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ABSTRACT
A bipartite network is a graph structure where nodes are from
two distinct domains and only inter-domain interactions exist as
edges. A large number of network embeddingmethods exist to learn
vectorial node representations from general graphs with both homo-
geneous and heterogeneous node and edge types, including some
that can specifically model the distinct properties of bipartite net-
works. However, these methods are inadequate to model multiplex
bipartite networks (e.g., in e-commerce), that have multiple types of
interactions (e.g., click, inquiry, and buy) and node attributes. Most
real-world multiplex bipartite networks are also sparse and have im-
balanced node distributions that are challenging tomodel. In this pa-
per, we develop an unsupervisedDual HyperGraph Convolutional
Network (DualHGCN) model that scalably transforms the multi-
plex bipartite network into two sets of homogeneous hypergraphs
and uses spectral hypergraph convolutional operators, along with
intra- and inter-message passing strategies to promote information
exchange within and across domains, to learn effective node embed-
dings. We benchmark DualHGCN using four real-world datasets
on link prediction and node classification tasks. Our extensive ex-
periments demonstrate that DualHGCN significantly outperforms
state-of-the-art methods, and is robust to varying sparsity levels
and imbalanced node distributions.
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1 INTRODUCTION
Network representation learning aims to learn low-dimensional
real-valued features of its nodes, also called embeddings, to cap-
ture the global structural information of the network [3, 7]. Such
vectorial representations enable their direct application in machine
learning models for tasks such as link prediction, node classification
or community detection, and obviates the need for cumbersome
task-specific feature engineering from the input networks. They
have been successfully applied in many domains such as recom-
mender systems [17, 26, 43], natural language processing [18, 30, 33]
and computational biology [23, 27, 46].

Many network embedding methods have been proposed for ho-
mogeneous networks where nodes and edges are both of single
type; well-known examples include Node2vec [14], DeepWalk [25],
SDNE [37] and LINE [31]. Many real-world interactions are multi-
modal and multi-typed that give rise to heterogeneous networks
where nodes and/or edges can be of different types. Representation
learning methods for such networks have also been widely studied,
e.g., Metapath2vec [8], HAN [39], HetGNN [44].

The bipartite network has a specific topology, consisting of two
node types (see Figure 1) from different domains, containing inter-
domain interactions and no intra-domain interactions. Essentially
representing matrices, such networks are ubiquitous in a variety
of contexts. While general representation learning methods can
be applied on such networks, it has been shown that they yield
suboptimal representations because many specific characteristics
of bipartite networks, such as the two distinct node types and
the power-law distribution of node degrees may not be modeled
well. As a result, several representation learning methods have
been developed specifically for bipartite networks, e.g., BiNE [11],
BGNN [16], BiANE [19], FOBE and HOBE [29]. However, these
methods do not model heterogeneous interactions or multiple edges
types in bipartite networks. Such networks, also called multiplex
bipartite networks, model many real-life scenarios. For example,
users and items in an e-commerce platform form a multiplex bipar-
tite network where users have different kinds of interactions (click,
inquiry, buy) with items.

The fundamental challenge in any network representation learn-
ingmethod is to learn the similarities or correlations between nodes,
from all the given information about the topology, multiple node
and edge types and, if provided, the attributes; and preserve the
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Figure 1: (left) User-item multiplex bipartite network and
(right) dual homogeneous hypergraphs. E.g., the user 𝑢2 in
the user-item multiplex bipartite network corresponds to a
hyperedge that connects 𝑣2, 𝑣3 and 𝑣5 in the homogeneous
hypergraph G𝑉 ,𝑐𝑙𝑖𝑐𝑘 because these three items have been
clicked by the same user. Similarly, an item 𝑣1 corresponds
to a hyperedge that connects 𝑢1, 𝑢3 and 𝑢4 in the homoge-
neous hypergraph G𝑈 ,𝑏𝑢𝑦 because these three users buy the
same item.

correlations at the latent level in the embeddings [6]. In fact, various
network embedding techniques are equivalent to factorization of a
node similarity matrix with suitable definitions of similarities [22]
or tensor factorization [42]. In bipartite networks, edges provide in-
formation about inter-domain node correlations only, while one has
to learn intra-domain correlations indirectly. When node attributes
are given, attribute and topology based correlations, representing
two different modalities, have to be learnt jointly [19]. With the
addition of multiple edge types in a multiplex bipartite network, we
have more information to model the correlations but generalizing
the node similarities using heterogeneous edges with potentially
distinct distributional and structural properties can be challenging.

The problem is exacerbated by sparsity of edges and imbalance
of distributions of node and edge types in most real-world data.
For instance, consider the Alibaba dataset containing user behavior
logs from Alibaba.com (more data details are in Section 5.1). There
are 6,054 users and 16,595 items and the average degree of users
and items are 7.55 and 2.76 respectively. Each user, on average,
interacts with less than 0.1% items. Figure 10 shows the clearly dis-
tinguishable degree distributions of users and items, with the item
distribution having a steeper decline. Further, each edge type can
be present in different proportions and sparsity levels, e.g. varying
from 25,180 ‘click’ edges to 4,429 ‘contact’ edges (Figure 11.a).

In this paper, we address these challenges by designing a new
representation learning model for multiplex bipartite networks. A
key step in our approach is to transform the input into two sets of
hypergraphs, a set each for a domain in the bipartite network and a
hypergraph for each edge type within a set. The transformation is
scalable since the total number of edges in the hypergraphs is pro-
portional to the number of nodes in the input and to the number of
edge types. A hypergraph generalizes the notion of an edge in sim-
ple graphs to a hyperedge which can connect more than two nodes.
This transformation effectively serves many purposes. It naturally
models sparse and heterogeneous interactions in the input, e.g., in
the e-commerce network, multiple items naturally form a hyper-
edge with a user if they are bought (clicked, or inquired) by the same

user, and similarly, multiple users can be connected by a hyperedge
to an item (see Figure 1). The homogeneity in these hypergraphs
allows us to leverage hypergraph convolutional operators to learn
rich representations, capturing local and higher-order structural
relationships. However, this alone is not sufficient to capture inter-
and intra-domain correlations in the bipartite network. To model
these correlations and tackle the imbalance problem in both edge
and node types, we design additional intra- and inter-message pass-
ing strategies that enable information exchange within and across
domains. Further, our method can also incorporate information
from node attributes when provided as inputs.

Our model, called Dual HyperGraph Convolutional Networks
(DualHGCN), is evaluated through extensive experiments. On
node classification and link prediction tasks, DualHGCN signif-
icantly outperforms fourteen state-of-the-art network embedding
methods on four real datasets. Our experiments also demonstrate
the superiority of our model with respect to robustness to varying
sparsity levels, node attribute initialization strategies and handling
of imbalanced classes.

2 RELATEDWORKS
Homogeneous Network Embedding. Homogeneous networks
contain a single type of nodes and edges, and thus the sum of node
types and edge types is equal to 2. Many approaches have been
proposed for homogeneous network embedding methods such as
DeepWalk [25], Node2vec [14], LINE [31], SDNE [37], GCN [20],
GraphSAGE [15] and GAT [36]. However, these methods do not
explicitly model bipartite structure and multiple edge types.
Heterogeneous Network Embedding. A network is called het-
erogeneous if the sum of node types and edge types is larger
than 2. Although multiplex bipartite networks can be viewed as
special cases of heterogeneous networks, existing heterogeneous
network embedding methods (e.g., Metapath2vec [8], HAN [39],
HetGNN [44], and DyHATR [40]) are not tailored to make use of
the bipartite topology information and may result in sub-optimal
embedding for multiplex bipartite networks. For example, Metap-
ath2vec [8] uses the meta-path-guided random walk strategy but
ignores the difference between explicit and implicit relations and
thus becomes suboptimal for network embedding for bipartite net-
works [11]. Similarly, the node-level and edge-level attention mod-
els in DyHATR [40] neglect the unique characteristics of the bipar-
tite network, and also do not work well with increasing sparsity.
Bipartite Network Embedding. Different from multiplex bipar-
tite networks, simple bipartite networks contain two types of nodes
and a single type of edges. Several bipartite network embedding
methods have been proposed, including BiNE [11, 12], BGNN [16],
BiANE [19], FOBE and HOBE [29]. BiNE first performs biased ran-
dom walks to generate node sequences and then uses a joint opti-
mization strategy to preserve both explicit and implicit information
within bipartite networks simultaneously. As a random walk-based
approach, the performance of BiNE deteriorates when the bipartite
network becomes sparse. Moreover, BiNE neglects the inherent
difference between two types of nodes and models all nodes in the
same way. BGNN respects the distinction between two types of
nodes and proposes a cascaded and unsupervised learning method,



