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ABSTRACT

Face forgery by deepfake is widely spread over the internet and
this raises severe societal concerns. In this paper, we propose a
novel video transformer with incremental learning for detecting
deepfake videos. To better align the input face images, we use a 3D
face reconstruction method to generate UV texture from a single
input face image. The aligned face image can also provide pose,
eyes blink and mouth movement information that cannot be per-
ceived in the UV texture image, so we use both face images and
their UV texture maps to extract the image features. We present
an incremental learning strategy to fine-tune the proposed model
on a smaller amount of data and achieve better deepfake detection
performance. The comprehensive experiments on various public
deepfake datasets demonstrate that the proposed video transformer
model with incremental learning achieves state-of-the-art perfor-
mance in the deepfake video detection task with enhanced feature
learning from the sequenced data.
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« Security and privacy — Social aspects of security and pri-
vacy.
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1 INTRODUCTION

Recent developments in deep learning and the availability of large
scale datasets have led to powerful deep generative models that can
generate highly realistic synthetic videos. State-of-the-art genera-
tive models have enormous amount of advantageous applications,
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but the generative models are also used for malicious purposes.
One such application of the generative models is deepfake video
generation. Generative models have evolved to an extent that, it
is difficult to classify the real and the fake videos. Deepfake can
be used for unethical and malicious purposes, for example, spread-
ing false propaganda, impersonating political leaders saying or
doing unethical things, and defaming innocent individuals. Deep-
fake can be grouped into four categories: face replacement, facial
re-enactment, face editing, and complete face synthesis [37].

Deepfake generation techniques are increasing exponentially
and becoming more and more difficult to detect. Current detec-
tion systems are not in a capacity to detect manipulated media
effectively. In Deepfake Detection Challenge (DFDC) [21], the mod-
els achieve much worse performance when tested on unseen data
than that on the DFDC test set. Generalization capability is one
of the major concerns in the existing deepfake detection systems
[10, 54]. A wide variety of detection systems [1, 3, 13, 14, 27, 30, 54]
employ CNNs and recurrent networks to detect manipulated me-
dia. Li et al. [31] employ CNNs to detect face warping artifacts
in images from the deepfake datasets [29, 55]. The proposed ap-
proach works well in cases where there are visible face warping
artifacts [46]. Most of the deepfake generation techniques employ
post-processing procedures to remove the warping artifacts [51],
which makes it more difficult to detect deepfake videos. Another
limitation of the existing approaches is that, most of the proposed
systems make predictions on the frames in a video and average the
predictions in order to get a final prediction score for the whole
video. So it fails to consider the relationships among frames. To
overcome this, we propose a novel video transformer to extract
spatial features with the temporal information [19, 27, 47]. Trans-
formers were first proposed for natural language processing tasks,
by Vaswani et al., in [50]. Since then, transformers show powerful
performance in the natural language processing tasks, for example,
machine translation, text classification [41], question-answering,
and natural language understanding. The widely used transformer
architectures include Bidirectional Encoder Representations from
Transformers (BERT) [20], Robustly Optimized BERT Pre-training
(RoBERTR) [33], Generative Pre-trained Transformer (GPT) v1-v3
[7, 44, 45]. The transformer models can naturally accommodate the
video sequences for the feature learning [28].

To extract more informative features, we train our models on
the aligned facial images and their corresponding UV texture maps
[16, 17, 26]. The existing methods use aligned 2D face images. Such
an alignment only centralizes the face without considering whether
the face is frontalized. When the face is not frontalized, the face part
that is not captured by the camera can cause facial information loss
and misalignment with the face images that are frontalized. With



the UV texture, all face images are aligned into the UV map that is
created from the generated 3D faces. Since the generated 3D faces
cover all the facial parts, there is no information loss. In UV map,
the facial part for all the faces can be located in the same spatial
space. For example, all the nose parts are located in the same region
on the UV map. So the faces in UV maps are better aligned. To
deal with the input combination of face image and UV texture map,
we use learnable segment embeddings in the input data structure.
The segment embeddings help the model to distinguish different
types of inputs in the same data structure. Furthermore, we use an
incremental learning strategy for finetuning our models on different
datasets incrementally to achieve state-of-the-art performance on
new datasets while maintaining the performance on the previous
datasets.
Our contributions can be summarized in three-fold:

e We propose a video transformer with face UV texture map
for deepfake detection. The experimental results on five
different public datasets show that our method achieves
better performance than state-of-the-art methods.

