
Fair and Representative Subset Selection from Data Streams∗

Yanhao Wang

University of Helsinki

Helsinki, Finland

yanhao.wang@helsinki.fi

Francesco Fabbri
†

Pompeu Fabra University & Eurecat

Barcelona, Spain

francesco.fabbri@upf.edu

Michael Mathioudakis

University of Helsinki

Helsinki, Finland

michael.mathioudakis@helsinki.fi

ABSTRACT

We study the problem of extracting a small subset of representative

items from a large data stream. In many data mining and machine

learning applications such as social network analysis and recom-

mender systems, this problem can be formulated as maximizing a

monotone submodular function subject to a cardinality constraint 𝑘 .

In this work, we consider the setting where data items in the stream

belong to one of several disjoint groups and investigate the opti-

mization problem with an additional fairness constraint that limits

selection to a given number of items from each group. We then

propose efficient algorithms for the fairness-aware variant of the

streaming submodular maximization problem. In particular, we first

give a (1
2
− 𝜀)-approximation algorithm that requires 𝑂 (1𝜀 log

𝑘
𝜀)

passes over the stream for any constant 𝜀 > 0. Moreover, we give a

single-pass streaming algorithm that has the same approximation

ratio of (1
2
− 𝜀) when unlimited buffer sizes and post-processing

time are permitted, and discuss how to adapt it to more practical

settings where the buffer sizes are bounded. Finally, we demonstrate

the efficiency and effectiveness of our proposed algorithms on two

real-world applications, namely maximum coverage on large graphs
and personalized recommendation.

CCS CONCEPTS

• Information systems→ Data stream mining.

KEYWORDS

algorithmic fairness, approximation algorithm, data summarization,

streaming algorithm, submodular maximization

1 INTRODUCTION

A crucial task in modern data-driven applications, ranging from

influence maximization [23, 35] and recommender systems [32, 34],

to nonparametric learning [4, 17] and data summarization [12, 33],

is to extract a few representatives from a large dataset. In all afore-

mentioned applications, this task can be formulated as selecting a

subset of items to maximize a utility function that quantifies the

“representativeness” (or “utility”) of the selected subset. Oftentimes,

the objective function satisfies submodularity, a property of “dimin-

ishing returns” such that adding an item to a smaller set always

leads to a greater increase in utility than adding it to a larger set.

Consequently, maximizing submodular set functions subject to a

cardinality constraint (i.e., the size of the selected subset is limited

to an integer 𝑘) is general enough to model many practical problems

in data mining and machine learning. In this work, we adopt the

same formulation for representative item selection.

∗
To appear in the Web conference 2021 (WWW 2021)

†
This research was done while Francesco Fabbri worked at the University of Helsinki.

The classic approach to the cardinality-constrained submodu-

lar maximization problem is the Greedy algorithm proposed by

Nemhauser et al. [31], which achieves an approximation factor of

(1− 1

𝑒) that is NP-hard to improve [13]. In many real-world scenar-

ios, however, the data become too large to fit in memory or arrive

incrementally at a high rate. In such cases, the Greedy algorithm

becomes very inefficient because it requires 𝑘 repeated sequential

scans over the whole dataset. Therefore, streaming algorithms for

submodular maximization problems have received much attention

recently [2, 4, 17, 21, 32]. Typically, these streaming algorithms

require only one or a few passes over the dataset, store a small por-

tion of items in memory, and compute a solution more efficiently

than the Greedy algorithm at the expense of slightly lower quality.

Despite the extensive studies on streaming submodular maxi-

mization, unfortunately, it seems that none of the existing meth-

ods consider the fairness issue of the subsets extracted from data

streams. In fact, recent studies [5, 10, 11, 20] reveal that data sum-

maries automatically generated by algorithms might be biased with

respect to sensitive attributes such as gender, race, or ethnicity, and

the biases in summaries could be passed to data-driven decision-

making processes in education, recruitment, banking, and judiciary

systems. Thus, it is necessary to introduce fairness constraints into
submodular maximization problems so that the selected subset can

fairly represent each sensitive attribute in the dataset. Towards this

end, we consider that a data stream 𝑉 comprises 𝑙 disjoint groups

𝑉1,𝑉2, . . . ,𝑉𝑙 defined by some sensitive attribute. For example, the

groups may correspond to a demographic attribute such as gender
or race. We define the fairness constraint by assigning a cardinality

constraint 𝑘𝑖 to each group 𝑉𝑖 and ensuring that

∑𝑙
𝑖=1 𝑘𝑖 = 𝑘 . Then,

our goal is to maximize the submodular objective function under

the constraint that the selected subset must contain 𝑘𝑖 items from𝑉𝑖 .

The fairness constraint as defined above can incorporate different

concepts of fairness by assigning different values of 𝑘1, 𝑘2, . . . , 𝑘𝑙 .

For example, one can extract a subset that approximately represents

the proportion of each group in the dataset by setting 𝑘𝑖 =
|𝑉𝑖 |
|𝑉 | · 𝑘 .

As another example, one can enforce a balanced representation of

each group by setting 𝑘𝑖 =
𝑘
𝑙
.

Theoretically, the above-defined fairness constraint is a case of

partition matroid constraints [1, 19, 24], and thus the optimization

problem can be reduced to maximizing submodular set functions

with matroid constraints. It is not surprising that all existing algo-

rithms for submodular maximization with cardinality constraints

cannot be directly used for this problem anymore, because their

solutions may not satisfy the fairness constraint (i.e., the group-

specific cardinality constraints). Nevertheless, a seminal work of

Fisher et al. [15] indicates that the Greedy algorithm with minor

ar
X

iv
:2

01
0.

04
41

2v
2

 [
cs

.D
S]

 1
2

Fe
b

20
21

Yanhao Wang, Francesco Fabbri, and Michael Mathioudakis

modifications is
1

2
-approximate for this problem. But it still suf-

fers from efficiency issues in the streaming setting. In addition,

the state-of-the-art streaming algorithms [6, 8, 14] for submodular

maximization with matroid constraints are only
1

4
-approximate

and do not provide solutions of the same quality as the Greedy

algorithm efficiently in practice.

In this paper, we investigate the problem of streaming submodular
maximization with fairness constraints. Our main contributions are

summarized as follows.

• We first formally define the fair submodular maximization
(FSM) problem and show its NP-hardness. We also describe

the
1

2
-approximationGreedy algorithm for the FSM problem

and discuss why it cannot work efficiently in data streams.

(Section 3)

• We propose a multi-pass streaming algorithm MP-FSM for

the FSMproblem. Theoretically,MP-FSM requires𝑂 (1𝜀 log
𝑘
𝜀)

passes over the dataset, stores 𝑂 (𝑘) items in memory, and

has an approximation ratio of (1
2
− 𝜀) for any constant 𝜀 > 0.

(Section 4.1)

• We further propose a single-pass streaming algorithm SP-

FSM for the FSM problem, which requires only one pass over

the data stream and offers the same approximation ratio as

MP-FSM when an unbounded buffer size is permitted. We

also discuss how to adapt SP-FSM heuristically to limit the

buffer size to 𝑂 (𝑘). (Sections 4.2 & 4.3)

• Finally, we evaluate the performance of our proposed algo-

rithms against the state-of-the-art methods in two real-world

application scenarios, namely maximum coverage on large
graphs and personalized recommendation. The empirical re-

sults on several real-world and synthetic datasets demon-

strate the efficiency, effectiveness, and scalability of our pro-

posed algorithms. (Section 5)

2 RELATEDWORK

There has been a large body of work on submodular optimization

for its wide applications in various real-world problems, including

influence maximization [23, 37], facility location [27, 28], nonpara-

metric learning [4, 17], and group recommendation [34]. We refer

interested readers to [25] for a survey.

The line of research that is the most relevant to this work is

streaming algorithms for submodular maximization. The seminal

work of Fisher, Nemhauser, and Wolsey [15, 31] showed that the

Greedy algorithm, which iteratively added an item that maximally

increased the utility with 𝑘 passes over the dataset, gave approxima-

tion ratios of (1 − 1

𝑒) and
1

2
for maximizing monotone submodular

functions with cardinality and matroid constraints, respectively.

Then, a series of recent studies [4, 17, 21, 26] proposed multi- or

single-pass streaming algorithms for maximizing monotone sub-

modular functions subject to cardinality constraints with the same

approximation ratio of (1
2
−𝜀). Furthermore, Norouzi-Fard et al. [32]

showed that any single-pass streaming algorithm must use Ω(𝑛
𝑘
)

memory to achieve an approximation ratio of over
1

2
. They also

proposed streaming algorithms with approximation factors better

than
1

2
by assuming that items arrived in random order or running

in multiple passes. Alaluf et al. [2] proposed a 0.2779-approximation

streaming algorithm for maximizing non-monotone submodular

functions with cardinality constraints. Moreover, streaming sub-

modular maximization is also studied in different models, e.g., the

sliding-window model [12, 38] where only recent items within a

time window are available for selection, the time-decay model [40]

where the weights of old items decrease over time, and the deletion-

robust model [22, 29, 30] where existing items might be removed

from the stream. However, all above steaming algorithms are spe-

cific for the cardinality constraint and cannot be directly used for

the fairness constraint in this paper. We note that Kazemi et al. [22]

also introduce fairness into submodular maximization problems.

However, they consider removing sensitive items from the dataset

for ensuring fairness, which is different from the problem we study

in this paper.

Chakrabarti and Kale [6] proposed a
1

4𝑝 -approximation single-

pass streaming algorithms for maximizing monotone submodular

functions with the intersections of 𝑝 matroid constraints. Chekuri et

al. [8] generalized the algorithm in [6] to the case of non-monotone

submodular functions. Both algorithms achieve a
1

4
-approximation

ratio for the FSM problem. Chan et al. [7] improved the approxima-

tion ratio for partition matroids to 0.3178 via randomization and

relaxation. Feldman et al. [14] introduced a subsampling method to

speed up the algorithm of [8] while still achieving an approximation

ratio of
1

4𝑝 in expectation. Huang et al. [18] proposed an𝑂 (1𝜀)-pass
1

2+𝜀 -approximation algorithm for monotone submodular maximiza-

tion with matroid constraints. We implement the aforementioned

algorithms from [6, 8, 14, 18] as baselines in our experiments. We

do not implement the algorithm in [7] since it is not scalable to

large datasets.

