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Wearable devices such as smartwatches, fitness trackers, and blood-pressure monitors process, store, and communicate
sensitive and personal information related to the health, life-style, habits and interests of the wearer. This data is typically
synchronized with a companion app running on a smartphone over a Bluetooth (Classic or Low Energy) connection. In this
work, we investigate what can be inferred from the metadata (such as the packet timings and sizes) of encrypted Bluetooth
communications between a wearable device and its connected smartphone. We show that a passive eavesdropper can use
traffic-analysis attacks to accurately recognize (a) communicating devices, even without having access to the MAC address,
(b) human actions (e.g., monitoring heart rate, exercising) performed on wearable devices ranging from fitness trackers
to smartwatches, (c) the mere opening of specific applications on a Wear OS smartwatch (e.g., the opening of a medical
app, which can immediately reveal a condition of the wearer), (d) fine-grained actions (e.g., recording an insulin injection)
within a specific application that helps diabetic users to monitor their condition, and (e) the profile and habits of the wearer
by continuously monitoring her traffic over an extended period. We run traffic-analysis attacks by collecting a dataset of
Bluetooth communications concerning a diverse set of wearable devices, by designing features based on packet sizes and
timings, and by using machine learning to classify the encrypted traffic to actions performed by the wearer. Then, we explore
standard defense strategies against traffic-analysis attacks such as padding, delaying packets, or injecting dummy traffic. We
show that these defenses do not provide sufficient protection against our attacks and introduce significant costs. Overall,
our research highlights the need to rethink how applications exchange sensitive information over Bluetooth, to minimize
unnecessary data exchanges, and to research and design new defenses against traffic-analysis tailored to the wearable setting.

1 INTRODUCTION
With the rising interest in personalized health care and “quantified self", wearable Bluetooth devices are becoming
pervasive in our societies. To improve aspects of their daily lives, users increasingly1 use smartwatches, medical
and fitness-related devices such as activity trackers, step counters, blood-pressure monitors and sleep trackers.
These devices process, store, and transmit personal and sensitive data linked to the wearer’s identity and health
status: fine-grained and long-term activity levels, heart rates, arrhythmia alerts, medication and sleep schedules,
etc. Such personal information should be protected from third parties, as it can be used to build profiles, to identify
and track users (e.g., for advertising purposes), or can be sold to insurance companies for the quantification of users’
medical risks. Medical wearable devices that are FDA-approved2 are already subject to such a requirement: they
“should have appropriate protections in place that prevent sensitive information from being read by unauthorized
parties either in storage or in transmission” [3].
For enhanced functionalities, most wearable devices communicate with a smartphone via Bluetooth. These

devices can use encryption at the Bluetooth link-layer or application-layer. In this work, we show that these
encrypted communications leak information about their contents via their communication patterns (e.g., dis-
tribution of packet sizes and inter-arrival timings). We consider a local passive eavesdropper who attempts to
infer sensitive information from the communications. This adversary could be a nosy neighbor, an advertiser

∗Presented at ACM Ubicomp 2021 and published in the Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
(IMWUT), Vol. 5, No. 2, Article 54, June 2021. https://doi.org/10.1145/3463512
1In 2019, 46 million wearable devices were sold. This number is expected to rise to 158 millions by 2022 [10].
2U.S. Food and Drug Administration. This institution notably edicts rules for medical devices sold in the U.S.
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(1) Wearable devices communicate  
 with a smartphone using Bluetooth

(2) An adversary eavesdrops upon 
their encrypted communications

(3) Feature extraction (4) Traffic classification: 
identification of sensitive actions

0, -1, 0.3, 4, ...
New Insulin Injection

Fig. 1. Traffic-analysis attack on the encrypted traffic of Bluetooth wearable devices. After an offline training phase (not
depicted here), the passive eavesdropper can recognize the action to record an insulin injection despite the use of encryption.

in a shopping mall attempting to infer the shoppers’ habits, an employer [13], or a more nefarious adversary
collecting data for sale to insurance companies. These threats against privacy are concrete: For over a decade,
advertisers have been using Bluetooth, Wi-Fi, and cellular networks to track consumers in stores [4, 5, 7], and to
link their profiles to online advertisement databases [11]; these advertisers could use Bluetooth traffic patterns to
learn new information or to better profile users.

We infer sensitive information from the encrypted communications of wearable devices by using traffic-analysis
attacks [44], a technique that exploits the communication patterns (e.g., packet sizes and timings) of encrypted
traffic. These attacks have been successfully demonstrated in diverse settings: to recognize web pages on Tor
traffic [48, 67, 88, 89], to fingerprint devices [68] or to infer the activities performed in a user’s smart home [17, 81]
and to recognize user activities and applications used on a smartphone (e.g., sending an e-mail or browsing a web
page) [42, 76, 83, 84, 94]. The focus of recent related works has been on inferring user activities in the IoT and
smart home setting [17, 21, 27, 28, 85], eavesdropping on WLAN or Internet traffic (or both). Very few related
works consider the communications of Bluetooth wearable devices at the Personal Area Network (PAN) scale,
despite the sensitive nature of the information exchanged. Das et al. [45] demonstrate how the bitrate of some
fitness trackers is correlated with the user’s gait; however, their analysis is restricted to 6 BLE devices, and they
do not attempt to recognize devices, applications or users actions. To the best of our knowledge, ours is the first
work that performs in-depth device, application and user-action identification on the Bluetooth communications
of wearable devices.

To perform traffic analysis on wearable devices, we build a Bluetooth (Classic and Low Energy) traffic-collection
framework. We set up a testbed consisting of a diverse set of wearable devices (smartwatches, fitness trackers,
blood-pressure monitors, etc.) connected to a smartphone, and we use a Bluetooth sniffer to capture the traffic.
To generate realistic traffic traces, we manually use the wearable devices in the intended way: e.g., in the case of a
fitness monitor, by repeatedly performing a short running exercise until we obtain a sufficient number of samples.
We obtain a dataset of labeled (encrypted) Bluetooth Classic and Low Energy traces; we then design features based
on packet sizes and timings, and we apply machine-learning classification techniques for identifying devices,
applications, and user actions despite the encryption.

Our experimental results show that an eavesdropper can exploit encrypted communication patterns to passively
identify devices, even in the absence of Bluetooth addresses or friendly names. We show that the timings of
encrypted communications allow to identify specific models/versions of a device, and hence defeats the Bluetooth
address-randomization protection employed by the Bluetooth Low Energy protocol. Moreover, we demonstrate
that the adversary, for instance a nosy neighbor, can use our traffic-analysis attacks to accurately recognize
user actions (e.g., recording the heart rate, beginning a workout or receiving an SMS) performed on different
wearable devices such as smartwatches, step counters, and fitness trackers. We then focus on smartwatches and
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show that an eavesdropper, for instance an unscrupulous advertiser, can recognize the mere opening of specific
applications, which can be immediately sensitive (e.g., in the case of a medical app) or used to build a profile
(e.g., based on religious or political apps). Furthermore, we show that our methodology generalizes well: The
model trained on a smartphone/wearable device pair performs accurately on a different device pair, indicating its
cost-effectiveness. We also highlight how a targeted adversary can recognize sensitive user activities within a
specific application; we accurately recognize the action of recording an insulin injection in a diabetes-helper
application (Figure 1). Finally, we show that an attacker can infer a wearer’s habits and build her profile when
eavesdropping her Bluetooth traffic over a long time-period.

Finally, we focus on countermeasures against the presented traffic-analysis attacks. We evaluate how standard
approaches against traffic analysis (i.e., padding or delaying messages, injecting dummy traffic) perform against
our attacks. Our results show that these defenses provide insufficient protection: though they yield a drop in
the adversary’s accuracy, none of them reduces it to that of random guessing. Furthermore, their costs are high
(from tens to hundreds of kilobytes of additional exchanged data) for wearable device communications where
energy consumption is crucial. We also observe that the effectiveness of these defenses varies greatly with the
adversarial task: although the “right” defense drops the attacker’s accuracy, non-adapted defenses have almost no
effect yet still incur high costs. This suggests that a “one-size fits all” defense for preventing device fingerprinting,
as well as application and action fingerprinting, is unlikely to exist at a reasonable cost. Our defense evaluation
highlights the need to rethink how wearable devices exchange sensitive data over Bluetooth communications and
prompts for the design of novel defenses. For example, for applications that can support it, data minimization is
a valid strategy: data that is not exchanged cannot be fingerprinted, and we observe in our experiments that
low-volume exchanges are naturally protected from traffic analysis. Moreover, bulk transfers (e.g., synchronizing
a step counter every day at midnight) also hamper the task of the adversary.

Overall, the purpose of our work is to raise awareness, notably among device manufacturers and application
developers, of the limited confidentiality on the Bluetooth link with today’s applications and devices. For instance,
manufacturers might be willing to implement mitigations directly to the wearable devices’ firmware, hence
it is urgent that the research community provides them with acceptable solutions that will protect the next
generation of wearable devices. Application developers might want to carefully consider the information their
application can leak through its communication patterns and to implement an application-level defense (for
instance, pad all communications to a fixed size). We hope that our research results will be a starting point for
further research on the communication metadata of Bluetooth wearable devices. To facilitate future research on
the topic, we open-source our dataset for research purposes: it consists of Bluetooth traces of wearable devices
used to perform multiple actions and that have been, for most devices, manually recorded over months. Although
our experiments focus only on Bluetooth communication metadata, our dataset contains all captured data (e.g.,
link-layer information, pairings) that might be of independent interest.
In summary, the contributions of this work are as follows:

• We show traffic-analysis attacks that, based on the encrypted traffic of wearable devices, recognize:
(1) communicating devices, up to the model number of the same device;
(2) user activities and the opening of specific applications;
(3) fine-grained sensitive actions (i.e., recording an insulin injection) within an application;
(4) actions recorded over a long time-period, which can be used to build a profile.
• We experimentally evaluate standard defenses against traffic analysis and suggest possible strategies;
• We make available a large dataset of Bluetooth traffic captures for future research.

The remainder of the paper is organized as follows: in §2, we introduce background information about the
Bluetooth protocol used by wearable devices for their communications. In §3, we describe the system and threat
model considered in our work, and in §4, we present the methodology employed for our dataset collection and
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the traffic-analysis attacks. Then, in §5 and §6, we demonstrate the results of our traffic-analysis attacks that
identify devices, actions and applications, from the encrypted Bluetooth traffic of wearable devices. In §7, we
evaluate the performance of standard defenses against our attacks. We discuss the contributions of the paper and
its limitations in §8 and §9, the related work in §10, and then conclude in §11.

2 BLUETOOTH BACKGROUND
There exist two flavors of Bluetooth: Bluetooth Classic, referred to as “BR/EDR” for Basic Rate/Enhanced Data
Rate, and Bluetooth Low Energy (BLE). The former is used for data-intensive or latency-sensitive scenarios (e.g.,
audio streaming), whereas the latter is used for low-power or low-throughput scenarios. Most wearable devices
we collected for our testbed use Bluetooth Low Energy, except for smartwatches that typically use Bluetooth
Classic. Both Bluetooth specifications [32] are produced by the Bluetooth Special Interest Group (SIG), and their
latest version is 5.2.

Data Exchange. In both Bluetooth Classic and BLE, data exchange occurs after a pairing process between one
or more slaves (the wearable device) and a master (e.g., the smartphone). We remark that a smartwatch can be a
master for another wearable device. Initially, to discover each other, devices broadcast and listen on advertising
channels in Bluetooth Low-Energy, or on channels determined by a predefined hopping sequence in Bluetooth
Classic. Then, the pairing process assigns the slave to the master’s Piconet, and both devices communicate using
the non-advertising channels. Unlike Bluetooth Classic, BLE also supports data exchange without establishing a
link-layer connection: devices simply broadcast short information to its surroundings on the advertising channel.

To communicate in a Piconet, all devices use the same frequency hopping pattern (derived from the master’s
MAC address and clock). The channel is divided into time-slots; odd time-slots are for the slaves, and even
time-slots for the master. When the connection is Asynchronous Connectionless (ACL), devices communicate op-
portunistically during unreserved time-slots. In the case of Synchronous Connection-Oriented (SCO) connections,
devices communicate at predetermined time-slots without acknowledgment.

Security. The security properties are similar between Bluetooth Classic and BLE. Devices first establish and
authenticate a long-term key through a pairing process. In this process, both devices also derive a short- or
long-term key. “Legacy” pairings are generally insecure by today’s standards [91]: they rely on a short PIN and
can be easily brute-forced. Secure Simple Pairing (SSP) is a more recent pairing protocol based on elliptic curve
cryptography [70]. It is available since Bluetooth 2.1.
To authenticate the long-term key, four authorization mechanisms exist:
• JustWorks, which uses a hardcoded key;
• Out-of-Band, which relies on an external channel (such as NFC);
• Numeric Comparison, where the user visually compares numbers;
• Passkey Entry, where the user inputs twice the same code on the devices.

There exists several active attacks on SSP, based on some form of Man-in-the-Middle [50–52] or low-entropy
key generation [25, 26]. If the pairing is done correctly and the key uses sufficient entropy, the subsequent
communication should be confidential and integrity-protected (AES-CCM with a 128-bit key).

Bluetooth Eavesdropping. Eavesdropping on Bluetooth traffic is complex due to the frequency hopping. Inex-
pensive sniffers (such as the Ubertooth [16]) attempt to follow the frequency hopping of a connection and often
require observing the pairing [75]. However, by listening concurrently on all channels, high-end commercial
scanners accurately capture all traffic without the need to observe the pairing. Recent advances in research use
coordinated Ubertooth devices to achieve a greater capture accuracy [19, 20], or use software-defined radios
(SDRs) to cover the Bluetooth spectrum at a cost lower than commercial scanners [40, 41]. We discuss the
practicality of Bluetooth eavesdropping in §8.
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BD_ADDR: ??:??:??:dd:ee:ff

BD_ADDR: ?
AA: 1

BD_ADDR: ??:??:??:aa:bb:cc

BD_ADDR: ?
AA: 2

BD_ADDR: ?
AA: 0 BD_ADDR: ?