e The proposed segment embedding enables the network to
extract more informative features, thereby improving the
detection accuracy.

e The proposed incremental learning strategy improves the
generalization capability of the proposed model. The com-
prehensive experiments show that our model can achieve
good performance on a new dataset, while maintaining their
performance on previous dataset.

2 RELATED WORK
2.1 Deepfake Detection

Several studies have been proposed in the past to detect forged
media. Most of the proposed methods employ Convolutional Neu-
ral Networks (CNN) based approaches to detect deepfake video.
However, the proposed techniques seem to struggle against newer
deepfake detection benchmarks.

In [46], Rossler et al., propose a diverse and high quality deepfake
dataset, which they call, FaceForensicss++ dataset. They employ a
simple Xception [12] network pre-trained on imagenet dataset, and
fine-tune it on FaceForensics++ dataset. They report excellent per-
formance scores on fake datasets (FaceSwap, Face2Face, DeepFakes,
NeuralTextures), which are subsets of FaceForensicss++ dataset
[46]. The detection models lack the generalization capabilities on
real world data. In [30], Li et al., propose novel image representation
technique to detect forged face images [46].

Afchar et al. [1] proposed a face foregery detection network
called MesoNet. They propose two networks Meso-4 and Meso
Inception-4 with a small number of layers which focus on meso-
scopic features in face images. They evaluate their networks on a
public dataset [46] and a dataset they generate from videos available
online. Ciftci et al. propose a deepfake video detection system and
construct a deepfake dataset [13]. The proposed method employs
biological signals hidden in portrait videos. The motivation is that
the biological signals are neither temporally nor spatially conserved
in manipulated videos. They extract remote photoplethysmography
(rPPG) signals from various face parts and combine those features
to train their models. It achieves better performance on deepfake

video detection compared to image based detection methods. Since
it relies on biological signals, which measures the subtle changes
of color and motion in RGB videos, this approach has the poten-
tial to fail on facial images with different poses when evaluated
on the portrait videos. Also the rPPG technique can be fooled by
intentionally changing the skin tone in the post-processing stage
of deepfake video generation.

In [27], Guera et al. proposed a pipeline which employs a CNN
along with a long short term memory (LSTM) network to detect
manipulated videos. The CNN backbone is used to extract frame-
level features. The manipulated videos possess temporal inconsis-
tencies among video frames that can be detected in a recurrent
network. Sabir et al. [47] propose a recurrent convolutional net-
works to detect manipulated media with different backbones, in-
cluding ResNet50, DenseNet and bidirectional recurrent network.
The DenseNet backbone with face alignment and bidirectional re-
current network achieves the best performance.

Nguyen et al. [40] employ a model based on capsule networks
to detect manipulated video. The proposed pipeline consists of pre-
processing phase, a VGG-19 CNN backbone, capsule network and
post ptocessing phase. Nguyen et al. [39] propose a different strat-
egy to detect deepfake video. They use a multi-task convolutional
neural network to detect and locate manipulated facial regions in
videos and images. The proposed network comprises of an encoder
and a Y-shaped decoder network. The encoder is used for binary
classification. By fine-tuning the model on a small amount of data,
it can deal with in-the-wild manipulated videos. Mittal et al. pro-
pose a multi-modal deepfake detection method in [38]. They use
audio and visual information to train their models. The coherence
between audio and visual modalities can be learned by the model.
Additionally, the emotions extracted from the facial images are con-
sidered when detecting the deepfake videos. They train the model
with triplet loss. Agarwal et al. [2] propose a deepfake detection
system based on behavioral and appearance features. The behav-
ioral embeddings can be learned using a CNN model by employing
a metric-learning loss function. The model is tested on a number
of different datasets including FaceForensicss++ [46], DeepFake
Detection, DFDC [21], CelebDF [32] etc. The technique works for
the face swapped deepfake videos, but they have the potential to
fail in the detection of deepfake video that is generated using facial
re-enactment and facial attribute manipulation techniques. The
existing works focus on CNNs to detect deepfake video. A limited
number of works [27, 47] use the recurrent networks which can
process a video as a whole rather than image by image in deepfake
video detection.