Another line of research related to this work is fair data summa-
rization. Fair 𝑘-center for data summarization was studied in [9, 19,

24]. Celis et al. [5] proposed a determinantal point process (DPP)

based sampling method for fair data summarization. Dash et al. [11]

considered the fairness issue on summarizing user-generated tex-

tual content. Although these studies adopt similar definitions of

fairness constraints to ours, their proposed methods cannot be

applied to the FSM problem since the objective functions of the

problems they study are not submodular.

3 PROBLEM DEFINITION

We consider the problem of selecting a subset of representative

items from a dataset 𝑉 of size 𝑛. Our goal is to maximize a non-

negative set function 𝑓 : 2
𝑉 → R+, where, for any subset 𝑆 ⊆ 𝑉 ,

𝑓 (𝑆) quantifies the utility of 𝑆 , i.e., how well 𝑆 represents 𝑉 ac-

cording to some objective. In many data summarization problems

(e.g., [4, 12, 17, 28]), the utility function satisfies an intuitive dimin-
ishing returns property called submodularity. To describe it formally,

we define the marginal gain Δ𝑓 (𝑣 |𝑆) B 𝑓 (𝑆 ∪ {𝑣}) − 𝑓 (𝑆) as the
increase in utility when an item 𝑣 is added to a set 𝑆 . A set func-

tion 𝑓 is submodular iff Δ𝑓 (𝑣 |𝐴) ≥ Δ𝑓 (𝑣 |𝐵) for any 𝐴 ⊆ 𝐵 ⊆ 𝑉

and 𝑣 ∈ 𝑉 \ 𝐵. This means that adding an item 𝑒 to a set 𝐴 leads

to at least as much utility gain as adding 𝑣 to a superset 𝐵 of 𝐴.

Additionally, a submodular function 𝑓 is monotone iff Δ𝑓 (𝑣 |𝑆) ≥ 0

for any 𝑆 ⊆ 𝑉 and 𝑣 ∈ 𝑉 \ 𝑆 , i.e., adding any new item 𝑣 never

decreases the utility of 𝑆 . In this work, we assume that the function

𝑓 is both monotone and submodular. Moreover, following most ex-

isting works [4, 8, 12, 14, 17, 21, 27, 32], we assume that the utility

Fair and Representative Subset Selection from Data Streams

Algorithm 1: Greedy

Input :Dataset 𝑉 , groups 𝑉1, . . . ,𝑉𝑙 ⊆ 𝑉 , total size

constraint 𝑘 ∈ Z+, group size constraints

𝑘1, . . . , 𝑘𝑙 ∈ Z+
Output :Solution 𝑆 for the FSM problem on 𝑉

1 Initialize the solution 𝑆 ← ∅;
2 for 𝑗 ← 1, . . . , 𝑘 do

3 for 𝑖 ← 1, . . . , 𝑙 do

4 if |𝑆 ∩𝑉𝑖 | < 𝑘𝑖 then

5 𝑣∗
𝑖
← argmax𝑣∈𝑉𝑖 Δ𝑓 (𝑣 |𝑆);

6 else

7 𝑣∗
𝑖
← NULL;

8 𝑣∗ ← argmax𝑖∈[𝑙] : 𝑣∗
𝑖
≠NULL Δ𝑓 (𝑣∗𝑖 |𝑆);

9 𝑆 ← 𝑆 ∪ {𝑣∗}, 𝑉 ← 𝑉 \ {𝑣∗};
10 return 𝑆 ;

𝑓 (𝑆) of any set 𝑆 ⊆ 𝑉 is given by a value oracle – i.e., the value of

𝑓 (𝑆) is retrieved in constant time.

Let us consider the following canonical optimization problem:

given a monotone submodular set function 𝑓 and a dataset 𝑉 , find

a subset of size 𝑘 from 𝑉 that maximizes the function 𝑓 , i.e.,

max

𝑆⊆𝑉
𝑓 (𝑆) s.t. |𝑆 | = 𝑘 (1)

The problem in Eq. 1 is referred to as the cardinality-constrained

submodular maximization (CSM) problem and proven to be NP-

hard [13] for many classes of submodular functions. And the well-

known greedy algorithm of Nemhauser et al. [31] achieves a (1− 1

𝑒)-
approximation for this problem.

Now we introduce the fairness issue into the CSM problem. Let

[𝑙] = {1, . . . , 𝑙}. Suppose that the dataset 𝑉 is partitioned into 𝑙

(disjoint) groups, each of which corresponds to a sensitive class,

and𝑉𝑖 is the set of items from the 𝑖-th group in𝑉 with

⋃𝑙
𝑖=1𝑉𝑖 = 𝑉 .

Then, for each group, we demand that the solution 𝑆 must contain

𝑘𝑖 items from 𝑉𝑖 , and
∑𝑙
𝑖=1 𝑘𝑖 = 𝑘 . Formally, the fair submodular

maximization (FSM) problem is defined as follows:

𝑆∗ = argmax

𝑆⊆𝑉
𝑓 (𝑆) s.t. |𝑆 ∩𝑉𝑖 | = 𝑘𝑖 ,∀𝑖 ∈ [𝑙] (2)

where 𝑆∗ and OPT = 𝑓 (𝑆∗) denote the optimal solution and its

utility. The values of 𝑘1, . . . , 𝑘𝑙 ∈ Z+ are given as input to the

problem (here, we assume 𝑘𝑖 > 0 since we can simply ignore all

items in 𝑉𝑖 if 𝑘𝑖 = 0) and determined according to the notion of

fairness. For example, one can use 𝑘𝑖 =
𝑛𝑖
𝑛 · 𝑘 where 𝑛𝑖 = |𝑉𝑖 | to

obtain a proportional representation. As another example, an equal
representation can be acquired by setting 𝑘𝑖 =

𝑘
𝑙
for all 𝑖 ∈ [𝑙].

The FSM problem in Eq. 2 is still NP-hard because the CSM prob-

lem in Eq. 1 is its special case when 𝑙 = 1. Nevertheless, a modified

Greedy algorithm first proposed in [15] provides a
1

2
-approximate

solution for the FSM problem, since the fairness constraint we con-

sider is a case of the partition matroid constraint. The procedure

of Greedy is described in Algorithm 1. Starting from 𝑆 = ∅, it
iteratively adds an item 𝑣∗ with the maximum utility gain Δ𝑓 (𝑣∗ |𝑆)
to the current solution 𝑆 . To guarantee that solution 𝑆 satisfies the

fairness constraint, it excludes from consideration all items of 𝑉𝑖

once there are 𝑘𝑖 items from𝑉𝑖 in 𝑆 , i.e., |𝑆 ∩𝑉𝑖 | = 𝑘𝑖 . The solution 𝑆

after 𝑘 iterations is returned for the FSM problem. The running time

of Greedy is 𝑂 (𝑛𝑘) because it runs 𝑘 passes through the dataset

and evaluates the value of 𝑓 at most 𝑛 times per pass for identifying

𝑣∗
𝑖
. Therefore, Greedy becomes very inefficient when the dataset

size is large; even worse, Greedy cannot work in the single-pass

streaming setting if the dataset does not fit in the memory. In what

follows, we will investigate the FSM problem in streaming settings.

4 OUR ALGORITHMS

In this section, we present our proposed algorithms for the fair

submodular maximization (FSM) problem in data streams. Firstly,

we propose a multi-pass streaming algorithm called MP-FSM. For

any constant 𝜀 ∈ (0, 1), MP-FSM requires 𝑂
(
1

𝜀 log
𝑘
𝜀

)
passes over

the dataset, stores 𝑂 (𝑘) items in memory, and provides a
1

2
(1 − 𝜀)-

approximate solution for the FSM problem. Secondly, we propose a

single-pass streaming algorithm called SP-FSM on the top of MP-

FSM. SP-FSM has an approximation ratio of (1
2
− 𝜀) and sublinear

update time per item. But it might keep 𝑂 (𝑛) items in a buffer for

post-processing in the worst case, and thus its space complexity

is 𝑂 (𝑛). Therefore, we further discuss how to restrict the buffer

size of SP-FSM when the memory space is limited and how the

approximation ratio of SP-FSM is affected accordingly.

4.1 Multi-Pass Streaming Algorithm

In this subsection, we present our multi-pass streaming algorithm

called MP-FSM for the FSM problem. In general, MP-FSM adopts a

threshold-based approach similar to existing streaming algorithms

for the CSM problem [4, 21, 26, 32]. The high-level idea of the

threshold-based approach is to process items in a data stream se-

quentially with a threshold 𝜏 : for each item 𝑣 received from the

stream, it will accept 𝑣 into a solution 𝑆 if Δ𝑓 (𝑣 |𝑆) reaches 𝜏 and

discard 𝑣 otherwise. But differently from most thresholding algo-

rithms [4, 21, 26] for the CSM problem, which run in only one

pass and use a fixed threshold for each candidate solution, MP-FSM

scans the dataset in multiple passes using a decreasing threshold

to determine whether to include an item in each pass so that the

solution has a constant approximation ratio while satisfying the

fairness constraint.

We present the detailed procedure of MP-FSM in Algorithm 2.