AA: 3 ACOMM

LAP

LAP

Fig. 2. Information visible to 𝐴comm: (1) the active connections between each pair of wearable-smartphone, identified by a
random Access Address (AA); 𝐴 sees all packets on these connections; (2) for each master device, the Lower Address Part
(LAP) of the BD_ADDR (sometimes called the MAC address). 𝐴comm cannot tell what types of devices are communicating.

3 SYSTEM AND ADVERSARIAL MODEL
We consider a user𝑈 that possesses a smartphone 𝑆 and a collection of wearable devices𝑊 . This collection𝑊
contains heterogeneous devices: some with a general-purpose OS (e.g., an Android smartwatch) or a simpler
firmware (e.g., a step counter). Devices in𝑊 can communicate with 𝑆 over Bluetooth Classic or Low Energy.

Adversary. We consider an adversary 𝐴 who is a passive eavesdropper. 𝐴 uses a Bluetooth sniffer to capture all
Bluetooth traffic in the vicinity of 𝑈 . In particular, 𝐴 might capture traffic from other users and devices that are
also nearby. 𝐴 does not compromise any devices and does not possess the keys to decrypt Bluetooth traffic.

Goals and Traffic Captured. Informally, 𝐴 attempts to infer information from all communications between the
wearable devices in𝑊 and 𝑆 (Figure 2). However, we need to precisely define the aforementioned adversary.
In practice, an eavesdropper who sees all traffic between a wearable device and its connected smartphone is
not realistic: a sporadic or local adversary is unlikely to consistently capture one-time events such as pairings.
Therefore, we define as 𝐴all an adversary who sees all communications between a wearable-smartphone device
pair, and we further define two weaker adversaries in the sense of 𝐴, but who only observe, respectively:
• 𝐴paging: all paging events (devices waking up from sleep and performing minimal discovery) and subsequent
communications, but not the pairings;

• 𝐴comm: all active communications, but neither pairing nor paging events.
In terms of adversarial power, we have that 𝐴all ≥ 𝐴paging ≥ 𝐴comm. We focus on the weakest adversary 𝐴comm
who only observes ongoing communications between a wearable device and its connected smartphone. This
matches what a passive adversary can do consistently.

Information Visible to𝐴comm. Figure 3(a) shows the information that is visible to𝐴comm during Bluetooth Classic
communications. The sensitive/identifying fields are the Sync word and the Active-Member Address (AM-ADDR).
The Sync word reveals the 24 lower bits of the master’s MAC address (LAP). The Upper Address Part (UAP),
that is not transmitted in this packet, is assigned to manufacturers and identifies a wearable device. Finally, the
Active-Member Address is a 3-bit integer (and not a MAC address) identifying a device in a given Piconet; this is
similar to a connection identifier. Figure 3(b) shows the information visible to 𝐴comm for Bluetooth LE. Similar to
AM-ADDR, the Access Address is a connection identifier (and not a MAC address). On a higher-level, in both
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Preamble Sync word Trailer . . .

. . . AM-ADDR Flow/ACK/Seq . . .

. . . HEC Payload

(a) Structure of a BB_PDU packet (BaseBand
Packet Data Unit) used in Bluetooth Classic. HEC
(Header Error Correction) is an error-correction
code.

Preamble Access Address . . .

. . . Header Payload

(b) Structure of a Link Layer packet used in Blue-
tooth LE.

Fig. 3. Packet Structures. The features used in our attacks are derived from the time of reception and the size of the payload.

Bluetooth flavors, the information given to 𝐴comm per packet is

(Packet type, connection ephemeral ID, time, payload)
where the Packet type indicates whether Bluetooth Classic or LE is used, and where the connection ephemeral
ID is randomized, except for the master device in Bluetooth Classic where it is fixed. The payload can contain
upper-layer packet information, for instance the packet type, as well as the encrypted application payload.

Capabilities of 𝐴comm. In conclusion, with the information visible on the Bluetooth channel, 𝐴comm can
• enumerate the devices𝑤 ∈𝑊 and assign a pseudonym to each of them;
• group them by connection between a pair of devices; and
• collect a series {(time, packet type, packet size)}𝑤 for each device𝑤 ∈𝑊 for the duration of the capture.
We assume that the adversary is able to isolate a communication of interest, e.g., using the Active-Member

Address (AM-ADDR) of Bluetooth Classic or Access Address of Bluetooth Low Energy, possibly combined with
other techniques, e.g., distance estimation using the Received Signal Strength Indicator (RSSI). The pseudonymous
recipient of a packet is often known, as most packets are acknowledged.

Attacker Goals. Given the Bluetooth information available, the goal of 𝐴comm is threefold:
G1) Device Identification: for a device𝑤 , recognize the device brand/manufacturer;
G2) Action Identification: for a device𝑤 , recognize user actions (i.e., interactions with the device);
G3) Application Identification: for a device𝑤 , recognize the running application.

We use Goal 1 as a stepping-stone for the following goals. However, meeting the first goal already has privacy
implications: such an adversary can recognize and track a user through the list of her wearable devices, despite
MAC address randomization, and can build a profile for that particular user.

4 METHODOLOGY & DATASET
We describe how the adversary (defined in §3) eavesdropping on Bluetooth communications can perform traffic-
analysis attacks to achieve its goals. We present the methodology that applies to the traffic-analysis attacks
presented in §5 and §6. We first build a data collection framework to record Bluetooth traffic and to automate
the data transmission for some Bluetooth wearable devices. For other devices, we manually trigger Bluetooth
traffic by performing the appropriate human action (e.g., pressing a sequence of buttons, performing a physical
activity). Then, we process the captured traffic and use it with machine-learning classification techniques to infer
information from encrypted Bluetooth traffic.

Testbed. We set up a testbed with multiple wearable devices to account for a wide range of manufacturers,
device capabilities, and functionalities. We initially selected 18 Bluetooth Classic and LE devices: 5 popular
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smartwatches, 2 headphones, and 11 other wearable devices (step counters, fitness trackers, and blood-pressure
monitors) from the most popular vendors.
All Bluetooth Classic devices analyzed use link-layer encryption. To our surprise, from the Bluetooth Low

Energy devices, only the Fitbit Charge 2 uses link-layer encryption. We perform entropy tests to validate that the
remaining Low Energy devices use encryption at the application layer. We observe a high entropy (6 − 8bit of
information per byte) for all devices, except for 3 of them (the Beurer AS80, SW170, and PanoBike+, ≈ 4bit/byte).
Hence, we discard these three devices from our testbed. We remark that though our attacks do not use plaintext
contents and would work on these three devices, an attacker can achieve the same results by simply reading the
payload. We also discard two blood-pressure monitors (the Qardio and H2-BP) that we could not reliably use. In
total, the testbed consists of 13 devices: 7 Bluetooth Classic and 7 Low Energy devices (Tables 1 and 2).
Although our testbed consists of a modest number of devices, most devices use proprietary firmware and

software (i.e., they are closed-source), which does not allow us to automate their Bluetooth traffic-data collection.
Except for Wear OS smartwatches that we can automate, the data collection is a sequential and manual process.

We use a Nexus 5 as the smartphone for all Android/Tizen smartwatches and wearable devices without an OS,
and an iPhone 8 for the Apple Watch/AirPods. We updated all devices with the latest firmware and OS updates.

Actions Recorded. For each device, we manually compile a set of possible user-actions: low-end devices some-
times only Sync with the smartphone; mid-range devices support activities such as Running Workout, Measure
Heartbeat, etc., whereas high-end devices such as smartwatches offer a large range of user actions through the
use of additional apps (e.g., AppX Open, AppX DoActionY) that users can choose to personalize their device.

Capture Methodology. We record all Bluetooth traffic by using a wide-band scanner (an Ellisys Vanguard [9]).
For each device𝑤 , we pair𝑤 with the phone 𝑆 and let some time pass to allow for an initial data synchronization.
Then, we trigger the desired action and record the corresponding Bluetooth traffic for𝑇 = 30 seconds (we observe
this to be a conservative value); this constitutes one sample. To collect sufficient number of samples for an action,
we repeat the capture process 𝑁 = 25 times (we observe this to be a conservative value, Figure 11(c)). Each sample
corresponds to a distinct recording; hence, samples are independent from each other. We manually select the
device of interest and discard traces from other devices.
We record real activities: for instance, for a Running Workout, we perform a short running activity in the

vicinity of the sniffer; for the wearable that records the heart rate, we fit the wearable to ourselves during the
experiment. This is in contrast with some previous works (in the context of Wi-Fi traffic) that use UI fuzzing
to quickly provide many traffic samples generated by smartphones [42, 83, 84]. This ensures that most values
communicated by the wearable reflect what a real user would generate (e.g., the number of steps, speed, and
distance). However, due to our non-portable experimental setup, the recorded GPS coordinates will show an
almost-fixed position.

Environment. We conduct the experiments in an office where both Wi-Fi devices and other Bluetooth devices
communicate. This corresponds to a noisy environment; we note that an anechoic chamber or a Faraday cage
would advantage the adversary by allowing to record trace with less noise.

Dataset. We collect a dataset that consists of 10,700 Bluetooth captures with a duration of ≈ 30sec, recorded
over 13 devices, 80 applications and 32 user-actions (see Table 3). This amounts to ≈ 98 hours of recording and
represents 21GB of data. 10,371 of these traces are over Bluetooth Classic, and 329 Bluetooth Low Energy. We note
that 2,215 of these captures are the result of the corresponding human action (e.g., performing a short workout),
and 8,485 are automated actions (e.g., the opening of an application) on Wear OS devices.
Additionally, we record a second dataset that contains longer captures with a duration of ≈ 20min. These

captures contain automated actions that, when combined, represent a plausible usage of a smartwatch over a day.
We use them to model a persistent adversary (§6.2.4). This amounts to 38 hours of recording and 9.5GB of data.
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Overall, the datasets contain raw binary files with all captured traffic. As the file format is proprietary, we
extract the corresponding CSV files. We make the datasets (and all code used in this paper) available for research
purposes [30].

Sample Processing. We process the captured raw Bluetooth traces as follows. We follow the approach of the
related work and extract only the total length of the payload to avoid relying on the presence of plaintext markers
in it [83, 84]. From each recorded Bluetooth trace, we extract the Bluetooth packets at the Logical Link Control
and Adaptation Protocol (L2CAP) layer and output a series of (arrival time, size)-tuples. We label the trace with
the device used, the application used (in the case of a smartwatch), the action performed, and whether it
used Bluetooth Classic or Low Energy. We split the set of recorded samples 𝑆 into two subsets 𝑆Classic and 𝑆LE
depending on the Bluetooth variant used. We remark that an adversary is able to do the same, as the frames are
different.

Feature Extraction. We design features to capture patterns based on incoming/outgoing size distributions and
inter-packet timings. We map each sample in 𝑆Classic and 𝑆LE to a 32-scalar feature vector: First, we capture global
statistics about packet sizes. We filter each sample into 3 packet sequences: (1) from Master to Slave, (2) from
Slave to Master, and (3) sequences consisting of all non-null, non-ACK packets. From each filtered sequence, we
extract the following 5 statistics: the min/mean/max/count/standard deviation of the packet sizes in bytes. Then,
we observe that different devices/applications send packets with a distinctive size. To this end, following the
techniques used by Liberatore and Levine [60] and Herrmann et al. [54] in the context of website fingerprinting,
we extract features corresponding to the number of packets that are in a certain range. We select 10 buckets
that represent the size (in bytes) ranges [0, 9], [10, 19], · · · , [80, 89] and a last “catch-all” bucket for packets with
[90,∞] bytes. Finally, we examine the timings of the packets. In more detail, we compute, in seconds, the series
of inter-packet durations and extract the same 5 statistics (min/mean/max/count/standard deviation) from it.
Furthermore, we calculate the average send/receive inter-packet times as done by Saltaformaggio et al. [76] in the

case of TLS traffic: AvgIPT(𝑃) =
∑|𝑃 |−1

𝑖=0 ts𝑖+1−ts𝑖
|𝑃 |−1 , where 𝑃 is the set of sent/received packets, and ts𝑖 is the timestamp

of packet 𝑖 . Intuitively, this captures the communication bursts of each device.

Classification. For our traffic-analysis attacks (described in §5 and §6), we use a Random Forest classifier, a
popular algorithm for multi-class classification that is also widely used in the related work [83, 84]. We opt for a
Random Forest classifier over the recently proposed deep-learning approaches [78, 79] due to its interpretability
and the moderate size of our dataset. We split the samples of each device/application/action (depending on the
adversarial goal) into 80% training and 20% testing sets and perform 10-fold random-stratified cross-validation.
We also retain the most important features according to the classifier’s importance using Recursive Feature
Elimination (RFE).

5 DEVICE IDENTIFICATION
We first focus on the adversarial goal G1: recognizing a device name/brand from the metadata of its encrypted
Bluetooth traffic. This attack is a stepping-stone for other attacks that aim to infer more fine-grained information
such as actions performed by the wearer or applications installed on her device (§6). We recall our assumption
that the adversary 𝐴comm does not observe the pairing event between a wearable 𝑤 and the smartphone 𝑆 ,
which would give him the device information in plaintext. Instead, we demonstrate how 𝐴comm can infer this
information from encrypted communication patterns, for instance from devices that are already paired and
communicating. Some recent related works already highlight that current BLE devices do not rotate their MAC
addresses sufficiently or at appropriate times, enabling tracking [31, 35, 64]. We highlight a deeper problem: the
communication patterns (e.g., inter-packet timings) are sufficient to accurately identify and track devices.
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Bluetooth wearable devices used in our experiments. BT indicates the Bluetooth version. The AppleWatch uses both flavors
of Bluetooth.

Table 1. Bluetooth Classic devices.

Vendor Model OS BT Chipset
Samsung Galaxy Watch Tizen OS 5.0 Broadcom
Fossil Explorist HR Wear OS 4.2 Qualcomm
Apple Watch 4 Watch OS 5 5.0 Apple
Huawei Watch 2 Wear OS 2 4.1 Broadcom
Fitbit Versa 2 Fitbit OS 4 5.0 Cypress S.
Sony MDR-XB9 — 4.1 Qualcomm
Apple AirPods 2 — 5.0 Apple

Table 2. Bluetooth Low Energy devices.