2.2 Transformer Architecture

The basic building block of transformer is the multi-head self-
attention mechanism [50]. The self-attention mechanism is respon-
sible for learning the relationship among the elements of input
sequence. Transformer architectures can accommodate the full-
length input sequences in a parallel manner and learn the depen-
dency among frames. The transformer models can also be scaled to
extremely complex models on large-scale datasets.

In the natural language processing tasks e.g., text classifica-
tion, machine translation, question answering, transformers have
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Figure 1: The architecture of the proposed video transformer, including the cropped face images and their corresponding UV
texture maps as input, XceptionNet as backbone for image feature extraction and 12 transformer blocks for feature learning.

achieved state-of-the-art performance, including BERT [20], Ro-
BERT [33] and GPTv1-3 [7, 43, 44]. BERT-large model which had
340 million parameters was beaten by a considerable margin by the
GPT-3 [7] model which had 175 billion parameters. At present, the
state-of-the-art Switch transformer [23] can scale up to a gigantic
1.6 trillion parameters. Inspired by the success of Transformers in
NLP tasks, we can employ these models for vision and multi-modal
vision-language tasks.

A large number of transformer based models are used to deal
with the vision tasks, such as image classification[22], object de-
tection [8], image segmentation [49], image captioning [34], video
classification [24, 48], and visual question answering [11, 34, 42].
The transformer based models achieve stat-of-the-art performance
in the vision tasks. The self-attention operation of the transformer
architecture scales quadratically, which becomes enormously ex-
pensive as the length of the input sequence increases. A number
of more efficient transformer architectures are used to address this
issue [4, 15, 35, 49, 52]. Specifically, the transformer based methods
achieve state-of-the-art performance in image classification tasks.

3 METHODOLOGY

In the following sections, we introduce the backbone to extract
image features, the proposed video transformer model and the
proposed incremental learning strategy.

3.1 Backbone

Inspired by Vision Transformer [22], the high level image features
are more informative than the image patches. Thus, we employ a
pre-trained CNN backbone to extract image features. Since Xcep-
tionNet achieves better performance than other backbone networks

in deepfake detection, we employ XceptionNet [12, 53] as the image
feature extractor.

We employ a Single Stage Detector (SSD) to detect and crop faces
frame by frame [6]. We use 3D Dense Face Alignment (3DDFA)
model [25, 26] to generate UV texture maps from face images. We
use both face images and their UV texture maps to extract the image
features. The existing methods use aligned 2D face images. Such an
alignment only centralizes the face without considering whether
the face is frontalized. When the face is not frontalized, the face
part that is not captured by the camera can cause facial information
loss and misalignment with the face images that are frontalized.
With the UV texture, all face images are aligned into the UV map
that is created from the generated 3D faces. Since the generated
3D faces cover all the facial parts, there is no information loss. In
UV map, the facial part for all the faces can be located in the same
spatial space. The aligned face image can also provide pose, eyes
blink and mouth movement information that cannot be perceived
in the UV texture image, so we use both face images and their UV
texture maps to extract the image features.

3.2 Video Transformer

Figure 1 illustrates the architecture of the proposed video trans-
former for deepfake detection. To learn the intra-frame dependen-
cies, we train our model a sequence of the cropped facial images
with their UV texture maps, as illustrated in Figure 1. We employ
pre-trained XceptionNet to extract feature maps from face images
and the UV texture maps. After getting the feature maps of each
face image frame and the corresponding UV texture map, we re-
shape the feature vectors using a 2D convolution layer and a linear
layer to accommodate the input dimension of video transformer.