which contains inter-domain message passing and intra-domain dis-
tribution alignment, to model both same-domain information and
cross-domain correlations simultaneously. FOBE and HOBE also
distinguish two types of nodes and fit embeddings by optimizing
nodes of each type separately. They adopt two sampling strategies
to generate indirect node-pair sets, including sampling direct and
observed pairs (FOBE) and sampling higher-order pairs using alge-
braic distance (HOBE). BiANE is an attributed bipartite network
embedding method that differs from the previous three models. It
models structural information of the bipartite network through
intra- and inter-partition proximity, and integrates attributes and
topological structure of networks by a latent correlation model.

All these existing methods have been designed for bipartite net-
works where all edges are of the same type and their performance
on multiplex bipartite networks suffer without explicit modeling
of heterogeneous edge types (as seen in our experiments). Besides,
BiNE, FOBE and HOBE cannot capture the inherent attributes of
nodes in the bipartite network.
Hypergraph Embedding.Hypergraph embedding is gaining pop-
ularity because of its effectiveness in modeling complex structures
within networks. A hypergraph is a generalization of a simple
graph in which an hyperedge can connect more than two nodes.
HyperGCN [41] decomposes each hyperedge into a collection of
node pairs and translates the hypergraph learning tasks into the
embedding problem on simple graphs. Several homogeneous hy-
pergraph embedding methods have been proposed. HGNN [10],
HyperRec [38] and HCHA [1] introduce a spectral convolution
operator into the hypergraph learning model and capture higher-
order structures in hypergraphs. MGCN [5] considers both local
and hypergraph level graph convolutions and is able to capture
wider and richer network information for network embedding.
Different from previous approaches, HNHN [9] introduces a flexi-
ble normalization scheme and a hypergraph convolutional model
with nonlinear activation neurons on both hypernodes and hy-
peredges. Three recent approaches have been proposed to model
heterogeneous hypergraphs, e.g., DHNE [34], Hyper-SAGNN [45],
and HWNN [28]. However, most previous hypergraph embedding
methods have been designed for supervised tasks, and cannot be
directly used for obtaining network embeddings. Besides, hyper-
graph convolution networks do not specifically model multiplex
edges and imbalanced degrees.

3 PRELIMINARIES
In this section, we define a multiplex bipartite network and its
vertex embedding. Table 1 provides a summary of frequently used
symbols in the paper.
Definition 2.1. Multiplex Bipartite Network. A Multiplex Bi-
partite Network 𝐺 = (𝑈 ,𝑉 , 𝐸, 𝑋 ) consists of node sets𝑈 and 𝑉 of
different types, and edge sets 𝐸 = 𝐸1∪𝐸2 . . .∪𝐸𝑘 where 𝐸𝑖 denotes
the 𝑖-th type of edge. 𝑋 = {𝑋𝑢 , 𝑋𝑣} denotes the features of node
sets𝑈 and 𝑉 .

For example, logs of user behavior in Alibaba.com can be rep-
resented as a multiplex bipartite network containing two types
of nodes (users and items) and several types of edges (e.g., click,
enquiry, contact). For each user and item, the logs also contain
unique attributes with different dimensions. For instance, attributes

Table 1: Summary of notations and descriptions.

Notations Descriptions
𝐺 = (𝑈 ,𝑉 , 𝐸, 𝑋 ) Multiplex Bipartite Network (MBN)

𝑈 , 𝑉 Two types of node sets in MBN
𝐸 = 𝐸1 ∪ . . . ∪ 𝐸𝑘 A set of edges in MBN
𝑋 = {𝑋𝑢 , 𝑋𝑣} Two feature sets of𝑈 and 𝑉 in MBN

𝑘 The number of edge types
G𝑈 ,G𝑉 Two homogeneous hypergraph sets
G𝑈 ,𝑖 , G𝑉 ,𝑗 A homo-hypergraph from𝑈 , 𝑉

H The incidence matrix of hypergraph
D The diagonal matrices of node degree
B The diagonal matrices of hyperedge degree
W The diagonal identity matrix

X𝑈 ,𝑖 , X𝑉 ,𝑗 The learned features of G𝑈 ,𝑖 , G𝑉 ,𝑗

P, Q Learnable weight matrix
𝜎 (·) Activation function

Z = {X𝑈 ,X𝑉 } Final embeddings of G𝑈 ,G𝑉

𝑛 Negative sample parameter
𝑑 Dimension of the embedding

of users contain country, gender, search logs, etc. In contrast, Items
usually have attributes, such as category, price, search counts, visit
counts, buy logs, etc.
Definition 2.2.MultiplexBipartiteNetworkEmbedding.Given
a multiplex bipartite network 𝐺 = (𝑈 ,𝑉 , 𝐸, 𝑋 ), its embedding is a
𝑑-dimensional feature X𝑈 ∈ R |𝑈 |×𝑑 , X𝑉 ∈ R |𝑉 |×𝑑 for each node
in𝑈 and𝑉 , where 𝑑 ≪ |𝑈 | and 𝑑 ≪ |𝑉 |, that captures information
of both the global topological structure and node attributes.

We define the sparsity of a multiplex bipartite network as ⟨S⟩ =
1 − |𝐸 |

|𝑈 |× |𝑉 | . Many real-world multiplex bipartite networks are
extremely sparse, i.e., |𝐸 | ≪ |𝑈 | × |𝑉 |. For instance, in the Alibaba
dataset ⟨S⟩ = 99.95%.

4 METHODOLOGY
Given an input multiplex bipartite network, we first transform it
into two sets of homogeneous hypergraphs. Our model architecture
comprises a hypergraph convolutional network that assumes these
dual homogenous hypergraphs as inputs, with additional inter- and
intra-message passing layers to enable information sharing across
the networks. Finally, the entire model is trained using a gradient
descent based optimizer. The next four subsections provide more
details. Figure 2 shows an overview of the entire method.

4.1 Dual Homo-Hypergraphs Construction
We now show how to transform a multiplex bipartite network into
two sets of homogeneous hypergraphs (dual homo-hypergraphs).
We construct two sets of homogeneous hypergraphsG𝑈 ,G𝑉 , from
node sets𝑈 ,𝑉 , respectively, as follows:

G𝑈 = {G𝑈 ,𝑏𝑎𝑠𝑒 ,G𝑈 ,1, ...,G𝑈 ,𝑘 },G𝑉 = {G𝑉 ,𝑏𝑎𝑠𝑒 ,G𝑉 ,1, ...,G𝑉 ,𝑘 )},
(1)

where G𝑈 ,𝑖 = {𝑈 , E𝑈 ,𝑖 }, G𝑉 ,𝑗 = {𝑉 , E𝑉 ,𝑗 }, and E𝑈 ,𝑖 and E𝑉 ,𝑗

denote hyperedges in G𝑈 ,𝑖 and G𝑉 ,𝑗 respectively. Note that all
the homogeneous hypergraphs in G𝑈 share the same node set𝑈



Figure 2: The Overall framework of the proposed DualHGCN method.

while all the homogeneous hypergraphs in G𝑉 share the same
node set 𝑉 . For a node 𝑣 ∈ 𝑉 , a hyperedge is introduced in E𝑈 ,𝑖

of G𝑈 ,𝑖 which connects to {𝑢 |𝑢 ∈ 𝑈 , (𝑢, 𝑣) ∈ 𝐸𝑖 }, i.e., the vertices
in 𝑈 that are directly connected to 𝑣 by 𝐸𝑖 . Similarly, for a node
𝑢 ∈ 𝑈 , a hyperedge is introduced in E𝑉 ,𝑗 of G𝑉 ,𝑗 which connects
to {𝑣 |𝑣 ∈ 𝑉 , (𝑢, 𝑣) ∈ 𝐸 𝑗 }, i.e., the vertices in 𝑉 that are directly
connected to 𝑢 by 𝐸 𝑗 .

