development activities are coordinated in
four-week sprints. The development team at the case organization

Tackling Consistency-related Design Challenges of Distributed Data-Intensive Systems — An Action Research Study

Table 1: Structure of the Design Guidelines

Domain Operations Design Guide

Domain Objects Design Guide

Introduction & Prerequisites

Best Practice — Design for “Tolerance to Partial Execution Order”
Domain Operations Compatibility Relation

Best Practice — Design for Incremental Updates

Best Practice — Design for True Blind Updates

3 Compatibility Anti-Patterns

Best Practice — Design for Domain Invariant Consistency

Best Practice — Consider Durability Requirements

Cheat Sheet

Introduction & Prerequisites

Aggregate Taxonomy

3 Trivial Aggregate Classes

— Classification Criteria, Examples, Guiding Questions
3 Non-Trivial Aggregate Classes

— Classification Criteria, Examples, Guiding Questions
5 Data Model Design Best Practices

Cheat Sheet

organized its work internally in two-week sprints and aligned them
with the four-week sprints of the multi-site development process.

Due to the complexity of the platform development project itself,
all requirements resulting in the need to handle eventual consis-
tency were postponed in the course of sprint zero. For any data
replicated at the application level between different microservices,
users have to configure a leading app. Other services and apps
need to rely on the availability of the synchronous REST API of the
leading app regarding the execution of update operations. In Q4
of 2020, the disconnected operation requirement was prioritized
again. Action research was used to develop eventually consistent
bounded context models for individual workspace apps selected to
support disconnected operation on edge devices.

4.2 Theoretical Framework

We designed our study based on the assumption that a practitioner’s
approach is usually characterized by trial-and-error, drastic under-
estimation of the inherent complexity of custom synchronization
schemes, and a lack of understanding of the required underlying
concepts. A summary of our assumptions and observations gained
in past case studies can be found in [5]. We therefore hypothesize
that our guidelines meet a real need of practitioners.

4.3 Summary of Research Cycles

In October 2020, the action team set off to identify best practices and
design patterns for the design of safe eventually consistent domain
models. Action research is always timeboxed and conducted itera-
tively in cycles [42]. Each action research cycle has the following
phases: (1) diagnosing the problem, (2) planning actions, (3) taking
actions, (4) evaluating actions, and (5) learning and theory building
[42]. We ran two cycles between late October 2020 and early March
2021. Each cycle had a duration of between six and eights weeks.
The research question of both cycles was:

¢ RQ: How can we design safe eventually consistent do-
main models in a targeted way?

The research goals, the corresponding sub-questions, as well as the
metrics applied during the evaluation phases are shown in the GQM
template [13] presented in Figure 1. We focused on measuring the
effectiveness and applicability of the guidelines; the corresponding
hypotheses are given in Table 2. The design of an eventually con-
sistent domain model is safe if severe concurrency anomalies, such
as lost updates, can be prevented by design. Thus, if all domain

The purpose is to evaluate the effect of using our guidelines during
software architecture design from the point of view of software
architects in the context of complex distributed data-intensive systems.

/\

How effectively does the introduction of Can our guidelines be used in
our guidelines prevent models that are conjunction with DDD to design
not safe regarding the potential bounded context models of complex
occurrence of severe concurrency distributed data-intensive systems
anomalies (Effectivity)? (Applicability)?

L = Share of compatible domain L = Thematic analysis of qualitative

operations data collected in focus groups
= Share of trivial aggregates and diaries

Figure 1: GQM research goals

operations are compatible and can therefore run concurrently and
conflict-free on different nodes, the model is safe by design. Corre-
spondingly, one metric for measuring the safety of a domain model
is its share of compatible domain operations. A second measure is
the share of trivial aggregates of the model, as conflicts can be ex-
cluded in connection with trivial aggregates. To assess applicability,
we conducted a thematic analysis [8] on qualitative data collected
in focus groups and diaries.

Figure 2 provides an overview of how the study was conducted
and shows the inputs from academia and industry as well as the
outputs of the industry-academia collaboration of each cycle. Table
3 contains a summary of each cycle (the first row refers to the first
cycle, the second row to the second cycle).

4.4 Data Collection and Analysis Methods

In this section, we describe how we collected and analyzed quanti-
tative and qualitative data. First, we provide general information
regarding the participants of our study. Next, we explain how data
was collected and analyzed in the different phases of each cycle?.
Regarding the participants, action research distinguishes differ-
ent actors: the members of the action team and the members of the
reference group [42]. The action team is responsible for planning,
executing, and evaluating the research [42]. The reference group
is not involved in action planning, action taking, and evaluation,
but has practical experience with the problem and can therefore
provide objective feedback to evaluation results and reduce biases
[42]. An overview of the actors of this study is given in Table 4. The

2We provide a replication package at: https://doi.org/10.6084/m9.figshare.14988405

Susanne Braun, Stefan Defloch, Eberhard Wolff, Frank Elberzhager, and Andreas Jedlitschka

Table 2: Research Hypotheses

Hggrect1 The introduction of our guidelines results in the design of safe eventually consistent domain models, so that the occurrence
of concurrency anomalies, in particular lost updates, is prevented by design.