Vendor Model BT Chipset
Apple Watch 4 5.0 Apple
Fitbit Charge 2 4.1 Microelectronics
Fitbit Charge 3 5.0 Cypress Semiconductor
Huawei Band 3e 4.2 RivieraWaves
Mi Band 2 4.1 Dialog Semiconductor
Mi Band 3 4.1 Dialog Semiconductor
Mi Band 4 5.0 Dialog Semiconductor

Table 3. Applications and Actions captured in the dataset. Some actions are application-specific, e.g., DiabetesM_AddCalorie.
Other actions, e.g., Workout, exist in different apps and in the firmware of wearable devices.

Applications 20Min, ASB, Alarm, AppInTheAir, AthanPro, AthkarOfPrayer, Battery, BeurerApp, Bild, Bring, Calm,
Camera, ChinaDaily, Citymapper, DCLMRadio, DailyTracking, DenverApp, DiabetesM, DuaKhatq-
mAlQuran, Endomondo, FITIVApp, FITIVPlus, FindMyPhone, Fit, FitBreathe, FitWorkout, Fitbit, Flashlight,
FoursquareCityGuide, Glide, GooglePay, GooglePlayMusic, HealthyRecipes, HeartRate, HuaweiApp, Kaia,
KeepNotes, Krone, Lifesum, MapMyFitness, MapMyRun, Maps, Medisafe, Meduza, MiApp, Mobills, Music,
MyFitnessPalApp, NYT, NoApp, Outlook, PearApp, Phone, PhotoApp, PillReminder, PlayMusic, PlayStore,
Qardio, RamadanTime, Reminders, Running, SalatTime, SamsungHealthApp, Shazam, Sleep, SleepTrack-
ing, SmartZmanim, SmokingLog, Spotify, Strava, Telegram, Timer, Translate, Walgreens, WashPost,
WearCasts, Weather, Workout.

Actions AddCalorie, AddCarbs, AddFat, AddFood, AddGlucose, AddInsulin, AddProteins, AddWater, Browse,
BrowseMap, CaloriesAdd, Coffees, EmailReceived, HeartRate, Leisure, LiveStream, NightLife, Open,
PhoneCallMissed, PhotoTransfer, Play, Restaurants, Running, SearchRecipe, Shopping, Skip, SMSReceived,
Sync, Walking, Workout.

Attack. We use the methodology described in §4 and train two classifiers: one for identifying Bluetooth Classic
devices and one for distinguishing BLE devices from their encrypted traffic. We use our captured dataset of
encrypted traces with the device label as the classifier’s target. Initially, we have 10,371 feature vectors across
diverse applications/actions of 7 Bluetooth Classic devices, and 329 feature vectors for 7 Bluetooth Low Energy
devices. We note that the AppleWatch is in both categories as it uses both Bluetooth flavors.

The large sample difference in Bluetooth Classic is due to the automation of two Wear OS smartwatches (§6.2).
As the Bluetooth Classic dataset is imbalanced with respect to the number of samples per device, we balance the
samples per device label and maintain an equal representation of each device’s actions. This gives us between 20
and 60 samples per device, except for the HuaweiWatch that has 125 samples (1 per class). In total, the equalized
Bluetooth Classic dataset consists of 326 feature vectors. We use a Random Forest classifier with 10 trees (our
experiments showed that additional trees were not necessary - Figure 11(a)) that we train using the features
described in §4, and we do not limit their depth. We apply Recursive Feature Elimination and keep the most
significant 10 features (Figure 11(b)).

Results. For the multi-class classification problems with 7 Classic and 7 LE devices, the classifier’s preci-
sion/recall/F1 score is 0.96 for Bluetooth Classic and 0.97 for Low Energy (Tables A1 and A2), thus showing that
identifying a wearable device from its encrypted traffic is successful. We also find that our classifier accurately
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Fig. 4. Normalized confusion matrix per true label for device identification. Values in the diagonal are the recall per class.

distinguishes between different models from the same vendor (i.e., Mi Band 2, 3 or 4, and Fitbit Charge 2 or 3)
indicating that each model has distinctive traffic patterns. Figures 4(a) and 4(b) show the confusion matrices. The
values in the diagonals are the recall per class.

We perform a feature importance analysis and find that timings are crucial for discriminating among the
Bluetooth Classic devices: all three most important features are related to inter-packet timings (Figure 5(a)).
This corroborates the findings of Aksu et al. [18] who show that the traffic from 6 smartwatches has a distinct
inter-packet timing distribution, and is in agreement with fingerprinting results in other domains (e.g., website
fingerprinting based on Tor traffic [71]). In the case of Bluetooth Low Energy, the classifier selects primarily
size-based features (Figure 5(b)). We postulate that this difference is due to the increased capabilities of Bluetooth
Classic devices (i.e., high-end smartwatches) compared to LE devices that consist of simpler devices. Smartwatches
support a wide range of possible actions that can generate small or large amounts of data, which makes global-
volume-based features less stable than timings that are inherently tied to the OS and the hardware. On the
contrary, LE devices support only limited functionalities (e.g., activity tracking or heart rate monitoring), and
their communication pattern is inherent to the nature of the application, making size-based features discriminative
across devices. Another possible explanation is that due to the absence of a block cipher on the link-layer, BLE
packet sizes reveal more information to an eavesdropper. Finally, we observe that the relative feature importance
is less pronounced than in the case of Bluetooth classic, thus indicating that the classifier needs more features to
successfully distinguish the samples.

Chipset Fingerprinting. We note that our classifier described above fingerprints a combination of the hardware,
the firmware, the OS, and the applications installed. To specifically target the hardware (i.e., chipset manufacturer),
we reproduce the same experiment, this time using the Bluetooth chipset manufacturer as the classifier’s label.
Our goal is to investigate if our classifier learns common patterns from the encrypted traffic recorded by devices
that have the same chipset manufacturer, e.g., Samsung Galaxy Watch and Huawei Watch 2, which both have a
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Fig. 5. Feature Importance for device identification. Δtime is the sequence of inter-arrival times. avgIPT_X are the features
from Saltaformaggio et al. [76] also describing inter-arrival times. The x-axis indicates the relative feature importance.

Broadcom Bluetooth chip or Mi Band 2, 3 and 4 all equipped with a Dialog Semiconductor chip. Once again,
we find that the classifier’s performance is high (96% precision/recall/F1 score, Figure 12(a), Table A3), which
indicates that there exist stable communication patterns across chipsets. We remark that the limited sample
size (i.e., 1 − 3 devices per chipset manufacturer) limits the generalization of our conclusions; further analysis is
needed in this specific direction. Nonetheless, this result demonstrates the robustness of our methodology, as
our earlier results show that our device-identification classifier can distinguish between devices from the same
vendor.

Take-Aways. Our experiments confirm that there exist discriminating features across the encrypted traffic of
Bluetooth wearable devices; an eavesdropper can use these features to differentiate devices. This raises a question
about the level of protection offered by tracking countermeasures, e.g., MAC address randomization, employed
by the Bluetooth LE protocol. Moreover, our results show that Bluetooth Classic devices are distinguishable due
to their communication time patterns, whereas LE ones have distinct size patterns. We also find that the traffic of
devices with the same chipset manufacturer have common patterns. Despite these common patterns, devices
from the same vendor can still be distinguished from each other using the device-identification methodology,
demonstrating the robustness of our approach. Finally, we remark that device identification is an entry-level
attack to other attacks (e.g., action or application identification described next) that aim at inferring more sensitive
information about the owners of wearable devices.

6 ACTION & APPLICATION IDENTIFICATION
We now consider the adversarial goals G2/G3 and focus on recognizing user-actions from their corresponding
encrypted Bluetooth communications. Actions are related to the capabilities of wearable devices: measuring a
heartbeat, beginning a workout, tracking a meal or medicine intake, playing music, etc. Our dataset analysis
shows that most user-actions — even the mere opening of an application on a smartwatch — result in Bluetooth
communication with the paired phone. In this section, we train a classifier to recognize user-actions from the
metadata of these encrypted Bluetooth communications.
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Due to technical constraints, our experimental evaluation is two-fold and “T-shaped”:
(1) Wide-part (§6.1): We run the attack on all the wearable devices of our testbed (Tables 1 and 2). Since most

of them are not automatable due to their proprietary OS/firmware, we use the samples that we manually
trigger by performing the appropriate action (e.g., clicking a button on the wearable or performing a short
running workout).

(2) Deep-part (§6.2): We build and use an automation pipeline for Wear OS devices to generate more data. We
use this enhanced dataset (1) to identify applications running on a smartwatch, for instance religious or
medical applications, (2) to identify fine-grained actions within specific applications, for instance the action
“record an insulin injection” in an application that is used to manage diabetes, and (3) to model an attacker
capturing traffic over a longer period of time (hours) and attempting to recognize actions and applications
in the trace.

Methodology. For our two-fold experimental evaluation, we follow the methodology described in §4 except
that we enhance the set of extracted features (see next point). We use the Action (or Application) label as our
classifier’s target. In subsections §6.1 and §6.2, we include further details that depend on the specific experimental
settings.

Feature Extraction & Classification. We slightly modify the features described in §4. First, we replicate the 3
packet sequences: (1) from Master to Slave, (2) from Slave to Master, and (3) sequences consisting of all non-null,
non-ACK packets, and we remove small packets from the copies. We empirically observe that small packets are
not useful to the classifier because they are common across applications and actions. After experimenting with
different thresholds, we filter out packets smaller than 46B from the 3 new time-series. As before, we extract the
min/mean/max/count/standard deviation from these time-series, which leads to 15 additional scalar features.
Furthermore, we tweak the features proposed by Liberatore and Levine [60] regarding the counts of packets in
certain size ranges. Recall that, for device identification (§5), we used coarse, 10-byte wide buckets. However, our
analysis of the Bluetooth traffic concerning user actions shows that some of them produce consistent and unique
packet sizes. As a result, we define more fine-grained buckets and record the number of packets with size 𝑥 , for
𝑥 ∈ [46; 1, 005] bytes. We ignore packets above 1,005 B, the maximum payload size in our dataset. This leads to
960 scalar features replacing the 10 described in §4. Finally, we retain the same timing features as those described
in §4. Overall, with our modified approach, we extract 997 features that we feed to our random forest classifier.
To cope with the increased number of labels (i.e., 49 actions in the “wide’ experiment of §6.1 and 56 applications
for the “deep” experiment of §6.2), we set the number of trees in the Random Forest algorithm to 30 and we use
Recursive Feature Elimination to retain the 50 most important features.

6.1 “Wide” Experiment on All Wearable Devices of our Testbed
We first focus on devices whose Bluetooth traffic capture can not be automated: step counters and fitness trackers
(Fitbit Charge 2-3, Huawei Band 3e, Mi Band 2-3-4), and smartwatches (Fitbit Versa 2, Apple
Watch, Samsung Galaxy Watch), all with proprietary OS/firmware. We also include manually-triggered actions
from Wear OS watches (Huawei Watch 2, Fossil Explorist), but not machine-automated ones that we
use in §6.2. The subset of the dataset that we use in this section consists solely of Bluetooth traces triggered
by the corresponding human action. We demonstrate that most actions performed on the wearable devices
under examination result in a distinctive encrypted Bluetooth communication, and that an eavesdropper can
automatically and passively recognize user actions (e.g., starting a workout) and various events (e.g., the reception
of an e-mail/SMS/phone call).

Attack. We do not assume that the adversary knows the device; we train a classifier to infer both the device
and the action in one step. A true positive occurs when both the device and the action are guessed correctly. We
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Fig. 6. Application and Action Identification for human-triggered actions (“wide” experiment).

enumerate and collect 49 actions from the set of wearable devices considered and the companion apps installed
on the phone (e.g., Measure Heartbeat, Record Food/Water intake). The dataset is balanced: for each action,
our dataset contains between 20 and 25 samples.

Results. The classifier performance over 49 actions is 82% precision/recall/F1 score (Figure 6(a)). We observe
that most actions are recognized with a recall close to one which demonstrates that their corresponding Bluetooth
communications have distinct patterns. This includes potentially sensitive user actions such as measuring heart
rate, beginning a workout, receiving an e-mail or phone call. Moreover, we note that there exist few classes with
lower accuracy compared to others (with precision/recall between 40% and 60%). Our analysis shows that these
classes concern actions within the same application, e.g., EndomondoApp_Running or EndomondoApp_Walking,
on the SamsungGalaxyWatch. However, this can be a limitation due to the number of samples (20–25 per class);
we show in further experiments that fine-grained actions within one application can be inferred with more data
(§6.2.3). We also observe that the classifier accurately labels the same action Running on devices from the same
line of products: MiBand2, MiBand3, MiBand4 demonstrating how it performs device and action identification in
one step. Finally, we observe that our classifier yields the same accuracy for the devices Fitbit2 and Fitbit3 –
which only Sync with their connected smartphone – thus confirming our Device Identification results (§5): an
eavesdropper can recognize the communicating devices based on their metadata.

We perform a feature analysis and find that the most important features are based on communication volumes
(number of incoming, Figure 6(b)) and packet sizes (features 3-8 of Figure 6(b)), with a single highly-ranked
feature about timings (avgIPT of incoming packets). This is consistent with our initial dataset analysis that
demonstrated that various user actions trigger Bluetooth traffic with distinct packet sizes. Finally, we remark that
in this experiment, the classifier recognizes the device and the application in one step. In §6.2.3, we improve the
classifier’s accuracy for identifying actions within the same-application by assuming that device and application
identification has already taken place and by tailoring the training of our classifier to one specific application.
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Fig. 7. Normalized confusion matrices per true label for recognizing smartwatch application openings.

