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Abstract
We investigate the decidability of model-checking logics of time, knowledge

and probability, with respect to two epistemic semantics: the clock and synchronous
perfect recall semantics in partially observed discrete-time Markov chains. Decid-
ability results are known for certain restricted logics with respect to these seman-
tics, subject to a variety of restrictions that are either unexplained or involve a
longstanding unsolved mathematical problem. We show that mild generalizations
of the known decidable cases suffice to render the model checking problem defini-
tively undecidable. In particular, for a synchronous perfect recall, a generalization
from temporal operators with finite reach to operators with infinite reach renders
model checking undecidable. The case of the clock semantics is closely related
to a monadic second order logic of time and probability that is known to be de-
cidable, except on a set of measure zero. We show that two distinct extensions of
this logic make model checking undecidable. One of these involves polynomial
combinations of probability terms, the other involves monadic second order quan-
tification into the scope of probability operators. These results explain some of the
restrictions in previous work.

1 Introduction
Model checking is a verification methodology used in computer science, in which we
ask whether a given model satisfies a given formula of some logic. First proposed in
the 1980’s [CE81], model checking is now a rich area, with a large body of associated
theory and well developed implementations that automate the task of model check-
ing. Significant use of model checking tools is made in industry, in particular, in the
verification of computer hardware designs.

Model checking developed originally in a setting where the specifications are ex-
pressed in a propositional temporal logic, and the systems to be verified are finite state
∗Version of September 15, 2015. This is an extended version, with full proofs, of a paper that appeared in

TARK 2015. It corrects an error in the TARK 2015 pre-proceedings version, in the definition of mixed-time
polynomial atomic probability formulas.
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automata. This setting has the advantage of being decidable, and a great deal of work
has gone into the development of algorithms and heuristics for its efficient implemen-
tation. More recently, the field has explored the extent to which the expressiveness of
both the model representations and of the specification language can be extended while
retaining decidability of model checking. Extensions in the systems dimensions con-
sidered include real-time systems [ACD90], systems with a mixed continuous and dis-
crete dynamic [MNP08], richer automaton models such as push-down automata, ma-
chines with first-in-first out queues etc. In the dimension of the specification language,
extensions considered include elements of second order logic and specific constructs
to capture the richer properties of the systems models described above (e.g. in the real
time case the specification language might contain inequalities over time values.)

Model checking for epistemic logic was first mooted in [HV91], and model check-
ing for the combination of temporal and epistemic logic has been developed both theo-
retically [MS99, EGM07, HM10] and in practice [GM04, LQR09, KNN+08, Eij04]. A
variety of semantics for knowledge are known to be associated with decidable model
checking problems in finite state systems, in particular, the observational semantics (in
which an agent reasons based on its present observation) the clock semantics (in which
an agent reasons based on its present observation and the present clock value), and syn-
chronous and asynchronous versions of perfect recall, all admit decidable model check-
ing in combination with quite rich temporal expressiveness [MS99, EGM07, HM10].

Orthogonally, a line of work on probabilistic model checking has considered model
checking of assertions about probability and time [RKNP04]. Although one might at
first expect this line of work to be closely related to epistemic model checking, in that
probability theory provides a model of uncertainty, in fact this area has been concerned
not with how subjective probabilities change over time, but with a probabilistic exten-
sion of temporal logic. The focus tends to be on the prior probability of some temporal
property, or on the probability that some temporal property holds in runs from a current
known state.

Rather less attention has been given to model checking the combination of subjec-
tive probability and temporal expressiveness. Of the semantics for knowledge men-
tioned above, the clock and synchronous perfect recall semantics are most suited as a
basis for model checking subjective probability. (The others suffer from asynchrony,
which makes it more difficult to associate a single natural probability space.) Imple-
mentations for these semantics presently exist only for a limited set of formulas, in
which the full power of temporal logic is not used. For example, results in [HLM11]
for model checking the logic of subjective probability (with clock or synchronous per-
fect recall semantics) and time restricts the temporal operators to have only finite reach
into the future, and does not handle operators such as “at all times in the future”.

A fundamental reason underlying this is that the problem of model checking prob-
ability with a rich temporal expressiveness seems to be inherently complex. Indeed,
it requires a solution to a basic mathematical problem, the Skolem Problem for linear
recurrences, that has stood unsolved since first posed in the 1930’s [Sko34]. Conse-
quently, the strongest results on model checking probability and time that encompass
the expressiveness required for model checking knowledge and subjective probabil-
ity state decidability in a way that requires exclusion of an infinite set of difficult in-
stances for which decidability is unresolved. Specifically, [BRS06] shows that a (weak)
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monadic second order logic PMLO, containing probability assertions of forms such as
Pr(φ(t1, . . . , tn)) > c, in which the ti take values in the natural numbers, representing
discrete time points, is decidable in finite state Markov chains, provided that the ratio-
nal number c is not in a set Hφ depending on φ which can taken to be of arbitrarily
small non-zero measure. This work leaves open the decidability of the model checking
problem for the language in its full generality, in particular, for the values of c in Hφ.

Our contribution in this paper is to consider a number of generalizations of PMLO,
motivated by model checking a logic of time and subjective probability. In particular,
our generalizations arise very naturally when attempting to deal with the way that an
agent conditions probability on its observations. We show that these generalizations
definitively result in undecidable model checking problems. This clarifies the boundary
between the decidable and undecidable cases of model checking logics of probability
and time.

We begin in section 2 by recalling the definition of probabilistic interpreted sys-
tems [Hal03], which provides a very general semantic framework for logics of time,
knowledge and probability. We work with an instantiation of this general framework in
which systems are generated from finite state partially observed discrete-time Markov
chains. We define two logics that take semantics in this framework. The first is an
extension of the branching time temporal logic CTL∗ to include operators for knowl-
edge and probability, including operators for the subjective probability of agents. The
second is a more expressive monadic second order logic that also adds a capability to
quantify over moments of time and finite sets of moments of time. In this logic, the
agent knowledge and probability operators are indexed by a temporal variable. This
logic generalizes the logic of [BRS06]. Our logics allow polynomial comparisons of
probability terms, as well as comparisons of agent probability terms referring to mul-
tiple time points. We argue from a number of motivating applications that this level
of expressiveness is useful in potential applications. We show in Section 3 that the
monadic second order logic is as least as expressive as our probabilistic extension of
CTL∗. Indeed, some apparently mild extensions of PMLO suffice for the encoding:
the epistemic and subjective probability operators can be eliminated using a universal
modality, polynomial combinations of probability expressions, and a more liberal use
of quantification than allowed in PMLO.