Happ1 Professional software engineers trained in DDD are able to apply our guidelines as part of the tactical design.

Happ2 Professional software engineers trained in DDD applying our guidelines as part of the tactical design are able to come up
with a reasonable functional decomposition of the eventually consistent domain model.

Happs Additional complexity of eventually consistent domain models caused by being compliant with our guidelines is acceptable in
practice (and adequate for addressing the inherently complex task of controlling concurrent data access on different replicas).

Design of ‘ Design of ‘

eventually consistent

domain models? ‘

= Introduction
of guidelines

Red.

Design Guidelines 1.0

. ign of
existing
model

y 4

Redesigned safe model

eventually consistent

domain models? ‘

Design guidelines

improvement areas

Design Guidelines 2.0

ia Collaboration

| s

Cycle 1

model

Cycle 2

Figure 2: Overview of Research Cycles

Design of a new

V4

Safe model

Published guidelines

Table 3: Summary of Research Cycles - Cycle 1 in first row - Cycle 2 in second row

Diagnosing

Action Planning

Action Taking

Evaluation

Learning

Focus group 1 accepted
our observations from
past case studies [5].
The participants would
approach the design with
trial-and-error. How can
we instead design safe
eventually consistent
models in a targeted
way?

The researchers sug-
gested presenting the
design guidelines to the
action team. The action
team agreed to use the
guidelines to re-design
the model of the team
mood barometer app to
support disconnected
operation of the app.

The design guidelines
were presented to the ac-
tion team during a 1-hour
online meeting. The ac-
tion team also got writ-
ten guidelines in text-
book style. Two devel-
opers independently cre-
ated a re-design of the
model.

The share of compati-
ble domain operations as
well as the share of triv-
ial aggregates was signif-
icantly higher in the re-
designs than in the exist-
ing baseline bounded con-
text model.

The domain objects de-
sign guide required im-
provement in several ar-
eas (e.g., the classification
criteria were partly am-
biguous). The compatibil-
ity relation for domain
operations was hard to
understand and required
a major revision.

As the guidelines re-
quired improvement
in several areas, the
problem was the same as
in the first cycle: How
to design safe eventu-
ally consistent domain
models in a targeted
way?

The researchers planned
to provide the revised
design guidelines to the
action team. The action
team planned to design
a bounded context model
from scratch using the re-
vised guidelines.

The action team designed
a larger bounded context
model for backlog man-
agement, backlog groom-
ing, and asynchronous
conduction of planning
pokers using the revised
written guidelines.

In the resulting design,
21 out of 22 domain op-
erations were compatible.
The share of trivial ag-
gregates was around 40%.
Due to the characteristics
of domain data, this share
could not have been in-
creased meaningfully.

The action team appre-
ciated the value of the
guidelines, which were
now perceived to be easy
to understand and apply.
Due to their benefits, the
guidelines should be pub-
lished internally and ex-
ternally.

action team was staffed with two researchers (R). The first author
was the first researcher. She is the responsible product owner of
the platform MVP and the designer of the action research study.
She is also the author of the design guidelines. The fourth author
was the second researcher. He had not worked in the previous
case studies that led to the original design guidelines. His role was
to adopt a neutral position. Correspondingly, he was the moder-
ator of all focus groups and feedback sessions. He also reviewed

any transcripts prior to their analysis by the first researcher. He
regularly chatted informally with the other action team members
as participants sometimes try to please researchers during focus
groups. Both researchers have more than ten years of professional
experience. The designer of the action research study had been
employed in industry for more than five years before joining the
case organization, working as a software engineer and software
architect. In addition, two full-stack developers (D) from the case

Tackling Consistency-related Design Challenges of Distributed Data-Intensive Systems — An Action Research Study

organization were part of the action team. Both were members of
the development team since sprint zero. The first full-stack devel-
oper has eight years of professional experience as a developer and
also took over the role of the lead software architect of the project
in mid-2020. The second developer has four years of professional
experience as a developer. Two members of the leadership team
(professional experience between 12 and 20 years) were in the ref-
erence group (L). Both reference group members had worked in at
least one of the previous case studies mentioned above (thus had an
understanding of the problem) and still regularly work in strategic
projects with industry customers in the role of a software architect.

4.4.1 Diagnosing Phase. As during sprint zero, all requirements
related to eventual consistency had been dropped due to complex-
ity, we conducted a focus group with the two full-stack developers
who were already part of the development team during sprint zero.
Our goal was to better understand the problem. Both members of
the reference group also joined the focus group. The fourth author
moderated this session, while the first author took notes and occa-
sionally asked comprehension questions. For the first part of the
focus group, the researchers prepared trigger questions to stimulate
the discussion. These questions belonged to the following topic clus-
ters: Consistency, Transactions, Asynchronous Update Propagation
& Conflict Management, Microservices, and DDD. The questions
were also designed to test whether our anecdotal observations from
past case studies [5] could be accepted in the context of our study.
In the second part, the attendants could freely share any thoughts
regarding the topics discussed so far. We had planned the focus
group to last 1.5 hours, but due to the very active participation of
all attendants, we had to schedule a 30-minute follow-up meeting.
The first researcher conducted a thematic analysis [8] to analyze
the transcripts of the focus group. The analysis results were later
presented to the action team and the reference group and approved
by all participants.