Refer to Figure 1 for an example. In the user-item multiplex
bipartite network, the user 𝑢2 clicks three items (𝑣2, 𝑣3 and 𝑣5),
which corresponds to a hyperedge that connects these three items
in the homogeneous hypergraph G𝑉 ,𝑐𝑙𝑖𝑐𝑘 . Similarly, the item 𝑣1
is bought by three users (𝑢1, 𝑢3 and 𝑢4) which corresponds to a
hyperedge that connects these three users in the homogeneous
hypergraph G𝑈 ,𝑏𝑢𝑦 .

Two special homogeneous hypergraphs G𝑈 ,𝑏𝑎𝑠𝑒 ∈ G𝑈 and

G𝑉 ,𝑏𝑎𝑠𝑒 ∈ G𝑉 are defined as G(𝑈 ,
𝑘⋃
𝑖=1

E𝑈 ,𝑖 ) and G(𝑉 ,
𝑘⋃
𝑗=1

E𝑉 ,𝑗 ),

respectively. Note that the cardinalities of hyperedge sets in the con-
structed hypergraphs are: |E𝑈 ,𝑖 | ≤ |𝑉 |, |E𝑉 ,𝑗 | ≤ |𝑈 |, |E𝑈 ,𝑏𝑎𝑠𝑒 | ≤
𝑘 |𝑉 | and |E𝑉 ,𝑏𝑎𝑠𝑒 | ≤ 𝑘 |𝑈 | for 1 ≤ 𝑖, 𝑗 ≤ 𝑘 . The total number of hy-
peredges in the dual homo-hypergraphs is proportional to the num-
ber of nodes and edge types in the input network: 𝑂 (𝑘 ( |𝑈 | + |𝑉 |)).
Thus, the transformation easily scales to large inputs.

4.2 Hypergraph Convolutional Networks
Note that the hypergraphs that we constructed from a multiplex
bipartite network are homogeneous and now we can apply hy-
pergraph convolutions on them to learn representations. Graph
convolutional network [20] has been widely used in modeling sim-
ple networks. Recent hypergraph convolutional operators have
borrowed ideas from the spectral theory on simple graphs and
achieved good performance in hypergraph embedding (e.g., HGNN,
HCHA, HyperGCN and MGCN). We briefly describe two classical
hypergraph convolutional operators used in our model.

Simple graphs use the adjacency matrix 𝐴 to represent edges,
whereas hypergraphs introduce the incidence matrix 𝐻 to describe
the relationship between nodes and hyperedges. Given a homo-
hypergraph G𝑈 ,𝑖 = (𝑈 , E𝑈 ,𝑖 ) where 𝑖 ∈ {𝑏𝑎𝑠𝑒, 1, ..., 𝑘}, 𝑘 is the

number of edge types, the incidence matrix of G𝑈 ,𝑖 is defined as:

H𝑈 ,𝑖 (𝑢, 𝑒) =
{
1, if 𝑢 is incident to 𝑒, 𝑒 ∈ E𝑈 ,𝑖

0, otherwise,
(2)

whereE𝑈 ,𝑖 denotes the set of hyperedges inG𝑈 ,𝑖 ,H𝑈 ,𝑖 ∈ R |𝑈 |× |E𝑈 ,𝑖 | ,
and 𝑖 ∈ {𝑏𝑎𝑠𝑒, 1, ..., 𝑘} denotes the constructed homo-hypergraph
𝑖 . Similarly we define the incidence matrix H𝑉 ,𝑗 for G𝑉 ,𝑗 . Let
D𝑈 ,𝑖 ∈ R |𝑈 |× |𝑈 | and B𝑈 ,𝑖 ∈ R |E𝑈 ,𝑖 |× |E𝑈 ,𝑖 | denote diagonal matri-
ces of the node degree and the hyperedge degree respectively, where
D𝑈 ,𝑖 (𝑢,𝑢) =

∑
𝑒∈E𝑈 ,𝑖

H𝑈 ,𝑖 (𝑢, 𝑒) and B𝑈 ,𝑖 (𝑒, 𝑒) =
∑
𝑢∈𝑈 H𝑈 ,𝑖 (𝑢, 𝑒).

Two hypergraph spectral convolutional operators, symmetric
hypergraph convolution (sym) and the asymmetric hypergraph
convolution (asym), are used to learn embeddings of each hyper-
graph in our model. For a simple graph, the convolutional operator
can be formulated as 𝑋 𝑙+1 = 𝜎 (𝐴 · 𝑋 𝑙𝑃𝑙 ), where 𝑋 is the feature
matrix, 𝐴 is the adjacency matrix and 𝑃 is the learnable weight
matrix. Because the incidence matrix H denotes the relationship
between nodes and hyperedges, we use HWH⊤ to measure the
pairwise relationships between nodes in the same homogeneous
hypergraph, whereW is the weight matrix that assigns weights for
all hyperedges. Usually, we initialize the weight matrixW with the
identity matrix yielding equal weights for all hyperedges. Thus, the
intuitive hypergraph convolutional operator can be formulated as:

X𝑙+1 = 𝜎 (HWH⊤ · X𝑙P𝑙 ) (3)

However, the previous hypergraph convolutional operator may
change the scale of the feature vectorsX by adding layers of convo-
lutional operators (multiplication with HWH⊤). To constrain the
number of parameters and decrease the number of matrix multipli-
cations, and thereby avoid the overfitting problem, GCN introduces
a renormalization trick, 𝑋 𝑙+1 = 𝜎 ((𝐼 + 𝐷−1/2𝐴𝐷−1/2) · 𝑋 𝑙𝑃𝑙 ) =

𝜎 (𝐷−1/2𝐴𝐷−1/2 · 𝑋 𝑙𝑃𝑙 ), where 𝐴 = 𝐴 + 𝐼 , 𝐷𝑖𝑖 =
∑

𝑗 𝐴𝑖 𝑗 , 𝐼 is the
identity matrix and 𝐷 is the node degree matrix of a simple graph.
Similarly, the symmetric normalization version of hypergraph con-
volutional operator for G𝑈 ,𝑖 can be defined as:

X𝑙+1
𝑈 ,𝑖 = 𝜎 (D−1/2

𝑈 ,𝑖
H𝑈 ,𝑖W𝑈B−1

𝑈 ,𝑖H
⊤
𝑈 ,𝑖D

−1/2
𝑈 ,𝑖

· X𝑙
𝑈 ,𝑖P

𝑙
𝑈 ,𝑖 ), (4)



and, the asymmetric hypergraph convolutional operator for G𝑈 ,𝑖

can be defined as:

X𝑙+1
𝑈 ,𝑖 = 𝜎 (D−1

𝑈 ,𝑖H𝑈 ,𝑖W𝑈B−1
𝑈 ,𝑖H

⊤
𝑈 ,𝑖 · X

𝑙
𝑈 ,𝑖P

𝑙
𝑈 ,𝑖 ), (5)

where 𝜎 denotes the nonlinear activation function (i.e., ReLU
function in our model), X𝑙

𝑈 ,𝑖
∈ R |𝑈 |×𝑑𝑙 is the feature of the 𝑙-th

layer, W𝑈 ∈ R |𝑉 |× |𝑉 | is the identity matrix, and P𝑙
𝑈 ,𝑖

∈ R𝑑𝑙×𝑑𝑙+1
denotes the learnable filter matrix, 𝑑𝑙 and 𝑑𝑙+1 are the dimensions
of the 𝑙-th and (𝑙 + 1)-th layers respectively.