6.2 “Deep” Experiment on Wear OS devices
We now perform an in-depth analysis of Bluetooth communications’ metadata on Wear OS smartwatches. We use
automation to increase the size of our dataset, and we demonstrate the performance of our methodology on various
adversarial tasks. To ensure that our synthetic (i.e., computer triggered) actions generate plausible Bluetooth
traffic, we restrict ourselves to a one-click action: the opening of an application on the smartwatch. We argue that
this should be independent of the wearer’s data and inputs and should generalize across users. The first purpose
of this section is to demonstrate that the simple opening of a smartwatch application generates (encrypted)
Bluetooth traffic patterns that can be accurately recognized by an eavesdropper (§6.2.1). Then, we investigate if
the classifier trained by an adversary generalizes and transfers across different smartwatch-smartphone pairs,
i.e., to a different setup than that used offline by the adversary (§6.2.2). Furthermore, we build upon our device
and application identification attacks, and we target a specific application used to manage diabetes to infer
actions within that application. In §6.2.3, we demonstrate how an eavesdropper can passively recognize sensitive,
health-related actions (e.g., record an insulin injection) within this specific application. Subsequently, we show
how a persistent adversary that continuously monitors the Bluetooth traffic of a user can extract her profile by
inferring her application openings and actions over the course of a day (§6.2.4). Finally, we briefly investigate the
effect of dataset aging on the attacker’s classification performance (§6.2.5).

6.2.1 Application Identification. We train our classifier to infer the opening of specific applications on a smart-
watch. Identifying app openings has the benefit of being (1) independent of user actions and data more than of
the recognition of actions (§6.1), and (2) easier to automate (and hence to train a classifier upon) for an adversary.
We remark that the mere presence of an app can leak sensitive information about the wearer. For instance,

medical and well-being applications (e.g., medication reminders, applications to stop smoking) hint that the
wearer is concerned with a medical condition, and religious (e.g., prayer time reminders) or news applications
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with a political orientation can reveal information about the users’ beliefs. Even less revealing apps can be useful
to a long-term adversary; users naturally install applications based on their interests and behaviors, and the
list of apps on their wearable device can be exploited to build personal profiles. We argue that it is difficult
to foresee whether the presence of an application is sensitive or not, especially when considering long-term
profile building based on data from multiple sources, e.g., for machine-learning-based advertising [47, 69]. We
envision that as Bluetooth sniffing technologies are becoming less expensive (see our discussion in §8), Bluetooth
traffic could become a valuable source of information. We remind the reader that companies are currently
experimenting with Bluetooth-based “proximity advertising”, a technology used to track users and display local
targeted advertisements in transportation systems, airports, and supermarkets [1, 2, 6].

Automation Pipeline & Applications. We use the automation part of our Bluetooth traffic capture pipeline (§4)
that consists of a Linux laptop that coordinates with a Windows machine that records traces via a Bluetooth
sniffer. Using adb and monkeyrunner [12], the Linux laptop issues synthetic clicks and swipes to a Wear OS
smartwatch connected over Wi-Fi. We force the watch to send data over Bluetooth (rather than Wi-Fi) by making
sure that the Wi-Fi network does not have Internet access. We do not perform UI fuzzing; we manually specify
the clicks and swipes needed to perform the desired actions on the watch. The exact same clicks and swipes are
reused to repeat an action. At the time of writing, due to the lack of debugging tools, only Wear OS smartwatches
could be automated in the desired way. Devices running Tizen OS should support automation using a variant of
adb called sdb [14], however, the current API does not enable it. Our first experiment uses a Huawei Watch 2
(LEO-BX9)3 running Wear OS 2.16, paired with a Pixel 2 running Android 9.

We select 56 applications from the Google (Wear OS) Play store, favoring top-rated applications per category.
Our choice of applications was constrained by the availabilities of apps on the Swiss Play store. Our list includes:

• Religious apps (DuaKhatqmAlQuran, AthkarOfPrayer, SalatTime, DCLMRadio)
• Health-related apps (DiabetesM, Medisafe, SmokingLog, Qardio, HeartRate)
• Lifestyle-related apps (Lifesum, Calm, DailyTracking, HealthyRecipes, SleepTracking, etc)
• Sport/Activity-related apps (Endomondo, FitWorkout, FITIVPlus, etc)
• Local newspapers (ChinaDaily, WashingtonPost, Meduza, Krone)
• Mobile banking and finances (ABS, Mobills)
• “Local guides”/maps (Citymapper, Foursquare)
• Communication apps (Telegram, Glide, Outlook)

We also include stock applications (e.g., Reminders, Weather, Phone), as well as common applications (e.g.,
Telegram, Translate) as a control for the sensitive groups and to increase the number of applications. Finally,
we include a NoApp label that corresponds to background communications between the smartwatch and the
phone.

Results. The classifier’s performance (precision/recall/F1 score) over the 56 apps is 64%. However, we find that
the precision and recall per class varies greatly (Tables A10 and A11). In particular, the majority of apps (38
out of 56 apps) is classified with a mean accuracy close to 1, whereas a smaller subset of the apps is confused
among each other by the classifier. Our analysis shows that this concerns apps that trigger minimal Bluetooth
communications upon their opening (e.g., Battery, Flashlight); this fact is visible when we order the confusion
matrix by the median transmitted volume (Figure 7(a)). We call these apps “low-volume”, as they communicate less
than 200 bytes for at least 75% of their samples (red dashed square of Figure 7(a)). However, except for Battery
and Reminders, which are the unique apps that trigger absolutely no communication, we find that low-volume
apps communicate a small amount of information on the Bluetooth layer (Table A8). To further investigate the
difference across the two subsets of apps, we train two separate classifiers: one specifically targeting the 18
3We emphasize that the issue we present appears to be generic to wearable devices and not specific to the device selected in this experiment.
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Fig. 8. Fingerprinting fine-grained action within on application: DiabetesM.

low-volume apps and another one to distinguish among the remaining 38 non-low-volume apps (Figures 14(b)
and 14(c)). The mean accuracy of the first classifier reaches 17% with high variance across the labels, which
shows that the data exchanged by these apps is simply too small and/or too variable to be learned by the model.
We find that the NoApp label that corresponds to background communications between the smartwatch and
the smartphone is part of the low-volume group. This indicates that low-volume apps are not only hard to
distinguish among their peers but are also difficult to differentiate from the absence of activity. On the contrary,
the non-low-volume apps are recognized by the second classifier with a high accuracy of 90%, demonstrating the
practicality of the attack in this case. We observe that — as before — the important features are based on the sizes
of packets and the timings, with an unsurprising emphasis on the direction smartwatch→smartphone for the
timings (Figure 7(b)).

6.2.2 Model Transferability. Our application-identification attack (§6.2.1) was successful on a single smartwatch-
smartphone pair (i.e., Huawei Watch 2 - Pixel 2). However, our attack would require the adversary to train a
classifier on the particular pair of devices that the target possesses. In this subsection, we investigate if the trained
model generalizes to other devices, upon which the adversary has never used for training.

In more detail, in the previous experiment we use a Huawei Watch 2 (LEO-BX9) running Wear OS 2.16, paired
with a Pixel 2 phone running Android 9. In this experiment, we include a new pair of devices: a Fossil Q Explorist
HR smartwatch running Wear OS 2.16, paired with a Nexus 5 phone running Android 6. We could not downgrade
one Wear OS device to a different version to introduce more variability to our experiment. Also, we could not
include the Apple Watch / iPhone pair in the transfer experiment due to a lack of overlap in the apps that we
selected and the apps available in the Apple Store. Hence, we leave the question of cross-OS transferability as an
interesting future work.

We select 34 apps from the Huawei-Pixel pair that could also be installed on the Fossil-Nexus pair (Table A5).
We follow the same methodology, except that we use all the samples collected from one pair of devices as the
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classifier’s training set and the data collected from the other pair as the testing set. We perform our experiments
in both directions.

Our results show that the trained model generalizes well: it has a precision/recall/F1 score of 81%when the data
collected from the Huawei-Pixel pair is part of the training set and the data collected from the Fossil-Nexus pair
is the testing set (Figure 15(a), Table A12). The classifier’s precision/recall/F1 score reaches 86% when we perform
the experiment in the opposite direction (Figure 15(b), Table A13). Some apps are misclassified: our analysis
shows that these are applications that are native to the OS (Fit Packages). This is not surprising, given the
differences in major Android versions. However, and more importantly, our experiment shows that fingerprinting
non-native applications by their (encrypted) Bluetooth traffic is possible independently of the smartphone’s OS
version, which demonstrates the robustness of our attack methodology.

6.2.3 Fingerprinting Fine-grained Actions Within an Application. We now use the application-opening identifica-
tion (§6.2.1) as a stepping stone to another attack that aims at inferring potentially sensitive actions within one
particular application. For a use-case, we choose the app DiabetesM that helps people diagnosed with diabetes to
keep track of their meals and medicine intakes. Although the Huawei smartwatch that we use for this experiment
is not marketed as a medical device, this information is clearly of medical nature.
We follow the previous methodology and use the automation tool to generate traffic that corresponds to the

usage of the DiabetesM app. We manually program user interactions (i.e., pressing buttons) within the application
and capture the traffic of 6 actions related to the management of meals and medicine intakes: Add Calorie, Add
Carbs, Add Fat, Add Glucose, Add Insulin, and Add Proteins. We collect 150 samples per action, map them
to feature vectors using the features described in §6 and split them into 80% for training and 20% testing. Then,
we train a classifier tailored to this particular app that aims to distinguish among the 6 possible user actions, i.e.,
we assume that the application’s traffic has been already classified as DiabetesM.

The overall accuracy of the classifier over the 6 actions is 70% (Figure 8(a), Table A4), which is significantly better
than guessing at random. This indicates that actions within a specific application generate distinct Bluetooth
traffic that can be fingerprinted by an eavesdropper. More importantly, our results show that the sensitive
action Add Insulin is recognized with a precision/recall/F1 score of 90/95/92%, respectively, i.e., the encrypted
communication patterns generated by this sensitive action “stand out” from other actions of the DiabetesM app.
We here remark that all of these actions are semantically similar: they all update a variable in a database

stored on the paired smartphone. We expect that developers could prevent the traffic-analysis attacks by simply
padding the traffic corresponding to all of these actions to a constant size. However, the feature analysis reveals
that timings matter most, not sizes (Figure 8(b)). A closer inspection reveals that a human has to interact with
DiabetesM in two consecutive steps: (a) by increasing a value (e.g., pressing “record insulin injection”), and,
(b) by clicking on a “save” button on a different screen. To our surprise, both actions generate traffic, and the
classifier detects the timing differences between the two actions.

First, this highlights a limitation of our experiment. In our methodology, the duration between the press of the
first button, the swipes, and then the press of the “save” button are constant and precisely reproduced by the
automation framework. A human would produce more variable durations that would be harder to fingerprint by
their encrypted traffic. However, we believe that this finding is still an interesting showcase for the capabilities of
traffic-analysis attacks: padding each action into a similar message is not sufficient, because the classifier can
“count” the number of swipes from the screen containing the save button back to the screen containing the target
action. Hence, it is necessary to obfuscate this duration, or rethink the strategy that the application employs to
synchronize data with the smartphone.

6.2.4 A Persistent Adversary. We now consider a longer-term adversary that aims at identifying the actions
performed on a smartwatch by its wearer over the course of a day. This adversary could be a nosy neighbor or
an office eavesdropper, capturing Bluetooth traffic continuously over a long period, and attempting to monitor
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the habits of the target. This experiment drops a simplifying assumption made in the previous experiments, i.e.,
that the adversary knew when the traffic related to an action starts and stops. Indeed, all previous experiments
used 30-second traffic samples, each corresponding to exactly one action. In this new experiment, the adversary
records a continuous traffic capture over 24 hours, and its goal is to output a series of predictions over this
period. Furthermore, the adversarial task is slightly tweaked: the prediction can be either a user-action, or the
NoAction label corresponding to the absence of user activity. Finally, we note that due to their long duration,
these traffic captures contain background traffic (updates, synchronization) more than the short 30-sec samples
used previously. The goal of the adversary is therefore to distinguish specific app openings from background
noise and OS communications.

Methodology. We generate application openings and user actions with the HuaweiWatch2 smartwatch, using
the automation framework presented in the “deep” experiment (§6.2.1). We simulate one user who wears the
watch for 24 hours. Over the course of a day, we model the user’s interactions with her smartwatch following
a recent user study that quantifies smartwatch usage in the wild [61]. In particular, for each 1-hour slot, the
number of interactions is drawn from a probability distribution favoring daytime hours over nighttime ones
(Figure 4 of [61], page 389). User actions are not triggered with an equal probability: popular applications such as
messaging/e-mails, maps, alarms/clocks, and fitness trackers, are more likely to be triggered than others (Table
6 of [61], page 390). We model this by updating their prior probability to 2× compared to that of non-popular
applications. We select 33 high-volume applications from popular categories and enumerate 17 user actions
within these applications, e.g., DiabetesM_AddInsulin, HealthyRecipes_SearchRecipe, FitWorkout_Open
(Table A6). Individually, each of these actions has a short duration (≤ 20sec). However, these fine-grained actions
follow each others in semantic sequences: e.g., we automate the sequence Endomondo_Open, Endomondo_Running,
waiting 2min, Endomondo_Close, which is the equivalent of a 2-min workout. The classifier attempts to recognize
each individual action (except for _Close actions).
Then, we automate the recording and triggering of actions. Due to technical constraints, we record 20min-

captures that we concatenate to form a 24h capture. The parameters of each 20min-capture are drawn from the
distribution of the modeled time of the day. Within one capture, the simulation is a simple state machine that
loops over the following actions: (1) it flips a biased coin deciding whether to trigger an action or not, and (2) if
the outcome is positive, it draws one action at random following the biased probability distribution, runs the
action, and waits for a random time defined by the expected number of events in the modeled time of the day. In
parallel, the smartwatch and smartphone normally exchange background data.

Attack. To train its classifier, the attacker uses the short 30-sec captures corresponding to the 50 classes
(i.e., applications and actions) selected. Moreover, it employs a 51st class that it uses to model noise: this class
contains the background communications of the wearable, recorded as NoApp_NoLabel. In addition, we notice
that closing an application also generates network communications. The volume exchanged is low, hence they
are difficult to classify. However, we observe that when treated as noise, they are useful in helping the classifier
distinguish between actions of interest and background traffic. Therefore, we add the classes AppX_Close for all
33 applications of interest. We note that the adversary’s dataset is balanced: it contains between 30 and 40 samples
per class. Finally, the attacker extracts features, as in the previous experiments (§6.2), and trains a Random Forest
classifier.