In the first pass, it finds the item 𝑣𝑚𝑎𝑥 with the maximum utility

𝛿𝑚𝑎𝑥 = 𝑓 ({𝑣𝑚𝑎𝑥 }) among all items in the dataset 𝑉 . The purpose

of finding 𝑣𝑚𝑎𝑥 is to determine the range of thresholds to be used

in subsequent passes. Meanwhile, it keeps a random sample 𝑅𝑖 of

𝑘𝑖 items uniformly from 𝑉𝑖 for each 𝑖 ∈ [𝑙], which will be used for

post-processing to guarantee that the solution satisfies the fairness

constraint. Then, it initializes a solution 𝑆 containing only 𝑣𝑚𝑎𝑥

and a threshold 𝜏 = (1 − 𝜀) · 𝛿𝑚𝑎𝑥 for the second pass. After that, it

scans the dataset 𝑉 sequentially in multiple passes. In each pass, it

decreases the threshold 𝜏 by (1 − 𝜀) times and adds an item 𝑣 ∈ 𝑉𝑖
to the current solution 𝑆 if the marginal gain of 𝑣 w.r.t. 𝑆 reaches 𝜏

and there are fewer than 𝑘𝑖 items in 𝑆 from 𝑉𝑖 . When the solution

𝑆 has contained 𝑘 items or the threshold 𝜏 has been decreased to

be lower than
𝜀
𝑘
· 𝛿𝑚𝑎𝑥 , no more passes are needed. Finally, if the

solution 𝑆 does not satisfy the fairness constraint, it will add items

from random samples to 𝑆 for ensuring its validity.

Yanhao Wang, Francesco Fabbri, and Michael Mathioudakis

Algorithm 2:MP-FSM

Input :Dataset 𝑉 , groups 𝑉1, . . . ,𝑉𝑙 ⊆ 𝑉 , total size

constraint 𝑘 ∈ Z+, group size constraints

𝑘1, . . . , 𝑘𝑙 ∈ Z+, parameter 𝜀 ∈ (0, 1)
Output :Solution 𝑆 for the FSM problem on 𝑉

/* Pass 1: Get 𝑣𝑚𝑎𝑥 and reservoir sampling */

1 𝑣𝑚𝑎𝑥 ← argmax𝑣∈𝑉 𝑓 ({𝑣}) and 𝛿𝑚𝑎𝑥 ← 𝑓 ({𝑣𝑚𝑎𝑥 });
2 Keep a random sample 𝑅𝑖 of 𝑘𝑖 items uniformly from 𝑉𝑖 for

each 𝑖 ∈ [𝑙] via reservoir sampling [36];

/* Pass 2 to 𝑝: Compute solution 𝑆 */

3 𝑆 ← {𝑣𝑚𝑎𝑥 } and 𝜏 ← (1 − 𝜀) · 𝛿𝑚𝑎𝑥 ;

4 while 𝜏 > 𝜀
𝑘
· 𝛿𝑚𝑎𝑥 do

5 foreach item 𝑣 ∈ 𝑉 \ 𝑆 do

6 if 𝑣 ∈ 𝑉𝑖 and |𝑆 ∩𝑉𝑖 | < 𝑘𝑖 and Δ𝑓 (𝑣 |𝑆) ≥ 𝜏 then

7 𝑆 ← 𝑆 ∪ {𝑣};

8 if |𝑆 | = 𝑘 then

9 break;

10 else

11 𝜏 ← (1 − 𝜀) · 𝜏 ;

/* Post processing: Ensure fairness */

12 while ∃𝑖 ∈ [𝑙] : |𝑆 ∩𝑉𝑖 | < 𝑘𝑖 do

13 Add items in 𝑅𝑖 to 𝑆 until |𝑆 ∩𝑉𝑖 | = 𝑘𝑖 ;

14 return 𝑆 ;

Next, we provide some theoretical analyses for the MP-FSM

algorithm. First, we give the approximation ratio of MP-FSM in

Theorem 4.1. And then, the complexity of MP-FSM is analyzed in

Theorem 4.2.

Theorem 4.1. For any parameter 𝜀 ∈ (0, 1), MP-FSM in Algo-
rithm 2 is a 1

2
(1 − 𝜀)-approximation algorithm for the FSM problem.

Proof. Let 𝑂 be the optimal solution for the FSM problem on

dataset 𝑉 and 𝑂𝑖 = 𝑂 ∩ 𝑉𝑖 be the intersection of 𝑂 and 𝑉𝑖 for

each 𝑖 ∈ [𝑙]. We consider that MP-FSM runs in 𝑝 passes and 𝑆 (𝑗)

(1 ≤ 𝑗 ≤ 𝑝) is the partial solution of MP-FSM after 𝑗 passes. For

any subset 𝑂𝑖 of 𝑂 and the solution 𝑆 (𝑝) after 𝑝 passes, we have

either (1) |𝑆 (𝑝) ∩𝑉𝑖 | = 𝑘𝑖 or (2) |𝑆 (𝑝) ∩𝑉𝑖 | < 𝑘𝑖 . If |𝑆 (𝑝) ∩𝑉𝑖 | = 𝑘𝑖 ,

there are two cases for each item 𝑜 ∈ 𝑂𝑖 : (1.1) 𝑜 ∈ 𝑆 (𝑝) and (1.2)

𝑜 ∉ 𝑆 (𝑝) . In Case (1.1), we have Δ𝑓 (𝑜 |𝑆 (𝑝)) = 0. In Case (1.2), we

compare 𝑜 with an item 𝑠 from 𝑉𝑖 added to the solution during the

𝑗-th pass. Since both 𝑜 and 𝑠 cannot be added in the (𝑗 − 1)-th pass

and |𝑆 (𝑗−1) ∩𝑉𝑖 | < 𝑘𝑖 , it is safe to say that the marginal gains of 𝑜

and 𝑠 w.r.t. 𝑆 (𝑗−1) do not reach the threshold 𝜏 (𝑗−1) of the (𝑗 −1)-th
pass. As 𝑠 is added in the 𝑗-th pass, we have Δ𝑓 (𝑠 |𝑆 ′) ≥ 𝜏 (𝑗) where

𝑆 ′ ⊆ 𝑆 (𝑗) is the partial solution before 𝑠 is added. Therefore, we

have the following sequence of inequalities:

Δ𝑓 (𝑜 |𝑆 (𝑝)) ≤ Δ𝑓 (𝑜 |𝑆 (𝑗−1)) < 𝜏 (𝑗−1) =
𝜏 (𝑗)

1 − 𝜀 ≤
Δ𝑓 (𝑠 |𝑆 ′)
1 − 𝜀 (3)

Then, if |𝑆 (𝑝) ∩𝑉𝑖 | < 𝑘𝑖 , there are also two cases for 𝑜 ∈ 𝑂𝑖 : (2.1)

𝑜 ∈ 𝑆 (𝑝) and (2.2) 𝑜 ∉ 𝑆 (𝑝) . Case (2.1) is exactly the same as Case

(1.1). In Case (2.2), we have:

Δ𝑓 (𝑜 |𝑆 (𝑝)) < 𝜏 (𝑝) ≤ 𝜀

𝑘 (1 − 𝜀) · 𝛿𝑚𝑎𝑥 (4)

where 𝜏 (𝑝) is the threshold of the 𝑝-th pass.

Next, we divide𝑂 into two disjoint subsets𝑂 ′ and𝑂 ′′ as follows:
𝑂 ′ =

⋃
𝑖′ 𝑂𝑖′ where |𝑆 (𝑝) ∩ 𝑉𝑖′ | = 𝑘𝑖′ , i.e., all items from groups

satisfying Case (1), and 𝑂 ′′ = 𝑂 \ 𝑂 ′, i.e., all items from groups

satisfying Case (2). We define an injection 𝜋 : 𝑂 ′ → 𝑆 (𝑝) that maps

each item in 𝑂 ′ to an item in 𝑆 (𝑝) as follows: If 𝑜 ∈ 𝑆 (𝑝) , then
𝜋 (𝑜) = 𝑜 ; otherwise, 𝜋 (𝑜) will be an arbitrary item 𝑠 ∈ 𝑆 (𝑝) from
the same group as 𝑜 and 𝑠 ∉ 𝑂 . Based on the result of Eq. 3, we can

get the following inequalities for 𝑂 ′:∑︁
𝑜∈𝑂′

Δ𝑓 (𝑜 |𝑆 (𝑝)) ≤
∑
𝜋 (𝑜) ∈𝑆 (𝑝) Δ𝑓 (𝜋 (𝑜) |𝑆 ′)

1 − 𝜀 ≤ 𝑓 (𝑆 (𝑝))
1 − 𝜀 (5)

Here, 𝑆 ′ denotes the partial solution before 𝜋 (𝑜) is added and

the second inequality is acquired from the fact that 𝑓 (𝑆 (𝑝)) =∑
𝑠∈𝑆 (𝑝) Δ𝑓 (𝑠 |𝑆 ′). Then, based on the result of Eq. 4, we have the

following inequalities for 𝑂 ′′:∑︁
𝑜∈𝑂′′

Δ𝑓 (𝑜 |𝑆 (𝑝)) ≤
𝜀 |𝑂 ′′ |
𝑘 (1 − 𝜀) · 𝛿𝑚𝑎𝑥 ≤

𝜀

1 − 𝜀 · 𝑓 (𝑆
(𝑝)) (6)

because |𝑂 ′′ | < 𝑘 and 𝛿𝑚𝑎𝑥 ≤ 𝑓 (𝑆 (𝑝)). Finally, we have the follow-
ing sequence of inequalities from Eq. 5 and 6:

𝑓 (𝑂 ∪ 𝑆 (𝑝)) − 𝑓 (𝑆 (𝑝)) =
∑︁
𝑜∈𝑂′

Δ𝑓 (𝑜 |𝑆 (𝑝)) +
∑︁
𝑜∈𝑂′′

Δ𝑓 (𝑜 |𝑆 (𝑝))

≤ 1

1 − 𝜀 · 𝑓 (𝑆
(𝑝)) + 𝜀

1 − 𝜀 · 𝑓 (𝑆
(𝑝)) = 1 + 𝜀

1 − 𝜀 · 𝑓 (𝑆
(𝑝))

Since OPT = 𝑓 (𝑂) ≤ 𝑓 (𝑂∪𝑆 (𝑝)), we get OPT ≤ (1+ 1+𝜀
1−𝜀) · 𝑓 (𝑆

(𝑝)) ≤
2

1−𝜀 · 𝑓 (𝑆
(𝑝)). Finally, we conclude the proof from the fact that

𝑓 (𝑆) ≥ 𝑓 (𝑆 (𝑝)) ≥ 1

2
(1 − 𝜀)OPT. □

Theorem 4.2. MP-FSM in Algorithm 2 requires𝑂
(
1

𝜀 log
𝑘
𝜀

)
passes

over the dataset 𝑉 , stores at most 𝑂 (𝑘) items, and has 𝑂
(
𝑛
𝜀 log

𝑘
𝜀

)
time complexity.