We then turn in Section 4 to an investigation of the model checking problem.
Specifically, we show that model checking even very simple formulas about a single
agent’s probability is undecidable when the agent has perfect recall. A consequence of
this result is that an extension of PMLO that adds second order quantification into the
scope of probability is undecidable.

This suggests a focus on weaker epistemic semantics instead, in particular, the
clock semantics. From the point of view of PMLO, to express agent’s subjective proba-
bilities with respect to the clock semantics requires polynomial combinations of simple
global probability terms of the form “ the probability that proposition p holds at time
t”. We formulate a simple class of formulas involving such polynomial combinations,
and show that this also has undecidable model checking.

These results show that even simple model checking questions about subjective
probability are undecidable, and moreover help to explain some unexplained restric-
tions on PMLO in [BRS06]: these restrictions are in fact necessary in order to obtain
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a decidable logic. We conclude with a discussion of future work in Section 5. Related
work most closely related to our results is discussed in the context of presenting and
motivating the results.

2 Probabilistic Knowledge
We describe in this section the semantic setting for the model checking problem we
consider. We model a set of agents making partial observations of an environment
that evolves with time. We first present the semantics of the modal logic we consider,
following [Hal03], using the general notion of probabilistic interpreted system. Since
these structures are not finite, in order to have a finite input for a model checking prob-
lem, we derive a probabilistic interpreted system from a partially observed discrete-
time Markov chain. This is done in two ways, depending on the degree of recall of
the agents. Taking the Markov chain to be finite, we obtain finitely presented model
checking problems whose complexity we then study.

2.1 Probabilistic Interpreted Systems
Probabilistic interpreted systems are defined as follows. Let Agt = {1, . . . , n} be a set of
agents operating in an environment e. At each moment of time, each agent is assumed
to be in some local state, which records all the information that the agent can access at
that time. The environment e records “everything else that is relevant”. Let S be the
set of environment states and let Li be the set of local states of agent i ∈ Agt. A global
state of a multi-agent system is an (n + 1)-tuple s = (se, s1, . . . , sn) such that se ∈ S and
si ∈ Li for all i ∈ Agt. We write G = S × L1 × . . . × Ln for the set of global states.

Time is represented discretely using the natural numbers N. A run is a function
r : N → G, specifying a global state at each moment of time. A pair (r,m) consisting
of a run r and time m ∈ N is called a point. If r(m) = (se, s1, . . . , sn) then we define
re(m) = se and ri(m) = si for i ∈ Agt. If r is a run and m ∈ N a time, we write r[0..m]
for r(0) . . . r(m) and re[0..m] for re(0) . . . re(m). A system is a set R of runs. We call
R × N the set of points of the system R.

Agent knowledge is captured using a relation of indistinguishability. Two points
(r,m) and (r′,m′) are said to be indistinguishable to agent i, if the agent is in the same
local state at these points. Formally, we define ∼i to be the equivalence relation on
R × N given by (r,m) ∼i (r′,m′), if ri(m) = r′i (m

′). Relative to a system R, we define
the set

Ki(r,m) = {(r′,m′) ∈ R × N | (r′,m′) ∼i (r,m)}

to be the set of points that are, for agent i, indistinguishable from the point (r,m).
Intuitively,Ki(r,m) is the set of all points that the agent considers possible when it is in
the actual situation (r,m). A system is said to be synchronous if for all agents i, we have
that (r′,m′) ∈ Ki(r,m) implies that m = m′. Intuitively, in a synchronous system, agents
always know the time. Since it is more difficult to define probabilistic knowledge in
systems that are not synchronous, we confine our attention to synchronous systems in
what follows.
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A probability space is a triple Pr = (W,F , µ) such that W is a (nonempty) set,
called the carrier, F ⊆ P(W) is a σ-field of subsets of W, called the measurable
sets in Pr, containing W and closed under complementation and countable union, and
µ : F → [0, 1] is a probability measure, such that µ(W) = 1 and µ(

⋃
n Vn) =

∑
n µ(Vn)

for every countable sequence {Vn} of mutually disjoint measurable sets Vn ∈ F . As
usual, we define the conditional probability µ(U |V) = µ(U ∩ V)/µ(V) when µ(V) > 0.

Let Prop be a set of atomic propositions. A probabilistic interpreted system over
Prop is a tuple I = (R, Pr1, . . . , Prn, π) such that R is a system, each Pri is a function
mapping each point (r,m) of R to a probability space Pri(r,m) in which the carrier is
a subset of R × N, and π : R × N → P(Prop) is an interpretation of some set Prop
of atomic propositions. Intuitively, the probability space Pri(r,m) captures the way
that the agent i assigns probabilities at the point (r,m), and π(r,m) is the set of atomic
propositions that are true at the point.

We will work with probabilistic interpreted systems derived from synchronous sys-
tems in which agents have a common prior on the set of runs. To define these, we
use the following notation. For a system R, a set of runs S ⊆ R and a set of points
U ⊆ R × N, define

S(U) = {r ∈ S | ∃m : (r,m) ∈ U}

to be the set of runs in S passing through some point in the set U. Conversely, for a set
S of runs and a set U of points, define

U(S) = {(r,m) ∈ U | r ∈ S}

to be the set of points in U that are on a run in S. Note that if there exists a constant
k ∈ N such that (r,m) ∈ U implies m = k, then the relation r ↔ (r, k) defines a one-
to-one correspondence between S(U) and U(S). In synchronous systems, in which
the sets Ki(r,m) satisfy this condition, this gives a way to move between sets of points
considered possible by an agent and corresponding sets of runs.