During testing, the attacker is provided with the uncut 24-hour traffic capture. First, it runs a splitting algorithm
that identifies sequences in the capture that possibly correspond to user-actions. This splitting algorithm uses a
sliding window and records the times at which the sum of bytes exchanged in the window is greater than 200
bytes, following the criteria for “high-volume” apps presented in §6.2. Then, it classifies the contents of each
window; however, it only outputs the most likely class if its probability is greater than a confidence threshold 𝑇 .
If no class meets this criteria, it outputs NoAction.
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Fig. 9. Attacker’s score when classifying events over 24-hour captures. The threshold is the minimum confidence needed to
output a prediction.

Evaluation Metrics. We adapt the attack’s evaluation metrics to the new task. A true positive corresponds to a
correct prediction in the “correct” time-interval, i.e., if the time intervals of the real action and the predicted one
overlap. A false positive occurs when the attacker’s classifier outputs a label other than NoAction that does not
overlap with a real action of the same label. Finally, a false negative is when the classifier misses a real action.
Following these definitions, we calculate the classifier’s precision/recall/F1 score as usual.

Results. The results are computed over the 72 × 20min = 24 hours of the experiment. We parameterize them
with the confidence threshold𝑇 , which impacts the overall sensitivity: lower𝑇 values result in a higher recall and
lower precision, and vice-versa. For the classification task with 51 classes, the classifier’s average precision ranges
from 0.65 to 1, and its mean recall per class from 0.7 down to 0 (Figure 9). The maximum recall is 83.5%, for a
threshold 𝑇 of 0.1, and the corresponding precision is 74.9%. The maximum precision is 1.0%, for 𝑇 = 0.6, and the
corresponding recall is 23.5%. The best F1 score is 0.83 and is achieved at𝑇 = 0.25. This experiment demonstrates
that a persistent adversary successfully recognizes high-volume applications from the absence of activity and
accurately classifies them over the course of the day. The different values for the confidence threshold 𝑇 indicate
a precision/recall trade-off. An adversary can choose to optimize its strategy towards one metric or the other
(or both) depending on its goals. For instance, an adversary who aims at recognizing, with high precision, an
application of interest or a particularly sensitive action (e.g., , AddInsulin) could do so at the cost of more false
negatives (and lower recall). Whereas, another adversary, e.g., a smart billboard displaying an advertisement to
a passer-by, aiming to identify the set of applications and actions of its target (that can help to build a profile)
could choose a lower decision threshold and achieve better overall performance.

6.2.5 Dataset Aging. Finally, we briefly explore the effect of dataset aging, that is, the loss of accuracy incurred
as the adversary uses older datasets. We perform an experiment in which we collect data from applications over
32 days; then, we measure the classifier accuracy when classifying each day’s samples with the model trained
on the data collected at day 0. We use the 38 high-volume applications presented in Section 6.2, from which we
exclude 5 applications that were not successfully automated and did not produce traces over the multiple days
of this experiment. We also exclude 3 applications that stopped communicating data after an update over the
month. Figure 10(a) shows a boxplot of the F1 score per application over the duration of the experiment. First, we
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(b) Evolution of the F1 score per class, averaged over 32 days.

Fig. 10. Effect of dataset aging on accuracy.

observe that the median F1 score is stable through the month, with small variations between 90% and 95%. The
overall performance of the classifier did not vary significantly, even when using traces that are a month old. We
do observe that the F1 score of some classes varies through the month (e.g., on days 12 and 16, the lower whiskers
indicate that some apps were misclassified more than usual). We investigate the F1 score per class, averaged
over the month (Figure 10(b)). We see that the different classes have variable F1 scores, in particular with one
application being harder to classify: DCLMRadio. This a web radio that loads a large amount of content updated
daily. It is unsurprising that training on a single day is not representative of the whole month. Nonetheless, other
applications are still classified with high accuracy after 32 days.

Finally, to improve the classification, we also experiment with training the classifier using the data of several
days. We use the data collected during the initial three days (instead of just the first), while keeping the same
amount of training data (corresponding to a single day). We observe that training on just a few days leads to a
performance increase of 3% mean accuracy (from 92% to 95%) over the month. The F1 score of DCLMRadio, the
worst class, also increases by 14 percentage point (from 68% to 82%; Appendix, Figure 17) . This suggests that an
adversary does not need a fresh dataset to perform the attack. Thus, this lowers the cost of the attack by reducing
the amount of training needed and by facilitating dataset reuse.

6.3 Summary of the Attacks
Overall, the experimental results of this section demonstrate that different actions (e.g., declaring an insulin
shot on a diabetes monitoring application) performed on a wearable device trigger unique Bluetooth traffic.
These communication patterns can be recognized by an eavesdropper (e.g., a nosy neighbor or a proximity-
based advertiser) to infer the action performed despite the encryption. This holds across the multiple wearable
devices such as smartwatches and fitness trackers from diverse vendors. We also find that the mere opening
of an app on a smartwatch generates distinguishable traffic, leaking potentially sensitive information that is
associated with the presence of the app (e.g., a religious or a political app). For application-openings, we identify
a subset of applications that is inherently well-protected against traffic analysis: “low-volume” applications.
This hints that minimizing data exchanges is an obvious natural defense against our attacks. Furthermore, our
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results demonstrate that our attacks generalize well across different devices: we show that a model trained for
recognizing application openings on one smartwatch-smartphone pair can be applied with high accuracy on
another smartwatch-smartphone pair. This suggests that our methodology can be cost-effective for an adversary.
Finally, we demonstrated how a persistent long-term tracking adversary can benefit from our traffic-analysis
attacks by employing them to profile users, i.e., infer their habits and actions on their daily lives, and that dataset
aging does not significantly affect the attack’s performance.

7 PROTECTIONS
In the previous sections (§5, §6), we demonstrated how an eavesdropper capturing Bluetooth communications
between awearable device and its connected smartphone can perform traffic-analysis attacks and infer information
such as the device model, the applications installed on it, and the actions performed by the wearer. In this section,
we investigate defense strategies against Bluetooth traffic-analysis attacks. We first review the existing types of
defenses against traffic-analysis attacks and identify the most popular approaches. Then, we implement these
strategies and evaluate them against our traffic-analysis attacks.

High-level Defense Strategies. Before diving into the design of a defense, we remark that data minimization
is a simple, inexpensive, and valid approach: data that is not exchanged cannot be fingerprinted. Indeed, our
“deep” experiment shows that applications with low traffic volumes are naturally better protected against traffic
analysis (§6.2). In a similar vein, infrequent “bulky” communications (e.g., syncing a step counter only once a
day at midnight) make the adversary’s task harder in two ways: by leaking less metadata about timings, and by
requiring the adversary to observe the communication at the right time. However, such high-level strategies do
not apply to all applications (e.g., interactive applications such as newspapers, radios or music players).

Defense Design. The purpose of this section is not to discover a perfect defense: it might not exist or its cost
might be unbounded. Rather, we evaluate the effectiveness of common protections against traffic analysis with
respect to the attacks that we presented earlier and study the communication overheads that they introduce.
Fundamentally, a classifier properly trained can detect even small differences between two network traces.
Ensuring that all network traces are perfectly indistinguishable from each other is infeasible. Therefore, we
analyze the effectiveness/cost trade-offs introduced by standard defenses and discuss their feasibility for the
protection of Bluetooth communications.

Defense Categories. We first perform a brief taxonomy of defenses against traffic analysis. The most active
research fields are focused on the Tor network [34, 48, 49, 57, 62, 67, 87, 90, 92] and on IoT traffic/smart-
homes [21, 27, 28, 48, 85]. In a different category, recent anonymous messaging protocols often resist traffic
analysis against a much stronger global adversary, at the cost of having a high bandwidth [29, 37] or a high
latency [22, 43, 59]; indeed, spending time or bandwidth is a fundamental trade-off for achieving traffic-analysis
resistant communications [46]. To the best of our knowledge, traffic-analysis defenses have not yet been explored
on wearable devices.
We distinguish three defense categories [49]: regularization, obfuscation, and randomization:

• Regularization defenses make packet traces harder to distinguish by removing their differences, e.g., by
enforcing constant bit-rates and packet sizes [28, 33, 34, 48], by altering the traces into the common closest
“super-sequence” of packets [87], or by forbidding duplex communications [90].

• Obfuscation approaches aim at confusing the adversary by tweaking the setting, e.g., by hiding traffic
into another protocol [62, 92], or by loading two web pages at the same time, as in the case of website
fingerprinting [67].

• Randomization defenses confuse the adversary by adding randomized dummy traffic [21, 27, 48, 49, 57].
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Defenses based on regularization are often easier to reason about and to analyze their formal guarantees, but they
have the downside of being more costly than the others. On the contrary, obfuscation approaches consist of more
practical defenses that often assume a certain type of adversary, e.g., that cannot de-multiplex encrypted web
pages, or recognize Tor traffic hidden as Skype traffic. We do not explore obfuscation strategies as this category
does not apply well to wearable devices that only support a few classes of traffic. One possible obfuscation
strategy (not explored in this work) could be to split the traffic between Wi-Fi and Bluetooth, for smartwatches
that are capable of both. Finally, randomization defenses tend to be the most lightweight. However, their efficacy
evaluation is harder and is typically done using the success rate of the state-of-the-art attacks [49, 57].

Defense Evaluation. Our goal is to investigate and understand what degree of protection against Bluetooth
traffic-analysis attacks would be provided by a practical and lightweight defense. We remind the reader that our
classifiers use features based on timings (Figures 5(a),7(b),8(b)) and packet size distributions (Figures 5(b),6(b)).
Thus, we evaluate three orthogonal defenses that mask real sizes and timings, and that inject dummy packets
(which achieves both):

(1) pad: A lightweight regularization defense. Each Bluetooth packet is individually padded to a maximum size
(255B for BLE packets and 1,021B4 for Bluetooth Classic packets). Per-packet padding hides specific sizes
and unlike per-flow padding, it incurs no delay (ignoring the small delay due to transmitted larger packets).

(2) delay_group: A regularization defense that delays and groups packets to the next second. This obfuscates
fine-grained timing information by imposing a pace. We note that this approach is clearly incompatible with
latency-sensitive Bluetooth communications such as audio streaming, real-time and interactive applications.
It does not incur bandwidth overhead.

(3) add_dummies: A randomization defense that injects packets at times drawn from a Rayleigh probability
distribution. The use of the Rayleigh distribution is inspired by the “Front” part of Front/Glue [49], a
state-of-the-art lightweight randomization defense designed for website fingerprinting. We experimentally
select 6s for the mean of the Rayleigh distribution, and 300 for the number of dummies we generate
(Figure 18). Finally, we sample the size of each dummy from a distribution created with the collected
samples. Therefore, this defense assumes that the defender knows a priori the distribution of packet sizes.

To assess the protection level provided by the defenses, we measure the accuracy achieved by the classifier
trained by the adversary. We assume that the adversary knows the defense in use and is able to adapt the training
of the classifier. To quantify the cost of each defense, we use 5 metrics: the mean delay introduced per packet, the
total added duration to the sample, the number of bytes added (both in terms of padding and dummy messages),
and the total size overhead in percentage.

7.1 Experimental Results
We apply the various defenses on the Bluetooth traffic traces used for the device identification attack (§5), the
“wide” experiment consisting of human-triggered actions on all wearable devices (§6.1), the “deep” experiment
consisting of automated apps openings on Huawei Watch 2 (§6.2), and the fine-grained action recognition within
the DiabetesM application (§6.2.3). This enables us to evaluate the performance of the defenses against multiple
adversarial goals and various traffic settings.
Tables 4, 5, 6, 7, and 8 display the performance and cost of each defense against the attacks considered. The

accuracy of the attack is averaged over the possible classes, and the defense costs are averaged per traffic sample.
Our first immediate observation is that regardless of the attack and the defense, the mean accuracy achieved
by the adversary’s classifier is still significantly better than random guessing, which indicates that the defenses

4This corresponds to the max payload of a 3-DH5 ACL packet in Bluetooth Classic.
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Table 4. Analysis of the defenses against device identification, Bluetooth Classic devices.

Defense Accuracy [%] Delay/pkt [s] Extra dur. [s] Padding [KB] Dummy [KB] Overhead [%]
No defense 96.3 - - - - -
pad 93.8 - - 401.6 - 203.2
delay_group 67.7 0.5 0.2 - - -
add_dummies 78.0 - - - 92.9 47.0

Table 5. Analysis of the defenses against device identification, Bluetooth LE devices.

Defense Accuracy [%] Delay/pkt [s] Extra dur. [s] Padding [KB] Dummy [KB] Overhead [%]
No defense 97.7 - - - - -
pad 94.5 - - 139.0 - 277.1
delay_group 80.6 0.5 0.1 - - -
add_dummies 85.8 - - - 20.4 40.6

Table 6. Analysis of the defenses against action identification, “wide” experiment.

Defense Accuracy [%] Delay/pkt [s] Extra dur. [s] Padding [KB] Dummy [KB] Overhead [%]
No defense 82.3 - - - - -
pad 64.1 - - 272.0 - 270.5
delay_group 52.0 0.5 0.2 - - -
add_dummies 64.0 - - - 62.5 62.2

Table 7. Analysis of the defenses against application identification, “deep” experiment.

Defense Accuracy [%] Delay/pkt [s] Extra dur. [s] Padding [KB] Dummy [KB] Overhead [%]
No defense 64.4 - - - - -
pad 27.9 - - 150.5 - 585.0
delay_group 37.3 0.5 0.4 - - -
add_dummies 33.8 - - - 46.8 182.0

Table 8. Analysis of the defenses against action-identification in DiabetesM application.

Defense Accuracy [%] Delay/pkt [s] Extra dur. [s] Padding [KB] Dummy [KB] Overhead [%]
No defense 70.4 - - - - -
pad 61.1 - - 77.8 - 2374.8
delay_group 60.1 0.5 0.1 - - -
add_dummies 61.7 - - - 11.8 360.2

are far from being “strong” ones that provide cryptographic guarantees. Overall, the cost of each defense lies
between 1–23× in terms of data transmission (at most ≈ 400 KB of extra data).