Proof. First of all, since the threshold 𝜏 is decreased by (1 − 𝜀)
times after one pass, 𝜏 (2) = (1 − 𝜀) · 𝛿𝑚𝑎𝑥 , and 𝜏 (𝑝) ≥ 𝜀

𝑘
· 𝛿𝑚𝑎𝑥 ,

we get (1 − 𝜀)𝑝−1 ≥ 𝜀
𝑘
. Taking the logarithm on both sides of the

last inequality and the Taylor expansion of log(1 − 𝜀), we have

𝑝 − 1 ≤ 1

log(1−𝜀) · log
𝜀
𝑘
≤ 1

𝜀 log
𝑘
𝜀 and thus the number 𝑝 of passes

in MP-FSM is 𝑂
(
1

𝜀 log
𝑘
𝜀

)
. Furthermore, MP-FSM only stores items

in the solution and random samples for post-processing, both of

which contain at most 𝑘 items. Hence, MP-FSM stores at most𝑂 (𝑘)
items. Finally, because MP-FSM evaluates the value of function 𝑓

at most 𝑛 times per pass, the total number of function evaluations

in MP-FSM is 𝑂
(
𝑛
𝜀 log

𝑘
𝜀

)
. □

4.2 Single-Pass Streaming Algorithm

In this subsection, we present our single-pass streaming algorithm

called SP-FSM for the FSM problem. Generally, SP-FSM is based on

a threshold-based approach, similar to MP-FSM. However, several

adaptations are required so that SP-FSM can provide an approxi-

mate solution in only one pass over the dataset. First of all, because

Fair and Representative Subset Selection from Data Streams

𝑣𝑚𝑎𝑥 and 𝛿𝑚𝑎𝑥 are unknown in advance, SP-FSM should keep track

of them from received items, dynamically decide a sequence of

thresholds based on the observed 𝛿𝑚𝑎𝑥 , and maintain a candidate

solution for each threshold (instead of keeping only one solution

over multiple passes in MP-FSM). Furthermore, as only one pass is

permitted, an item will be unrecoverable once it is discarded. To

provide a theoretical guarantee for the quality of solutions in adver-

sarial settings, SP-FSM keeps a buffer to store items that are neither

included into solutions nor safely discarded. Finally, whenever a

solution is requested during the stream, SP-FSM will reconsider

the buffered items for post-processing by attempting to add them

greedily to candidate solutions. We will show that SP-FSM has an

approximation ratio of (1
2
−𝜀) with a judicious choice of parameters

when the buffer size is unlimited.

The detailed procedure of SP-FSM is presented in Algorithm 3.

Here, 𝛿𝑚𝑎𝑥 keeps the maximum utility of any single item among

all items received so far, LB maintains the lower bound of OPT
estimated from candidate solutions, 𝐵 stores the buffered items, and

𝑅𝑖 is a set of 𝑘𝑖 items sampled uniformly from all received items

in 𝑉𝑖 . In addition, two parameters 𝛼 and 𝛽 affect the number of

candidate solutions and the number of buffered items, respectively.

For larger values of 𝛼 , the gaps between neighboring thresholds are

bigger and thus the numbers of candidate solutions are fewer; for

larger values of 𝛽 , the conditions for adding an item to the buffer

are more rigorous and naturally the buffer sizes are smaller. The

procedure for stream processing of SP-FSM is given in Line 2–14.

For each item 𝑣 ∈ 𝑉𝑖 received from 𝑉 , it first updates the value of

𝛿𝑚𝑎𝑥 and the sample 𝑅𝑖 w.r.t. 𝑣 . Then, it maintains a sequence 𝑇 of

thresholds picked from a geometric progression {(1 + 𝛼) 𝑗 | 𝑗 ∈ Z}
and a candidate solution 𝑆𝜏 for each 𝜏 ∈ 𝑇 . Specifically, the upper
bound of the threshold is set to 𝛿𝑚𝑎𝑥 since 𝑆𝜏 = ∅ for any 𝜏 > 𝛿𝑚𝑎𝑥 ;

the lower bound is set to
max{𝛿𝑚𝑎𝑥 ,LB}

2𝑘
because any candidate with

a threshold lower than
OPT
2𝑘

is safe to be discarded (as shown in our

theoretical analysis later) and max{𝛿𝑚𝑎𝑥 , LB} is the lower bound
of OPT. After maintaining the thresholds and their corresponding

candidates, SP-FSM evaluates the marginal gain Δ𝑓 (𝑣 |𝑆𝜏) of 𝑣 for
each candidate 𝑆𝜏 with threshold 𝜏 ∈ 𝑇 . Similar to MP-FSM, it will

add 𝑣 to 𝑆𝜏 if Δ𝑓 (𝑣 |𝑆𝜏) reaches 𝜏 and |𝑆𝜏 ∩𝑉𝑖 | < 𝑘𝑖 . Additionally, it

will add 𝑣 to the buffer 𝐵 if Δ𝑓 (𝑣 |𝑆𝜏) is at least
𝛽 ·LB
𝑘

but less than 𝜏 .

Finally, LB is updated to the utility of the best solution found so far.

The procedure for post-processing of SP-FSM is shown in Lines 15–

17. It first finds out the smallest 𝜏 ∈ 𝑇 such that |𝑆𝜏 ∩𝑉𝑖 | < 𝑘𝑖 for

each 𝑖 ∈ [𝑙] as 𝜏 ′; if such 𝜏 does not exist, i.e., there exists some 𝑖

such that |𝑆𝜏 ∩𝑉𝑖 | = 𝑘𝑖 for every 𝑆𝜏 , the largest 𝜏 ∈ 𝑇 is used as 𝜏 ′.
For each 𝜏 ≤ 𝜏 ′ in 𝑇 , it runs Greedy in Algorithm 1 to reevaluate

the items in 𝐵 and 𝑅𝑖 and add them to 𝑆𝜏 until |𝑆𝜏 | = 𝑘 . Lastly, the

candidate solution with the maximum utility after post-processing

is returned as the final solution.

Next, we will provide the theoretical analyses for the SP-FSM al-

gorithm. First, in Lemma 4.3, we analyze the special cases when the

solution returned after stream processing (without post-processing)

can achieve a good approximation ratio.

Lemma 4.3. Assume that OPT
2𝑘
≤ 𝜏 ≤ (1+𝛼) ·OPT

2𝑘
. If either |𝑆𝜏 | = 𝑘

or |𝑆𝜏 ∩𝑉𝑖 | < 𝑘𝑖 for all 𝑖 ∈ [𝑙], then 𝑓 (𝑆𝜏) ≥ 1−𝛼
2
· OPT.

Algorithm 3: SP-FSM

Input :Data stream 𝑉 , groups 𝑉1, . . . ,𝑉𝑙 ⊆ 𝑉 , total size

constraint 𝑘 ∈ Z+, group size constraints

𝑘1, . . . , 𝑘𝑙 ∈ Z+, parameters 𝛼, 𝛽 ∈ (0, 1)
Output :Solution 𝑆 for the FSM problem on 𝑉

1 𝛿𝑚𝑎𝑥 ← 0, LB← 0, 𝐵 ← ∅, and 𝑅𝑖 ← ∅ for each 𝑖 ∈ [𝑙];
/* Stream processing */

2 foreach item 𝑣 ∈ 𝑉𝑖 received from 𝑉 do

3 𝛿𝑚𝑎𝑥 ← max{𝛿𝑚𝑎𝑥 , 𝑓 ({𝑣})};
4 Update 𝑅𝑖 w.r.t. 𝑣 using reservoir sampling [36];

5 𝑇 ← {(1 + 𝛼) 𝑗 | 𝑗 ∈ Z, max{𝛿𝑚𝑎𝑥 ,LB}
2𝑘

≤ (1 + 𝛼) 𝑗 ≤ 𝛿𝑚𝑎𝑥 };
6 Discard 𝑆𝜏 for all 𝜏 ∉ 𝑇 ;

7 Initialize 𝑆𝜏 ← ∅ for each 𝜏 newly added to 𝑇 ;

8 foreach 𝜏 ∈ 𝑇 do

9 if |𝑆𝜏 ∩𝑉𝑖 | < 𝑘𝑖 then

10 if Δ𝑓 (𝑣 |𝑆𝜏) ≥ 𝜏 then

11 𝑆𝜏 ← 𝑆𝜏 ∪ {𝑣};
12 else if Δ𝑓 (𝑣 |𝑆𝜏) ≥

𝛽 ·LB
𝑘

then

13 𝐵 ← 𝐵 ∪ {𝑣};

14 LB← max𝜏 ∈𝑇 𝑓 (𝑆𝜏);
/* Post processing */

15 Let 𝜏 ′ be the smallest 𝜏 ∈ 𝑇 such that |𝑆𝜏 ∩𝑉𝑖 | < 𝑘𝑖 for each

𝑖 ∈ [𝑙] or the largest 𝜏 ∈ 𝑇 if there exists some 𝑖 such that

|𝑆𝜏 ∩𝑉𝑖 | = 𝑘𝑖 for every 𝑆𝜏 ;