Similar hypergraph convolutional operators are also applied to
learn features from G𝑉 ,𝑖 . Therefore, for dual homo-hypergraphs G,
we can learn features from each homo-hypergraph (G𝑈 ,𝑖 or G𝑉 ,𝑗 )
independently through the above hypergraph convolutional opera-
tors (Eqs. 4 and 5). Thus, we obtain the low-dimensional node repre-
sentations {X𝑈 ,𝑏𝑎𝑠𝑒 ,X𝑈 ,1, ...,X𝑈 ,𝑘 } and {X𝑉 ,𝑏𝑎𝑠𝑒 ,X𝑉 ,1, ...,X𝑉 ,𝑘 }.

These hypergraph convolutional operators canmodel each homo-
hypergraph, but cannot handle the problem of multiplex edges and
topological imbalance. Thus, as described in the following section,
we add new layers to enable intra- and inter- message-passing.

4.3 Message-passing Strategies
In the previous section, the multiplex bipartite network is trans-
formed into independent hypergraphs (G𝑈 ,𝑖 or G𝑉 ,𝑗 ) that corre-
spond to each edge type. Theremay be information loss with respect
to each node in the hypergraphs because correlations between dif-
ferent edge types have not been modeled. Take the e-commerce
platform for an example, a user is more likely to ‘buy’ an item
after this user ‘inquiries’ this item or similar items, but the current
embeddings consider ‘buy’ and ‘inquiry’ independently as they
are two different edge types between user and item. Therefore, we
introduce the following intra-message passing strategy to promote
information sharing among {X𝑈 ,𝑏𝑎𝑠𝑒 ,X𝑈 ,1, ...,X𝑈 ,𝑘 } and among
{X𝑉 ,𝑏𝑎𝑠𝑒 ,X𝑉 ,1, ...,X𝑉 ,𝑘 }.

Intra-message passing. As G𝑈 ,𝑏𝑎𝑠𝑒 contains information ag-
gregated from allG𝑈 ,𝑖 , we incorporate information from the learned
X𝑈 ,𝑏𝑎𝑠𝑒 into each X𝑈 ,𝑖 . The iterative formula of the intra-message
passing strategy (from 𝑙-th layer to (𝑙 + 1)-st layer) is defined as:

X𝑙+1
𝑈 ,𝑖 = 𝜎 (Θ𝑈 ,𝑖 · X𝑙

𝑈 ,𝑖P
𝑙
𝑈 ,𝑖 +X𝑙

𝑈 ,𝑏𝑎𝑠𝑒
Q𝑙
𝑈 ,𝑏𝑎𝑠𝑒

) (6)

where Θ𝑈 ,𝑖 = D
−1/2
𝑈 ,𝑖

H𝑈 ,𝑖W𝑈B−1
𝑈 ,𝑖

H⊤
𝑈 ,𝑖

D
−1/2
𝑈 ,𝑖

for symmetric con-
volutional operators or Θ𝑈 ,𝑖 = D−1

𝑈 ,𝑖
H𝑈 ,𝑖W𝑈B−1

𝑈 ,𝑖
H⊤
𝑈 ,𝑖

for asym-
metric convolutional operators (from Eqns 4 and 5) and Q𝑙

𝑈 ,𝑏𝑎𝑠𝑒

denotes the learnable transform matrix.
As discussed in Section 4.1, when a multiplex bipartite network

is transformed into homogeneous hypergraphs, a node𝑢 in𝑈 corre-
sponds to a hyperedge 𝑒 ∈ E𝑉 ,𝑗 in the hypergraph G𝑉 ,𝑗 . However,
the hypergraph convolutional operators in the previous section
neglects the above correspondence between nodes and hyperedges
and thus may result in suboptimal embeddings. Therefore, we in-
troduce the following inter-message passing to reinforce similar
properties between X𝑈 ,𝑖 and X𝑉 ,𝑖 with respect to the same 𝑖-th
edge type.

Inter-message passing. We propose an inter-message passing
strategy which fuses the features X𝑈 ,𝑖 and X𝑉 ,𝑗 (from 𝑙-th layer to

𝑙 + 1-th layer) and is given by:

X𝑙+1
𝑈 ,𝑖 = 𝜎 (Θ𝑈 ,𝑖 · X𝑙

𝑈 ,𝑖P
𝑙
𝑈 ,𝑖 +H⊤

𝑉 ,𝑖X
𝑙
𝑉 ,𝑖Q

𝑙
𝑉 ,𝑖 ) (7)

X𝑙+1
𝑉 ,𝑗 = 𝜎 (Θ𝑉 ,𝑗 · X𝑙

𝑉 ,𝑗P
𝑙
𝑉 ,𝑗 +H⊤

𝑈 ,𝑗X
𝑙
𝑈 ,𝑗Q

𝑙
𝑈 ,𝑗 ) (8)

where H𝑈 ,𝑖 and H𝑉 ,𝑗 denote the incidence matrix, Q𝑙
𝑈 ,𝑖

and Q𝑙
𝑉 ,𝑗

denote the learnable transformmatrix. After 𝑡 iterations, the embed-
dings of nodes𝑈 and𝑉 can be formulated asX𝑡

𝑈
= {X𝑡

𝑈 ,𝑏𝑎𝑠𝑒
,X𝑡

𝑈 ,1
,

...,X𝑡
𝑈 ,𝑘

}, X𝑡
𝑈 ,𝑖

∈ R |𝑈 |×𝑑𝑡 , and X𝑡
𝑉

= {X𝑡
𝑉 ,𝑏𝑎𝑠𝑒

,X𝑡
𝑉 ,1

, ...,X𝑡
𝑉 ,𝑘

},
X𝑡
𝑉

∈ R |𝑉 |×𝑑𝑡 , where 𝑑𝑡 is the dimension of final embeddings and
𝑘 is the number of edge types. Then, we concatenate these learned
features after 𝑡 layers training for two types of nodes, X𝑡

𝑈
and X𝑡

𝑉
,

and pass them to a linear layer to obtain the final embeddings:

X𝑈 = X𝑡
𝑈 ·W𝑈 + 𝑏𝑈 , X𝑉 = X𝑡

𝑉 ·W𝑉 + 𝑏𝑉 , (9)

where W𝑈 ,W𝑉 ∈ R( (𝑘+1)∗𝑑𝑡 )×𝑑𝑡 , and 𝑏𝑈 , 𝑏𝑉 ∈ R𝑑𝑡 are trainable
parameters, andX𝑈 ∈ R |𝑈 |×𝑑𝑡 ,X𝑉 ∈ R |𝑉 |×𝑑𝑡 . Thus, after training
the network, we can obtain final embeddings: Z = {X𝑈 ,X𝑉 }.

4.4 Optimization
To learn the weights of DualHGCN, we maximize the probability
of positive edges (existing edges in the multiplex bipartite network)
and minimize the probability of negative ones (unseen edges):

𝐿 =
∑︁

(𝑢,𝑣) ∈𝐸

[
𝜆 · log𝜎 (Z⊤𝑢 Z𝑣) + (1 − 𝜆) ·

𝑛∑︁
𝑖=1

(
E𝑢𝑖∼𝑃 (𝑢)

log(1 − 𝜎 (Z⊤𝑢 Z𝑢𝑖 )) + E𝑣𝑖∼𝑃 (𝑣) log(1 − 𝜎 (Z⊤𝑣 Z𝑣𝑖 ))
)] (10)

where 𝜎 is the sigmoid activation function, 𝜆 denotes the weight
to balance the importance between positive and negative samples,
𝑃 (𝑢) denotes the negative candidate nodes distribution of 𝑢, and 𝑛
is the number of the negative samples. The existing edges in the
multiplex bipartite network are treated as positive samples. For
each positive pairwise edge (𝑢, 𝑣), we randomly sample 𝑛 negative
edges incident to node 𝑢 and 𝑣 , respectively. The pseudocode for
DualHGCN is shown in Algorithm 1.

5 EXPERIMENTS
We benchmark our proposed model with several baselines to vali-
date the effectiveness of DualHGCN for unsupervised multiplex bi-
partite network representation learning. Specifically, we investigate
the following questions in these carefully designed experiments:

Q1 How does DualHGCN perform in predicting unknown inter-
actions or user behaviors (i.e., the link prediction task)?

