
Variability Fault Localization: A Benchmark
Kien-Tuan Ngo, Thu-Trang Nguyen, Son Nguyen, and Hieu Dinh Vo

{tuanngokien,trang.nguyen,sonnguyen,hieuvd}@vnu.edu.vn

Faculty of Information Technology, VNU University of Engineering and Technology, Vietnam

ABSTRACT

Software fault localization is one of the most expensive, tedious,

and time-consuming activities in program debugging. This activity

becomes even much more challenging in Software Product Line

(SPL) systems due to the variability of failures in SPL systems.

These unexpected behaviors are caused by variability faults which

can only be exposed under some combinations of system features.

Although localizing bugs in non-configurable code has been inves-

tigated in-depth, variability fault localization in SPL systems still

remains mostly unexplored. To approach this challenge, we propose

a benchmark for variability fault localization with a large set of

1,570 buggy versions of six SPL systems and baseline variability

fault localization performance results. Our hope is to engage the

community to propose new and better approaches to the problem

of variability fault localization in SPL systems.

CCS CONCEPTS

• Software and its engineering→ Software product lines.

KEYWORDS

variability bug, variability fault localization, benchmark

ACM Reference Format:

Kien-Tuan Ngo, Thu-Trang Nguyen, Son Nguyen, and Hieu Dinh Vo. 2021.

Variability Fault Localization: A Benchmark. In 25th ACM International Sys-
tems and Software Product Line Conference - Volume A (SPLC ’21), September
6–11, 2021, Leicester, United Kingdom. ACM, New York, NY, USA, 6 pages.

https://doi.org/10.1145/3461001.3473058

1 INTRODUCTION

ASoftware Product Line (SPL) is the highly configurable system that

enables developers to tailor the family of products from reusable

software assets [5]. This can be done by offering numerous features
controlled by options. In Linux Kernel, there are +12K features,

which is able to generate billions of scenarios. Basically, a feature is
defined as a unit of functionality additional to the base software. A
set of selections of all the features (configurations) defines a product.
The presence or absence of some features might require or preclude

other features. Feature dependencies are specified in a feature model
which constraints over features and defines valid configurations [5].

In practice, to verify an SPL system, a subset of all of its valid

products is selected for testing. In order to systematically test a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8469-8/21/09. . . $15.00

https://doi.org/10.1145/3461001.3473058

system, various configuration sampling strategies have been pro-

posed. Some popular sampling algorithms such as Combinatorial

Interaction Testing [11], One-enabled [2], and One-disabled [2] can

be used for the configuration selection process. For each selected

product, a test suite is generated to verify its behaviors.

However, the variability that is inherent to SPL systems chal-

lenges quality assurance (QA) [10, 17, 20]. In comparison with

non-configurable code, finding bugs through testing in SPL systems

is more problematic as a bug can be variable (so-called variability
bug), which can only be exposed under some combinations of fea-

tures [10, 18]. In other words, a system contains variability bugs

if among the sampled products, some products pass all their tests

while the others fail. Hence, the buggy statements can only expose

their bugginess in some particular products, yet cannot in others.

Despite the importance of finding variability bugs, the existing

fault localization (FL) approaches are still limited. It is because these

techniques are designed to find bugs in a particular product. To

isolate the bugs causing failures in multiple products of an SPL

system, the slice-based methods [24] could be used to identify

the failure-related slices for each product independently of others.

Consequently, there are a large number of statements in the whole

system that need to be examined to find the bugs. This makes the

slice-based methods become more impractical in SPL systems [24].

In addition, the state-of-the-art FL technique, Spectrum-Based

Fault Localization (SBFL) [4, 13, 21] cannot be directly applied for

locating variability bugs. Indeed, SBFL assigns the suspiciousness

scores to the statements based on the test execution information

of each product independently of the others. For each product, it

produces a ranked list of statements. As a result, there are multiple

ranked lists for a single system which is failed by variability bugs.

From these lists, developers cannot determine the right starting

point to diagnose the root causes of the system failures.

A naive solution to adapt SBFL for variability bugs in a system

is that one can treat the whole system as a non-configurable code.