The first researcher also carried out a baseline analysis on the
existing model of the mood barometer app. To this end, she con-
ducted a code review on the corresponding microservice repository
and evaluated the quantitative metrics on the model in the code.
She executed the evaluation of the metrics according to the design
guidelines®. The domain operations design guide provides instruc-
tions for assessing the compatibility of operations, whereas the
domain objects design guide contains criteria for determining triv-
ial aggregates. As the first researcher is the author of the guidelines,
she had the expertise to correctly apply the metrics.

4.4.2 Action Taking Phase. The first researcher prepared diary tem-
plates for the action team in each cycle. The action team members
were asked to record if they observed anything good or bad in rela-
tion to the guidelines while working with them. Also, if action team
members deliberately decided against the use of a guideline or best
practice, they were asked to document this together with a rationale.
Action team members also used the diaries to share the relevant
parts of the design, such as UML diagrams, signatures of domain
operations, as well as domain logic in pseudo code listings. They
were also asked to note for each aggregate its class according to our

3The version of the guidelines used during the study is provided in the replication
package: https://doi.org/10.6084/m9.figshare.14988405

guidelines (see Section 3.2). Similarly, regarding domain operations,
they were asked to determine the update type, such as incremental
update (see Section 3.1), and the compatibility relations.

In the first cycle, both developers independently developed a re-
design proposal. In the second cycle, both developers collaboratively
designed the model for upcoming user stories related to backlog
grooming and effort estimations.

At the end of each action-taking phase, we conducted another
focus group with the action team to collect and discuss feedback. De-
velopers could freely share any feedback or observations, while the
moderator posed questions aimed at challenging our applicability
hypotheses given in Table 2.

4.4.3 Evaluation Phase. During the evaluation phase, the first au-
thor reviewed the designs and determined the share of trivial ag-
gregates and the share of compatible domain operations according
to the guidelines. The evaluation of the metrics was conducted in
the same way as during the evaluation of the baseline model, but
this time using the model designs provided in the form of UML
diagrams and pseudo code within the diaries. As the guidelines
were revised in the action-taking phase of the second cycle, the
evaluation of the metrics was adapted to the new guidelines during
the second cycle.

The first author also conducted a thematic analysis [8] on quali-
tative data collected in diaries and the transcript of the focus group
run at the end of each action-taking phase. In addition, she triangu-
lated the qualitative data of the focus groups and the diaries with
aggregate classification errors and domain operation compatibil-
ity assessment errors in order to substantiate the evidence of the
derived learnings.

At the end of the evaluation phase, the researchers presented the
results to the action team and the reference group. This meeting
was also used to jointly conduct a focus group aimed at asking
the reference group members for objective feedback. In the first
cycle, we also used this focus group to diagnose the problems of
the second cycle. Thus, the problems of the second cycle were
diagnosed collaboratively by the action team and the reference

group.

5 RESULTS AND INTERPRETATION

The results of the analysis of the quantitative data collected during
both cycles? is given in Table 5. Next, we report the results of the
thematic analysis conducted on the qualitative data collected in
the focus groups and diaries. The identified themes as well as code
negatively or positively impacting our applicability hypotheses are
presented in Tables 6, 7 (cycle 1) and Tables 8, 9 (cycle 2).

The quantitative results given in Table 5 indicate that applying
our design guidelines led to a high share of compatible operations
(67%-100%). This was already the case in the first cycle, even though
the qualitative instruments (see Table 6) showed that the opera-
tion taxonomy on which our compatibility relation was based was
hard to understand. Regarding the design of domain objects, trivial
aggregate shares between 37.5% and 60% were achieved.

‘We provide the complete, anonimized dataset:

https://doi.org/10.6084/m9.figshare.14988228

manually

Susanne Braun, Stefan Defloch, Eberhard Wolff, Frank Elberzhager, and Andreas Jedlitschka

Table 4: Actors

Actor Actor Type Job Title Work Experience Project Role

R1 Action Team Member Expert Data-Intensive Systems Design 12 years Product Owner

R2 Action Team Member Expert Scientist Quality Assurance 16 years -

D1 Action Team Member Senior Developer 8 years Lead Software Architect

D2 Action Team Member Senior Developer 4 years Lead DevOps Engineer

L1 Reference Group Department Head 12 years -

L2 Reference Group Division Manager 20 years -

Table 5: Quantitative Results Cycles 1 & 2 - Effectiveness
Bounded Context Creation Creator Share of Share of
Time Compatible Operations Trivial Aggregates

Team Mood Barometer Baseline D1 in collaboration with other developers 0.0% (0 out of 2) 25.0% (1 out of 4)
Team Mood Barometer Cycle 1 D1 100.0% (4 out of 4) 40.0% (2 out of 5)
Team Mood Barometer Cycle 1 D2 67.0% (2 outof 3) 60.0% (3 out of 5)
Backlog Management Cycle 2 D1 in collaboration with D2 95.5% (21 out of 22) 37.5% (3 out of 8)

Table 6: Qualitative Results Cycle 1 - Codes with Negative Impact on Applicability