Q2 How does DualHGCN perform in classifying items according
to user behaviors (i.e., the node classification task)?

Q3 How do the inter- and intra-message passing strategy con-
tribute to final unsupervised embeddings of DualHGCN?

Q4 How do the multiple types of edges and the sparsity of net-
works affect the performance of DualHGCN?

Q5 How sensitive is the performance of DualHGCN to its pa-
rameter settings?



Algorithm 1: The DualHGCN algorithm.
Input:Multiplex bipartite network 𝐺 = (𝑈 ,𝑉 , 𝐸, 𝑋 ),

number of iterations 𝑡 , number of negative samples
per positive sample 𝑛, the initial features 𝑋 , initial
parameters;

Output: Node Embedding Z
1 Model Construction:
2 Construct dual homo-hypergraphs G;
3 Add spectral convolutional layers on Base

homo-hypergraph (Eq. (4) or (5)), X𝑖
𝑈 ,𝑏𝑎𝑠𝑒

, X𝑖
𝑉 ,𝑏𝑎𝑠𝑒

;
4 for each edge-type 𝑗 ∈ [1, 2, ..., 𝑘] do
5 Add intra and inter-message passing layers (Eq. (6), (7)

and (8)), X𝑖
𝑈 ,𝑗

, X𝑖
𝑉 ,𝑗

;
6 end
7 Add linear layer to outputs of hypergraph convolutions;
8 Optimization:
9 Initialize Embeddings Z with initial features;

10 Randomly sample 𝑛 negative edges for each positive edge;
11 Optimize loss (Eq. (10)) via gradient descent (𝑡 iterations);
12 return Z;

5.1 Datasets
We use four real-world datasets in our experiments. Their detailed
statistics are given in Table 2.
DTI.1 This Drug-Target Interactions bipartite network was ran-
domly sampled from the data in the Drug Target Commons plat-
form [32]. The sampled dataset mainly contains two types of nodes
(drugs and targets) and five bio-activities (Potency, IC50, KI, Inhibi-
tion, and Activity) that form the edges.
Amazon.2 This dataset is a heterogeneous non-bipartite network [4].
We follow the strategy in BGNN [16] to process this dataset to de-
rive a multiplex bipartite network. This multiplex bipartite network
contains two types of edges and two types of nodes, where the at-
tributes of nodes include the price, sales-rank, brand, and category.
Alibaba-s and Alibaba.3 These real-world datasets consist of be-
havior logs of users and items collected from the e-commerce plat-
formAlibaba.com from 1st April 2020 to 30th April 2020. It contains
two types of nodes (users and items) and three types of activities
(click, enquiry and contact). The items are classified into five cat-
egories (women’s clothing, men’s clothing, etc.). Alibaba-s is a
smaller unattributed dataset, and Alibaba is a multiplex bipartite
network where users have attributes such as country, gender and
search logs, and items have attributes including the category, price,
search counts, visit counts, buy logs, etc. We have anonymized all
sensitive data, e.g., user and item id, in both Alibaba-s and Alibaba
datasets.

5.2 Baselines
We compare DualHGCN with fourteen state-of-the-art algorithms
in four categories as listed below.

1https://drugtargetcommons.fimm.fi
2http://jmcauley.ucsd.edu/data/amazon
3https://www.alibaba.com

Table 2: Statistics of four real-world datasets. The sparsity
of the multiplex bipartite network: ⟨S⟩ = 1 − |𝐸 |

|𝑈 |× |𝑉 | .

Datasets DTI Amazon Alibaba-s Alibaba

#Nodes U 3,270 3,781 1,869 6,054
V 1,567 5,749 13,349 16,595

#Edges 16,458 60,658 27,036 45,734
#Edge Types 5 2 3 3

#Features U N/A 4 N/A 7
V 11

#Classes V N/A N/A 5 5
#⟨S⟩ 99.68% 99.72% 99.89% 99.95%

1) SimpleHomogeneousNetworkEmbedding.These homo-
geneous network embedding methods ignore the both node-type
and edge-type information in the input multiplex bipartite network.
They also do not use hypergraphs to generate low-dimensional
representations for each node.

• Node2vec [14] uses a biased random walk procedure and
extends the skip-gram model.

• GraphSAGE [15] is an inductive network embedding method
which contains several message aggregation strategies to
generate features for previously unobserved nodes.

• GCN [20] proposes a spectral graph convolutional operator
to learn both local network structure and features of nodes.

• GAT [36] uses masked self-attention mechanism to assign
different neighbors with different specified weights.

2) Hypergraph Embedding. For these methods, we use the
same strategy mentioned in Section 4.1 to build dual ‘base’ homo-
hypergraphs. They also ignore edge-type information in the inputs.

• HGNN [10]: generalizes the spectral convolutional networks
to capture high-order structural information.

• HyperGCN [41]: decomposes hyperedges of its hypergraphs
into a set of node pairs and then uses a simple graph convo-
lutional network to learn decomposed node pairs.

• HCHA [1]: uses a spectral convolutional and attention-based
method to model multi-hop relationships.

• MGCN [5]: generalizes from simple graph convolutional
networks without using spectral convolutions.

3) Heterogeneous Network Embedding. These methods can
model multiple node and edge types but do not explicitly model
the bipartite structure of the input multiplex bipartite network.

• Metapath2vec++ [8]: generates meta-path-based random
walks on which a heterogeneous skip-gram model is trained.

• HAT [40]: is a hierarchical attention based heterogeneous
network embedding method which uses node-level and edge-
level attention to model multiple edges types.

4) Bipartite Network Embedding. These methods are applied
on the ‘base’ bipartite networks constructed in Section 4.1 to derive
the final node embeddings.

• BiNE [11]: generates biased random walks and then opti-
mizes to preserve both the explicit and implicit relationships
within the bipartite network.



• BGNN [16]: a cascaded and unsupervised embeddingmethod
with a communication strategy between the domains to dis-
tinguish between the two types of nodes and promote infor-
mation sharing across two domains simultaneously.

• BiANE [19]: an attributed bipartite network embeddingmethod
which can model the intra- and inter-partition proximity si-
multaneously and uses a latent correlation training approach
to jointly learn attribute and structure information.

As another baseline just the initial features are used, i.e., with-
out any network embedding methods. In datasets where node at-
tributes are available, the attributes are used as initial features and
in datasets without node attributes, we use a tied autoencoder [2]
(where weights across the encoder and decoder are tied) on the
adjacency matrix of the multiplex bipartite network to generate
initial features.

5.3 Experimental Settings
Link Prediction. We randomly sample 50% of the edges as the
training set and the remaining edges are treated as the test set. The
network embedding methods are run on the subgraph formed from
training set edges only. For each edge in the test set, embeddings
of the incident nodes (learnt from the training set) are used as
features. 5-fold cross validation is used on the test set edges to
evaluate the Logistic Regression classifier performance. The entire
procedure is repeated 5 times to obtain different random samples
of train and test sets. Mean and standard deviation values of the
classification evaluationmetrics are reported.We use the area under
the ROC curve (AUROC) and the area under the precision-recall
curve (AUPRC) as evaluation metrics and Logistic Regression as
the classifier.

Node Classification. All the network embedding methods are
run on the entire dataset to obtain the node embeddings. We use
the micro-F1 and macro-F1 as the evaluation metrics and Stochas-
tic Gradient Descent (SGD) classifier. 5-fold cross validation on
the entire data is used to evaluate classifier performance on node
classification. We report the mean and standard deviation values.

Statistical Significance. To quantify the significance of the
improvement achieved by DualHGCN, when compared with base-
lines, we compute the one-sided Wilcoxon rank-sum p-value [13]
between DualHGCN and the next-best results in each experiment.

Parameter Settings.The dimensions of initial features (for both
with and without attributes) and final embeddings are all empiri-
cally set to be 32. We run GraphSAGE with different aggregators
(e.g., mean, lstm, and pooling) and show the best results. In Metap-
ath2vec, we use ‘U-V-U’ as the meta-path to model the ‘base’ bipar-
tite network. For all baseline methods, we optimize their models
with different parameters and report the best performance scores.