This can be done by refactoring the mechanism controlling features

in the system (e.g., #ifdef) to the corresponding if-then state-

ments. By this adaptation, for a faulty system, a single ranked list of

the suspicious statements can be produced according to their suspi-

ciousness scores. The score of each statement is measured based

on the total number of the passing and failing tests executed by the

statement in all the products. However, this adaptation has two key

problems which are caused by the incompatibility in testing of the

different products. First, in an SPL system, since the roles of a state-
ment in different products are different, the statement behaves and is
expected to behave differently in these products. Hence, the tests in a

product, which are designed to verify the behaviors of the specific

statements in this product, could not be used to verify the behaviors

of those statements yet in another product. Consequently, counting

all the tests in the different products to measure the suspiciousness

of a statement could cause inaccurate assessments. Secondly, for a

ar
X

iv
:2

10
7.

04
74

1v
2

 [
cs

.S
E

]
 2

1
Se

p
20

21

https://doi.org/10.1145/3461001.3473058
https://doi.org/10.1145/3461001.3473058

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom Kien-Tuan Ngo, Thu-Trang Nguyen, Son Nguyen, and Hieu Dinh Vo

product having more tests, it will have more impact on the suspicious-
ness scores of the statements in the whole system. This bias increases
more clearly for the cases when the numbers of tests in the products

are significantly different. It is because the total number of the tests

used to measure the suspiciousness of statements in the system

is counted from all the products. As a result, the suspiciousness

of a statement in the whole system might not be holistically mea-

sured. Thus, these two problems of this adaptation might cause the

ineffectiveness of SBFL in localizing variability bugs.

To encourage the researchers and practitioners to propose better

solutions for variability fault localization, we contribute a dataset

including 1,570 buggy versions of 6 SPL systems with extensive

test suites. In this dataset, there are 338 versions contain a single

bug each and 1,232 versions contain multiple bugs. The proposed

techniques should be evaluated using the following standard met-

rics: Rank, EXAM [23], Recall at Top-𝑁 [14], and PBL [13], which

are widely applied in the existing FL studies [4, 13, 21, 23, 24].

Variability Fault Localization Challenge: Given a faulty SPL

system containing variability bug(s) and a set of its sampled

products with the test suites and test execution data, partici-

pants must propose new FL techniques to locate the buggy

statement(s) in the system. The proposed techniques must be

better than our baseline on the standard metrics in FL.

Our benchmark can be found at:

https://tuanngokien.github.io/splc2021/

2 A DATASET OF VARIABILITY FAULTS

Since constructing a dataset of the real variability bugs with cor-

responding tests is a considerable task, until now there is no such

public dataset. The available datasets of variability bugs [2, 3, 19]

often lack of test information. Thus, they cannot be used to evaluate

FL techniques which require test execution information. Addition-

ally, Just et al. [12] has shown that the performance of FL tech-

niques on real bugs can be estimated based on their performance

on artificial bugs. That motivates us to propose a dataset of the

artificial variability bugs with the corresponding tests which are

systematically generated. Furthermore, we categorize our dataset

by different dimensions of bugs. Based on that, the proposed FL

techniques could be evaluated in some different circumstances.

2.1 Subject Systems

We collected 6 Java SPL systems in SPL2Go 1
, which are widely

used in the existing studies about configurable code [6, 7, 18], to

construct our dataset (Table 1). In addition, the products of each

system are composed by FeatureHouse [6], a popular automated

software composer. Indeed, there are some other systems in SPL2Go,
but they raise some errors while composing and compiling their

products. Thus, they cannot be used in our dataset.

2.2 Single Variability Bug Generation

We design a process to systematically generate variability bugs,

including three main steps as shown in Figure 1: Product Sampling
and Test Generating, Bug Seeding, and Variability Bug Verifying.
1
http://spl2go.cs.ovgu.de/

Step 1 - Product Sampling and Test Generating. Firstly, for

an SPL system, a set of the products of the system is systematically

sampled by the existing techniques [11, 17]. Particularly, we sample

a set of valid configurations based on the system’s feature model

with 4-wise coverage by using SPLCA [11]. For each configuration,

a corresponding product is composed from the implementation of

all the enabled features by using FeatureHouse [6]. For each product

𝑝 , a test suite is automatically generated using an existing test

generation technique, Evosuite [9], to capture the original behaviors
of 𝑝 . For each test of 𝑝 , the output will be recorded and used as the

test oracle of the corresponding test in the product having the same

configuration as 𝑝 in the mutated system in Step 2.
Step 2 - Bug Seeding. To inject a fault into an SPL system,

we randomly apply a modification to the original source code of

the system by using a mutation operator. In essence, the operator

changes the original behaviors of several sampled products. The

changes are expected to be captured by the products’ generated tests.