16 foreach 𝜏 ≤ 𝜏 ′ in 𝑇 do

17 Run Greedy in Algorithm 1 to add items from buffer 𝐵

and samples 𝑅𝑖 for all 𝑖 ∈ [𝑙] to 𝑆𝜏 until |𝑆𝜏 | = 𝑘 ;

18 return 𝑆 ← argmax𝜏 ∈𝑇 𝑓 (𝑆𝜏);

Proof. First of all, when |𝑆𝜏 | = 𝑘 , it holds that 𝑓 (𝑆𝜏) ≥ 𝑘𝜏 ≥
𝑘 · OPT

2𝑘
= 1

2
· OPT ≥ 1−𝛼

2
· OPT. Then, when |𝑆𝜏 ∩ 𝑉𝑖 | < 𝑘𝑖 for all

𝑖 ∈ [𝑙], we have Δ𝑓 (𝑣 |𝑆𝜏) < 𝜏 for any 𝑣 ∈ 𝑉 \ 𝑆𝜏 . Let 𝑂 be the

optimal solution for the FSM problem on 𝑉 . We can acquire that

𝑓 (𝑂 ∪ 𝑆𝜏) − 𝑓 (𝑆𝜏) ≤
∑︁

𝑜∈𝑂\𝑆𝜏
Δ𝑓 (𝑜 |𝑆𝜏) < 𝑘𝜏

≤ 𝑘 · (1 + 𝛼) · OPT
2𝑘

= (1 + 𝛼) · OPT
2

Therefore, we have 𝑓 (𝑆𝜏) ≥ 𝑓 (𝑂 ∪ 𝑆𝜏) − (1 + 𝛼) · OPT
2
≥ OPT− (1 +

𝛼) · OPT
2

= 1−𝛼
2
· OPT. We conclude the proof by considering both

cases collectively. □

Lemma 4.3 is useful because one of the thresholds 𝜏 ∈ 𝑇 of

SP-FSM (Line 5 of Algorithm 3) must satisfy the first condition

OPT
2𝑘
≤ 𝜏 ≤ (1+𝛼) ·OPT

2𝑘
of the lemma. This is because𝑇 is a geometric

progression with a scale factor of (1 + 𝛼) and spans the range

[max{𝛿𝑚𝑎𝑥 ,LB}
2𝑘

, 𝛿𝑚𝑎𝑥], with max{𝛿𝑚𝑎𝑥 , LB} ≤ OPT ≤ 𝑘 · 𝛿𝑚𝑎𝑥 .

This implies that, if the remaining conditions of Lemma 4.3

were satisfied as well, the solution of SP-FSM after stream pro-

cessing would have the strong approximation guarantee given by

Lemma 4.3. Intuitively, this would be the case when the utility

distribution of items was generally “balanced” among groups, so

Yanhao Wang, Francesco Fabbri, and Michael Mathioudakis

that either all or none of the group budgets would be exhausted

by the end of stream processing. However, in case that the utili-

ties are highly imbalanced among groups, the approximation ra-

tio would become significantly lower. On the one hand, SP-FSM

might miss high-utility items in some groups from the stream be-

cause the threshold is too low and the solution has been filled by

earlier items with lower utilities in these groups. On the other

hand, SP-FSM might not include enough items from the other

groups because the threshold is too high for them. Note that, for

OPT
2𝑘
≤ 𝜏 ≤ (1+𝛼) ·OPT

2𝑘
, Lemma 4.3 allows the approximation factor

of 𝑆𝜏 to drop to

min𝑖∈[𝑙] 𝑘𝑖𝜏
OPT ≥ min𝑖∈[𝑙]

𝑘𝑖
2𝑘
≥ 1

2𝑘
when some group

budgets are exhausted but the others are not.

Therefore, we further include the buffer and post-processing

procedures in SP-FSM so that it still achieves a constant approx-

imation independent of 𝑘 for an arbitrary group size constraint.

In Lemma 4.4, we analyze the approximation ratio of the solution

returned by SP-FSM after post-processing.

Lemma 4.4. Let 𝜏 ′ be chosen according to Line 15 of Algorithm 3.
It holds that 𝑓 (𝑆𝜏′) ≥ 1−𝛽

2+𝛼 · OPT after post-processing.

Proof. We consider two cases separately: (1) |𝑆𝜏′ ∩𝑉𝑖 | < 𝑘𝑖 for

each 𝑖 ∈ [𝑙] or (2) 𝜏 ′ is the maximum in 𝑇 . In Case (1), we divide

the items in the optimal solution 𝑂 into three disjoint subsets:

𝑂1 = 𝑂 ∩ 𝑆𝜏′ , i.e., items included in 𝑆𝜏′ during stream and post

processing;𝑂2 = 𝑂∩ (𝐵 \𝑆𝜏′), i.e., items stored in the buffer but not

added to 𝑆𝜏 ′ ; 𝑂3 = 𝑂 ∩ (𝑉 \ (𝐵 ∪ 𝑆𝜏′)), i.e., items discarded during

stream processing. For each 𝑜 ∈ 𝑂2, we can always find an item

𝑠 ∈ 𝑆𝜏′ from the same group as 𝑜 such that Δ𝑓 (𝑠 |𝑆 ′) ≥ Δ𝑓 (𝑜 |𝑆 ′) ≥
Δ𝑓 (𝑜 |𝑆𝜏′) where 𝑆 ′ ⊆ 𝑆𝜏′ is the partial solution when 𝑠 is added.

This is because Greedy always picks the item with the maximum

marginal gain within each group. In addition, for each 𝑜 ∈ 𝑂3, we

have Δ𝑓 (𝑜 |𝑆𝜏 ′) ≤
𝛽 ·LB
𝑘
≤ 𝛽 ·OPT

𝑘
. Therefore, we have

𝑓 (𝑂 ∪ 𝑆𝜏′) − 𝑓 (𝑆𝜏′) ≤
∑︁

𝑜∈𝑂\𝑆𝜏′
Δ𝑓 (𝑜 |𝑆𝜏 ′)

=
∑︁
𝑜∈𝑂2

Δ𝑓 (𝑜 |𝑆𝜏′) +
∑︁
𝑜∈𝑂3

Δ𝑓 (𝑜 |𝑆𝜏 ′)

≤
∑︁
𝑠∈𝑆𝜏′

Δ𝑓 (𝑠 |𝑆 ′) + 𝛽 · OPT

= 𝑓 (𝑆𝜏 ′) + 𝛽 · OPT

where 𝑆 ′ is the partial solution when 𝑠 is added to 𝑆𝜏 ′ . And we con-

clude that 𝑓 (𝑆𝜏 ′) ≥ 1−𝛽
2
· OPT from the above inequalities. In Case

(2), we have 𝜏 ′ is the maximum in𝑇 and thus 𝜏 ′ ∈ [𝛿𝑚𝑎𝑥

1+𝛼 , 𝛿𝑚𝑎𝑥]. We

divide𝑂 into𝑂1,𝑂2,𝑂3 in the same way as Case (1). It is easy to see

that the results for 𝑂1 and 𝑂3 are exactly the same as Case (1). The

only difference is that there may exist some items in𝑂2 rejected by

𝑆𝜏 ′ because their groups have been filled in 𝑆𝜏′ . For any 𝑜 ∈ 𝑂2, we

have Δ𝑓 (𝑜 |𝑆𝜏′) ≤ 𝛿𝑚𝑎𝑥 ≤ (1 + 𝛼) · 𝜏 ′ ≤ (1 + 𝛼) · Δ𝑓 (𝑠 |𝑆 ′) where 𝑠
is from the same group as 𝑜 and 𝑆 ′ is the partial solution when 𝑠 is

added. Accordingly, we can get OPT−𝑓 (𝑆𝜏′) ≤ (1+𝛼) · 𝑓 (𝑆𝜏′)+𝛽 ·OPT
and thus 𝑓 (𝑆𝜏′) ≥ 1−𝛽

2+𝛼 · OPT in both cases. □

Next, we give the approximation ratio and complexity of SP-FSM

in Theorems 4.5 and 4.6, respectively.

Theorem 4.5. Assuming that 𝛼, 𝛽 = 𝑂 (𝜀), SP-FSM in Algorithm 3
is a (1

2
− 𝜀)-approximation algorithm for the FSM problem.

Proof. According to the results of Lemmas 4.3 and 4.4, we have

𝑓 (𝑆) ≥ 1−𝛽
2+𝛼 · OPT for the solution 𝑆 returned by Algorithm 3. By

assuming 𝛼, 𝛽 = 𝑂 (𝜀), we conclude the proof. □

Theorem 4.6. Assuming that 𝛼, 𝛽 = 𝑂 (𝜀), SP-FSM in Algorithm 3
requires one pass over the data stream𝑉 , stores at most𝑂

(𝑘 log𝑘
𝜀 +|𝐵 |

)
items, has 𝑂

(
log𝑘
𝜀

)
update time per item for stream processing, and

takes 𝑂
(𝑘 log𝑘

𝜀 · (|𝐵 | + 𝑘)
)
time for post-processing.

Proof. The number |𝑇 | of thresholds maintained at any time sat-

isfies that (1+𝛼) |𝑇 | ≤ 2𝑘 . Using the Taylor expansion of log(1+𝛼),
we have |𝑇 | ≤ log 2𝑘

log (1+𝛼) ≤
log 2𝑘

𝛼 log 2
= 𝑂

(
log𝑘
𝛼

)
. Therefore, the number

of function evaluations per item is 𝑂
(
log𝑘
𝜀

)
. Since each candidate

solution contains at most 𝑘 items, the total number of items stored

in SP-FSM is 𝑂
(𝑘 log𝑘

𝜀 + |𝐵 |
)
. For each candidate solution 𝑆𝜏 , the

post-processing procedure runs in (𝑘 − |𝑆𝜏 |) iterations and pro-

cesses at most (|𝐵 | + 𝑘) items at each iteration. Therefore, it takes

𝑂
(𝑘 log𝑘

𝜀 · (|𝐵 | + 𝑘)
)
time for post-processing. □

4.3 SP-FSM with Bounded Buffer Size

From the above results, we can see that SP-FSM may store 𝑂 (𝑛)
items in the buffer and take 𝑂

(𝑛𝑘 log𝑘
𝜀

)
time for post-processing in

the worst case. In practice, a streaming algorithm is often required

to process massive data streams with limited time and memory

(sublinear to or independent of 𝑛). And it is not favorable for SP-

FSM to store an unlimited number of items in the buffer𝐵. Therefore,

we propose a simple strategy for SP-FSM to manage the buffered

items so that the buffer size is always bounded at the expense of

lower approximation ratios in adversary settings.