For our method, DualHGCN, the default number of layers is 2.
The number of negative samples is different from distinct datasets
and ranges in {1, 2, 3}. The Adam optimizer is used in our model
to optimize parameters via backpropagation. When the symmetric
version of the hypergraph convolutional operator (Eq. 4) is used
in DualHGCN, we call the method DualHGCN-sym and when the
asymmetric operator (Eq. 5) is used, we call the method DualHGCN-
asym. The classifiers used for link prediction and node classification,
and evaluation metrics are all from the scikit-learn library [24]. All

codes, data and experimental settings of the DualHGCN model are
freely available4.

5.4 Results on Link Prediction (Q1)
Table 3 shows the results obtained by DualHGCN and baselines
on all four datasets without attributes, and Table 4 shows their
performance on Amazon and Alibaba with attributes.

Both Table 3 and 4 show that DualHGCN significantly outper-
forms other baselines on both datasets without and with node
attributes. In Table 3, DualHGCN-asym achieves the highest scores
on all four datasets. For DTI, the AUROC andAUPRC score achieved
by initial features, which trains the adjacency matrix with the tied
autoencoder, are 63.43% and 72.34% respectively, and three bipar-
tite network embedding methods achieve the similar highest metric
score among baselines (BiNE, BGNN-adv, and BiANE) where the
highest AUROC score achieved by BiANE (91.86%) and the highest
AUPRC score achieved by BiNE (92.84%). However, DualHGCN-
asym performs better than all baselines and achieves the highest
score on theDTI dataset (93.85% for AUROC and 95.00% for AUPRC
respectively). For Alibaba-s, the AUROC and AUPRC score achieved
by DualHGCN-asym are 87.57% and 89.02% respectively, which
are both higher than the second highest scores achieved by BGNN-
adv (78.35% for AUROC and 80.93% for AUPRC). Moreover, for
Amazon and Alibaba with attributes, DualHGCN also achieves the
highest metric scores (see Table 4). It demonstrates that our pro-
posed DualHGCN method is effective both with and without the
initial attribute information on nodes.

Comparing Table 3 and 4 we see that training tied autoencoder
with the adjacency matrix as initial features plays an important role
in predicting unknown interactions. For instance, the AUROC and
AUPRC scores achieved by initializing features with the adjacency
matrix are both almost 15% higher than the scores achieved by just
using the attributes as features. DualHGCN appears to be more
robust to different initial features, compared to most other methods.
We observe that performance gap for baseline methods, across
the two tables, is large. In contrast, AUROC and AUPRC values of
DualHDCN are similar across the two feature initializations.

5.5 Results on Node Classification (Q2)
Note that the Alibaba dataset contains attributes for each node, and
we adopt two different ways to generate initial features. Alibaba(adj)
denotes that we use the adjacency matrix as the initial features,
and Alibaba(attr) means that attributes are used to generate initial
features. For the smaller unattributed dataset Alibaba-s, only the
adjacency matrix is used to generate initial features.

The experimental results of both DualHGCN and baselines are
summarized in Table 5. The proposed DualHGCN performs signifi-
cantly better than other baselines. The micro-F1 and macro-F1 of
DualHGCN-asym achieved on Alibaba-s dataset are 36.43% and
35.73% respectively, which are significantly higher than the second
highest score achieved by BGNN (29.74% for micro-F1 and 22.71%
for macro-F1). The comparison between initial features and Dual-
HGCN demonstrates the superior performance of DualHGCN on
fusing the initial features and topological information to enhance

4https://github.com/xuehansheng/DualHGCN



Table 3: The AUROC and AUPRC values of DualHGCN and baselines on the task of link prediction(%). The initial features for
all datasets are adjacency matrix with tied autoencoder.

Methods DTI Amazon Alibaba-s Alibaba
AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

Initial features 63.43±0.74 72.34±0.73 70.57±0.55 74.50±0.63 67.08±0.45 68.21±0.67 68.06±0.25 71.38±0.28
Node2vec 50.88±0.37 57.45±0.38 50.30±0.44 55.44±0.47 50.43±0.29 51.42±0.50 50.10±0.49 51.52±0.29
GraphSAGE 79.34±0.39 82.36±0.24 69.99±0.18 69.39±0.30 64.91±0.14 65.76±0.21 66.49±0.09 60.36±0.13

GCN 56.95±0.13 76.00±0.29 64.93±0.12 77.45±0.15 63.08±0.10 79.59±0.15 56.87±0.04 77.66±0.09
GAT 76.33±0.25 80.64±0.31 66.70±0.13 70.16±0.15 53.28±0.28 54.29±0.66 55.38±0.30 54.49±0.47
HGNN 77.87±1.07 83.57±1.02 80.14±0.32 82.94±0.17 67.07±0.12 69.34±0.07 69.64±0.15 73.50±0.07
HCHA 63.77±1.39 69.83±1.07 62.66±0.72 67.84±0.72 63.61±0.16 65.47±0.18 65.84±0.09 68.81±0.06
MGCN 50.14±0.11 62.07±2.86 51.84±1.34 62.35±0.61 66.31±1.19 68.60±1.50 51.23±0.63 52.79±1.20

HyperGCN 68.99±1.70 77.34±1.86 68.42±1.02 73.78±0.60 63.72±0.22 63.54±0.17 61.38±1.12 65.21±0.70
Metapath2vec++ 85.99±0.12 87.73±0.43 60.24±0.17 63.58±0.21 78.85±0.22 69.17±0.37 65.98±0.18 70.97±0.20

HAT 86.22±0.14 87.21±0.12 67.26±0.21 70.67±0.17 57.17±0.61 57.64±0.85 56.98±0.88 58.51±1.40
BiNE 90.74±0.45 92.84±0.27 78.70±0.98 80.56±2.20 72.54±0.47 75.99±0.76 78.94±0.56 79.13±0.43

BGNN-mlp 76.78±2.07 83.05±1.59 68.32±0.23 74.11±0.23 61.96±0.64 65.22±0.67 66.54±0.23 68.84±0.18
BGNN-adv 90.35±1.80 92.35±1.11 83.47±0.16 84.70±0.15 77.49±1.10 77.26±1.01 82.76±0.09 82.40±0.10
BiANE 91.86±0.19 92.19±0.25 76.70±0.19 78.64±0.34 78.35±0.31 80.93±0.25 78.47±0.12 82.35±0.12

DualHGCN-sym 93.53±0.28 94.54±0.21 85.47±0.69 87.98±0.61 86.86±0.41 88.50±0.44 84.53±0.55 86.72±0.44
DualHGCN-asym 93.85±0.25∗ 95.00±0.13∗ 86.69±0.26∗ 88.69±0.85∗ 87.57±0.41∗ 89.02±0.42∗ 85.54±0.80∗ 87.51±0.82∗

∗ Asterisks represent where DualHGCN’s improvement over baselines is significant (one-sided rank-sum p-value <0.01).

Table 4: The AUROC and AUPRC values of DualHGCN and
baselines on the task of link prediction. The initial features
for Amazon and Alibaba are attributes.