Theme & Sub-Themes

Code with a Negative Impact

Happ1 — Comprehensibility — Aggregate Taxonomy

Classification criteria are partly ambiguous

Some examples are ambiguous
Too little use of simple examples with which practitioners are already familiar
Some class names are counter-intuitive

Happ1 — Comprehensibility — Operation Taxonomy

Classification tree is hard to understand

Happ1 — Comprehensibility — Compatibility Relations Compatibility relations not clear; require much more detailed explanations

Happ2 — Applicability

Re-design of an existing model in the context of a complex brownfield project

The existing model was complex and hard to understand

The existing model was an example of the anemic domain model anti-pattern
Unclear or incomplete business requirements

Missing cheat sheets and overview tables

Happz — Applicability — Aggregate Taxonomy

Classification criteria partly ambiguous

Happ2 — Applicability — Operation Taxonomy

Generic operations do not reflect the intent of users or the domain semantics

Table 7: Qualitative Results Cycle 1 - Codes with Positive Impact on Applicability

Theme & Sub-Themes

Code with a Positive Impact

Happ1 — Comprehensibility — Aggregate Taxonomy

Hands-on experience in using the taxonomy

Happ1 — Comprehensibility — Operation Taxonomy

Hands-on experience in using the taxonomy

Happz — Applicability

The re-designed model was much clearer and easier to understand

Happs — Complexity

After the re-design, the model was less complex

5.1 Cycle1

The share of trivial aggregates in the re-designs of the developers
was between 40% and 60%. The potential to design parts of the
model with trivial aggregates is highly dependent on the domain
semantics. However, the first author, who also conducted the as-
sessment of the designs, was able to come up with a team mood
barometer design with 4 out of 5 aggregates being trivial. Thus, in

principle, a share of 80% would have been possible. On the down-
side, the model of the researcher contained a notable, but acceptable
share of code duplication. One example where this can be seen are
aggregates that, depending on their lifecycle, need to reference
particular versions of other aggregates. For instance, each team
mood barometer has a configuration. Multiple configurations can
be maintained by one team and can be adapted to meet changing
needs of the team. But once a team mood barometer has gone live
and team members can place votes, the configuration must not be

Tackling Consistency-related Design Challenges of Distributed Data-Intensive Systems — An Action Research Study

Table 8: Qualitative Results Cycle 2 - Codes with Negative Impact on Applicability

Theme & Sub-Themes

Code with a Negative Impact

Happz — Applicability — Guidelines

The corresponding programming framework is not available yet

Th exact features and guarantees of the corresponding programming framework are not clear
DDD novices — missing hands-on experience in DDD

Superficial knowledge of central DDD concepts such as bounded contexts and aggregates
Substantial training effort required to learn central DDD concepts first

Missing concrete design patterns for certain aspects like the creation of new domain objects
Guidelines do not provide a recipe, but require understanding of the method

Unresolved questions regarding domain semantics

Too little direct communication between developers

Happs — Complexity

Segregation of different aggregate classes is sometimes perceived as unusual

Table 9: Qualitative Results Cycle 2 - Codes with Positive Impact on Applicability

Theme & Sub-Themes

Code with a Positive Impact

Happ1 — Comprehensibility — Guidelines

Guidelines are understandable

Happ2 — Applicability — Guidelines

Guidelines are applicable

Examples are transferable

Happs — Complexity

Perceived additional complexity is low

changed anymore. The researcher did not reuse mutable config-
uration objects to model the relation between a mood barometer
gone live and its configuration. Instead, she modeled an explicit
immutable configuration aggregate that did not offer any update
operations in its interface. She made the immutability property very
explicit in the model, but had to accept a certain amount of code
duplication in return. In contrast, the developers seemed to have
a stronger tendency towards generalization and reuse of existing
model elements. This was especially true for the baseline model
and also explains why the number of aggregates was smaller in
the baseline model compared to the re-designs. The tendency to
generalize led to an increase of complexity, as, e.g., the developers
had to come up with the correct logic to decide whether or not the
configuration aggregate was in the state to accept updates (which
they did not do correctly in the baseline code).

The code review of the baseline model showed that the baseline
model was an example of the anemic domain model anti-pattern
[18] with only two coarse-grained state-based update operations
for two aggregates. These operations would have been prone to
lost updates if propagated in a setting with eventually consistent
replication. However, to be fair, the developers originally did not
create the model to be safe with eventually consistent replication
as corresponding requirements had been dropped during sprint
zero. Thus, we cannot exclude for sure that they would have been
able to come up with a safe design without our guidelines. We did,
however, directly ask this question during the last focus group of
the second cycle and the developers denied it.

One of the positive outcomes of the qualitative instruments was
that the developers perceived the re-designed model as clearer
and less complex. One developer directly stated that by applying
the guidelines, things became more explicit in the model and that
the guidelines forced them to be more explicit. The developers
perceived this as helpful for structuring the model and for coming

up with an improved design. This gain may also be due in part to the
enforcement of DDD itself (as a basis of our guidelines). Therefore,
we explicitly state this as a potential confounding factor.