We consider that the maximum buffer size is restricted to 𝑘 ′ =
𝑂 (𝑘) and extra items should be dropped from 𝐵 once its size ex-

ceeds 𝑘 ′. The following rules are considered for buffer management.

Firstly, since LB increases over time, it is safe to drop at any time

during stream processing any item already in the buffer whose mar-

ginal gain is lower than
𝛽 ·LB
𝑘

for the current value of LB, without
affecting the theoretical guarantee. Secondly, to avoid duplications,

if an item is added to some candidate solution but needs to be

buffered for another, it is not necessary to add this item to the

buffer because the algorithm has already stored this item. In this

case, items in both candidates and the buffer should be used for post-

processing. Thirdly, as the buffer is used for storing high-utility

items for post-processing, the items with larger marginal gains

should have higher priorities to be stored. If the buffer size still

exceeds 𝑘 ′ after (safely) dropping items using the first two rules, it

is required to sort the items in 𝐵 in a descending order of marginal

gain 𝛿 (𝑣) = max𝜏 ∈𝑇 Δ𝑓 (𝑣, 𝑆𝜏) and drop the item 𝑣 with the lowest

𝛿 (𝑣) until |𝐵 | = 𝑘 ′. Fourthly, considering the fairness constraint, it

will not drop any item 𝑣 from 𝑉𝑖 anymore if |𝐵 ∩𝑉𝑖 | ≤ 𝑘𝑖 even if

𝛿 (𝑣) is among the lowest marginal gains. In this case, it will drop

the item with the lowest 𝛿 (𝑣) from 𝑉𝑖 with |𝐵 ∩𝑉𝑖 | > 𝑘𝑖 instead.

The first two rules above have no effect on the theoretical guar-

antee on the approximation ratio of SP-FSM. The latter two rules

Fair and Representative Subset Selection from Data Streams

 Greedy MP-StreamLS MP-FSM

100 400 700 1000
k

0.8

1.6

2.4

3.2

U
til

ity

×105

(a) POKEC (Gender, PR)

100 400 700 1000
k

0.8

1.6

2.4

3.2

U
til

ity

×105

(b) POKEC (Gender, ER)

100 400 700 1000
k

0.4

0.9

1.4

1.9

U
til

ity

×105

(c) POKEC (Age, PR)

100 400 700 1000
k

0.3

0.8

1.3

1.8

U
til

ity

×105

(d) POKEC (Age, ER)

Figure 1: Solution utilities of multi-pass algorithms on POKEC. The results of Greedy without any fairness constraint are

plotted as black lines to illustrate “the prices of fairness”.

 Greedy MP-StreamLS MP-FSM

100 400 700 1000
k

101

102

103

104

Ti
m

e
(s

)

(a) POKEC (Gender, PR)

100 400 700 1000
k

101

102

103

104

Ti
m

e
(s

)

(b) POKEC (Gender, ER)

100 400 700 1000
k

101

102

103

104

Ti
m

e
(s

)

(c) POKEC (Age, PR)

100 400 700 1000
k

101

102

103

104

Ti
m

e
(s

)

(d) POKEC (Age, ER)

Figure 2: Running time of multi-pass algorithms on POKEC.

will lower the approximation ratio of SP-FSM in some cases. Let

𝑣 ′ be the item with the largest 𝛿 (𝑣) among all items dropped due

to Rule (3) or (4). The approximation ratio of SP-FSM will drop to

1−𝛽′
2

where 𝛽 ′ = 𝑘 ·𝛿 (𝑣′)
LB . Once 𝛽 ′ ≥ 1 − 1

𝑘
, the approximation ratio

will become
1

2𝑘
in the worst case. Nevertheless, according to our

experimental results in Section 5, SP-FSM provides high-quality

solutions empirically with very small buffer sizes (i.e., 𝑘 ′ = 2𝑘).

5 EXPERIMENTS

The goal of our experiments is three-fold. First, we aim to quantify

“the prices of fairness and streaming”, i.e., the losses in solution

utilities caused by introducing the fairness constraint and restrict-

ing data access to a single pass over the stream. Second, we aim

to demonstrate the improvements of MP-FSM upon existing al-

gorithms in the multi-pass streaming setting. Third, we aim to

illustrate that SP-FSM (with unlimited and bounded buffer sizes)

outperforms existing single-pass streaming algorithms.

Towards this end, we perform extensive experiments on two

applications, namely maximum coverage on large graphs and per-
sonalized recommendation, for evaluation. We compare MP-FSM

with the following two multi-pass streaming algorithms:

• Greedy: the classic
1

2
-approximation 𝑘-pass greedy algo-

rithm proposed by Fisher et al. [15].

• MP-StreamLS: a
1

2+𝜀 -approximation 𝑂 (1𝜀)-pass streaming

algorithm in [18].

Moreover, we compare SP-FSM with the following two single-pass

streaming algorithms:

• StreamLS: a
1

4
-approximation streaming algorithm in [6, 8].

• StreamLS+S: an improved version of StreamLS with sub-

sampling in [14]. The subsampling rate 𝑞 is set to 0.1.

All algorithms were implemented in Python 3.6, and the experi-

ments were conducted on a server running Ubuntu 16.04 with an

Intel Broadwell 2.40GHz CPU and 29GB memory. Our implementa-

tion is publicly available on GitHub
1
. For each of the experiments,

we invoked our algorithms with the following parameter values:

MP-FSM with 𝜀 = 0.2 and SP-FSM with 𝛼, 𝛽 = 0.5 and 𝑘 ′ = 2𝑘

in all cases where the buffer size is bounded. Note that in all the

following figures, we refer to SP-FSM with an unlimited buffer size

as SP-FSM and SP-FSM with 𝑘 ′ = 2𝑘 as SP-FSM (𝑘 ′ = 2𝑘).

5.1 Maximum Coverage on Large Graphs

Maximum coverage is a classic submodular optimization task on

graphs with many real-world applications such as community de-

tection [16], influence maximization [37], and web monitoring [33].

The goal of this task is to select a small subset of nodes that cov-

ers a large portion of nodes in a graph. Formally, given a graph

𝐺 = (𝑉 , 𝐸) where 𝑛 = |𝑉 | is the number of nodes and𝑚 = |𝐸 | is the
number of edges, the goal is to find a size-𝑘 subset 𝑆 of𝑉 that maxi-

mizes the nodes in the neighborhood of 𝑆 , i.e., 𝑓 (𝑆) = |⋃𝑣∈𝑆 𝑁 (𝑣) |
where 𝑁 (𝑣) is the set of nodes connected to 𝑣 . It is easy to verify

that 𝑓 is nonnegative, monotone, and submodular.

We perform the experiments for maximum coverage on two

graph datasets as follows: (1) POKEC is a real-world dataset pub-

lished on SNAP
2
. It is a directed graph with 1,632,803 nodes and

1
https://github.com/FraFabbri/fair-subset-datastream

2
https://snap.stanford.edu/data/soc-Pokec.html

https://github.com/FraFabbri/fair-subset-datastream
https://snap.stanford.edu/data/soc-Pokec.html

Yanhao Wang, Francesco Fabbri, and Michael Mathioudakis

 StreamLS StreamLS+S SP-FSM SP-FSM (k ′ = 2k)

100 400 700 1000
k

0.0

0.8

1.6

2.4

3.2

U
til

ity

×105

(a) POKEC (Gender, PR)

100 400 700 1000
k

0.0

0.8

1.6

2.4

3.2

U
til

ity

×105

(b) POKEC (Gender, ER)

100 400 700 1000
k

0.0

0.5

1.0

1.5

2.0

U
til

ity

×105

(c) POKEC (Age, PR)

100 400 700 1000
k

0.0

0.5

1.0

1.5

U
til

ity

×105

(d) POKEC (Age, ER)

Figure 3: Solution utilities of single-pass algorithms on POKEC. The results of Greedy are plotted as black lines to illustrate

“the prices of streaming data access”.

 StreamLS StreamLS+S SP-FSM SP-FSM (k ′ = 2k)

100 400 700 1000
k

101

102

103

Ti
m

e
(s

)

(a) POKEC (Gender, PR)

100 400 700 1000
k

101

102

103

Ti
m

e
(s

)

(b) POKEC (Gender, ER)

100 400 700 1000
k

101

102

103

Ti
m

e
(s

)

(c) POKEC (Age, PR)

100 400 700 1000
k

101

102

103

Ti
m

e
(s

)

(d) POKEC (Age, ER)

Figure 4: Running time of single-pass algorithms on POKEC.

30,622,564 edges representing the follower/followee relationships

among users in Pokec. Each node is associated with a user profile

with demographic information. The nodes are partitioned into 𝑙 = 2

groups by gender or 𝑙 = 7 groups by age in our experiments. (2)

SYN is a set of synthetic graphs generated by the Barabási-Albert

model [3] with equal number of nodes and edges, i.e., 𝑛 =𝑚. To test

the effect of graph size, we generate different graphs by ranging 𝑛

from 100k to 1m. The nodes are randomly partitioned into 𝑙 groups

and the group sizes follow a Zipf’s distribution with parameter

𝑠 = 2. By default, we set the number 𝑙 of groups to 10. To test the

effect of 𝑙 , we fix 𝑛 = 500k and vary 𝑙 from 10 to 100.