Device Identification. Tables 4 and 5 show that all defenses yield, at best, a moderate drop in this attack’s
accuracy. However, both flavors of the device identification attack are performed on a small number of devices
(7 both for Bluetooth Classic and Low Energy). It is therefore not surprising that hiding the traffic of a device
into that of another is a difficult task for the defenses. Among the evaluated defenses, we observe that the
delay_group is the most effective one: it diminishes the attack’s accuracy by 29 percentage points in the case of
Bluetooth Classic, and 17 for Bluetooth Low Energy. However, the cost of delay_group is prohibitively high
(≈ 0.5s delay added per packet) for a defense that is meant to be applied to all the communications performed by
a device. Moreover, we find that the defense pad is ineffective with both Bluetooth flavors. This is not surprising
for the case of Bluetooth Classic where the attacker’s classifier relies mostly on timing features (Figure 5(a)). For
Low Energy, features that relied on packet sizes (Figure 5(b)) have been replaced by the same top-rated timing
features as in Bluetooth classic (max/min/std of Δtime, Figure 19(a)). This suggests that these three features
are important for device identification, regardless of the Bluetooth flavor and corroborates the findings of Aksu
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et al. [18] on smartwatches. We observe that add_dummies is lightweight and reduces the attacker’s accuracy by
18 and 12 percentage points for Bluetooth Classic and LE, respectively. However, its performance is not uniform
across the classes (Figure 20). The confusion matrix shows that add_dummies only moderately protects the 3 Mi
Band 2-3-4 devices and does not protect the others.

“Wide”-Experiment. We evaluate the performance of the defenses against the action identification attack
demonstrated in §6.1. Compared to the previous attack, the task is different, and the classifier has to account for
more labels (i.e., actions). We find that all defenses perform better in general, reducing the attacker’s accuracy
between 18 and 30 percentage points (Table 6). In particular, the difference in efficiency between pad and
delay_group is now of only 12 percentage points, for a cost of 272KB per sample for pad, and 0.5s delay for
delay_group. This result suggests that both masking individual sizes or masking fine-grained timing information
can help; developers could select the appropriate defense based on the cost (either in bandwidth or latency) that
best matches their requirements. Finally, add_dummies performs similarly to pad but with a lower cost (62.5KB
per sample versus 272KB for pad). However, add_dummies requires that the distribution of packet sizes is a priori
known to generate dummies of plausible size. It is unclear how to compute this distribution for a defense meant
to be applied to multiple devices from different vendors. One option would be to combine add_dummies and pad
to avoid this requirement (we experimented with it and observed better effectiveness at a higher cost). Finally, we
note that the protection provided by the defenses is not uniform (we provide an example with add-dummies in
Figure 21(a), other defenses yield similar results), but unlike the “deep” experiment (§6.2), the precision/recall per
class does not seem correlated with the transmitted size. Similarly, the cost of padding varies greatly with the
classes: it has a mean of 272KB added, but a median of only 96KB and a standard deviation of 650KB. The costs
soar up to 4.3MB with streaming applications such as AppleWatch_PhotoApp_LiveStream or PhoneCallMissed.
We note that the defenses delay_group and add_dummies are more consistent, with a standard deviation of,
respectively, 0.04s of delay per packet and 7KB of dummy traffic.

“Deep”-Experiment. The traffic in this experiment consists of automated app openings on aWear OS smartwatch.
For this type of traffic, we observe that all three defenses perform similarly, reducing the attacker’s accuracy
by 31–36 percentage points down to ≈ 30% mean accuracy (Table 7). This highlights that on a specific class
of traffic, i.e., with more homogeneous traffic, the defenses are more efficient. In this case, add_dummies is the
least expensive defense, requiring 46.8KB of dummy traffic/sample, which is in the range of what the heaviest
applications naturally use (Table A9). A deeper analysis of the results also shows that all defenses successfully
confuse the attacker for “medium-volume” apps (Figure 21(b)). “High-volume" applications still stand out, but
the gradual hiding visible on Figure 21(b) suggests that increasing the parameters of the defense, e.g., injecting
more dummies in add_dummies, could potentially protect better such applications. However, this protection
would come at an even higher cost for the applications that transmit smaller amount of traffic. As in the “wide”
experiment, we observe that pad has a highly variable cost ranging from 6KB to 1.5MB. We observe the latter on
the opening of the Camera, which suggests that pad is not adapted for constant-traffic. As before, delay_group
and add_dummies have a consistent cost across labels.

Fine-Grained Action Fingerprinting on DiabetesM.. In this case, we observe that all 3 defenses pad, delay_group,
add_dummies are only moderately effective, reducing the attacker’s accuracy by ≈ 10 percentage points. One
possible explanation is the increased number of samples (150/label) compared to the previous experiments
(25/label) that enable the adversarial classifier to adapt better to the defenses. In §6.2.3, we highlighted that
timings were of importance to classify fine-grained actions in the application DiabetesM. However, in this case
the attacker fingerprints a combination of the sizes and the timings, as the feature importance on delay_group
defended traces reveals (Figure 19(b)). In this experiment, we observe that all three defenses have a consistent
cost across labels.
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7.2 Summary of the Defenses
Our experimental evaluation of defense approaches, such as regularization and randomization, against the traffic-
analysis attacks presented in this work yields some interesting insights. First, we find that these defenses achieve
only a limited protection against our traffic-analysis attacks: although they do reduce the attacks’ accuracy,
the classifier trained by an eavesdropping adversary still performs significantly better than a random guess.
This indicates that even the defended Bluetooth traffic traces contain useful information for an adversary. At
the same time, the costs introduced by the defenses are high: to achieve their small levels of protection they
introduce additional traffic and/or delays reaching an overhead in the range of 1× to 23× and delays up to 1s
per packet. This raises a question about the applicability of such defenses for Bluetooth applications running
on current wearable devices. Furthermore, we find that the various defenses behave differently, depending on
the adversarial task. In particular, our results show that defending against application or action identification
is somewhat easier than device identification, thus indicating that global traffic patterns are the hardest to
hide. Additionally, our evaluation shows that the defenses are not fair: we find that they do not provide the
same level of protection across applications or actions (for instance, apps that communicate a lot are not well
protected) and their costs are variable across applications or actions (we observe that applications that stream
information have high padding costs, e.g., Camera and fitness applications for workout monitoring). Finally,
our empirical evaluation of these defenses confirms the robustness of our attacking methodology as depending
on the adversarial task and the defense, our classifier adapts its important features. For instance, Bluetooth
Low Energy device identification relied mostly on packet sizes (Figure 5(b)), unlike Bluetooth Classic that used
mostly timings (Figure 5(a)). However, when we apply per-packet padding to the Low Energy traces, the classifier
adjusts and gives higher importance to timings (Figure 19(a)). Overall, our experimental results highlight the
need for the design and evaluation of novel approaches for defending against traffic-analysis attacks on Bluetooth
communications.

8 DISCUSSION
Ethical Considerations. We provided every device manufacturer and app developer mentioned in this paper

with our findings prior to the publication of this document. To minimize the risk of misuse, we make the dataset
available only for research purposes upon request [30]. We discarded the traffic from other devices in the dataset.

Impact of the Attacks. The traffic-analysis attacks presented in this work can be used to infer information
from Bluetooth communications, despite the use of encryption. Device identification enables tracking users only
by observing encrypted communications, thus defeating MAC address randomization. This does not require
observing any pairings/paging events or plaintext identifiers. Device identification can also facilitate active
attacks by revealing the model and version of a communicating device. We note that advertisers already use
Bluetooth and Wi-Fi signals to passively and actively locate users (e.g., consumers in a store) [4, 7]. Similarly,
application and action fingerprinting leak sensitive actions performed by the wearer, e.g., the recording of an
insulin injection or a heartbeat measurement. On a side note, Apple Watch has an “arrhythmia alert” feature
that continuously measures the heart beat on the watch and sends notifications to the phone in case of irregular
patterns that could indicate a stroke. We could not simulate arrhythmia events, but all the evidence we have from
our experiments suggests that such an action could be fingerprintable without an appropriate defense mechanism.
Therefore, a passive observer could identify users’ susceptibility to heart attacks over the Bluetooth network,
despite the encryption. Finally, application-opening identification and action identification can be exploited to
build user profiles and to serve targeted advertisements, as it is already the case with Bluetooth-based “proximity
advertising” [1, 2, 6].
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Cost of the Attack. The overall cost of the attack consists of purchasing a set of devices of interest (including
both wearable devices and smartphones). These devices are consumer-grade hardware that have accessible
prices. We also showed in §6.2.2 that the adversary does not have to train on every combination of devices and
applications. We suspect that after collecting data from enough devices, actions on new hardware can become
classified without the overhead of training. A counter-argument is the aging of the dataset, which could force
the adversary to re-train often. We briefly demonstrate in Section 6.2.5 how a dataset can be used over at least a
month, but further study is needed to understand how quickly the usefulness of a dataset degrades. We note that
in other domains such as website fingerprinting, attacks have been successful with datasets that were several
years old [79]. We expect wearable devices’ firmware, OSes and applications to change at a slower rate than
websites.

Bluetooth Sniffing Technologies. The adversary also needs a reliable Bluetooth sniffer. The most accurate models
are so-called “wide-band” scanners (e.g., the Ellisys Vanguard [9] or the Frontline Sodera [15]). These models
ignore the Bluetooth frequency hopping and concurrently capture the traffic of all channels. The complexity and
broad functionality of these devices comes at a high price (≈ 50KUSD). However, recent research has demonstrated
that similar results can be achieved using less expensive Software-Defined Radios (SDRs) [40, 41, 82]. For instance,
Cominelli et al. built an SDR sniffer that works on a single Ettus N310 board (≈ 10K USD) or two Ettus B210
boards (2 × 2,000 USD) [40]. Finally, there also exists a consumer-grade class of cheaper, less accurate Bluetooth
sniffers (e.g., Ubertooth, ≈ 100 USD). They only listen on one channel at a time. These low-end scanners
attempt to follow an active connection by brute-forcing the hopping pattern parameters [75]. When successful,
this enables an inexpensive scanner to accurately capture all traffic simply by “hopping along” with the pair of
communicating devices. In practice today, this process is still imprecise and many packets are missed. Nonetheless,
researchers have shown that using two synchronized Ubertooth scanners leads to improved Bluetooth traffic
capture rate [19, 20]. Although this work uses a commercial Bluetooth sniffer, there is an ongoing research trend
focusing on less expensive, accurate Bluetooth sniffing.

Impact of Packet Loss on the Attacks. In our experiments, we use a high-end sniffer that is co-located with the
target devices. In this configuration, the sniffer has close to 100% packet capture rate. In practice, lower-end sniffers
will suffer packet loss. Collisions from other devices and the distance between the target and the eavesdropper
also increase loss. We briefly investigate how the attack accuracy varies with degraded capture conditions.
First, we decouple the attacker accuracy, the packet loss and the capture conditions, and we explore the

attack accuracy versus the loss rate only. This loss can stem from many real-life parameters (distance, noise,
multipath interference, the quality of the eavesdropping device, etc.). As a generic approach, we study the effect
of uniform packet loss on our dataset. We simulate packet loss on the captured traces and re-run the application
identification (“deep”) experiment (§6.2.1). We apply a uniform packet loss by dropping individual packets with a
given probability. We then use the methodology already presented (we split the traces into train/test and compute
the average classification accuracy). The experiment is repeated 10 times per loss rate. We observe (Appendix,
Figure 16) that even with 50% packet loss, the loss in accuracy is only 10 percentage points, with the mean
accuracy dropping from 64% to 54%. For high-volume apps, the mean accuracy drops from 90% to 77%. This
experiment indicates that the approach is robust to packet losses: even when missing every other packet, the
attacker is able to classify with significant accuracy.
Due to the difficulty of relating the various capture conditions to the loss rate, we only discuss experimental

results generated by Albazrqaoe et al.with the most common inexpensive Bluetooth sniffers: The authors describe
how a single Ubertooth, when placed 10m away from the target device and in the presence of significant 802.11
interference [19], has between 25% and 50% packet loss. In similar conditions, a BlueEar sniffer (composed of two
synchronized Ubertooth) maintains packet losses below 10% [19]. This observation suggests that the attack could
also be performed with inexpensive Bluetooth sniffers.
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Other Attacks. There exist a number of active attacks that can break the confidentiality of Bluetooth communi-
cations [24, 26, 86, 93, 95]. There are also attacks against the MAC randomization mechanism employed by the
Bluetooth protocol [31, 31, 35, 64, 96]. Currently, these attacks are more economical to run than our traffic-analysis
attacks that require a significant effort for training the adversarial machine-learning classifiers. However, these
attacks have already received significant visibility, and we expect that the Bluetooth Special Interest Group and
device manufacturers will soon take them into account and apply the necessary countermeasures. We remark
that our approach is complementary to these attacks and will be applicable even when the above attacks are
patched. Finally, we remind the reader that unlike these works, ours considers a weaker adversary who passively
observes ongoing communications.

Implementation of Defenses. A defense against traffic analysis could be implemented at different layers of
the stack involved with Bluetooth communications: the Bluetooth protocol, the OS, or the applications. An
implementation in a lower layer, e.g., the Bluetooth stack, would provide application transparency, but specifying
a single defense strategy that works across devices and applications without a prohibitive cost seems challenging.
On the contrary, application developers could protect against in-application actions fingerprinting by enumerating
the data exchanges and ensuring that the traffic from sensitive actions “blends-in”. In this case, all sensitive
actions would need to have the same patterns as some other non-sensitive actions (or ideally, all other actions).
Nonetheless, such an approachwould only provide local (i.e., in-application) protection. Tomake the fingerprinting
of applications and cross-application actions more difficult, the various developers would need to coordinate
with each other. Otherwise, a defense can easily become itself a fingerprint if only one or a few applications
implement it. Therefore, another interesting possibility is to create “anti traffic-analysis policies” in the OS of
wearable devices. Apps could request a particular defense strategy that matches their requirements in terms of
latency, bandwidth, and battery usage. Meanwhile, the operating system could standardize and maintain defense
strategies transparently, making their deployment easy for developers.