Suppose that R is a synchronous system, let Pr = (R,F , µ) be a probability space
on the systemR, and let π be an interpretation onR. Intuitively, the probability space Pr
represents a prior distribution over the runs. We assume that for all points (r,m) ∈ R×N
and agents i, we have that R(Ki(r,m)) ∈ F is a measurable set and µ(R(Ki(r,m))) > 0.
(This assumption can be understood as saying that, according to the prior, each possible
local state ri(m) of agent i at time m has non-zero probability of being the local state of
agent i at time m.) Under this condition, we define the probabilistic interpreted system
I(R,Pr, π) = (R, Pr1, . . . , Prn, π) such that Pri associates with each point (r,m) the
probability space Pri(r,m) = (Ki(r,m),Fr,m,i, µr,m,i) defined by

Fr,m,i = {Ki(r,m)(S) | S ∈ F }

and such that
µr,m,i(U) = µ(R(U) | R(Ki(r,m)) )

for all U ∈ Fr,m,i. Intuitively, because the set of runs R(Ki(r,m)) is measurable, we
can obtain a probability space with carrier R(Ki(r,m)) by conditioning in Pr. Because
of the synchrony assumption there is, for each point (r,m), a one-to-one correspon-
dence between points in Ki(r,m) and runs in R(Ki(r,m)). The construction uses this
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correspondence to induce a probability space on Ki(r,m) from the probability space
on R(Ki(r,m)). We remark that under the additional assumption of perfect recall, it is
also possible to understand each space Pri(r,m + 1) as obtained by conditioning on the
space Pri(r,m). See [Hal03] for a detailed explanation of this point.

2.2 Probabilistic Temporal Epistemic Logic
To specify properties of probabilistic interpreted systems, a variety of logics can be
formulated, drawing from the spectrum of temporal logics. Our main interest is in a
reasoning about subjective probability and time, so we first consider a natural way to
combine existing temporal and probabilistic logics. For purposes of comparison, it is
also helpful to consider a rather richer monadic second order logic of probability and
time, that is closely related to a logic for which some decidability results are known.

We may combine temporal and probabilistic logics to define a logic CTL∗KP that
extends the temporal logic CTL∗ by adding operators for knowledge and probability.
Its syntax is given by the grammar

φ ::= p | ¬φ | φ ∧ φ | Aφ | Xφ | φUφ | Kiφ | f (P, . . . , P) ./ c

P ::= Pri(φ) | Priori(φ)

where p ∈ Prop, c is a rational constant, ./ is a relation symbol in the set {≤, <,=, >
,≥}, and f (x1, . . . , xk) is multivariate polynomial in k variables x1, . . . xk with rational
coefficients. Instances of P are called basic probability expression. The instances
generated from f (P, . . . , P) are called probability expressions, and are expressions of
the form f (P1, . . . , Pk), obtained by substituting a basic probability expression Pi for
each variable xi in f (x1, . . . , xk). For example,

4Pr1(p)5 · Pr2(q)3 +
7
15
Pr1(p)

is an instance of f (P, . . . , P) obtained from f (x, y) = 4x5y3 + 7
15 x by substituting Pr1(p)

for x and Pr2(q) for y.
Intuitively, formula Kiφ expresses that agent i knows φ. The formula Aφ says that

φ holds for all possible system evolutions from the current situation. The formula Xφ
expresses that φ holds at the next moment of time. The formula φ1Uφ2 says that φ2
eventually holds, and φ1 holds until that time. The expression Pri(φ) represents agent
i’s current probability of φ, Priori(φ) represents agent i’s prior probability of φ, i.e.,
the agent’s probability of φ at time 0. The formula f (P1, . . . , Pk) ./ c expresses that
this polynomial combination of current and prior probabilities stands in the relation ./
to c. We use standard abbreviations from temporal logic, in particular, we write Fφ for
trueUφ.

A restricted fragment of the language that may be of interest is the branching time
fragment in which the temporal operators are restricted to those of the temporal logic
CTL. That is, X and U are permitted to occur only in combination with the operator
A, in one of the forms AXφ, EXφ, Aφ1Uφ2, Eφ1Uφ2, where we write Eφ as an ab-
breviation for ¬A¬φ. We call this fragment of the language CTLPK. The motivation
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for considering this fragment is that the complexity of model checking is in polyno-
mial time for the temporal logic CTL, whereas it is polynomial-space complete for the
richer temporal logic CTL∗ [CES86]. The logic CTLPK is therefore, prima facie, a
candidate for lower complexity once knowledge and probability operators are added to
the logic.

The semantics of the language CTL∗KP in a probabilistic interpreted system I =

I(R,Pr, π) is given by interpreting formulas φ at points (r,m) of I, using a satisfaction
relation I, (r,m) |= φ. The definition is mutually recursive with a function [·]I,(r,m) that
assigns a value [P]I,(r,m) to each probability expression P at each point (r,m). This
requires computing the measure of certain sets. For the moment, we assume that all
sets arising in the definition are measurable. We show later that this assumption holds
in the cases of interest in this paper.

We first interpret the probability expressions at points (r,m) of the system I, by

[Priφ]I,(r,m) = µr,m,i({(r′,m′) ∈ Ki(r,m) | I, (r′,m′) |= φ})

[Prioriφ]I,(r,m) = µr,0,i({(r′, 0) ∈ Ki(r, 0) | I, (r′, 0) |= φ})

[ f (P1, . . . , Pk)]I,(r,m) = f ([P1]I,(r,m), . . . , [Pk]I,(r,m))

The satisfaction relation is then defined recursively, as follows:

1. I, (r,m) |= p if p ∈ π(r,m)

2. I, (r,m) |= ¬φ iff not I, (r,m) |= φ

3. I, (r,m) |= φ1 ∧ φ2 iff I, (r,m) |= φ1 and I, (r,m) |= φ2

4. I, (r,m) |= Aφ if I, (r′,m) |= φ for all runs r′ with r′[0 . . .m] = r[0 . . .m],

5. I, (r,m) |= Xφ if I, (r,m + 1) |= φ

6. I, (r,m) |= φ1Uφ2 holds if there exists k ≥ m such that I, (r, k) |= φ2, and
I, (r, l) |= φ1 for all l with m ≤ l < k.