In other words, these products produce output that is different from

the output recorded in Step 1. Particularly, we use 𝜇Java tool [16]
to create mutants at the statement-level of the system’s source

code. We do not apply any operator which deletes a whole code

statement. Since when the whole statement is removed from the

original code, the buggy statement which is expected to be localized

by a FL technique might not be determined. Hence, we only use

the operators modifying or deleting a part of a statement.

Step 3 - Variability Bug Verifying. In this step, we verify each

generated bug to ensure that the fault is a variability bug and caught

by the tests. Particularly, for each mutated system, the collection

of products, which are corresponding to the same set of the con-

figurations sampled in Step 1, are composed. After that, we run

each of these products against its generated test suite. A product

is considered as a passing product if it passes all the tests. In con-

trast, a product, which fails at least one test, is classified as a failing
product. A bug is considered as a variability bug if it causes failures
in certain sampled products. In other words, after testing, among

the sampled products, there are both passing and failing products.

Besides, during the testing process, test execution information will

be recorded by a code coverage tool, OpenClover 2
.

2.3 Multiple Variability Bugs Generation

For a more challenging setting, we create a dataset of the buggy

systems which contain multiple variability bugs. Particularly, we

extend Step 2 and Step 3 in Figure 1 to generate such dataset:

Multiple Bugs Seeding. In Step 2, instead of applying a single

modification, a random number, 𝑛 > 1, of mutation operators are

continuously used to mutate the source code of an SPL system.

Variability Bugs Verifying. In Step 3, all the bugs need to be

verified to ensure that they are variability bugs. Particularly, when
one or more bugs are fixed, the remaining bugs still cause failures in
certain products. In other words, unless all the bugs are fixed, there

still exists both the passing and failing products. We aim to simulate

the bug-fixing process in practice. For each case, we gradually fix

each bug by reverting the modification to the original state and do

regression testing. The case would be accepted if there still exists

both the passing and failing products until all the bugs are fixed.

2
https://openclover.org

Variability Fault Localization: A Benchmark SPLC ’21, September 6–11, 2021, Leicester, United Kingdom

Figure 1: Bug-Generating Process Overview

Table 1: Dataset Statistics

System

Details Test info Bug info

#LOC #F #SP #Tests Cov #V #IF

ZipMe 3460 13 25 255.0 42.9 304 2.7

GPL 1944 27 99 86.9 99.4 372 13.0

Elevator-FH-JML 854 6 18 166.0 92.9 122 3.6

ExamDB 513 8 8 133.3 99.5 263 1.1

Email-FH-JML 439 9 27 86.0 97.7 126 4.1

BankAccountTP 143 8 34 19.8 99.9 383 4.8

#F and #SP stand for the number of features and the average sample size.

Cov and #V stand for the statement coverage (%) and the number of buggy versions.

#IF stands for the average number of the involving features.

2.4 Dataset of Variability Bugs

Table 1 provides the general information of our dataset. For each

system, a set of products are sampled with 4-wise coverage. In

general, for an SPL system, the number of the sampled products

depends not only on the number of features but also the feature

model of the system. For instance, although ExamDB and BankAc-

countTP have the same number of features, to achieve 4-wise

coverage by sampling technique, BankAccountTP needs to gener-

ate 34 products while this figure for ExamDB is only 8 products.

For generating tests, Table 1 shows that the sizes of the generated

test suites in different systems are different. For example, more than

8.5K test cases are created for GPL in total. In our dataset, there

are 5/6 systems whose generated test suite reaches +90% statement

coverage. Moreover, three of them almost reach 100% statement

coverage. Especially due to a large code base, ZipMe has 255 tests

per product, but its statement coverage only stays at 42.9%.

As seen in Table 2, we generated 1,570 buggy versions of the

subject systems. Among them, 338 versions contain a single bug

each, while 1,232 versions have two or more bugs. In the dataset,

the number of bugs might not be proportional to the size of sys-

tems. For instance, ZipMe contains a larger number of statements

CONDITIONAL
15%

OTHERS
7%

RELATIONAL
13%

ARITHMETIC
61%

DELETION
4%

Figure 2: Variability Bugs by Applied Mutation Operators

and has more features than ExamDB. However, there are more

bugs generated in ExamDB. The reason is, the number of mutation

operators applicable to ExamDB is greater. Thus, there are more

mutants and variability bugs that can be generated in ExamDB than

in ZipMe. Moreover, the quality of test suite also plays a critical role

in generating variability bugs. The test suite with higher statement

coverage is more effective in detecting the unexpected behaviors

caused by the seeded bugs in the system. Hence, for a system with

a better test suite, there might be more variability bugs accepted.