The analysis of the designs combined with the results of the
thematic analysis showed that the guidelines needed improvement
in several areas. Comprehensibility and applicability in general
were impaired, among other things, by ambiguous examples and
classification criteria, or by counter-intuitive names of classes and
compatibility relations. In particular, the guidelines for compatible
domain operations design needed a major revision, as the develop-
ers were somewhat able to apply them but did not really understand
them. Other factors the developers perceived as negatively impact-
ing applicability are given in Table 6.

During the final focus group, the researchers also got the impres-
sion that one developer had been afraid to fundamentally re-design
the baseline model because of the expected high refactoring effort.
We interpreted this as a possible reason for not “freely” applying
all our guidelines. The second developer was biased towards the
baseline model because he had originally created it. Therefore, the
researchers suggested challenging the revised guidelines during
the second cycle on a model that could be designed from scratch.

5.2 Cycle 2

In the second cycle, the developers achieved a very high share of
compatible domain operations (95.5%). Only one out of 22 oper-
ations was incompatible. The developers designed this operation
with a blind update that is, in fact, incremental: collaborative text
editing of user stories. However, collaborative text editing is chal-
lenging. Nevertheless, a possible solution would have been to search
for a collaborative text-editing library based on CRDTs [41] (e.g.,
[1, 30]). The developers knew CRDTs as the researchers had pre-
sented CRDTs during the action-taking phase of the first cycle. The

Susanne Braun, Stefan Defloch, Eberhard Wolff, Frank Elberzhager, and Andreas Jedlitschka

share of trivial aggregates was 37.5%, which could not have been
increased meaningfully. The potential for trivial aggregates was
simply not so high in the backlog management model as in the
model of cycle 1.

Note that the size of the domain model of the second cycle
was significantly larger in terms of aggregates count and number
of domain operations. Hence, the action team decided to design
only one model in collaboration with both developers. This way
of working also represented our usual mode of operation in the
project. Thus, in the second cycle, we traded off larger amounts of
quantitative data for increased realism.

The thematic analysis revealed that the developers perceived
the overall additional complexity introduced by following the rec-
ommendations of the guidelines as low. Furthermore, they clearly
stated that the revised guidelines were supportive, comprehensible,
and applicable. The developers also praised the introduction of ad-
ditional cheat sheets. However, the participants would have wished
for a programming framework directly supporting all the technical
prerequisites outlined in the guidelines. With regard to the do-
main operations design guidelines, the participants mentioned that
the possibility to prototype certain aspects of the model directly
in code would have been beneficial. Another weakness was that
applying the guidelines already requires an advanced level of ex-
perience with DDD. The developers admitted that they considered
themselves rather to be DDD novices, and therefore their overall
learning curve had been quite steep. In particular, they declared
that they had never before applied the DDD aggregate pattern in
practice. They also noted that regarding trivial aggregates, they
sometimes perceived it as unusual to segregate different aggregate
classes (segregation of different aggregate classes in the model is
one of the best practices from our guidelines).

6 VALIDITY

Each empirical study comes with threats to validity. We discuss the
most critical ones based on the guidelines by Staron [42].

Construct validity — mono operation bias: In our study, the action
team consisted of four people. The two action research cycles during
which the tasks were performed ran from October 2020 to March
2021.

Construct validity — hypotheses guessing: As the action team
tested guidelines to get results, a certain expectation regarding
improved results cannot be neglected. We explicitly asked whether
the action team had produced the results to meet possible result
expectations, which they denied. Finally, we discussed not only
improvements, but also critical aspects regarding our guidelines
and results.

Construct validity — evaluation apprehension: We decided against
direct observation, but asked the action team to use a diary and
provide feedback in a meeting.

Construct validity — experimenter expectations: A positive expec-
tation regarding the results cannot be completely denied, and the
concrete tasks were selected so that the guidelines could be applied.
However, the setting of the study was not specifically adapted, and
we discussed the tasks with the reference group and the second

researcher, who mainly helped to organize the action research cy-
cles. As he was not deeply involved in content creation, he was less
biased.

Internal validity — maturation: Over the course of the two cy-
cles, a certain maturation of the participants cannot be completely
neglected. But the concrete tasks were different in the two cycles.
Furthermore, the timeframe for using the guidelines in the concrete
tasks was short (about 1-2 weeks each) so that maturation did not
appear to have a strong influencing effect.

Conclusion validity — changed procedures of action team: We
changed the procedure between the two action research cycles.
In the first cycle, every person solved the tasks on their own. In
the second cycle, a two-person team was defined. This reflects the
real-world character better, but means that the direct comparison
of the two runs had to be conducted carefully.

External validity — real-world setting vs. experimental setting: The
results are part of a publicly funded research project. However, the
background is strongly related to industry, and the concrete project
is a realistic example from a running system relevant for industrial
settings.

7 SUMMARY & CONCLUSIONS

In our action research, we set off to find new ways for tackling
consistency-related design challenges of distributed data-intensive
systems. We applied a novel method for designing safe eventually
consistent domain models. The following key results were obtained:
(1) a high share of compatible domain operations in the resulting
models; (2) high exploitation of the potential to design parts of the
model with trivial aggregates; (3) the developers’ perception of the
guidelines being supportive, comprehensible, and applicable; (4)
the developers’ declaration that they would not have been able
to consider all aspects covered by our design guidelines on their
own; (5) the developers’ perception of the resulting domain models
being easier to understand and less complex in comparison to the
baseline; (6) the developers’ perception of additional complexity
introduced by the application of our guidelines being low.