METH Amazon Alibaba
AUROC AUPRC AUROC AUPRC

Inits 57.19±0.32 61.94±0.34 54.05±0.24 55.59±0.28
N2v 50.30±0.44 55.44±0.47 50.10±0.49 51.52±0.29
GSA 67.76±0.28 70.10±0.22 77.69±0.43 76.79±0.49
GCN 56.26±0.35 58.19±0.41 71.38±0.36 69.16±0.18
GAT 62.44±0.22 67.11±0.13 59.12±0.68 59.73±0.66
HGNN 77.41±0.20 81.14±0.13 63.16±0.27 66.16±0.20
HCHA 62.66±0.72 67.84±0.72 57.98±0.15 59.03±0.25
MGCN 64.52±1.10 71.34±0.67 50.54±0.25 52.43±0.98
HGCN 58.61±1.39 70.59±1.54 63.76±0.16 66.09±0.10
M2v++ 60.24±0.17 63.58±0.21 65.98±0.18 70.97±0.20
HAT 69.45±0.26 72.22±0.20 50.51±0.77 52.09±0.95
BiNE 78.70±0.98 80.56±2.20 78.94±0.56 79.13±0.43
BGN-m 68.97±1.54 73.80±1.11 67.62±0.34 70.92±0.21
BGN-a 79.43±0.33 81.48±0.36 83.42±0.25 81.53±0.23
BiANE 79.57±0.25 81.99±0.20 76.31±0.16 79.89±0.15
DHG-s 84.87±0.75 87.19±0.65 86.27±0.56 88.07±0.45
DHG-a 86.55±0.15∗ 88.55±0.16∗ 86.76±0.46∗ 88.59±0.23∗

∗ Asterisks indicate where improvement over baselines achieved by DualHGCN is significant (one-sided rank-sum p-value <0.01).
† Some abbreviations are used in the table, ‘inits’ short for ‘initial features’, ‘N2v’ short for ‘Node2vec’, ‘GSA’ short for ‘Graph-
SAGE’, ‘HGCN’ short for ‘HyperGCN’, ‘M2v++’ short for ‘Metapath2vec++’, ‘BGN-m’ short for ‘BGNN-mlp’, ‘BGN-a’ short for
‘BGNN-adv’, ‘DHG-s’ short for ‘DualHGCN-sym’, and ‘DHG-a’ short for ‘DualHGCN-asym’.

the quality of unsupervised network embedding. Moreover, Dual-
HGCN and baselines achieve higher metric scores on Alibaba (attr)
than Alibaba (adj), which indicates that attributes of nodes con-
tribute to improving the effects of node classification. For instance,
the AUROC andAUPRC values achieved by DualHGCN-asymwhen
initialized with the adjacency matrix as features are 34.29% and
33.95% respectively, which are about 10% lower than the scores
achieved by the model with attributes as initial features.

Note that the micro-F1 scores of many baselines are much larger
than the corresponding macro-F1 scores, which indicates that these
baselines result in classifications biased towards the large classes.
For DualHGCN, the small gap between the micro-F1 and macro-
F1 scores shows that DualHGCN is good at handling imbalanced
classes for node classification.

5.6 Effects of Message-passing Strategies (Q3)
In DualHGCN, we propose two message passing strategies, intra-
message passing, and inter-message passing. The intra-message
passing strategy transfers learned features of ‘base’ homo-hypergraph
to other specific homo-hypergraphs, i.e., ‘click’, ‘enquiry’, and ‘con-
tact’ homo-hypergraphs, and the inter-message passing strategy
shares features across dual homo-hypergraph sets (users and items)
to enable communication between two distinct types of nodes. To
answerQ3, we perform an ablation study on the DualHGCN model.
Figure 3 shows the performance of DualHGCN-asym on Alibaba-s
and Alibaba dataset with different message passing strategies. Over-
all, both intra- and inter-message passing strategies contribute to



Table 5: The micro-F1 and macro-F1 values of DualHGCN and baselines on the task of node classification (%). Alibaba(adj)
denotes the adjacencymatrix is used as initial features, and Alibaba(attr) means attributes are preprocessed as initial features.

Methods Alibaba-s Alibaba(adj) Alibaba(attr)
micro-F1 macro-F1 micro-F1 macro-F1 micro-F1 macro-F1

Initial features 25.97±0.34 8.25±0.09 26.63±0.47 8.41±0.12 39.34±0.21 25.61±0.37
Node2vec 21.17±0.41 20.09±0.30 21.37±0.64 19.95±0.43 21.37±0.64 19.95±0.43
GraphSAGE 22.06±0.71 19.40±0.62 23.83±1.08 20.00±0.72 23.47±1.14 19.52±0.43

GCN 21.91±0.71 19.51±0.38 23.67±1.07 19.32±0.33 24.21±1.10 18.33±0.93
GAT 22.70±0.51 19.70±0.48 23.15±0.62 19.98±0.68 23.64±1.54 18.70±0.34
HGNN 25.59±0.97 9.06±0.93 26.77±1.03 13.03±1.84 32.82±0.74 21.51±0.75
HCHA 26.22±0.10 8.31±0.03 27.10±0.03 8.53±0.02 44.88±0.35 29.17±0.41
MGCN 25.93±1.00 19.51±0.92 26.49±0.53 11.36±1.37 40.48±1.51 30.47±1.91

HyperGCN 26.27±0.13 8.32±0.03 27.11±0.06 8.53±0.02 40.66±0.31 26.53±0.34
Metapath2vec++ 22.34±0.68 20.32±0.60 22.72±0.23 20.13±0.46 22.72±0.23 20.13±0.46

HAT 25.64±1.48 15.06±1.57 27.07±0.38 16.14±0.42 26.28±1.62 16.05±1.33
BiNE 26.65±0.93 20.77±0.98 26.98±0.44 20.64±0.57 26.98±0.44 20.64±0.57

BGNN-mlp 28.01±1.67 22.71±1.96 24.50±0.52 19.86±0.54 25.04±0.67 17.43±1.12
BGNN-adv 29.74±1.82 16.92±1.74 28.39±0.51 21.59±1.09 46.32±1.53 36.98±0.60
BiANE 22.29±0.45 19.91±0.54 22.65±0.20 20.01±0.53 22.84±0.63 19.89±0.47

DualHGCN-sym 34.68±1.19 34.02±1.06 31.54±0.74 29.77±0.60 45.21±0.85 41.65±0.86
DualHGCN-asym 36.43±0.81∗ 35.73±1.20∗ 34.29±0.54∗ 33.95±0.36∗ 46.63±0.48 43.59±0.52∗

∗ Asterisks indicate significant improvement over baselines by DualHGCN (one-sided rank-sum p-value <0.01).

the tasks of link prediction and node classification, and the inter-
message passing strategy plays an essential role in modeling real-
world user behavior logs in the e-commerce platform.

The effect of intra- and inter-message passing strategy depends
on the distribution of nodes and edges among different types. In
Alibaba, the inter-message passing strategy plays a more important
role because of the imbalance of the average hyperedge degrees
in different dual homo-hypergraphs. Note that the degree of a
hyperedge is the number of nodes of the hypergraph incident to
this hyperedge.

For instance, the average hyperedge degrees of different hy-
pergraphs built from the Alibaba dataset are as follows, i.e., 2.28
for ‘base’ homo-hypergraph, 2.23 for ‘click’ homo-hypergraph,
1.79 for ‘enquiry’ homo-hypergraph and 1.59 for ‘contact’ homo-
hypergraph respectively. Note that the gap of hyperedge degrees
between ‘base’ and ‘click’/‘enquiry’/‘contact’ homo-hypergraphs is
small, thus the contribution of the intra-message passing strategy
on Alibaba is limited. The most conspicuous improvement of the
intra-message passing is on Alibaba(attr) for the task of node classi-
fication. DualHGCN-asym without both intra- and inter- message
passing strategy gets the 24.52% for micro-F1 and 17.04% for macro-
F1 on Alibaba(attr) for the node classification task, and the micro-F1
and macro-F1 scores achieve 30.32% and 21.63% respectively if the
intra-message passing is added into the DualHGCN-asym model.

In contrast, the gap of hyperedge degrees between dual homo-
hypergraph sets of users and items is large. For instance, in ‘base’
homo-hypergraph, the average hyperedge degrees for users and
items are 4.27 and 1.56 respectively. In this case, the effect of the

inter-message passing strategy, which transfers information be-
tween two distinct domains (users and items), is essential. DualHGCN-
asym without both intra- and inter- message passing strategy gets
the 70.71% for AUROC and 69.50% for AUPRC on Alibaba(attr)
for the link prediction task, and the AUROC and AUPRC scores
achieve 86.53% and 87.99% when inter-message passing is added
into the DualHGCN-asym model. In real-world datasets, especially
in e-commerce, the imbalance of the average hyperedge degrees be-
tween users and items is common and difficult to model. Thus, the
inter-message passing strategy plays an important role in modeling
sparse dual homo-hypergraphs.