In the first set of experiments, we evaluate the performance of

Greedy, MP-StreamLS, and MP-FSM in the multi-pass streaming

setting. We range the total cardinality constraint 𝑘 =
∑
𝑖 𝑘𝑖 from

100 to 1, 000 and use both proportional representation (PR) and equal
representation (ER) to assign the group-specific cardinality con-

straint 𝑘𝑖 for each 𝑖 ∈ [𝑙]. The solution utilities and running time

on POKEC are presented in Figures 1 and 2, respectively. “The price

of fairness” – i.e., the loss in utility caused by the fairness constraint,

is marginal for PR in both cases of gender and age groups, and ER

in the case of gender groups, as two gender groups are roughly

balanced (e.g., 51% female vs. 49% male) on POKEC. However, for

highly imbalanced groups (e.g., age groups on POKEC), enforcing

equal representation leads to significant losses in utilities (see Fig-

ure 1(d)). MP-FSM outperformsGreedy andMP-StreamLS in terms

of both running time and solution utility in almost all cases. It runs

up to 19 and 567 times faster than Greedy andMP-StreamLS, re-

spectively. Meanwhile, its solution utilities are always nearly equal

to (at least 99% of) those of Greedy and consistently (up to 10%)

higher than those of MP-StreamLS.

In the second set of experiments, we evaluate the performance of

StreamLS, StreamLS+S, and SP-FSM with unlimited and bounded

(i.e., 𝑘 ′ = 2𝑘) buffer sizes in the single-pass streaming setting. We

also vary 𝑘 from 100 to 1, 000 and use both PR and ER for fairness

constraints. The experimental results on POKEC are illustrated in

Figures 3 and 4. Firstly, the utilities of the solutions provided by

StreamLS and SP-FSM are typically around 10% lower than the

utilities of the solutions of Greedy. This can be seen as “the price

of streaming data access” – i.e., the loss in utility for restricting data

access only to a single pass over the stream. Secondly, the solution

quality of SP-FSM is generally equivalent to or better than that

of StreamLS. Meanwhile, the efficiency of SP-FSM is consistently

higher than that of StreamLS, particularly so for larger values

of 𝑘 . Thirdly, the performance of SP-FSM is hardly affected by

the buffer size: The solution quality and running time of SP-FSM

are nearly identical when setting the buffer size to be unlimited

or 2𝑘 . This confirms the effectiveness of the buffer management

strategies we propose. Fourthly, the subsampling technique used

in StreamLS+S does not perform well in our scenario: although

it obviously improves the efficiency upon StreamLS, its solution

quality becomes significantly inferior to any other algorithm.

In the third set of experiments, we test the scalability of different

algorithms with varying the number 𝑙 of groups and the dataset

size 𝑛 on SYN when 𝑘 is fixed to 500. Because the results for PR

and ER are similar to each other, we only present the results for PR.

The performance of multi-pass streaming algorithms is shown in

Figure 5. The solution utilities of different algorithms keep steady

Fair and Representative Subset Selection from Data Streams

 Greedy MP-StreamLS MP-FSM

10 40 70 100
l

1.8

1.9

2.0

2.1

2.2

2.3

U
til

ity

×104

10 40 70 100
l

101

102

103

Ti
m

e
(s

)
(a) Varying 𝑙

100k 400k 700k 1m
n

0.9

1.4

1.9

2.4

U
til

ity

×104

100k 400k 700k 1m
n

100

101

102

103

Ti
m

e
(s

)

(b) Varying 𝑛

Figure 5: Performance of multi-pass algorithms on SYN with varying dataset size 𝑛 and number of groups 𝑙 .

 StreamLS StreamLS+S SP-FSM (k ′ = 2k)

10 40 70 100
l

1.2

1.4

1.6

1.8

2.0

U
til

ity

×104

10 40 70 100
l

100

101

102

Ti
m

e
(s

)

(a) Varying 𝑙

100k 400k 700k 1m
n

0.7

1.2

1.7

2.2

2.7

U
til

ity

×104

100k 400k 700k 1m
n

100

101

102

Ti
m

e
(s

)

(b) Varying 𝑛

Figure 6: Performance of single-pass algorithms on SYN with varying dataset size 𝑛 and number of groups 𝑙 .

w.r.t. 𝑙 while growing with increasing 𝑛 as expected. Meanwhile, the

solution quality of Greedy,MP-Stream-LS, andMP-FSM is close to

each other with varying 𝑙 and𝑛. The difference in utilities are within

5% in all cases. Furthermore, the running time of all algorithms

generally keeps steady for different values of 𝑙 and grows near

linearly with increasing𝑛. At the same time,MP-FSM runs nearly 10

and 100 times faster than Greedy andMP-Stream-LS, respectively,

for different values of 𝑙 and 𝑛. The performance of single-pass

streaming algorithms on SYN is shown in Figure 6. Since SP-FSM

shows nearly identical performance for different buffer sizes, we

only present the results of SP-FSM (𝑘 ′ = 2𝑘) here. Generally, we

observe the same trends as the multi-pass case with varying 𝑙 and

𝑛. For different values of 𝑙 and 𝑛, the solution quality of SP-FSM

and StreamLS is close to each other, but SP-FSM runs much faster

than StreamLS. With the benefit of subsampling, StreamLS+S has

much higher efficiency than SP-FSM and StreamLS. Nevertheless,

its solution quality is obviously worse than them.

In summary, for maximum coverage on large graphs, our experi-

mental results demonstrate that our proposed algorithms MP-FSM

and SP-FSM manage to pay small “prices” for the restrictions of

the settings (i.e., fairness constraint and streaming data access).

And compared with the state-of-the-art algorithms, they exhibit

an excellent combination of performance in terms of running time

and solution quality.

5.2 Personalized Recommendation

The personalized recommendation problemhas been used for bench-

marking submodular maximization algorithms in [30, 32]. Its goal

is to select a subset 𝑆 of 𝑘 items that is both relevant to a given user

𝑢 and well represents all items in the collection 𝑉 . Formally, each

 Greedy MP-StreamLS MP-FSM

10 40 70 100
k

7.8

8.1

8.4

8.7

9.0

9.3

U
til

ity

×103

10 40 70 100
k

0

30

60

90

120

150

Ti
m

e
(s

)

Figure 7: Performance of multi-pass algorithms on Movie-

Lens. The utilities of Greedy without any fairness con-

straint are plotted as a black line.

query user 𝑢 and each item 𝑣 in 𝑉 are denoted by feature vectors

in R𝑑 . The relevance between a user and an item is computed by

the inner product of their feature vectors. The objective function 𝑓

is defined as follows:

𝑓 (𝑆) = 𝜆 ·
∑︁
𝑣′∈𝑉

max

𝑣∈𝑆
⟨𝑣 ′, 𝑣⟩ + (1 − 𝜆) ·

∑︁
𝑣∈𝑆
⟨𝑢, 𝑣⟩

and, again, 𝑓 is known to be nonnegative, monotone and submodu-

lar [30]. The first term measures how well a subset 𝑆 represents the

collection 𝑉 ; the second term denotes the relevance of 𝑆 to user 𝑢;

and the parameter 𝜆 trades off between both terms. We set 𝜆 = 0.75

following [30, 32] in our experiments.

We perform the experiments for personalized recommendation

on the MovieLens dataset
3
. It contains 3,883 items (movies) and

6,040 users with onemillion user ratings for movies.We denote each

3
https://grouplens.org/datasets/movielens/

https://grouplens.org/datasets/movielens/

Yanhao Wang, Francesco Fabbri, and Michael Mathioudakis

 StreamLS StreamLS+S SP-FSM SP-FSM (k ′ = 2k)

10 40 70 100
k

7.6

8.0

8.4

8.8

9.2

U
til

ity

×103

10 40 70 100
k

100

101

102

103

Ti
m

e
(s

)
Figure 8: Performance of single-pass algorithms on Movie-

Lens. The utilities of Greedy are plotted as a black line.

item or user as a 50-dimensional vector by performing Nonnegative

Matrix Factorization (NMF) [39] on the user-item rating matrix.

The items are partitioned into 𝑙 = 10 groups according to genre.
Since the results for PR and ER are similar to each other, we omit

the results for ER in these experiments.

We present the performance of multi-pass streaming algorithms

by ranging𝑘 from 10 to 100 in Figure 7. Since the number 𝑙 of groups

is relatively large compared to 𝑘 , the utility losses caused by fairness

constraints are more significant than those in maximum coverage.
Among all multi-pass streaming algorithms, Greedy runs the slow-

est but achieves the best solution quality. Moreover, MP-FSM shows

higher efficiency than Greedy, especially when 𝑘 becomes larger.

Meanwhile, it provides solutions of at least 96% utilities of the

solutions of Greedy. AlthoughMP-StreamLS runs faster than MP-

FSM and Greedy because of fewer updates in solutions, its solution

quality becomes worse as well. We describe the performance of

single-pass streaming algorithms by ranging 𝑘 from 10 to 100 in

Figure 8. Similar to the case of maximum coverage, the solution

utilities of SP-FSM (with unlimited and bounded buffer sizes) are

around 10% lower than those of Greedy because only a single pass

over the stream is permitted. Nevertheless, SP-FSM provides so-

lutions of higher quality than StreamLS at the expense of longer

running time. Finally, StreamLS+S still brings great improvements

in efficiency but leads to obvious losses in solution quality.

In summary, for personalized recommendation, our experimental

results demonstrate that our proposed algorithms MP-FSM and SP-

FSM have good performance compared with the state-of-the-art

algorithms: they provide solutions of higher quality than the local

search based streaming algorithms (i.e., MP-StreamLS, StreamLS,

and StreamLS+S) at the expense of lower efficiency.