Thus, our initial assumptions were confirmed and we can posi-
tively answer our research question (RQ). We accept our research
hypotheses concerning the effectiveness and applicability of our de-
sign guidelines in the context of our study. Based on our results, we
recommend using the guidelines to design safe eventually consis-
tent domain models, even though the current version lacks support,
e.g., by a programming framework, and requires an advanced level
of experience with DDD.

To obtain more empirical evidence about the applicability and
efficiency of our approach, we regularly conduct hands-on, half-day
workshops with external practitioners, teaching them our design
method and collecting feedback. Furthermore, we will develop and
evaluate a programming framework integrated with Enterprise
Java® technology to support developers with regard to the technical
prerequisites outlined in the guidelines.

ACKNOWLEDGMENTS

Many thanks to the members of the action team and the reference
group. We thank Sonnhild Namingha for proofreading and our

Shttps://www.java.com/de/

Tackling Consistency-related Design Challenges of Distributed Data-Intensive Systems — An Action Research Study

anonymous reviewers for valuable feedback. The action research
study has been partially funded by the German Federal Ministry of
Economic Affairs and Energy (01MD18007C).

REFERENCES

[1] [n.d.]. Concordant. Retrieved Mai 03, 2021 from https://concordant.io/

[2] Syed Ahmed and Mehdi Bagherzadeh. 2018.

[11]
[12]

[13

[14

[15

[16

[17

(18

[19

[21

[22

[23

]

]

]

]

What do concurrency devel-
opers ask about?: a large-scale study using stack overflow. In Proceedings of
the 12th ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, ESEM 2018, Oulu, Finland, October 11-12, 2018, Markku
Oivo, Daniel Méndez Fernandez, and Audris Mockus (Eds.). ACM, 30:1-30:10.
https://doi.org/10.1145/3239235.3239524

Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J. O’Neil, and
Patrick E. O’Neil. 1995. A Critique of ANSI SQL Isolation Levels. In Proceedings of
the 1995 ACM SIGMOD International Conference on Management of Data, San Jose,
California, USA, May 22-25, 1995, Michael J. Carey and Donovan A. Schneider
(Eds.). ACM Press, 1-10. https://doi.org/10.1145/223784.223785

Susanne Braun. 2017. Semantics-Driven Optimistic Data Replication: Towards
a Framework Supporting Software Architects and Developers. In 2017 IEEE
International Conference on Software Architecture Workshops, ICSA Workshops
2017, Gothenburg, Sweden, April 5-7, 2017. IEEE Computer Society, 236-241. https:
//doi.org/10.1109/ICSAW.2017.18

Susanne Braun, Annette Bieniusa, and Frank Elberzhager. 2021. Advanced
Domain-Driven Design for Consistency in Distributed Data-Intensive Systems.
In PaPoC@EuroSys 2021, 8th Workshop on Principles and Practice of Consistency
for Distributed Data, Online Event, United Kingdom, April 26, 2021. ACM, 9:1-9:12.
https://doi.org/10.1145/3447865.3457969

Susanne Braun, Ralf Carbon, and Matthias Naab. 2016. Piloting a Mobile-App
Ecosystem for Smart Farming. IEEE Softw. 33, 4 (2016), 9-14. https://doi.org/10.
1109/MS.2016.98

Susanne Braun and Stefan Def3loch. 2020. A Classification of Replicated Data for
the Design of Eventually Consistent Domain Models. In 2020 IEEE International
Conference on Software Architecture Companion, ICSA Companion 2020, Salvador,
Brazil, March 16-20, 2020. IEEE, 33-40. https://doi.org/10.1109/ICSA-C50368.
2020.00014

Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77-101.

Yuri Breitbart, Hector Garcia-Molina, and Abraham Silberschatz. 1992. Overview
of Multidatabase Transaction Management. VLDB 7. 1, 2 (1992), 181-239. http:
//www.vldb.org/journal/VLDBJ1/P181.pdf

Eric Brewer. 2012. CAP twelve years later: How the" rules" have changed. Com-
puter 45, 2 (2012), 23-29.

Eric Brewer. 2017. Spanner, truetime and the cap theorem. (2017).

Eric A. Brewer. 2000. Towards robust distributed systems (abstract). In Proceedings
of the Nineteenth Annual ACM Symposium on Principles of Distributed Computing,
FJuly 16-19, 2000, Portland, Oregon, USA, Gil Neiger (Ed.). ACM, 7. https://doi.
org/10.1145/343477.343502

Victor R Basili-Gianluigi Caldiera and H Dieter Rombach. 1994. Goal question
metric paradigm. Encyclopedia of software engineering 1, 528-532 (1994), 6.
James C Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost,
Jeffrey John Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,
Peter Hochschild, et al. 2013. Spanner: Google’s globally distributed database.
ACM Transactions on Computer Systems (TOCS) 31, 3 (2013), 1-22.

Ahmed K. Elmagarmid (Ed.). 1992. Database Transaction Models for Advanced
Applications. In Elmagarmid [15].