7. I, (r,m) |= Kiφ if I, (r′,m′) |= φ for all (r′,m′) ∈ Ki(r,m).

8. I, (r,m) |= f (P1, ..., Pk) ./ c if [ f (P1, ..., Pk)]I,(r,m) ./ c.

2.3 Probabilistic Monadic Second Order Logic
Temporal modal logics refer to time in a somewhat implicit way. An alternative ap-
proach is to work in a setting with more explicit references to time, by using variables
denoting time points. Kamp’s theorem [Kam68] establishes an equivalence in the first
order case, but by adding second order variables and quantification, one can obtain
richer logics, that frequently remain decidable in the monadic case. In this section, we
develop a logic in this style for time and subjective probability.

We define the logic WMLOKP as follows. We use two types of variables: time
variables t and set variables X. Time variables take values in N and set variables take
finite subsets of N as values. Probability terms P have the form Pr(φ) or the form
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Pri,t(φ) where i ∈ Agt is an agent, t is a time variable, φ is a formula. Formulas φ are
defined by the following grammar:

φ ::= p(t) | X(t) | t1 < t2 | f (P, . . . , P) ./ c | ¬φ | φ ∧ φ |
Ki,t(φ) | ∀t(φ) | ∀X(φ)

where t, t1, t2 are time variables, p is an atomic proposition, X is a set variable, i is an
agent, c ∈ Q is a rational constant, f is a rational polynomial (see the discussion above
for CTL∗KP), and ./ is a relation symbol from the set {=, <,≤, >,≥}.

Intuitively, in this logic formulas are interpreted relative to a run. Instead of index-
ing by a single moment of time, as in the logic above, we relativize the satisfaction
relation to an assignment of values to the temporal and set variables. Atomic formula
p(t) says that proposition p holds at time t. Similarly, a (finite) set X of times can
be interpreted as a proposition, and we can understand X(t) as stating that the value
of t is in X. (We remark that there is a fundamental difference between the types of
propositions denoted by atomic propositions p and set variables X: whereas the atomic
propositions may depend on structural aspects of the run, such as the global state at
time t, the set variables may refer only to the time.) The atomic formula t1 < t2 has the
obvious interpretation that time t1 is less than time t2. The constructs ∀t(φ) and ∀X(φ)
correspond to universal quantification over times and finite sets of times respectively.
They say that φ holds on the current run for all values of the variable. (Taking finite
sets amounts to the weak interpretation of second order quantification. One could also
consider a strong semantics allowing infinite sets of times. We have opted here for the
weak interpretation to more easily relate our results to the existing literature.)

The probability term Pr(φ) refers to the probability of φ in the probability space on
runs. The meaning of probability term Pri,t(φ) is agent i’s probability at time t that the
run satisfies φ. Similarly, Ki,tφ says that agent i knows at time t that the run satisfies φ.
Note that, whereas in CTL∗KP, the formula Kiφ always expresses that agent i knows
that φ holds at the “current time”, in WMLOKP, formulas such as

∃u(u < t ∧ Ki,t(p(u)))

talk about the agent’s knowledge, at some time t, about what was true at some earlier
time u. A similar point applies to probability expressions.

Accordingly, for the semantics of WMLOKP, we use a variant of interpreted sys-
tems in the form I = (R,Pr, π), where R is a system, i.e., a set of runs, and π is an
interpretation, as above, but where Pr = (R,F , µ) is a probability space with carrier
equal to the set of runs R, rather than a mapping associating a probability space over a
set of points with each agent at each point.

When dealing with formulas with free time and set variables, we need the extra
notion of an assignment for the time and set variables. This is a function τ such that
for each free time variable t we have τ(t) ∈ N, and for each free set variable X we
have that τ(X) is a finite subset of N. Given such an assignment, we give the semantics
of probability terms and formulas by a mutual recursion. We give the semantics of
formulas φ by means of a relation I, τ, r |= φ defined as follows:

1. I, τ, r |= p(t) if p ∈ π(r, τ(t)), when p is an atomic proposition,
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2. I, τ, r |= X(t) iff τ(t) ∈ τ(X), if X is a set variable,

3. I, τ, r |= t1 < t2 iff τ(t1) < τ(t2),

4. I, τ, r |= ¬φ iff not I, τ, r |= φ,

5. I, τ, r |= φ1 ∧ φ2 iff I, τ, r |= φ1 and I, τ, r |= φ2,

6. I, τ, r |= Ki,t(φ) if I, τ, r′ |= φ for all (r′,m′) ∈ Ki(r, τ(t)),

7. I, τ, r |= f (P1, ..., Pk) ./ c if [ f (P1, ..., Pk)]I,τ,r ./ c,

8. I, τ, r |= ∀t(φ) if I, τ[t 7→ n], r |= φ for all n ∈ N,

9. I, τ, r |= ∀X(φ) if I, τ[X 7→ U], r |= φ for all finite U ⊆ N.

In item (7), the definition is mutually recursive with the semantics of probability terms,
which are interpreted as real numbers, relative to a temporal assignment. We define

[Pr(φ)]I,τ,r = µ({r′ ∈ R | I, τ, r′ |= φ})

and
[Pri,t(φ)]I,τ,r =

µ({r′ ∈ R | (r, τ(t)) ∼i (r′, τ(t)), I, τ, r′ |= φ})
µ({r′ ∈ R | (r, τ(t)) ∼i (r′, τ(t))})

[ f (P1, . . . , Pk)]I,τ,r = f ([P1]I,τ,r, . . . , [Pk]I,τ,r)

As above, we assume measurability of the sets required, and also that the agent proba-
bility expressions do not involve a division by zero. We later justify that this holds in
the particular setting of interest in this paper.