9 LIMITATIONS
Moderate Testbed Size. Our testbed consists of only 13 devices. Although this number is modest, our experiments

incurred significant human costs in operating these non-automatable devices. Our primary dataset consists of 98
hours of raw recording. Each of the 2,215 30-second samples was recorded by a human and required sometimes
minutes of resetting the devices, not to mention performing the physical activities corresponding to the action
captured. We made a best-effort to cover a comprehensive and diverse set of wearable devices from popular
vendors. We are hopeful that future work will further generalize the attack to more devices, which we could only
hint towards with our transferability experiment (§6.2.2). We open-source the automation framework built to
collect traces from Wear OS devices to facilitate further research on the topic [30].

Closed-world Scenario. Our setting corresponds to a “closed-world” scenario where the adversary can model all
possible actions/applications of the devices available in our testbed. This could be justified due to the small number
of applications currently available on wearable devices. In future work, we plan to explore the performance of
the attacks “in the wild”, e.g., by collecting real Bluetooth traffic traces around a campus or a gym and attempting
to classify them.

Method Scalability. We demontrated an example in which a model trained on a pair of devices can be used for
classifying actions of other devices (§6.2.2). However, this experiment has been limited to two pairs of devices,
and it is unclear whether a unique model could be successfully trained to classify actions originating from many
classes of devices. While we expect it to be the case for similar devices, our preliminary results show that a model
trained to recognize applications on an Apple watch does not perform well when used to recognize applications

27



on an Android device, highlighting that an adversary should take into account heterogeneous devices when
training her classifier.

Environment of the Capture. In this paper, we did not experiment with the range of capture and kept the sniffer
close-by to the devices (max ≈ 2m). Bluetooth Classic and Low Energy have a maximum theoretical range that
greatly varies depending on the Bluetooth flavor, the encoding, the sender/receiver’s antenna gains and the
transmitted power [8]. For consumer devices, the range under optimal conditions is between 50 and 100m and,
we estimate, from meters to tens of meters under realistic conditions. Furthermore, our attacks were conducted in
a single environment that is fairly noisy (with tens of active Wi-Fi and Bluetooth devices in vicinity). We suspect
that a less noisy environment (e.g., a home, in the case of a nosy neighbor) would produce cleaner traces that are
easier to train upon, facilitating the attacks, but further study is needed to understand the impact of noise and
collisions on traffic analysis.

10 RELATED WORK
Bluetooth Eavesdropping. The ability to sniff Bluetooth communications is essential for performing traffic-

analysis attacks. The first open-source Bluetooth Sniffer was BlueSniff [80]: This work demonstrates how to
retrieve the MAC address of communicating Bluetooth Classic devices and how to recover the hopping sequence.
Similar results are later shown on Bluetooth Low Energy [75]: using an Ubertooth device, Mike Ryan showed
how to recover the hopping sequence and eavesdrop on a single BLE connection. The author also demonstrates
that a pairing done with JustWorks or a 6-digit PIN can be decrypted. Subsequently, Albazrqaoe et al. used two
synchronized Ubertooth devices to obtain a capture accuracy greater than a single Ubertooth [19, 20]. Finally,
Cominelli et al. rely on software-defined radio (SDR) to concurrently capture Bluetooth Classic traffic on all
channels [40], at a lower cost than full-band commercial sniffers. Their most recent work uses a GPU to process
BLE traffic in real-time [41].

Bluetooth Traffic Analysis. There exist few related works that perform traffic-analysis attacks on Bluetooth
communications. This is possibly due to the non-existence of reliable, inexpensive Bluetooth sniffing tools in the
past. Closest to ours is the work by Das et al. [45]. They focus on 6 Bluetooth Low Energy fitness trackers in a
gym. First, they demonstrate that BLE traffic is correlated with the wearer’s movements, thus making it possible
to infer if the wearer is idle, walking, or running. Second, they show how the traffic is linked to the gait of the
wearer, and that the encrypted traffic is enough to recognize a person with 97.6% accuracy across 10 users. Acar
et al. infer user actions in a smart home using a layered traffic-analysis attack [17]. Their methodology is similar
to ours: they first perform device identification and then use it as a stepping stone to further infer device states
and user activities. However, their IoT testbed consists of only one device that communicates using Bluetooth
(a smart BLE light bulb). To the best of our knowledge, there is no work performing traffic-analysis attacks on
Bluetooth Classic communications.

Bluetooth Device Fingerprinting/Tracking. Several works focus on Bluetooth device fingerprinting, i.e., device
identification and tracking. Their goal is either to propose an authentication mechanism, e.g., to identify MAC
spoofing, or to demonstrate an attack, e.g., BLE device tracking despite the MAC address rotation. Our device-
identification attack (§5) falls into the second category; however, we only use it as a first step towards the rest
of our contributions (application and user-action identification) that are orthogonal to this category of related
works.

On the defense side, Aksu et al. create a testbed composed of 6 Bluetooth Classic smartwatches connected to
a single smartphone, and they demonstrate that the smartwatches can be identified via their communications’
timings [18]. However, their model is different and they do not sniff Bluetooth traces in the air, rather collect them
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using the Bluetooth Host Controller Interface (HCI) log on the smartphone. Huang et al. propose BlueID [56], a
system that prevents identity spoofing by fingerprinting the clock of the master device.
Concerning the attacks, Zuo et al. demonstrate that Bluetooth Low Energy devices can be recognized by

plaintext identifiers found in their communications [96]. They suggest application- or protocol-level solutions
to better rotate static identifiers. We note that their solutions would not thwart our device identification attack
that works on encrypted traffic (§5). Becker et al. use static identifiers differently [31]: they demonstrate that the
rotation of MAC address and other static identifiers are not synchronized, which enables defeating the MAC
randomization. More generally, Celosia and Cunche examine BLE devices in the wild and show that they fail
to properly rotate their MAC addresses, thus enabling tracking [35]. Then, Korolova and Sharma show that
the “nearby devices” list that Bluetooth devices maintain and which most applications can obtain, can be used
to track users across applications [58]. Targeting more specifically Apple’s Continuity protocol, Martin et al.
reverse-engineer the protocol and find flaws that defeat MAC address randomization and that leak information
about the device types and user activities [64]. Similarly, Celosia and Cunche also reverse-engineer the protocol
and demonstrate how it reveals information about human activities in a smart home [36].

Other Bluetooth Attacks and Tools. There exist other attacks on the Bluetooth protocol that are orthogonal to
our work; for instance, active attacks, or protocol-specific attacks on wearable devices. We note that fixing these
will likely not affect our higher-level attacks that rely on Bluetooth communication metadata.

We first list attacks on the Bluetooth protocol and implementations. Antonioli et al. demonstrate how to
break the key negotiation protocol of Bluetooth Classic [26], forcing it to a 1-byte entropy encryption key.
The same authors reverse-engineer and identify vulnerabilities in Google Nearby Connections [23], a protocol
that uses a combination of Bluetooth Classic, Low Energy, and Wi-Fi for short-distance transfers. Then, they
also exploit role-switching (slave/master) and legacy pairings to perform a Man-in-the-Middle on Bluetooth
Classic [24]. Wu et al. present an active spoofing attack on Bluetooth Low Energy by exploiting the reconnection
procedure [93], whereas Wang et al. demonstrate an active attack to bypass Bluetooth Low Energy authentication
and encryption [86]. Finally, Zhang et al. show a downgrade attack based on Bluetooth Low Energy’s Secure
Connection Only (SCO) mode [95].

In the category of Bluetooth tools, Mantz et al. present InternalBlue [63], a Bluetooth experimentation frame-
work that enables patching the Bluetooth firmware of Broadcom chips. Similarly, Classen and Hollick show
how to analyze Bluetooth communications using consumer devices [38], while Ruge et al. design an emulation
framework and perform fuzzing to uncover vulnerabilities [74]. In particular, the authors find unattended Remote
Code Executions (RCE) on some Bluetooth chips.

Focusing on wearable devices, Classen et al. perform an in-depth security analysis of the Fitbit ecosystem [39],
analyzing the firmware and the application of a fitness tracker. They find vulnerabilities that enable flashing mal-
ware, disabling encryption, and extracting private information about the users. Hilts et al. perform a comparative
analysis of the security and privacy of fitness trackers [55]; they highlight security vulnerabilities and issues
with their data policies.

Other Traffic-Analysis Attacks. Danezis and Clayton first introduced traffic analysis in modern digital communi-
cations [44]. Since then, Tor traffic has been the primary target of such attacks due to its popularity and its strong
threat model [34, 53, 67, 78, 79, 88–90]. Among the most well-known attacks, are the “k-Nearest Neighbors” by
Wang et al. [87], CUMUL by Panchenko et al., which relies on cumulative sums of bytes to create fingerprints [66],
and k-Fingerprinting, by Hayes and Danezis, which uses a combination of random forests and nearest neighbors
for classification [53]. The most recent attacks rely on deep-learning approaches [78] and 𝑁 -shot learning [79] to
achieve higher accuracy.

Traffic-analysis attacks have also been applied on TLS traffic, for instance, to recognize a streamed video [72, 73,
77] or to identify the operating system and the applications [65]. Many recent related works focus on IoT traffic
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and smart homes [17, 21, 27, 28, 81, 85]; while these works often employ a similar attack methodology, they do
not consider the same ecosystem of devices, applications and actions. We focus on devices and applications that
have access to live fitness- or health-related information of the wearer, both in a fine-grained manner and over a
long period of time. Our contribution is the first work to perform an in-depth analysis of the fingerprintability of
devices, applications and user actions in this ecosystem. The different nature of the traffic also has a direct impact
on the design of defenses. Similarly, traffic-analysis attacks have been studied in the context of smartphones
to identify applications [83, 84, 94] or user activities (e.g., sending an e-mail or browsing a web page) [42, 76].
However, these attacks are not all equal: The majority of them use network- or transport-layer headers [42, 76] or
application layer headers [27, 28, 83, 84] and can use IP-based flow separation to facilitate the attack. Therefore,
they assume an adversary that is already on the target network. On the contrary, some works consider a weaker
adversary and perform the attack using 802.11 Wi-Fi frames [81, 94] or the metadata of tunneled traffic [21],
which cannot be easily de-multiplexed per device, application or action. Due to the Bluetooth operation, our
attacks fall in the latter category.

Defenses Against Traffic-Analysis Attacks. A straightforward but costly defense against traffic analysis is to
enforce identical communication patterns across the classes that the adversary aims to identify. This task becomes
increasingly complex and costly with a growing number of classes, hence this technique applies only on a small
scale, for example in one particular application. Same as for the attacks, most defenses target Tor traffic [34, 49,
57, 62, 67, 87, 90, 92] or the traffic from IoT devices and smart homes [21, 27, 28, 48]. We distinguish three defense
categories: Regularization defenses make packet traces harder to distinguish by removing their differences, e.g.,
by enforcing constant bit-rates and packet sizes [28, 33, 34, 48], by altering the traces into the common closest
“super-sequence” of packets [87], or by forbidding duplex communications [90]. Obfuscation approaches aim
at confusing the adversary by tweaking the setting, e.g., by hiding traffic into another protocol [62, 92], or by
loading two web pages at the same time in the case of website fingerprinting [67]. Randomization defenses
confuse the adversary by adding randomized dummy traffic [21, 27, 48, 49, 57]. To the best of our knowledge, our
work is the first to investigate the performance of regularization and randomization defenses against Bluetooth
traffic-analysis attacks.

Traffic analysis is also a concern for anonymous communications systems that aim at enforcing similar traffic
patterns across participants. The adversary considered in this case is a stronger global adversary and anonymous
communication systems provide protection at the cost of a high bandwidth [29, 37] or a high latency [22, 43, 59].
It has been shown that spending either latency or bandwidth is a fundamental trade-off for traffic-analysis
resistance [46]. In the setting of the attacks presented in this paper, this trade-off does not apply; our goal is not
to hide the source of the communication.

11 CONCLUSION
In this work, we have shown that encrypted Bluetooth communications between a wearable device and its
connected smartphone leak information about their contents: a passive adversary can infer sensitive information
by exploiting their metadata via traffic-analysis attacks. Our empirical evaluation on a Bluetooth (Classic and
Low Energy) traffic dataset generated by a diverse set of wearable devices demonstrates that an eavesdropper
can accurately identify communicating devices to their model number, recognize user activities (e.g., health
monitoring or exercising), the opening of specific applications on smartwatches and fine-grained user actions
(e.g., recording an insulin injection), and extract the profile and habits of the wearer. Our experimental analysis of
common defense strategies against our traffic-analysis attacks, such as padding or delaying packets, and injecting
dummy traffic, show that these do not provide sufficient protection, and that they introduce significant costs for
Bluetooth communications. Overall, this research highlights an open problem regarding the confidentiality of
Bluetooth communications and the need for designing novel efficient defenses to address it.
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Fig. 19. Feature importance when attacking defended traces, two scenarios.
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Fig. 21. Normalized confusion matrices per true label. Action and application identification against add_dummies-defended
traces. The matrices are sorted by increasing median transmitted volume.

Classifier performance for Device identification.

Table A1. Bluetooth Classic.

Label Precision Recall F1-score
Airpods 0.83 0.9 0.87
AppleWatch 0.98 0.93 0.96
FitbitVersa2 1.0 1.0 1.0
FossilExploristHR 0.96 0.98 0.97
HuaweiWatch2 0.98 0.98 0.98
SamsungGWatch 1.0 0.98 0.99
Sony MDR 0.9 0.86 0.88
Average 0.96 0.96 0.96

Table A2. Bluetooth LE.

Label Precision Recall F1-score
AppleWatch 0.99 1.0 1.0
FitbitCharge2 1.0 1.0 1.0
FitbitCharge3 1.0 0.95 0.97
HuaweiBand3 1.0 1.0 1.0
MiBand2 0.93 0.94 0.93
MiBand3 0.88 0.98 0.92
MiBand4 0.99 0.86 0.92
Average 0.97 0.97 0.97

Classifier performances.

Table A3. Chipset identification.

Label Precision Recall F1-score
Apple 0.9 0.94 0.92
Broadcomm 0.95 0.98 0.96
Cypress 0.98 0.98 0.98
Dialog 0.98 0.98 0.98
MicroElectronics 1.0 1.0 1.0
Qualcomm 0.97 0.88 0.92
RivieraWaves 0.98 1.0 0.99
Average 0.96 0.96 0.96

Table A4. Action identification within DiabetesM.