In the proposed video transformer model, we exploit the property
of parallel input processing, which is inherent in the transformer
models. We feed a sequence of facial images and their corresponding
UV texture maps to the video transformer model. The recurrent
networks can learn to detect the intra-frame discrepancies, such
as flickering, blurry frames, and mouth movement [27, 47]. The
cropped face image and its corresponding UV texture map are used
as the input to the XceptionNet backbone. The single face frame
and UV texture map can be represented as:

f e R(ZP)XD (1)

u e R(ZP)XD @)
where f represents face feature vector, and u represents UV texture
map feature vector, N represents the total number of patches. For
facial image and UV texture map, N is 576, while N is 324 for
facial image only. T represents the number of input frames and D
represents the constant latent vector dimension. We concatenate
each face image frame and the corresponding UV texture map as a
feature vector:

(f,u) € RUXD (3)

We use one dimensional learnable segment embeddings to help
our model distinguish different types of inputs in the input data
structure. We add segment embeddings to the feature vector which
results from the fusion of facial images and their corresponding UV
texture map feature vectors as shown in Equation 3. The segment
embeddings can be defined as:

N
Egeq € R(T)*D (4)
The input feature vector to transformer can be extracted from

the concatenation of the facial frame and its corresponding UV
map:

frame; = [((facey...face n ), (uvg...uv n )) X D]
2T 2T (5)
+Esegfface7uv¥
where N =576, T = 9 and D = 768.
A learnable positional embedding is then added to the whole
input feature vector:

Epos c R<N+1)XD (6)

The video transformer model consists of 12 encoders, where each
encoder includes a multi-head self-attention layer, two Norm layers
and a Multi-Layer Perceptron (MLP).

3.3 Incremental Learning

We use an incremental learning strategy to fine-tune the proposed
model on new datasets, without sacrificing its performance on pre-
vious datasets. The loss function in incremental learning consists
of two parts: one part that measures the similarity between the
weights from a new dataset and the old weights from the previ-
ous dataset, and the other one is to measure the accuracy of the
training model on the new dataset [9]. The former one forces the
weights to be as similar as possible to the old weights, so it still

Incremental
Learning

Figure 2: Illustration of the proposed incremental learning
strategy. D1represents the real data used to train the models.
Whereas, D2 comprises of FaceSwap and Deepfakes datasets.
D3 represents the Face2Face dataset and D4 represents Neu-
ral Textures dataset. D5 and D6 represents DFDC dataset and
D7 represents DeepFake Detection (DFD) dataset.

performs well on the previous dataset. And the latter one guar-
antees that the model performs well on the new dataset. We first
train the proposed model on FaceSwap and Deepfakes subsets in
FaceForensics++ dataset [46] that are generated using faceswap
technique. Then we fine-tune the model on the other two subsets of
the FaceForensics++ dataset, Face2Face and Neural Textures, which
are generated by a different technique called facial re-enactment
[46]. To show the performance on unseen dataset, we also fine-tune
the model on DFDC dataset [21] and DeepFake Detection (DFD)
dataset [46] as shown in Figure 2. We train the model with segment
embeddings on 280k images from FaceSwap and Deepfakes subsets
of FaceForensics++ dataset. The trained model is fine-tuned on only
2,500 images from the Face2Face subset which are 0.05% of the
Face2Face subset. The trained model is finetuned on 2,500 images
from Neural Textures subset. Then we can fine-tune the trained
model from the previous step on 2,500 images from DFD dataset
[46]. Finally, we fine-tune the trained model on 6,000 DFDC images,
which are also 0.05% of the DFDC dataset [21].



Dataset Training ‘ Validation ‘ Test
Prestine 138000 27600 1400
FaceSwap 69000 13800 1400
Deepfakes 69000 13800 1400
Face2Face 2500 500 1400
Neural Textures 2500 500 1400
DFDC 6000 1200 3500
DFD 2500 500 1400

Table 1: Number of frames used to train models on different
datasets: Prestine, FaceSwap, Deepfakes, Face2Face, Neural
Textures, DFDC and DFD.