A particular class of formulas of WMLOKP will be of interest below. Define a
mixed-time polynomial atomic probability formula to be a formula of the form1

∃t1 . . . tn( f (Pr(φ1), . . . , Pr(φm)) = 0)

where f (x1, . . . , xm) is a rational polynomial and each φi is an atomic formula of the
form p(t j) for some proposition p and j ∈ {1 . . . n}. We motivate the usefulness of such
temporal mixing of probability expressions in Section 2.5.

The logic WMLOKP generalizes several logics from the literature. If we restrict
the language by excluding the probability comparison atoms f (P1, . . . , Pk) ./ c and
knowledge formulas Ki,t(φ), we have the Weak Monadic Logic of Order, which is
equivalent to WS1S [Buc60]. We obtain the Probabilistic Monadic Logic of Order
considered in [BRS06], which we denote here by PMLO, if we

• exclude the knowledge operators Ki,t,

• exclude agent’s probability terms Pri,t(φ), and

• limit the global probability comparisons to be of the form Pr(φ(t1, . . . , tk)) ./ c,
containing just a single probability term Pr(φ(t1, . . . , tk)), with the further con-
straint that the only free variables of φ should be temporal variables t1, . . . tk.

1The TARK 2015 pre-proceedings version of this paper incorrectly had a universal quantifier in this
definition. The existential form is needed for the correctness of Theorem 12.
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In particular, second-order quantification into probability expressions, e.g., ∀X[Pr(X(t)) >
c] is not permitted in PMLO, but second order quantification that does not cross a prob-
ability operator, such as Pr(∀X[X(t))]) > c, is allowed. We note that PMLO does allow
first order quantifications into the scope of probability, such as ∀t[Pr(p(t)) > c].

In the sequel, we refer to quantification into the scope of a knowledge formula or
probability expression as quantifying-in.

2.4 Partially Observed Markov Chains
Although they provide a coherent semantic framework, probabilistic interpreted sys-
tems are infinite structures, and therefore not suitable as input for a model checking al-
gorithm. We therefore work with a type of finite model called an interpreted partially
observed discrete-time Markov chain, or PO-DTMC for short. A finite PO-DTMC
for n agents is a tuple M = (S , PI, PT,O1, ...,On, π), where S is a finite set of states,
PI : S → [0..1] is a function such that

∑
s∈S PI(s) = 1, component PT : S ×S → [0, 1]

is a function such that
∑

s′∈S PT (s, s′) = 1 for all s ∈ S , and for each agent i ∈ Agt,
we have a function Oi : S → O for some set O. Finally, π : S → P(Prop) is an
interpretation of the atomic propositions Prop at the states.

Intuitively, PI(s) is the probability that an execution of the system starts at state s,
and PT (s, t) is the probability that the state of the system at the next moment of time
will be t, given that it is currently s. The value Oi(s) is the observation that agent i
makes when the system is in state s. (Below, in the context of interpreted systems, we
treat the set of states S as the states of the environment rather than as the set of global
states. Agents’ local states will be derived from the observations.)

Note that the first three components (S , PI, PT ) of a PO-DTMC form a standard
discrete-time Markov chain. This gives rise to a probability space on runs in the usual
way. A path in M is a finite or infinite sequence ρ = s0s1 . . . such that PI(s0) , 0 and
PT (sk, sk+1) > 0 for all k with 0 ≤ k < |ρ| − 1. We write P∞(M) for the set of all infinite
paths of M, and, for m ∈ N, write Pm(M) for the set of all finite paths s0s1 . . . sm with
exactly m transitions. Any finite path ρ = s0s1 . . . sm defines a set

P∞(M) ↑ ρ = {ω ∈ P∞(M) | ω[0 . . .m] = ρ} (2)

That is, P∞(M) ↑ ρ consists of all infinite paths which have ρ as a prefix.
We now define a probability space Pr(M) = (P∞(M),F , µ) over the set P∞(M) of

all infinite paths of M. The σ-algebra F is defined to be the smallest σ-algebra over
P∞(M) that contains as basic sets all the sets P∞(M) ↑ ρ for ρ = s0s1 . . . sm a finite path
of M. For these basic sets, the function µ is defined by

µ(P∞(M) ↑ ρ) = PI(s0) · PT (s0, s1) · . . . · PT (sm−1, sm) .

The fact that µ can be extended to a measure on F is a non-trivial result of Kolmogorov
for more general stochastic processes [KSK76].

We may construct several different probabilistic interpreted systems from each PO-
DTMC, depending on what agents remember of their observations. We consider two,
one that assumes that agents have perfect recall of all their observations, denoted spr,
and the other, denoted clk, which assumes that agents are aware of the current time
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and their current observation. Recall that runs in an interpreted system map time to
global states, consisting of a state of the environment and a local state for each agent.
We interpret the states of the PO-DTMC M as states of the environment. To obtain a
run, we also need to specify a local state for each agent at each moment of time. We
use the the observations to construct the local states.

In the case of the synchronous perfect recall semantics, given a path ρ ∈ P∞(M),
we obtain a run ρspr by defining the components at each time m as follows. The en-
vironment state at time m is ρspre (m) = ρ(m), and the local state of agent i at time
m is ρspri (m) = Oi(ρ(0)) . . .Oi(ρ(m)). Intuitively, this local state assignment repre-
sents that the agent remembers all its past observations. We write Rspr(M) for the
set of runs of the form ρspr for ρ ∈ P∞(M). Note that this system is synchronous: if
r = ρspr and r′ = ωspr then for each agent i and time m ∈ N, if ri(m) = r′i (m

′), then
Oi(ρ(0)) . . .Oi(ρ(m)) = Oi(ω(0)) . . .Oi(ω(m′)), which implies m = m′.