Variability Bugs by Applied Mutation Operators. Figure 2

shows the proportions of the bugs categorized by the groups of

mutation operators [15]. As seen, there are more than haft of them

generated by using Arithmetic group. The reason is, comparing to

the other groups, Arithmetic group contains more mutation oper-

ators, such as AODS, AODU, AOIS, AOIU, and AORS [15], that are
applicable for mutating the source code of our selected systems.

Variability Bugs by Code Elements. Figure 3 shows the pro-

portions of the bugs classified by code element types [22]. As seen,

groups of Conditional and Assignment contain more bugs than the

others. These proportions are similar to the distribution reported

by the prior study on the popular real-fault repository [22].

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom Kien-Tuan Ngo, Thu-Trang Nguyen, Son Nguyen, and Hieu Dinh Vo

ASSIGNMENT
30%

CONDITIONAL
38%

METHOD_CALL
5%

LOOP
8%

RETURN
19%

Figure 3: Variability Bugs by Code Elements

Table 2: Buggy versions categorized by number of contained bugs

System Single-Bug 2-Bug 3-Bug

ZipMe 55 120 129

GPL 105 190 77

Elevator-FH-JML 20 41 61

ExamDB 49 126 88

Email-FH-JML 36 34 56

BankAccountTP 73 238 72

Variability Bugs by Involving Features. Furthermore, for a

specific SPL system, the performance of FL techniques might be

influenced by the number of features which must be actually en-

abled/disabled to reveal the bugs (involving features). In this work,

a feature is an involving feature to a variability bug if from a failing

product, when switching its current selection (the state of being on

or off) makes the resulting product pass all its tests. If the resulting

product has not been sampled, we additionally compose the prod-

uct and generate its tests. For a system containing multiple bugs,

since the failures in the sampled products are caused by various

bugs, detecting the involving features for each bug in this case

might be impossible. For a particular bug, when one of its involving

features is switched, the resulting product might still fail because

of the other bugs. Thus, in our dataset, we only categorized the

buggy versions containing a single bug by the number of involving

features. In our dataset, the number of involving features is in the

range of [1, 25], about 76% of the cases are less than or equal to 7.

2.5 Description of Dataset Artifacts

Our dataset is published on our website with all required informa-

tion to evaluate participants’ solutions. In particular, all the cases

are organized in different folders and each represents a version of

the entire SPL system. In each case, artifact structure is as below:

• Feature Model: The feature model is in GUIDSL format [8].

• Sampled Configurations: A set of configurations with 4-wise
coverage which are saved in different files.

• Source Code: The system and all the composed products. Note

that each product is composed based on feature superimposition

mechanism of FeatureHouse [6]. For remapping purposes, the link

between each code statement in a product and the corresponding

statement in the system is recorded.

• Test Cases: All the generated test cases of each sampled product.

• Bug Report: The locations of modified statements in the system.

• Test Execution: This data is supplied in the execution log, in-

forms how many times each statement is executed for each test.

3 SOLUTION EVALUATION

This section describes several standard metrics to evaluate FL tech-

niques for variability bugs in SPL systems. Furthermore, we present

the results of the naive adaptation of SBFL technique on the pro-

posed dataset as the baseline results of this challenge.

3.1 Evaluation Metrics

The main focus of FL is to help developers find a good starting

point to inspect and initiate the bug-fixing process. Therefore, the

effectiveness of FL technique generally based on the percentage

of code that needs to be examined until the first faulty location is

found. In this challenge, we apply the standard metrics which are

widely used in evaluating FL techniques [4, 13, 14, 21, 23, 24].

Rank. The lower Rank, the better approach. If there are multiple

statements having the same scores, buggy statements are ranked

last among them. For the cases of multiple bugs, we measured Rank
by the position of the first bug in the ranked lists.

EXAM. EXAM [23] is the percentage of the statements that must

be examined until the first faulty statement is reached:

𝐸𝑋𝐴𝑀 =
Number of examined statements

Total number of statements

× 100%

Recall at Top-𝑁 (Top-𝑁). Top-𝑁 [14] was devised to report the

number of cases that at least one bug was found after examining 𝑁

statements in the ranked list.