4 EXPERIMENTS
4.1 Datasets

We train and evaluate our models on public deepfake detection
benchmark, FaceForensics++ [46]. The FaceForensics++ dataset
includes four different subsets: (1) FaceSwap, (2) Deepfakes, (3)
Face2Face and (4) Neural Textures. The first two subsets contain
videos generated by the face swapping techniques, whereas the
other two subsets are generated by the facial re-enactment tech-
niques. There are 1,000 videos in each subset. The FaceForensics++
benchmark also contains 1,000 real videos. We use 720 videos from
each subset for training and 140 videos for validation and 140 videos
for testing. The FaceForensics++ dataset contains around 1.7 mil-
lion frames. We use FaceSwap and Deepfakes subsets for model
training by employing only 280k frames for training. We further
fine-tune these models on Face2Face and Neural Textures subsets.
The trained models are also finetuned on DFDC dataset [21] and
DFD dataset [46]. Table 1 shows the exact number of frames used
to train and fine-tune the models from each dataset.

4.2 Implementation Details

For face detection, we employ Single Shot Detector (SSD) with
ResNet as backbone. We employ 3DDFA-V2 [25, 26] to generate
UV texture maps [18]. We use XceptionNet [12] for image feature
extraction. We employ transformer architecture [22], including 12
transformer layers. We modify the Vision Transformer (ViT) base
architecture [36] by adding the learnable segment embeddings to
the input data structure. It enables the learning of the visual details
in image frames with temporal information.

The raw input size of the images we feed to our model is [3, 299,
299]. We use this size to make our inputs compatible to the backbone
network XceptionNet that is used for image feature extraction
in our hybrid models. After we extract image features through
XceptionNet, we get a feature vector of dimension [2048, 10, 10],
we then pass this feature vector to a 2D convolutional layer and a
linear layer, which gives us a feature vector of dimension [1, 32, 768].
After we get the two reshaped feature vectors for facial images and
UV texture maps, we concatenate these two feature vectors and get
a feature vector of dimension [1, 64, 768]. We add one dimensional
learnable segment embedding to the feature vector as [1, 64, 768].
We do this for all the sequence frames and concatenate them as
[1, 576, 768]. We add the learnable positional embeddings to the

feature vector and a [class] token is added at the beginning of the
feature vector. We use the final feature vector [1, 577, 768] as the
input to the proposed video transformer model. We train all models
for 5 epochs, with a learning rate of 3 x 1073, We choose SGD as
optimizer, and use CrossEntropyLoss as the loss function.

4.3 Ablation Study

We present an ablation study with different experimental settings
to show the effectiveness of the proposed modules. We train the
models with 8 different configurations:

(1) Patch embedding transformer trained on face images only

(2) Patch embedding transformer trained on face and UV tex-
tures without segment embeddings

(3) Patch embedding transformer trained on face and UV tex-
tures with segment embeddings

(4) Hybrid image transformer trained on face images only

(5) Hybrid transformer trained on face and UV textures without
segment embeddings

(6) Hybrid transformer trained on face and UV textures with
segment embeddings

(7) Hybrid video transformer trained on 9 frames (face + UV
texture maps) without segment embeddings

(8) Hybrid video transformer trained on 9 frames (face + UV
texture maps) with segment embeddings

The listed models are trained and evaluated on 2 subsets of
FaceForensics++ dataset: FaceSwap and Deepfakes. We train our
models on around 280k images. The performance comparison is
shown in Table 2.

4.3.1 Patch embedding transformer trained on face images only. The
patch embedding based models are trained on 2D image patches.
The first model is trained on face images only, and no UV texture
maps. The input image is reshaped into 2D patches as Xjnpur =
f + Epos, f represents the reshaped face frame image. N refers to
the number of patches, which is 324 in our case. D represents the
constant latent vector dimension, which is 768 in our model. After
adding a BERT styled [class] token at the beginning of our input,
the dimension of the input feature vector is [1, 325, 768].

4.3.2  Patch embedding transformer trained on face and UV textures
without segment embeddings. This model is trained on 2D patches of
facial images and the UV texutre maps without adding the learnable
segment embeddings to the input data structure. We only use the
positional embeddings, so we can compare this model to the model
with both the positional embeddings and the segment embeddings.
As illustrated in the first model and the second model of Table 2,
it shows that the UV texture map provides useful information for
deepfake detection in the patch embedding transformer models.