For the clock semantics, we construct a run a ρclk in which again the environment
state at time m is ρclke (m) = ρ(m), and for agent i we define the local state at time m by
ρclk(m) = (m,Oi(ρ(m)). Intuitively, this says that the agent is aware of the clock value
and its current observation. We write Rclk(M) for the set of runs of the form ρclk for
ρ ∈ P∞(M) an infinite path of M. This system is also synchronous: if r = ρclk and
r′ = ωclk then for each agent i and time m ∈ N, if ri(m) = r′i (m

′), then (m,Oi(ρ(m))) =

(m′,Oi(ω(m′))), hence m = m′. In both cases of x ∈ {spr, clk}, if T is a subset of
P∞(M), we write T x for {ρx | ρ ∈ T }.

In both cases of x ∈ {spr, clk}, we have a one-to-one correspondence between the
infinite paths P∞(M) and the runs Rx(M). We therefore can induce probability spaces
Prx(M) on Rx(M) from the probability space Pr(M) on P∞(M). As described above,
the probability space Prx(M) on runs moreover induces a probability space Prx

i (r,m)
on the set of points considered possible by each agent i at each point (r,m). The PO-
DTMC M gives us an interpretation π on its states, and we may derive from this an
interpretation πx on the points (r,m) of Rspr(M) and Rclk(M) by defining πx(r,m) =

π(re(m)). Using the general construction defined above, we then obtain the probabilistic
interpreted systems Ix(M) = I(Rx(M),Prx(M), πx) for x ∈ {spr, clk}.

It is necessary to establish the measurability of certain sets for the semantic defini-
tions of the logics above to be complete. We now establish this for the systems Ispr(M)
and Iclk(M).

First, the general construction of I(R,Pr, π), where Pr = (R,F , µ), assumed
that for all m ∈ N and all runs r, we have that R(Ki(r,m)) ∈ F is measurable and
µ(R(Ki(r,m))) > 0. The following lemma assures us that this is the case for both the
perfect recall and the clock constructions. We write K x

i (r,m) for Ki(r,m), relative to
the set of runs R = Rx(M).

Lemma 1 Let M be a finite PO-DTMC. Then for each x ∈ {spr, clk}, and run r ∈
Rx(M), the set Rx(M)(K x

i (r,m)) is measurable in Prx(M) and has measure > 0.

Proof: For x ∈ {spr, clk}, define the relations ∼x on finite paths of M as follows. For
finite paths ρ = s0 . . . sm and ω = t0 . . . tk, define ρ ∼clki ω if m = k and Oi(sm) = Oi(tm),
and ρ ∼spri ω if m = k and Oi(s j) = Oi(t j) for all j = 0 . . .m. Note that in both cases,
ρ ∼x

i ω implies that |ρ| = |ω|. Since the number of paths of length m is finite, it
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follows that the number of ω such that ρ ∼x
i ω is finite. If r ∈ Rx(M) then there

exists ρ ∈ P∞(M) such that r = ρx. Let U = {ω ∈ Pm(M) | ω ∼x
i ρ[0 . . .m]}. It is

straightforward from the definitions that

Rx(M)(K x
i (ρx,m)) =

⋃
ω∈U

(P∞(M) ↑ ω)x

The sets Rx(M)(K x
i (ρx,m)), for x ∈ {spr, clk}, are therefore each a finite union of

measurable sets, hence measurable. The fact that their measure is > 0 follows from the
fact that both contain (P∞(M) ↑ ρ)x, which has non-zero measure since ρ is path of M.
�

Next, in giving the semantics of CTL∗KP, we require that sets of the form {(r′,m′) ∈
K x

i (r,m) | Ix(M), (r′,m′) |= φ} are measurable in Prx
i (r,m). Similarly, in the semantics

of WMLOKP, we require that sets of the form T x
τ (φ) = {r ∈ Rx(M) | Ix(M), τ, r |= φ}

are measurable, where τ is a temporal assignment and φ is a formula of WMLOKP.
This is established in the following result.

Lemma 2 Let M be a finite PO-DTMC and x ∈ {spr, clk}. For every set S ⊆ R(M)
of runs of M such that the semantic definitions above of CTL∗KP and WMLOKP in
Ix(M) refer to µ(S ), the set S is measurable in Pr(M).

Proof: We show this just for the logic WMLOKP; for CTL∗KP the result is a corol-
lary derivable using using the fact that CTL∗KP can be translated to WMLOKP
(Proposition 3 below). We use structural induction on φ to show that T x

τ (φ) is mea-
surable for all temporal assignments τ.

If φ = q(t) where q is an atomic proposition and t is a temporal variable, then note
that for all paths ρ ∈ Pτ(t)(M) and runs r ∈ (P∞(M) ↑ ρ)x, we have Ix(M), τ, r |= q(t) iff
q ∈ π(r(τ(t))) iff q ∈ π(ρ(τ(t))). Thus,

T x
τ (φ) =

⋃
ρ∈Pτ(t)(M), q∈π(ρ(τ(t)))

(P∞(M) ↑ ρ)x

which is a finite union of basic measurable sets, hence measurable.
If φ = X(t) where X is a set variable and t is a temporal variable, then T x

τ (φ) is
R(M) in case τ(t) ∈ τ(X) and is ∅ otherwise. In either case, it is measurable. Similarly,
if φ = t1 < t2 then T x

τ (φ) is either R(M) or ∅, and therefore measurable.
If φ = φ1∧φ2 then T x

τ (φ) = T x
τ (φ1)∩T x

τ (φ2) is measurable, because, by the inductive
hypothesis, T x

τ (φ1) and T x
τ (φ2) are. Similarly, T x

τ (¬φ) = Rx(M) − T x
τ (φ) is measurable

because T x
τ (φ) is measurable, by induction.

For the quantifiers, we have

T x
τ (∀t(φ)) =

⋂
m∈N

T x
τ[t 7→m](φ)

and
T x
τ (∀X(φ)) =

⋂
U⊂N, U f inite

T x
τ[X 7→U](φ) .
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In either case, we have a countable intersection of sets that are measurable, by induc-
tion, hence these sets are also measurable.

For the knowledge formula φ = Ki,tψ, note that for ρ ∈ P∞(M), if Ix(M), τ, ρx |=

Ki,tψ, then
(P∞(M) ↑ ρ[0 . . . τ(t)])x ⊆ T x

τ (Ki,tψ) ,

else
(P∞(M) ↑ ρ[0 . . . τ(t)])x ∩ T x

τ (Ki,tψ) = ∅ .