Label Precision Recall F1-score
Add Calorie 0.44 0.46 0.45
Add Carbs 0.87 0.9 0.89
Add Fat 0.77 0.81 0.79
Add Glucose 0.85 0.91 0.88
Add Insulin 0.9 0.95 0.92
Add Proteins 0.37 0.28 0.32
Average 0.7 0.7 0.7
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Table A5. 34 “high-volume” applications common between the two pairs of device Huawei Watch 2 - Pixel 2 and Fossil
Q Explorist HR - Nexus 5.

Bring, Calm, ChinaDaily, Citymapper, DCLMRadio, DiabetesM, Endomondo, FITIVPlus, FindMyPhone, Fit, FitBreathe,
FitWorkout, FoursquareCityGuide, Glide, KeepNotes, Krone, Lifesum, MapMyRun, Maps, Meduza, Mobills, Outlook,
PlayStore, Running, SalatTime, Shazam, SleepTracking, SmokingLog, Spotify, Strava, Telegram, Translate,
WashPost, Weather

Table A6. Applications and Actions used for the long-run captures.

Applications AppInTheAir, Bring, Calm, ChinaDaily, Citymapper, DCLMRadio, DiabetesM, Endomondo, FITIVPlus,
FindMyPhone, FoursquareCityGuide, Glide, KeepNotes, Krone, Lifesum, MapMyRun, Maps, Meduza,
Mobills, Outlook, PlayStore, Qardio, Running, SalatTime, Shazam, SleepTracking, SmokingLog,
Spotify, Strava, Telegram, Translate, WashPost, Weather.

Actions DiabetesM_AddCalorie, DiabetesM_AddCarbs, DiabetesM_AddFat, DiabetesM_AddGlucose,
DiabetesM_AddInsulin, DiabetesM_AddProteins, Endomondo_BrowseMap,
Endomondo_Running, FoursquareCityGuide_Coffees, FoursquareCityGuide_Leisure,
FoursquareCityGuide_NightLife, FoursquareCityGuide_Restaurants,
FoursquareCityGuide_Shopping, HealthyRecipes_SearchRecipe, Lifesum_AddFood,
Lifesum_AddWater, PlayStore_Browse.
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Table A7. Classifier performance for Action identification, “Wide” experiment on all wearables.

Label Precision Recall F1-score
Airpods GooglePlayMusic Play 0.87 0.96 0.91
AppleWatch ECG Sync 0.83 1.0 0.91
AppleWatch Kaia Workout 1.0 1.0 1.0
AppleWatch Map Browse 0.83 0.85 0.84
AppleWatch MapMyRun Workout 0.79 0.75 0.77
AppleWatch Music Skip 1.0 1.0 1.0
AppleWatch PhotoApp LiveStream 0.98 1.0 0.99
FitbitCharge2 Fitbit Sync 0.98 1.0 0.99
FitbitCharge3 Fitbit Sync 1.0 0.98 0.99
FossilExploristHR EndomondoApp Running 0.66 0.68 0.67
FossilExploristHR EndomondoApp Walking 0.74 0.78 0.76
FossilExploristHR FITIVApp Running 0.71 0.75 0.73
FossilExploristHR FITIVApp Walking 0.71 0.75 0.73
FossilExploristHR MapMyRun Running 0.76 0.8 0.78
FossilExploristHR MapMyRun Walking 0.77 0.75 0.76
FossilExploristHR NoApp EmailReceived 0.83 0.85 0.84
FossilExploristHR NoApp PhoneCallMissed 0.98 1.0 0.99
FossilExploristHR NoApp SmsReceived 0.95 0.98 0.96
GalaxyWatch EndomondoApp Running 0.42 0.45 0.43
GalaxyWatch EndomondoApp Walking 0.32 0.32 0.32
GalaxyWatch FITIVApp Running 0.61 0.57 0.59
GalaxyWatch FITIVApp Walking 0.65 0.65 0.65
GalaxyWatch MapMyRun Running 0.47 0.57 0.52
GalaxyWatch MapMyRun Walking 0.31 0.35 0.33
GalaxyWatch MyFitnessPalApp CaloriesAdd 0.84 0.78 0.81
GalaxyWatch MyFitnessPalApp WaterAdd 0.73 0.82 0.78
GalaxyWatch NoApp EmailReceived 0.83 0.6 0.7
GalaxyWatch NoApp PhoneCallMissed 1.0 0.9 0.95
GalaxyWatch NoApp PhotoTransfer 0.79 0.92 0.85
GalaxyWatch NoApp SmsReceived 0.85 0.82 0.84
GalaxyWatch PearApp Running 0.47 0.35 0.4
GalaxyWatch PearApp Walking 0.58 0.52 0.55
GalaxyWatch SamsungHealthApp Running 0.58 0.55 0.56
GalaxyWatch SamsungHealthApp Walking 0.67 0.55 0.6
HuaweiBand3 HuaweiApp Sync 1.0 1.0 1.0
HuaweiWatch2 Endomondo BrowseMap 0.94 0.92 0.93
HuaweiWatch2 Endomondo Running 0.98 0.97 0.97
HuaweiWatch2 HealthyRecipes SearchRecipe 0.92 0.93 0.93
HuaweiWatch2 Lifesum AddFood 0.93 0.95 0.94
HuaweiWatch2 Lifesum AddWater 0.93 1.0 0.96
HuaweiWatch2 NoApp NoAction 0.81 0.79 0.8
HuaweiWatch2 PlayStore Browse 0.94 0.85 0.89
MDR GooglePlayMusic Play 0.96 0.88 0.92
MiBand2 MiApp Sync 1.0 0.95 0.97
MiBand2 MiApp Walking 0.88 0.95 0.92
MiBand3 MiApp Sync 1.0 1.0 1.0
MiBand3 MiApp Walking 0.91 0.78 0.84
MiBand4 MiApp Sync 0.93 0.98 0.95
MiBand4 MiApp Walking 0.88 0.9 0.89
Average 0.82 0.82 0.82
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Table A8. Details of transmitted volumes for the 18 “low-
volume” apps over 40 recorded samples. NoApp corresponds
to OS communications.

App Median [B] Std dev. [B]
Reminders 0.0 23660.5
Battery 0.0 239.6
DuaKhatqmAlQuran 11.0 43168.3
WearCasts 37.0 398149.0
DailyTracking 44.0 326.9
ASB 75.0 3511.6
NoApp 96.5 3949.5
HeartRate 104.0 21824.4
Workout 119.0 5108.4
AthkarOfPrayer 120.0 4835.5
Alarm 122.5 8891.4
GooglePay 127.0 2762.1
Flashlight 152.5 4176.7
Phone 154.5 2319.2
PlayMusic 156.0 16294.5
HealthyRecipes 167.5 3104.7
Sleep 171.5 14460.4
Medisafe 194.0 8802.6

Table A9. Details of transmitted volumes for the 38 “high-
volume” apps over 40 samples.

App Median [KB] Std dev. [KB]
SalatTime 0.6 5.5
MapMyFitness 0.6 2.6
Citymapper 1.1 3.4
Calm 1.2 8.3
Outlook 1.4 3.4
DiabetesM 1.4 2.5
SmokingLog 1.5 46.7
MapMyRun 1.8 8.1
SleepTracking 1.9 4.4
Mobills 2.1 1.5
Fit 2.1 8.4
Weather 2.6 9.4
Running 2.9 8.0
FitWorkout 3.3 144.6
FitBreathe 3.3 3.4
FoursquareCityGuide 3.8 7.0
Glide 4.8 5.2
Translate 5.8 5.9
Shazam 6.2 41.9
Qardio 6.5 7.1
Krone 6.8 13.2
KeepNotes 7.0 4.8
FindMyPhone 8.0 12.2
Telegram 8.7 3.7
Strava 10.6 4.7
DCLMRadio 16.6 15.6
Lifesum 17.8 11.0
Endomondo 17.9 9.7
PlayStore 18.5 24.3
Maps 18.7 62.8
AppInTheAir 26.4 14.4
Bring 34.5 7.9
Spotify 38.8 9.8
Meduza 40.9 13.9
FITIVPlus 48.9 11.7
ChinaDaily 55.1 8.3
WashPost 120.1 14.2
Camera 598.0 141.5
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Classifier performance for App identification, Huawei Watch.

Table A10. 18 “low-volume” applications.

Label Precision Recall F1-score
Battery 0.21 0.31 0.25
Reminders 0.14 0.25 0.18
DuaKhatqmAlQuran 0.08 0.06 0.07
WearCasts 0.26 0.18 0.21
DailyTracking 0.2 0.15 0.17
ASB 0.25 0.28 0.26
NoApp 0.06 0.02 0.04
HeartRate 0.17 0.15 0.16
Workout 0.11 0.1 0.11
AthkarOfPrayer 0.09 0.09 0.09
Alarm 0.06 0.05 0.05
GooglePay 0.08 0.09 0.08
Flashlight 0.13 0.14 0.13
Phone 0.34 0.34 0.34
PlayMusic 0.2 0.2 0.2
HealthyRecipes 0.11 0.12 0.12
Sleep 0.21 0.24 0.22
Medisafe 0.32 0.32 0.32
Average 0.17 0.17 0.17

Table A11. 38 “high-volume” applications

Label Precision Recall F1-score
SalatTime 1.0 1.0 1.0
MapMyFitness 1.0 0.96 0.98
Calm 0.94 0.96 0.95
Citymapper 0.94 0.96 0.95
DiabetesM 0.94 0.95 0.94
Outlook 0.96 0.92 0.94
SmokingLog 0.91 0.79 0.85
Fit 0.82 0.88 0.85
Running 0.78 0.72 0.75
MapMyRun 1.0 0.94 0.97
SleepTracking 0.99 0.92 0.95
Weather 0.76 0.69 0.72
Mobills 0.95 0.92 0.94
FitBreathe 0.96 0.99 0.98
FoursquareCityGuide 0.91 0.94 0.93
FitWorkout 0.84 0.8 0.82
Glide 0.88 0.94 0.91
Translate 0.94 0.91 0.92
Qardio 0.95 0.95 0.95
Krone 0.91 0.84 0.87
FindMyPhone 0.81 0.84 0.82
KeepNotes 0.95 0.88 0.91
Shazam 0.95 0.86 0.9
Strava 0.86 0.79 0.82
Telegram 0.95 0.92 0.94
Maps 0.74 0.79 0.76
Endomondo 0.78 0.84 0.81
DCLMRadio 0.96 0.95 0.96
Lifesum 0.8 0.88 0.84
PlayStore 0.8 0.88 0.83
AppInTheAir 0.82 0.94 0.88
Bring 0.82 0.94 0.88
Spotify 0.96 0.99 0.98
Meduza 0.9 0.91 0.91
FITIVPlus 0.99 0.99 0.99
ChinaDaily 0.96 0.91 0.94
WashPost 0.9 1.0 0.95
Camera 1.0 1.0 1.0
Average 0.9 0.9 0.9
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Classifier performance when transferring the model between pairs of devices.

Table A12. Train on Huawei-Pixel. Test on Fossil-Nexus.

Label Precision Recall F1-score
Bring 1.0 1.0 1.0
Calm 0.96 0.86 0.91
ChinaDaily 0.96 0.89 0.93
Citymapper 0.74 1.0 0.85
DCLMRadio 0.91 0.71 0.8
DiabetesM 0.97 1.0 0.98
Endomondo 0.78 1.0 0.88
FITIVPlus 0.88 1.0 0.93
FindMyPhone 0.71 0.17 0.28
Fit 0.0 0.0 0.0
FitBreathe 0.3 0.93 0.46
FitWorkout 0.0 0.0 0.0
FoursquareCityGuide 1.0 0.86 0.92
Glide 0.85 1.0 0.92
KeepNotes 0.71 0.96 0.82
Krone 1.0 0.62 0.77
Lifesum 0.84 0.96 0.9
MapMyRun 1.0 1.0 1.0
Maps 0.95 0.62 0.75
Meduza 0.85 0.97 0.9
Mobills 1.0 0.79 0.88
Outlook 1.0 0.96 0.98
PlayStore 0.33 0.11 0.16
Running 0.96 0.89 0.93
SalatTime 0.57 0.96 0.72
Shazam 1.0 0.82 0.9
SleepTracking 0.96 0.86 0.91
SmokingLog 0.96 0.89 0.93
Spotify 1.0 1.0 1.0
Strava 1.0 0.86 0.92
Telegram 1.0 0.97 0.98
Translate 0.72 0.93 0.81
WashPost 0.57 1.0 0.73
Weather 0.93 0.93 0.93
Average 0.81 0.81 0.81

Table A13. Train on Fossil-Nexus. Test on Huawei-Pixel.

Label Precision Recall F1-score
Bring 1.0 1.0 1.0
Calm 1.0 0.97 0.98
ChinaDaily 0.92 0.79 0.85
Citymapper 1.0 0.93 0.96
DCLMRadio 0.93 0.86 0.89
DiabetesM 1.0 1.0 1.0
Endomondo 0.83 0.86 0.84
FITIVPlus 0.87 0.96 0.92
FindMyPhone 0.67 0.07 0.13
Fit 0.21 0.14 0.17
FitBreathe 0.3 0.57 0.39
FitWorkout 0.5 0.04 0.07
FoursquareCityGuide 0.93 0.96 0.95
Glide 1.0 1.0 1.0
KeepNotes 0.93 0.96 0.95
Krone 0.96 0.93 0.95
Lifesum 0.96 0.96 0.96
MapMyRun 0.88 1.0 0.93
Maps 0.92 0.82 0.87
Meduza 1.0 1.0 1.0
Mobills 0.74 0.97 0.84
Outlook 0.85 1.0 0.92
PlayStore 0.95 0.71 0.82
Running 0.86 0.89 0.88
SalatTime 0.96 0.96 0.96
Shazam 0.9 0.93 0.91
SleepTracking 0.78 1.0 0.88
SmokingLog 0.97 0.97 0.97
Spotify 1.0 1.0 1.0
Strava 0.81 0.93 0.87
Telegram 0.76 1.0 0.86
Translate 0.8 0.97 0.88
WashPost 0.93 0.96 0.95
Weather 0.96 0.96 0.96
Average 0.86 0.86 0.86
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