4.3.3  Patch embedding transformer trained on face and UV textures
with segment embeddings. We add one dimensional learnable seg-
ment embeddings with positional embeddings to train this model.
The purpose of adding segment embeddings is to help model distin-
guish the face image patches and the UV texture map patches. As
shown in the second model and the third model of Table 2, We can
see that the model trained with the segment embeddings performs
better than the model trained without segment embeddings. This



Figure 3: Frames of two example deepfake videos from DeepFake Detection (DFD) dataset. The image transformer model
classifies the videos as "Real", while the video transformer correctly classifies both videos as "Fake".

‘ FaceForensics++
. ‘ AUC | F1-Score | Accuracy
Patch Img Only | 74.39% | 65.88% 72.31%
Patch UV Img 66.48% 56.79% 66.58%
Patch SE UV Img | 77.10% 68.71% 73.26%
Hyb Img Only 98.03% | 96.19% 97.37%
Hyb UV Img 98.57% | 97.20% 98.09%
Hyb SE Img 99.28% | 98.92% 99.28%
Video 98.74% 97.54% 98.32%
Video SE 99.64% | 99.28% 99.52%

Table 2: Detection accuracy of different models on Face-
Forensics++ dataset (FaceSwap and Deepfakes). Patch Img
Only, Patch UV Img, Patch SE UV Img, Hyb Img Only, Hyb
UV Img, Hyb SE Img, Video, Video SE are corresponding to
the models described in Section 4.3.1 to 4.3.8, respectively.

implies that the proposed segment embeddings help enhance the
feature learning, thereby improving the detection performance.

4.3.4 Hybrid image transformer trained on face images only. The
hybrid image transformer model are trained on image features
extracted from face image only using the XceptionNet backbone.
As can be seen from Table 2, the hybrid model outperforms the
patch embedding based model. So the image feature backbone is
necessary in the transformer based deepfake detection model.

4.3.5 Hybrid transformer trained on face and UV textures without
segment embeddings. Hybrid transformer model for face images
and UV texture maps is trained without the learnable segment
embeddings. The results in Table 2 show that the UV texture map
provides useful information for deepfake detection in the hybrid
transformer models. This lies in the fact that the UV texture map is
losslessly better aligned than the aligned face image. The aligned
face image also provides pose, eyes blink and mouth movement
information that cannot be perceived in the UV texture image.

4.3.6  Hybrid transformer trained on face and UV textures with seg-
ment embeddings. This hybrid image transformer model is trained
using segment embeddings. When we compare the hybrid image
transformer model with and without the segment embeddings as

shown in Table 2, We can see that the model trained with the seg-
ment embeddings performs better than the model trained without
the segment embeddings. So the segment embeddings help the
model distinguish the two different types of the input data, thereby
enhancing the feature learning in the transformer.

4.3.7 Hybrid video transformer trained on facial image frames (face
+ UV texture maps) without segment embeddings. The structure of
the video based transformer model is different from the image only
based transformer models as described above. The video based
models are fed with the consecutive face images and their corre-
sponding UV texture maps. We train this video transformer model
on the face image frames and their corresponding UV texture maps
without adding the proposed segment embeddings. We only add
the positional embeddings to the input sequence of the face frames
and their corresponding UV maps. The video based transformer
performs better compared to the image only based transformer
model without the segment embeddings.

4.3.8 Hybrid video transformer trained on facial image frames (face
+ UV texture maps) with segment embeddings. The hybrid video
transformer achieves the best performance among all the experi-
mental settings. We train this model on the consecutive face image
frames along with their corresponding UV texture maps. We add
both the segment embeddings and the positional embeddings to
the input data structure. We add separate embeddings to each of
the input face frames and each of the corresponding UV texture
maps. It helps the video transformer model to discriminate the input
frames and achieve better performance as shown in Table 2. Figure
3 shows frames of two example deepfake videos from DeepFake
Detection (DFD) dataset. The image transformer model classifies
the videos as "Real”, while the video transformer correctly classifies
both videos as "Fake".