This is because, under both the clock and perfect recall semantics, satisfaction of Ki,tψ
depends only on the observations made to time τ(t). Taking

U = {ρ[0 . . . τ(t)] | ρ ∈ P∞(M) and Ix(M), τ, ρx |= Ki,tψ} ,

we have that
T x
τ (Ki,tψ) =

⋃
ρ∈P(i,τ,ψ)

(P∞(M) ↑ ρ)x

is a finite union of basic measurable sets, hence measurable.
Finally, consider the probability formulas φ = f (P1, . . . , Pk) ./ c, where P j =

Pri j,t j (ψ j) or P j = Pr(ψ j). Let m be the maximum of the values τ(t j) for t j a tem-
poral variable in the former type of probability term. Note that the value [Pr(ψ j)]I,τ,r
is independent of the run r, and if r and r′ are runs with r[0, . . . ,m] = r′[0, . . . ,m]
then [Pri j,t j (ψ j)]Ix(M),τ,r = [Pri j,t j (ψ j)]Ix(M),τ,r′ . It follows also that when r[0, . . . ,m] =

r′[0, . . . ,m], we haveIx(M), τ, r |= f (P1, . . . , Pk) ./ c iffIx(M), τ, r′ |= f (P1, . . . , Pk) ./
c. Let

U = {ρ[0, . . . ,m] | ρ ∈ P∞(M), Ix(M), τ, ρx |= f (P1, . . . , Pk) ./ c}

be the set of all prefixes of length m of paths satisfying f (P1, . . . , Pk) ./ c. The set U is
finite, and we have, by the above, that

T x
τ ( f (P1, . . . , Pk) ./ c) =

⋃
ρ∈U

(P∞(M) ↑ ρ)x

is a finite union of basic measurable sets, hence measurable. �

2.5 Discussion
We have defined our logics to be quite expressive in the type of atomic probability
assertions we have allowed, which involve polynomials of probability expressions. In
WMLOKP, these expressions may explicitly refer to different time points. Some ex-
isting logics of probability in the literature use a more restricted expressiveness, e.g.,
[FH94] consider a logic that has only linear combinations of probability expressions,
and many logics [BRS06, RKNP04] allow only inequalities involving a single proba-
bility term. Here give some motivation to show that the richness we have allowed is
natural and useful for applications.
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Polynomials: There are several motivations for allowing polynomial combinations
of probability expressions. One, as noted in [FHM90], is that polynomials arise natu-
rally from conditional probability. If we would like to include linear combinations of
conditional probability expressions in the language, we find that this motivates a gener-
alization to polynomial combinations of probability expressions. Consider the formula
Pr(φ1|ψ1) + Pr(φ2|ψ2) ≤ c. Expanding out the definition of conditional probability, we
have

Pr(φ1 ∧ ψ1)
Pr(ψ1)

+
Pr(φ2 ∧ ψ2)
Pr(ψ2)

≤ c .

We see here that there is a risk of division by zero that needs to be managed in order
for the semantics of this formula to be fully defined. One way to do so is to multiply
out the denominators, resulting in the form

Pr(φ1 ∧ ψ1) · Pr(ψ2) + Pr(φ2 ∧ ψ2) · Pr(ψ1) ≤ c · Pr(ψ1) · Pr(ψ2)

which is meaningful in all cases. (Should this not have the desired semantics in case
one of the Pr(ψi) is zero, an additional formula can be added that handles this special
case as desired.) However, although we started with a linear probability expression,
we now have multiplicative terms. This suggests that the appropriate way to add the
expressiveness of conditional probability to the language is to admit atomic formulas
that compare polynomial combinations of probability expressions.

More generally, although it is less of relevance for purposes of model checking,
and more of use for axiomatization of the logic, allowing polynomials also naturally
enables familiar reasoning patterns to be captured inside the logic. In particular, validi-
ties such as Pr(φ1 ∨ φ2) = Pr(φ1) + Pr(φ2) when φ1 and φ2 are mutually exclusive and
Pr(φ1 ∧ φ2) = Pr(φ1) · Pr(φ2) when φ1 and φ2 are independent show that both addition
and multiplication of probability terms arises naturally.

Mixed-time: A second way in which our logics are rich is in allowing probability
atoms that refer to different moments of time. In CTL∗KP this already the case be-
cause combinations such as PriorA(φ) = PrA(φ) are allowed, which refer to both the
current time and to time 0. The logic WMLOKP takes such temporal mixing further
by allowing reference to time points explicitly named using time variables.

Such temporal mixing is natural, since there are potential applications that require
this expressiveness. For example, in computer security, one often wants to say that
the adversary A does not learn anything about a secret from watching an exchange
between two parties. However, it is often the case that the adversary knows some prior
distribution over the secrets. (For example, the secret may be a password, and choice of
passwords by users are very non-uniform, with some passwords like ‘123456’ having
a very high probability.) This means that the simple assertion that the adversary does
not know the secret, or that the adversary has a uniform distribution over the secret,
does not capture the appropriate notion of security. Instead, as recognised already
by Shannon in his work on secrecy [Sha49], we need to assert that the adversary’s
distribution over the secret has not changed as a result of its observations. This requires
talking about the adversary’s probability at two time points. For example, [HLM11]
capture an anonymity property by means of formulas using terms PriorA(φ) = PrA(φ).