6 CONCLUSION

In this paper, we studied the problem of extracting fair and repre-

sentative items from data streams. We formulated the problem as

maximizing monotone submodular functions subject to partition

matroid constraints. We first proposed a (1
2
− 𝜀)-approximation

multi-pass streaming algorithm called MP-FSM for the problem.

Then, we designed a single-pass streaming algorithm called SP-

FSM for the problem. SP-FSM had the same approximation ratio

of (1
2
− 𝜀) as MP-FSM when an unlimited buffer size is permitted,

which improved the best-known approximation ratio of
1

4
in the

literature. We further considered the practical implementation of

SP-FSM when the buffer sizes are bounded. Finally, extensive ex-

perimental results on two real-world applications confirmed the

efficiency, effectiveness, and scalability of our proposed algorithms.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful comments

to improve this paper. Yanhao Wang and Michael Mathioudakis

have been supported by the MLDB project of Academy of Finland

(decision number: 322046). Francesco Fabbri has been supported by

the Helsinki Institute for Information Technology (HIIT).

REFERENCES

[1] Zeinab Abbassi, Vahab S. Mirrokni, and Mayur Thakur. 2013. Diversity maxi-

mization under matroid constraints. In KDD. 32–40.
[2] Naor Alaluf, Alina Ene, Moran Feldman, Huy L. Nguyen, and Andrew Suh. 2020.

Optimal Streaming Algorithms for Submodular Maximization with Cardinality

Constraints. In ICALP. 6:1–6:19.
[3] Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex

networks. Rev. Mod. Phys. 74 (2002), 47–97. Issue 1.
[4] Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and An-

dreas Krause. 2014. Streaming Submodular Maximization: Massive Data Summa-

rization on the Fly. In KDD. 671–680.
[5] L. Elisa Celis, Vijay Keswani, Damian Straszak, Amit Deshpande, Tarun Kathuria,

and Nisheeth K. Vishnoi. 2018. Fair and Diverse DPP-Based Data Summarization.

In ICML. 715–724.
[6] Amit Chakrabarti and Sagar Kale. 2015. Submodular maximization meets stream-

ing: matchings, matroids, and more. Math. Program. 154, 1-2 (2015), 225–247.
[7] T.-H. Hubert Chan, Zhiyi Huang, Shaofeng H.-C. Jiang, Ning Kang, and Zhi-

hao Gavin Tang. 2017. Online Submodular Maximization with Free Disposal:

Randomization Beats ¼ for Partition Matroids. In SODA. 1204–1223.
[8] Chandra Chekuri, Shalmoli Gupta, and Kent Quanrud. 2015. Streaming Algo-

rithms for Submodular Function Maximization. In ICALP. 318–330.
[9] Ashish Chiplunkar, Sagar Kale, and Sivaramakrishnan Natarajan Ramamoorthy.

2020. How to Solve Fair 𝑘-Center in Massive Data Models. In ICML. 6887–6896.
[10] Alexandra Chouldechova and Aaron Roth. 2020. A snapshot of the frontiers of

fairness in machine learning. Commun. ACM 63, 5 (2020), 82–89.

[11] Abhisek Dash, Anurag Shandilya, Arindam Biswas, Kripabandhu Ghosh, Sap-

tarshi Ghosh, and Abhijnan Chakraborty. 2019. Summarizing User-generated

Textual Content: Motivation and Methods for Fairness in Algorithmic Summaries.

Proc. ACM Hum. Comput. Interact. 3, CSCW (2019), 172:1–172:28.

[12] Alessandro Epasto, Silvio Lattanzi, Sergei Vassilvitskii, and Morteza Zadimoghad-

dam. 2017. Submodular Optimization Over SlidingWindows. InWWW. 421–430.

[13] Uriel Feige. 1998. A Threshold of ln n for Approximating Set Cover. J. ACM 45, 4

(1998), 634–652.

[14] Moran Feldman, Amin Karbasi, and Ehsan Kazemi. 2018. Do Less, Get More:

Streaming Submodular Maximization with Subsampling. In NeurIPS. 730–740.
[15] Marshall L. Fisher, George L. Nemhauser, and Laurence A. Wolsey. 1978. An

analysis of approximations for maximizing submodular set functions—II. In

Polyhedral Combinatorics, Michel L. Balinski and Alan J. Hoffman (Eds.). Springer

Berlin Heidelberg, 73–87.

[16] Esther Galbrun, Aristides Gionis, and Nikolaj Tatti. 2014. Overlapping community

detection in labeled graphs. Data Min. Knowl. Discov. 28, 5-6 (2014), 1586–1610.
[17] Ryan Gomes and Andreas Krause. 2010. Budgeted Nonparametric Learning from

Data Streams. In ICML. 391–398.
[18] Chien-Chung Huang, Theophile Thiery, and Justin Ward. 2020. Improved Multi-

Pass Streaming Algorithms for Submodular Maximization with Matroid Con-

straints. In APPROX/RANDOM. 62:1–62:19.

[19] Matthew Jones, Huy Lê Nguyên, and Thy Nguyen. 2020. Fair k-Centers via

Maximum Matching. In ICML. 7460–7469.
[20] Matthew Kay, Cynthia Matuszek, and Sean A. Munson. 2015. Unequal Represen-

tation and Gender Stereotypes in Image Search Results for Occupations. In CHI.
3819–3828.

[21] Ehsan Kazemi, Marko Mitrovic, Morteza Zadimoghaddam, Silvio Lattanzi, and

Amin Karbasi. 2019. Submodular Streaming in All Its Glory: Tight Approximation,

Minimum Memory and Low Adaptive Complexity. In ICML. 3311–3320.
[22] Ehsan Kazemi, Morteza Zadimoghaddam, and Amin Karbasi. 2018. Scalable

Deletion-Robust Submodular Maximization: Data Summarization with Privacy

and Fairness Constraints. In ICML. 2549–2558.
[23] David Kempe, Jon M. Kleinberg, and Éva Tardos. 2003. Maximizing the spread of

influence through a social network. In KDD. 137–146.
[24] Matthäus Kleindessner, Pranjal Awasthi, and Jamie Morgenstern. 2019. Fair

k-Center Clustering for Data Summarization. In ICML. 3448–3457.

Fair and Representative Subset Selection from Data Streams

[25] Andreas Krause and Daniel Golovin. 2014. Submodular Function Maximization.

In Tractability: Practical Approaches to Hard Problems, Lucas Bordeaux, Youssef
Hamadi, and Pushmeet Kohli (Eds.). Cambridge University Press, 71–104.

[26] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. 2015.

Fast Greedy Algorithms in MapReduce and Streaming. ACM Trans. Parallel
Comput. 2, 3 (2015), 14:1–14:22.

[27] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos, Jeanne M.

Van Briesen, and Natalie S. Glance. 2007. Cost-effective outbreak detection in

networks. In KDD. 420–429.
[28] Erik M. Lindgren, Shanshan Wu, and Alexandros G. Dimakis. 2016. Leveraging

Sparsity for Efficient Submodular Data Summarization. In NIPS. 3414–3422.
[29] Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause. 2017. Deletion-

Robust Submodular Maximization: Data Summarization with "the Right to be

Forgotten". In ICML. 2449–2458.
[30] Slobodan Mitrovic, Ilija Bogunovic, Ashkan Norouzi-Fard, Jakub Tarnawski, and

Volkan Cevher. 2017. Streaming Robust Submodular Maximization: A Partitioned

Thresholding Approach. In NIPS. 4557–4566.
[31] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. 1978. An

analysis of approximations for maximizing submodular set functions—I. Math.
Program. 14, 1 (1978), 265–294.

[32] Ashkan Norouzi-Fard, Jakub Tarnawski, Slobodan Mitrovic, Amir Zandieh,

Aidasadat Mousavifar, and Ola Svensson. 2018. Beyond 1/2-Approximation

for Submodular Maximization on Massive Data Streams. In ICML. 3826–3835.
[33] Barna Saha and Lise Getoor. 2009. On Maximum Coverage in the Streaming

Model & Application to Multi-topic Blog-Watch. In SDM. 697–708.

[34] Dimitris Serbos, Shuyao Qi, Nikos Mamoulis, Evaggelia Pitoura, and Panayiotis

Tsaparas. 2017. Fairness in Package-to-Group Recommendations. In WWW.

371–379.

[35] Ana-Andreea Stoica, Jessy Xinyi Han, and Augustin Chaintreau. 2020. Seeding

Network Influence in Biased Networks and the Benefits of Diversity. InWWW.

2089–2098.

[36] Jeffrey Scott Vitter. 1985. Random Sampling with a Reservoir. ACM Trans. Math.
Softw. 11, 1 (1985), 37–57.

[37] Yanhao Wang, Qi Fan, Yuchen Li, and Kian-Lee Tan. 2017. Real-Time Influence

Maximization on Dynamic Social Streams. Proc. VLDB Endow. 10, 7 (2017), 805–
816.

[38] Yanhao Wang, Yuchen Li, and Kian-Lee Tan. 2019. Efficient Representative

Subset Selection over Sliding Windows. IEEE Trans. Knowl. Data Eng. 31, 7 (2019),
1327–1340.

[39] Yu-Xiong Wang and Yu-Jin Zhang. 2013. Nonnegative Matrix Factorization: A

Comprehensive Review. IEEE Trans. Knowl. Data Eng. 25, 6 (2013), 1336–1353.
[40] Junzhou Zhao, Shuo Shang, Pinghui Wang, John C. S. Lui, and Xiangliang Zhang.

2019. Submodular Optimization over Streams with Inhomogeneous Decays. In

AAAI. 5861–5868.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Our Algorithms
	4.1 Multi-Pass Streaming Algorithm
	4.2 Single-Pass Streaming Algorithm
	4.3 SP-FSM with Bounded Buffer Size

	5 Experiments
	5.1 Maximum Coverage on Large Graphs
	5.2 Personalized Recommendation

	6 Conclusion
	Acknowledgments
	References