4.4 Incremental Learning

The performance of models with incremental learning is shown in
Table 3. We first train the models on 280k images from FaceSwap and
Deefakes subsets from the FaceForensics++ dataset. We finetune
the models on four different datasets: (1) Face2Face [46], (2) Neural
Textures [46], (3) DFD [46] and (4) DFDC [21].

We use less than 0.5% of original data to finetune the models
with incremental learning. More specifically, we use 2500 images to
finetune the model on Face2Face, 2500 images on Neural Textures,



Fine-Tuning Dataset FS DF Pristine | F2F NT DFD | DFDC | Commultive Accuracy
F2F 95.00% | 99.28% | 100.00% | 99.28% - - - 98.39%
Neural Textures 96.42% | 99.28% 100.00% | 100.00% | 94.28% - - 98.00%
DFD 97.85% | 100.00% | 98.56% 98.57% | 90.00% | 99.28% - 97.38%
DFDC 93.57% | 92.14% 76.97% 88.57% | 51.42% | 93.27% | 91.69% 83.95%

Table 3: Incremental learning strategy. Performance of hybrid image transformer trained with segment embeddings on
FaceSwap and Deepfakes datasets and finetuned on Face2Face, NeuralTextures, DFD dataset and DFDC dataset.

‘ Dataset

Method | FF++ | DED | DEDC
Rossler et.al [46] 95.73% | 88.07% | 85.60%
Mittal et.al [38] - - 84.40%
Zhu et.al [56] 99.61% | 89.84% | 87.93%
Li et.al [30] - 93.34% | 73.52%
Bonettini et.al [5] - 89.35% | 85.71%
Guera et.al [27] 83.10% - -
Ours (Image+Video Fusion) | 99.79% | 99.28% | 91.69%

Table 4: Performance comparison with other deepfake de-
tection methods on FaceForensics++ (FF++) dataset, DFD
dataset and DFDC dataset.

Method ‘ Accuracy | Num. Train Images
Rossler et.al [46] 98.36% 870k
Afchar et.al [1] 84.56% 9k
Zhu et.al [56] 98.22% 172k
Li et.al [30] 98.64% -
Ours 99.28% 5k

Table 5: Performance comparison on Face2Face dataset. We
finetune the models on the different number of images from
Face2Face dataset.

2500 images on DFD dataset, and 6000 images on DFDC dataset.
Note that the DFDC dataset includes around 1.5 million frames. Ta-
ble 3 shows that the proposed models finetuned on a small amount
of data can still achieve good performance on new datasets, while
maintaining their performance on the previous datasets. The main
reason lies in the loss function in incremental learning. It consists
of two parts: one part that measures the similarity between the
weights from a new dataset and the old weights from the previous
dataset, and the other one is to measure the accuracy of the training
model on the new dataset. The former one forces the weights to be
as similar as possible to the old weights, so it still performs well on
the previous dataset. And the latter one guarantees that the model
performs well on the new dataset.

4.5 Comparison

We compare the results achieved by the proposed models with
state-of-the-art deepfake detection systems. Image Transformer

refers to the model trained with the settings as described in Section
4.3.6 and Video Transformer refers to the model trained with the
settings as described in Section 4.3.8. In Table 4, we demonstrate
the results of fusing the predictions from Image Transformer and
Video Transformer by averaging the probabilities from both models
to get the final output score. The fused models outperform state-
of-the-art deepfake detection systems on FaceForensics++ dataset,
DFD dataset and DFDC datasets.

In Table 5, our model outperforms state-of-the-art detection
systems when trained and tested on a specific subset of FaceForen-
sics++ dataset: Face2Face. We can finetune the model on a smaller
amount of data and achieve better performance when compared
to other methods as shown in Table 5. This demonstrates a more
enhanced generalization capability of the video transformer model
with incremental learning.

5 CONCLUSION

In this paper, we propose a video transformer with incremental
learning for deepfake detection. The novel design in video trans-
former enables the informative feature learning, thereby improving
the performance in deepfake detection. The proposed incremen-
tal learning strategy enhances the generalization capability of the
proposed model. Experimental results on various public datasets
demonstrate that our method outperforms stat-of-the-art methods,
and each component in our method is effective with significant
performance gains.
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