Proportion of Bugs Localized (PBL). PBL [13] measures the

proportion of the bugs which are detected after examining a certain

number of the statements in the system.

3.2 Baseline Results

To construct baseline results, we conducted several experiments

with the naive adaption of SBFL which considers the whole SPL

system as a non-configurable code. The suspiciousness score of

a statement is measured based on the tests counted from all the

products. We use this adaption with different SBFL metrics [4, 24]

to evaluate the baseline performance on localizing variability bugs

in both single-bug and multiple-bug settings.

3.2.1 Performance in localizing single bug. In this experiment, we

use different SBFL metrics to localize the buggy statements in 338

cases where each case contains only one bug. Table 3 shows the

average Rank and EXAM of SBFL using the 5 most popular SBFL

metrics. The results of other SBFL metrics can be found on our

website [1]. As seen, there are several SBFL metrics that obtained

quite similar performance, such as Tarantula and Barinel, Ochiai

and Dstar, etc. Op2 is the most effective metric which achieves

significantly better performance in both Rank and EXAM compared

to the others’ results. Interestingly, the average Rank with Op2 in

most of the systems is around 6𝑡ℎ . Meanwhile, the average Rank in

Variability Fault Localization: A Benchmark SPLC ’21, September 6–11, 2021, Leicester, United Kingdom

Table 3: SBFL Performance in Single-bug Setting

Metric

ZipMe GPL Elevator ExamDB Email BankAccountTP

Rank EXAM Rank EXAM Rank EXAM Rank EXAM Rank EXAM Rank EXAM

Taratula 23.98 1.03 10.36 1.07 18.40 4.11 5.61 2.24 13.81 5.59 5.53 7.23

Ochiai 18.40 0.79 9.09 0.94 8.55 1.91 3.31 1.32 4.56 1.84 3.95 5.15

Op2 12.67 0.55 8.86 0.92 4.25 0.95 3.24 1.29 4.03 1.63 3.58 4.66

Barinel 23.98 1.03 10.36 1.07 18.40 4.11 5.61 2.24 13.81 5.59 5.55 7.24

Dstar 18.20 0.78 9.09 0.94 8.40 1.88 3.29 1.31 4.61 1.87 3.92 5.11

Elevator, Email are the abbreviations for Elevator-FH-JML and Email-FH-JML systems, respectively.

0

80

160

240

320

Top-1 Top-2 Top-3 Top-4 Top-5

#C
as
es

Figure 4: Top-𝑁 , 𝑁 ∈ [1, 5] of SBFL with Op2 in Single-bug Setting

0

10

20

30

40

Zip
Me GP

L

Ele
va
tor

Ex
am
DB

Em
ail

Ba
nk
Ac
co
un
tTP

#C
as
es

Figure 5: Top-1 of SBFL with Op2 in Single-bug Setting

ZipMe is about 13𝑡ℎ , perhaps because of the low-quality test suites.

Particularly, the average test coverage of a variant in this system is

only about 43% (Table 1). Although the baseline performance with

Op2 in the system ZipMe is worse than in the other systems, it is

still better than other SBFL metrics in ZipMe.

The baseline performance with Op2 in Top-𝑁 is illustrated in Fig-

ure 4. Overall, 71 bugs (about 21% of the bugs) are correctly ranked

at Top-1. In addition, the number of the detected bugs gradually

increases when more statements in the ranked lists are examined,

about 82% of the bugs are ranked at Top-5 accuracy. Interestingly,

there are more bugs correctly ranked at the Top-1 positions in GPL

than in the other systems (Figure 5). This is because, for GPL, there

is a large number of the sampled products, which provides more

information to locate the bugs. Indeed, among the 71 bugs correctly

ranked first, there are 36 cases are buggy versions of GPL.

3.2.2 Performance in localizing multiple bugs. We conducted an

experiment on 1,232 cases where each buggy version contains 𝑛

bugs, 𝑛 > 1. Table 4 shows that Ochiai is the most effective metric

for localizing multiple bugs in our dataset. On average, with Ochiai,

developers only need to investigate about 4 statements in the ranked

lists to find the first buggy statement of a faulty system. Meanwhile,

0

300

600

900

1200

Top-1 Top-2 Top-3 Top-4 Top-5

#C
as
es

Figure 6: Top-𝑁 , 𝑁 ∈ [1, 5] of SBFL with Ochiai in Multiple-bug Setting

0

20

40

60

80

Zip
Me GP

L

Ele
va
tor

Ex
am
DB

Em
ail

Ba
nk
Ac
co
un
tTP

#C
as
es

Figure 7: Top-1 of SBFL with Ochiai in Multiple-bug Setting

this figure with other SBFL metrics is much worse, e.g., with Op2,

which is about 13 statements.