5.7 Effects of Multiplex and Sparsity (Q4)
To study the effect of multiplexing, we evaluate the performance
of DualHGCN on each homo-hypergraph independently. We also
evaluate the performance of DualHGCN at different sparsity levels.
Effects of Multiple Edges.We run the DualHGCN-asym method
on each edge-type hypergraph (i.e., ‘base’, ‘click’, ‘enquiry’ and
‘contact’ homo-hypergraph) and compare it with DualHGCN-asym
employed on all homo-hypergraphs. The experimental results are
shown in Figure 4. The results demonstrate the superior perfor-
mance due to integrating different types of edges compared to
treating these edges independently in each homogeneous hyper-
graph. For instance, the AUROC and AUPRC scores achieved by
DualHGCN-asym onAlibaba(attr) for node classification are 46.63%
and 43.59% respectively, which is significantly higher than other
edge-type homo-hypergraphs (e.g., 41.31% for AUROC and 36.94%
for AUPRC on ‘base’ homo-hypergraph). Further, from Figure 4,



Figure 3: The results of DualHGCN-asym with/without intra-/inter-message passing strategy on two datasets for link predic-
tion and node classification tasks.

Figure 4: The results of DualHGCN-asym on different edge-
type datasets of Alibaba. The figure (a) and (b) use adjacency
matrix and attributes as the initial features respectively.

we find that the performance scores are correlated to the infor-
mation enrichment of sub-bipartite network. We observe that the
performance scores achieved on four homo-hypergraphs decrease
progressively with decreasing number of edges in each sub-bipartite
network (25,869 for ‘base’, 25,180 for ‘click’, 16,125 for ‘enquiry’,
4,429 for ‘contact’ sub-bipartite networks).
Effects of Sparsity.We randomly delete a specific ratio of existing
edges to increase the sparsity of the multiplex bipartite network,
and employ DualHGCN, BiNE, BGNN-adv, and BiANE on these
datasets to evaluate the performance.

Figure 5 shows that DualHGCN still significantly outperforms
other baselines (BiNE, BGNN-adv and BiANE) when the networks
become more sparse. With increase in sparsity, the performance
of BiNE drops steeply compared to that of DualHGCN, BGNN-adv,
and BiANE because BiNE focuses on the topological structure and
does not utilize the initial features either from adjacency matrix
or attributes. The rate of decrease in performance of DualHGCN
is similar to that of BiANE. In extreme cases, when we randomly
delete more than 50% edges, the performance scores achieved by
DualHGCN is similar to the performance of initial features. Overall,
DualHGCN has the best performance at various sparsity levels.

Figure 5: The results of DualHGCN-sym/asym, BGNN-adv,
BiNE, BiANE, and initial features on Alibaba-s with differ-
ent sparsity of networks for link prediction.

5.8 Sensitivity Analysis and Visualization (Q5)
We evaluate the sensitivity of DualHGCN to its three main (number
of negative samples, number of layers, and parameter 𝜆) and also
qualitatively analyze the embeddings.
Effect of Negative Samples. To train our model, we randomly
sample 𝑛 negative edges (unseen edges) for each positive edge
(existing edge). The number of negative samples may affect the
performance of final embedding. Here, we vary 𝑛 from 1 to 4, and
evaluate the performance of DualHGCN on Alibaba-attr for the task
of node classification (Figure 6). Results demonstrate the robustness
of our model DualHGCN on different number of negative samples.
Effect of Layers.We investigate the performance of DualHGCN
with different number of layers, ranging from 1 to 5. The results in
Figure 7 show that DualHGCN achieves the best performance with
two layers. With increase in number of layers, the performance
of DualHGCN decreases slightly on both tasks of link prediction
and node classification. This phenomenon has also been observed
in classical graph convolutional networks [20]. The reason stated
in [21] is that the graph convolutional operator is a special form
of Laplacian smoothing. Increasing the number of layers makes it
more difficult to train. Multiplication of Laplacian smoothing could
lead to features of nodes being mixed and difficult to distinguish.
This problem also exists in hypergraph convolutional operators.
Effect of Parameter 𝜆. The hyper-parameter 𝜆 in the loss function
is used to balance the importance between positive samples and



Figure 6: The results of DualHGCN-sym/DualHGCN-asym
on Alibaba with different numbers of negative samples for
node classification.

Figure 7: DualHGCN-sym/asym on Alibaba with varying
number of layers for link prediction and node classification.

negative samples. We investigate the effect of varying parameter 𝜆,
from 0.25 to 0.75, on both tasks of link prediction and node classifi-
cation. From Figure 8, we find that the performance of the model is
not markedly sensitive to changes in 𝜆 in both link prediction and
node classification tasks.
Visualization. To conduct a qualitative assessment of the embed-
dings, we use the t-SNE [35] to visualize the final embeddings. Fig-
ure 9 shows the 2D-visualization of the embeddings from Alibaba
network from DualHGCN-asym, BGNN-adv, BiANE and BiNE,
where red nodes represent users and blue nodes represent items.
BiNE produces embeddings in the same space for both users and
items and thus visually the embeddings of the nodes are not well
separated. BiANE improves on BiNE in terms of separability be-
cause BiANE integrates the attribute information of two different
types of nodes. BGNN also shows good layout because it models
the distinction between two types of nodes. Visually, DualHGCN
gives the best separation between the two types of nodes.

6 CONCLUSION
Multiplex bipartite networks appear in numerous important ap-
plications. To our knowledge, our model DualHGCN is the first
network embedding method that can model multiple edge types
and node attributes in bipartite networks. Further, it also effectively
addresses common real-world challenges of sparsity and imbalance
in node and edge type distributions. The scalable transformation
employed in DualHGCN to two sets of dual homogeneous hyper-
graphs enables the use of hypergraph convolutional operators on

Figure 8: DualHGCN-sym/asym on Alibaba(attr) with vary-
ing 𝜆 for link prediction and node classification.

Figure 9: Visualization of node embeddings on Alibaba with
attributes dataset (red: users, blue: items).

sparse inputs. The intra-message passing strategy captures topolog-
ical information across multiplex edges and addresses the problem
of edge-type imbalance. The inter-message passing strategy tackles
the challenges of node-degree and node-type imbalance between
the two distinct node sets. Further, the DualHGCN architecture
effectively uses node attributes when provided as inputs. Our exten-
sive experiments demonstrate the efficacy of DualHGCN on four
real-world datasets for the tasks of link prediction and node classi-
fication. DualHGCN significantly outperforms 14 state-of-the-art
methods from 4 different categories of embedding techniques. They
also highlight the strengths of our model with respect to robustness
to varying sparsity levels, node attribute initialization strategies
and handling of imbalanced classes.

A APPENDIX
SupplementaryMaterial Figure 10 shows the degree distribution
of users and items in the Alibaba. Users have more rich and com-
plicated structural information (e.g., users have more cases with
degrees more than 2, and the degree of most of the items is 2.)
Figure 11 shows the proportion of edge-type and node-number in
the Alibaba. In Figure 11 (a), 55% of edges is of type ‘click’, which



Figure 10: Degree distribution of users, items in Alibaba.

Figure 11: Edge, Node type distributions in Alibaba dataset.

Table 6: Parameters of DualHGCN used in our experiments.

Parameters DTI Amazon Alibaba-s Alibaba
LP LP LP NC LP NC

lr 0.002 0.002 0.001 0.001 0.002 0.005
Epochs 4000 3000 3000 5000 3000 5000

Optimizer Adam
Dropout 0.5 0.5 0.5 0.5 0.5 0.3

Weight decay 5e-4
𝜆 0.5 0.5 0.5 0.5 0.75 0.25

Layers 2
Neg samples 2 3 1 1 2

Inter True True True True True
Intra False True True True False

Output emb 32

is more than other types of edges. In Figure 11 (b), the number of
items are more than the number of users. These figures show the
problem of edge-type and node-number imbalance in the data.

Implementation Details of DualHGCN In Table 6, we show
the parameters of DualHGCN-sym/-asym used in our experiments.
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