Eric J. Evans. 2004. Domain-driven design - tackling complexity in the heart of
software. Addison-Wesley.

Davide Falessi, Muhammad Ali Babar, Giovanni Cantone, and Philippe Kruchten.
2010. Applying empirical software engineering to software architecture: chal-
lenges and lessons learned. Empir. Softw. Eng. 15, 3 (2010), 250-276. https:
//doi.org/10.1007/s10664-009-9121-0

Martin Fowler. 2003. Anemic Domain Model. Retrieved March 25, 2021 from
https://www.martinfowler.com/bliki/AnemicDomainModel.html

Martin Fowler. 2005. Event Sourcing. Retrieved March 25, 2021 from https:
//martinfowler.com/eaaDev/EventSourcing.html

Martin Fowler. 2011. CQRS. Retrieved May 24, 2020 from https://martinfowler.
com/bliki/CQRS.html

Martin Fowler. 2015. Microservice Trade-Offs. Retrieved Feb 05, 2021 from
https://martinfowler.com/articles/microservice-trade-offs html#consistency
Hector Garcia-Molina and Kenneth Salem. 1987. Sagas. In Proceedings of the
Association for Computing Machinery Special Interest Group on Management of
Data 1987 Annual Conference, San Francisco, CA, USA, May 27-29, 1987, Umeshwar
Dayal and Irving L. Traiger (Eds.). ACM Press, 249-259. https://doi.org/10.1145/
38713.38742

Patrice Godefroid and Nachiappan Nagappan. 2008. Concurrency at Microsoft:
An exploratory survey. In CAV workshop on exploiting concurrency efficiently and

[24

[25]

[26]

[27

[28

@
&,

[41

=
)

correctly. Princeton, USA.

Jim Gray, Pat Helland, Patrick E. O’'Neil, and Dennis E. Shasha. 1996. The
Dangers of Replication and a Solution. In Proceedings of the 1996 ACM SIGMOD
International Conference on Management of Data, Montreal, Quebec, Canada, June
4-6, 1996, H. V. Jagadish and Inderpal Singh Mumick (Eds.). ACM Press, 173-182.
https://doi.org/10.1145/233269.233330

Jim Gray and Andreas Reuter. 1993. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufmann.

Theo Hiarder and Andreas Reuter. 1983. Principles of Transaction-Oriented
Database Recovery. ACM Comput. Surv. 15, 4 (1983), 287-317. https://doi.org/10.
1145/289.291

Wilhelm Hasselbring and Guido Steinacker. 2017. Microservice Architectures
for Scalability, Agility and Reliability in E-Commerce. In 2017 IEEE International
Conference on Software Architecture Workshops, ICSA Workshops 2017, Gothenburg,
Sweden, April 5-7, 2017. IEEE Computer Society, 243-246. https://doi.org/10.1109/
ICSAW.2017.11

Pat Helland and David Campbell. 2009. Building on Quicksand. In CIDR 2009,
Fourth Biennial Conference on Innovative Data Systems Research, Asilomar, CA,
USA, January 4-7, 2009, Online Proceedings. www.cidrdb.org. http://www-db.cs.
wisc.edu/cidr/cidr2009/Paper_133.pdf

Joseph M. Hellerstein and Peter Alvaro. 2020. Keeping CALM: when distributed
consistency is easy. Commun. ACM 63, 9 (2020), 72-81. https://dl.acm.org/doi/
10.1145/3369736

Kevin Jahns. [n.d.]. yjs. Retrieved Feb 06, 2021 from https://github.com/yjs/yjs
Martin Kleppmann. 2016. Designing Data-Intensive Applications: The Big Ideas
Behind Reliable, Scalable, and Maintainable Systems. O’Reilly. http://shop.oreilly.
com/product/0636920032175.do

Matthias Naab, Susanne Braun, Torsten Lenhart, Steffen Hess, Andreas Ei-
tel, Dominik Magin, Ralf Carbon, and Felix Kiefer. 2015. Why Data Needs
more Attention in Architecture Design - Experiences from Prototyping a Large-
Scale Mobile App Ecosystem. In 12th Working IEEE/IFIP Conference on Soft-
ware Architecture, WICSA 2015, Montreal, QC, Canada, May 4-8, 2015, Len Bass,
Patricia Lago, and Philippe Kruchten (Eds.). IEEE Computer Society, 75-84.
https://doi.org/10.1109/WICSA.2015.13

Guy Pardon, Cesare Pautasso, and Olaf Zimmermann. 2018. Consistent Disaster
Recovery for Microservices: the BAC Theorem. IEEE Cloud Comput. 5, 1 (2018),
49-59. https://doi.org/10.1109/MCC.2018.011791714

C. Richardson. [n.d.]. Command Query Responsibility Segregation Pattern. Re-
trieved Feb 05, 2021 from ttps://microservices.io/patterns/data/cqrs.html

C. Richardson. [n.d.]. Event Sourcing Pattern. Retrieved Feb 05, 2021 from
https://microservices.io/patterns/data/event-sourcing html

C. Richardson. [n.d.]. Microservices Patterns: With examples in Java. Manning
Publications. https://books.google.de/books?id=UeK1swEACAA]