In addition, the performancewithOchiai on Top-𝑁 in themultiple-

bug setting is shown in Figure 6 and Figure 7. Overall, about 17%

and 92% of the cases have at least one bug ranked at the Top-1 and

Top-5 positions, respectively. Among the subject systems, Email

is the system in which SBFL with Ochiai achieved the lowest per-

formance in Top-1 (Figure 7). Especially, by examining the first

statement, there is only one case that found the bug.

Furthermore, the average proportion of bugs that are localized

in each case by SBFL with Ochiai is shown in Figure 8. On average,

only 7% of the bugs can be found after examining the first statement.

Moreover, by investigating the first 5 statements in the ranked lists,

developers can find 46% of the bugs in a system. Additionally, in

order to find about 80% of the bugs, they need to examine up to 30

statements in the ranked lists.

4 SUMMARY

We present a variability fault localization benchmark with a dataset

of 1,570 buggy versions of 6 widely-used SPL systems. In our dataset,

there are 338 cases of single-bug and 1,232 cases of multiple-bug.

SPLC ’21, September 6–11, 2021, Leicester, United Kingdom Kien-Tuan Ngo, Thu-Trang Nguyen, Son Nguyen, and Hieu Dinh Vo

Table 4: SBFL Performance in Multiple-bug Setting

Metric

ZipMe GPL Elevator ExamDB Email BankAccountTP

Rank EXAM Rank EXAM Rank EXAM Rank EXAM Rank EXAM Rank EXAM

Taratula 9.04 0.39 4.08 0.42 7.98 1.78 8.21 3.27 3.53 1.43 4.92 6.36

Ochiai 5.07 0.22 2.76 0.29 4.84 1.08 2.75 1.09 3.10 1.26 2.58 3.34

Op2 19.91 0.85 4.60 0.48 15.93 3.56 11.48 4.57 11.73 4.75 4.24 5.48

Barinel 9.04 0.39 4.11 0.43 7.98 1.78 8.21 3.27 3.53 1.43 4.93 6.36

Dstar 7.58 0.32 2.79 0.29 4.78 1.07 2.74 1.09 2.99 1.21 2.65 3.44

Elevator, Email are the abbreviations for Elevator-FH-JML and Email-FH-JML systems, respectively.

�([DPLQHG�6WDWHPHQWV

3
%
/

����

����

����

����

����

� �� �� �� �� ��

Figure 8: PBL of SBFL with Ochiai in Multiple-bug Setting

The variability bugs in the benchmark are systematically gener-

ated by diverse mutation operators, numerous code elements, and

different numbers of involving features. We also provide several

standard metrics which are broadly applied in evaluating FL tech-

niques. Furthermore, a naive solution adapting SBFL for variability

fault localization is evaluated to present the baseline results. We

hope that our benchmark can be a common point of comparison

for variability fault localization techniques and encourage the re-

searchers to propose better solutions for the challenge case.

ACKNOWLEDGMENTS

In this work, Kien-Tuan Ngo was funded by Vingroup Joint Stock

Company and supported by the Domestic Master/ PhD Scholarship

Programme of Vingroup Innovation Foundation (VINIF), Vingroup

Big Data Institute (VINBIGDATA), code VINIF.2020.ThS.04.

This work has been supported by Vietnam National University,

Hanoi (VNU), under Project No. QG.18.61.

REFERENCES

[1] [n.d.]. https://tuanngokien.github.io/splc2021/

[2] Iago Abal, Claus Brabrand, and Andrzej Wasowski. 2014. 42 variability bugs

in the linux kernel: a qualitative analysis. In Proceedings of the 29th ACM/IEEE
international conference on Automated software engineering. 421–432.

[3] Iago Abal, Jean Melo, Ştefan Stănciulescu, Claus Brabrand, Márcio Ribeiro, and

Andrzej Wąsowski. 2018. Variability bugs in highly configurable systems: A

qualitative analysis. ACM Transactions on Software Engineering and Methodology
(TOSEM) 26, 3 (2018), 1–34.

[4] Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2007. On the accuracy of

spectrum-based fault localization. In Testing: Academic and industrial conference
practice and research techniques-MUTATION. IEEE, 89–98.

[5] Sven Apel, Don Batory, Christian Kstner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines: Concepts and Implementation. Springer Publish-
ing Company, Incorporated.

[6] Sven Apel, Christian Kästner, and Christian Lengauer. 2011. Language-

independent and automated software composition: The FeatureHouse experience.

IEEE Transactions on Software Engineering 39, 1 (2011), 63–79.

[7] Sven Apel, Alexander Von Rhein, Philipp Wendler, Armin Größlinger, and Dirk

Beyer. 2013. Strategies for product-line verification: case studies and experiments.

In 2013 35th International Conference on Software Engineering. IEEE, 482–491.

[8] Don Batory. 2005. Feature models, grammars, and propositional formulas. In

International Conference on Software Product Lines. Springer, 7–20.
[9] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation

for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416–419.

[10] Brady J Garvin and Myra B Cohen. 2011. Feature interaction faults revisited:

An exploratory study. In 2011 IEEE 22nd International Symposium on Software
Reliability Engineering. IEEE, 90–99.

[11] Martin Fagereng Johansen, Øystein Haugen, and Franck Fleurey. 2012. An

algorithm for generating t-wise covering arrays from large feature models. In

Proceedings of the 16th International Software Product Line Conference-Volume 1.
46–55.

[12] René Just, Darioush Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and

Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software

testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. 654–665.

[13] Fabian Keller, Lars Grunske, Simon Heiden, Antonio Filieri, Andre van Hoorn,

and David Lo. 2017. A critical evaluation of spectrum-based fault localization

techniques on a large-scale software system. In 2017 IEEE International Conference
on Software Quality, Reliability and Security (QRS). IEEE, 114–125.

[14] Yiling Lou, Ali Ghanbari, Xia Li, Lingming Zhang, Haotian Zhang, Dan Hao,

and Lu Zhang. 2020. Can automated program repair refine fault localization? a

unified debugging approach. In Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 75–87.

[15] Yu-Seung Ma and Jeff Offutt. 2005. Description of method-level mutation opera-

tors for java. Electronics and Telecommunications Research Institute, Korea, Tech.
Rep (2005).

[16] Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. 2006. MuJava: a mutation system

for Java. In Proceedings of the 28th international conference on Software engineering.
827–830.

[17] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.

2016. A comparison of 10 sampling algorithms for configurable systems. In 2016
IEEE/ACM 38th International Conference on Software Engineering. IEEE, 643–654.

[18] Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and Gunter

Saake. 2016. On essential configuration complexity: measuring interactions in

highly-configurable systems. In Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering. 483–494.

[19] Austin Mordahl, Jeho Oh, Ugur Koc, Shiyi Wei, and Paul Gazzillo. 2019. An

empirical study of real-world variability bugs detected by variability-oblivious

tools. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
50–61.

[20] Son Nguyen, Hoan Nguyen, Ngoc Tran, Hieu Tran, and Tien Nguyen. 2019.

Feature-interaction aware configuration prioritization for configurable code. In

2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 489–501.

[21] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D

Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and improving fault

localization. In 2017 IEEE/ACM 39th International Conference on Software Engi-
neering (ICSE). IEEE, 609–620.

[22] Victor Sobreira, Thomas Durieux, Fernanda Madeiral, Martin Monperrus, and

Marcelo de Almeida Maia. 2018. Dissection of a bug dataset: Anatomy of 395

patches from defects4j. In 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 130–140.

[23] Eric Wong, Tingting Wei, Yu Qi, and Lei Zhao. 2008. A crosstab-based statistical

method for effective fault localization. In 2008 1st international conference on
software testing, verification, and validation. IEEE, 42–51.

[24] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A

survey on software fault localization. IEEE Transactions on Software Engineering
42, 8 (2016), 707–740.

https://tuanngokien.github.io/splc2021/

	Abstract
	1 Introduction
	2 A Dataset of Variability Faults
	2.1 Subject Systems
	2.2 Single Variability Bug Generation
	2.3 Multiple Variability Bugs Generation
	2.4 Dataset of Variability Bugs
	2.5 Description of Dataset Artifacts

	3 Solution Evaluation
	3.1 Evaluation Metrics
	3.2 Baseline Results

	4 Summary
	Acknowledgments
	References