C. Richardson. [n.d.]. Saga Pattern. Retrieved Feb 05, 2021 from https:
//microservices.io/patterns/data/saga.html

C. Richardson. [n.d.]. Transactional Outbox Pattern. Retrieved Feb 05, 2021 from
https://microservices.io/patterns/data/transactional-outbox.html

Marco Scavuzzo, Elisabetta Di Nitto, and Danilo Ardagna. 2018. Experiences and
challenges in building a data intensive system for data migration. Empir. Softw.
Eng. 23,1 (2018), 52-86. https://doi.org/10.1007/s10664-017-9503-7

Fred B. Schneider. 1990. Implementing Fault-Tolerant Services Using the State
Machine Approach: A Tutorial. ACM Comput. Surv. 22, 4 (1990), 299-319. https:
//doi.org/10.1145/98163.98167

Marc Shapiro, Nuno M. Preguiga, Carlos Baquero, and Marek Zawirski. 2011.
Conflict-Free Replicated Data Types. In Stabilization, Safety, and Security of
Distributed Systems - 13th International Symposium, SSS 2011, Grenoble, France,
October 10-12, 2011. Proceedings (Lecture Notes in Computer Science), Xavier Défago,
Franck Petit, and Vincent Villain (Eds.), Vol. 6976. Springer, 386-400. https:
//doi.org/10.1007/978-3-642-24550-3_29

Miroslaw Staron. 2020. Action Research in Software Engineering - Theory and
Applications. Springer. https://doi.org/10.1007/978-3-030-32610-4

Douglas B. Terry. 2008. Replicated Data Management for Mobile Com-
puting. Morgan & Claypool Publishers. https://doi.org/10.2200/
S00132ED1V01Y200807MPC005

Vaughn Vernon. 2013. Implementing domain-driven design. Addison-Wesley.
Werner Vogels. 2009. Eventually consistent. Commun. ACM 52, 1 (2009), 40-44.
https://doi.org/10.1145/1435417.1435432

Gerhard Weikum and Hans-Jorg Schek. 1992. Concepts and Applications of
Multilevel Transactions and Open Nested Transactions. See [15], 515-553.
Eberhard Wolff. 2016. Microservices: flexible software architecture. Addison-Wesley
Professional.

https://concordant.io/
https://doi.org/10.1145/3239235.3239524
https://doi.org/10.1145/223784.223785
https://doi.org/10.1109/ICSAW.2017.18
https://doi.org/10.1109/ICSAW.2017.18
https://doi.org/10.1145/3447865.3457969
https://doi.org/10.1109/MS.2016.98
https://doi.org/10.1109/MS.2016.98
https://doi.org/10.1109/ICSA-C50368.2020.00014
https://doi.org/10.1109/ICSA-C50368.2020.00014
http://www.vldb.org/journal/VLDBJ1/P181.pdf
http://www.vldb.org/journal/VLDBJ1/P181.pdf
https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/343477.343502
https://doi.org/10.1007/s10664-009-9121-0
https://doi.org/10.1007/s10664-009-9121-0
https://www.martinfowler.com/bliki/AnemicDomainModel.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/articles/microservice-trade-offs.html#consistency
https://doi.org/10.1145/38713.38742
https://doi.org/10.1145/38713.38742
https://doi.org/10.1145/233269.233330
https://doi.org/10.1145/289.291
https://doi.org/10.1145/289.291
https://doi.org/10.1109/ICSAW.2017.11
https://doi.org/10.1109/ICSAW.2017.11
http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_133.pdf
http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_133.pdf
https://dl.acm.org/doi/10.1145/3369736
https://dl.acm.org/doi/10.1145/3369736
https://github.com/yjs/yjs
http://shop.oreilly.com/product/0636920032175.do
http://shop.oreilly.com/product/0636920032175.do
https://doi.org/10.1109/WICSA.2015.13
https://doi.org/10.1109/MCC.2018.011791714
ttps://microservices.io/patterns/data/cqrs.html
https://microservices.io/patterns/data/event-sourcing.html
https://books.google.de/books?id=UeK1swEACAAJ
https://microservices.io/patterns/data/saga.html
https://microservices.io/patterns/data/saga.html
https://microservices.io/patterns/data/transactional-outbox.html
https://doi.org/10.1007/s10664-017-9503-7
https://doi.org/10.1145/98163.98167
https://doi.org/10.1145/98163.98167
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-642-24550-3_29
https://doi.org/10.1007/978-3-030-32610-4
https://doi.org/10.2200/S00132ED1V01Y200807MPC005
https://doi.org/10.2200/S00132ED1V01Y200807MPC005
https://doi.org/10.1145/1435417.1435432

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Consistency and Concurrency
	2.2 Software Engineering Guidance

	3 Design Method
	3.1 Domain Operations Design Guide
	3.2 Domain Objects Design Guide

	4 Research Design
	4.1 Context
	4.2 Theoretical Framework
	4.3 Summary of Research Cycles
	4.4 Data Collection and Analysis Methods

	5 Results and Interpretation
	5.1 Cycle 1
	5.2 Cycle 2

	6 Validity
	7 Summary & Conclusions
	Acknowledgments
	References