Mixed-time polynomials: Additionally, the logic of probability applied to formu-
las referring to different times leads naturally to polynomial combinations of probabil-
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ity terms, each referring to a different moment of time. For example, although PMLO
allows only formulas of the form Pr(φ(t1, . . . , tn)) ./ c, where the ti are time variables,
the decision algorithm of [BRS06] uses the fact that, when t1 < t2 < . . . < tn, the for-
mula φ(t1, . . . , tn) is equivalent to a formula of the form φ1(t1)∧φ2(t2− t1)∧ . . .∧φn(tn−
tn−1) ∧ φn+1(tn), where the φi(t) are independent past-time formulas for i = 1 . . . n and
φn+1(t) is a future time formula. (This statement is closely related to Kamp’s theorem
[Kam68].) This enables Pr(φ(t1, . . . , tn)) to be expressed as a sum of products of terms
of the form Pr(φi(u)) where φi(u) has just a single free time variable u. Thus, although
mixed-time probability formulas are not directly expressible in the logic of [BRS06],
specific ones are implicitly expressible, and the extension is a mild one. It is worth re-
marking, however, that the coefficients of the polynomial expansion of Pr(φ(t1, . . . , tn))
are all positive, so we do not quite have arbitrary polynomials here. We return to this
point below.

3 Relating the logics
The logic WMLOKP is very expressive, so it is not surprising that it can capture all of
CTL∗KP. The following result makes this precise.

For the results below, it is convenient to add to the system a special agent ⊥ that
is blind, and an agent > that has complete information about the state. In the context
of PO-DTMC’s these agents are obtained by taking the observation functions to satisfy
O⊥(s) = O⊥(t) and O>(s) = s for all states s, t. We write �φ for K⊥,tφ where t is any
time variable. This gives a universal modality: �φ says that φ holds on all runs. We
write [t 7→ n] for the temporal assignment defined only on temporal variable t, and
mapping this to n.

Proposition 3 Let M be a PO-DTMC with agent > and let x ∈ {spr, clk}. For every
formula φ of CTL∗KP, there exists a formula φ∗(t) of WMLOKP with t the only free
variable, such that Ix(M), (r, n) |= φ iff Ix(M), [t 7→ n], r |= φ∗(t) for all runs r.

Proof: The translation is defined by the following recursion:

p∗(t) = p(t)
(¬φ)∗(t) = ¬φ∗(t)
(φ1 ∧ φ2)∗(t) = φ∗1(t) ∧ φ∗2(t)
(Xφ)∗(t) = ∃u(u = t + 1 ∧ φ∗(u))
(Kiφ)∗(t) = Ki,t(φ∗(t)),
(φ1Uφ2)∗(t) = ∃u ≥ t(φ∗2(u) ∧ ∀v(t ≤ v < u⇒ φ∗1(v)))
(Pri(φ))∗(t) = Pri,t(φ∗(t))
(Priori(φ))∗(t) = Pri,0(φ∗(0))
( f (P1, . . . , Pk) ./ c)∗(t) = f (P∗1(t), . . . , P∗k(t)) ./ c

Note that u = v is definable as ¬(u < v ∨ v < u), that u = t + 1 is definable as
u > t ∧ ∀v > t (u ≤ v), and that u = 0 is definable as ¬∃t(u = t + 1). We can
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use (Aφ)∗(t) = K>,t(φ∗(t)) to translate Aφ in the perfect recall case. In case of the clock
semantics, this translation loses the information about the initial state, which is required
for correctness of the translation of Priori(φ). In this case, we introduce, without loss
of generality, new propositions ps for each state s, such that ps ∈ πe(t) iff s = t, and
take

(Aφ)∗(t) =
∧
s∈S

(ps(0)⇒ K>,t(ps(0)⇒ φ∗(t))) .

�

With respect to the specific systems we derive from PO-DTMC’s with respect to
the clock and perfect recall semantics, we are able to make some further statements
that simplify the logic WMLOKP by eliminating some of the operators. These results
are useful for the undecidability results that follow.

For the following results, we note that, without loss of generality, we may assume
that a finite PO-DTMC comes equipped with atomic propositions that encode the ob-
servations made by the agents. Specifically, when agent i has possible observations
Oi(S ) = {oi,1, . . . , oi,ki }, we assume that there are atomic propositions obsi, j for i ∈ Agt
and j = 1 . . . ki such that for all states s, we have obsi, j ∈ π(s) iff Oi(s) = oi, j. Thus,
obsi, j(t) holds in a run just when agent i makes observation oi, j at time t.

Proposition 4 With respect to Iclk(M) for a finite PO-DTMC M, the operators Ki,t

and Pri,t can be eliminated using the universal operator � and polynomial comparisons
of universal probability terms Pr(ψ), respectively. For simple probability formulas
Pri,t(φ) ./ c, only linear probability comparisons are required.

Proof: The formula ∧
j=i...ki

(obsi, j(t)⇒ �(obsi, j(t)⇒ φ)

is easily seen to be equivalent to Ki,t(φ) in Iclk(M). Similarly, Pri,t(φ) ./ c can be
expressed as ∧

j=i...ki

(obsi, j(t)⇒ Pr(obsi, j(t) ∧ φ) ./ c · Pr(obsi, j(t))) .

A similar transformation applies for more general agent probability comparisons, but
we note that linear comparisons may transform to polynomial comparisons: similarly
to the discussion of conditional probability in Section 2.5. �

Proposition 5 With respect to Ispr(M) for a finite PO-DTMC M, the probability for-
mulas Pri,t(φ) ./ c can be reduced to linear comparisons using only terms Pr(ψ), pro-
vided second-order quantifying-in is permitted. Knowledge terms Ki,t can be reduced
to the universal modality �, provided second-order quantifying-in is permitted for this
modality.
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Proof: Define κi(X1, . . . , Xki , t) to be the formula

∀t′ ≤ t(
∧

j=1...ki

Xi(t′)⇔ obsi, j(t′))

Intuitively, this says that, up to time t, the second order variables X1, . . . , Xk encode the
pattern of occurrence of observations of agent i up to time t. The formula

∀X1, . . . Xki (κi(X1, . . . , Xki , t)⇒ �(κi(X1, . . . , Xki , t)⇒ φ)

is easily seen to be equivalent to Ki,t(φ) in Iclk(M). Similarly, Pri,t(φ) ./ c can be
expressed as

∀X1, . . . Xki ( κi(X1, . . . , Xki , t)⇒
Pr(κi(X1, . . . , Xki , t) ∧ φ) ./ c · Pr(κi(X1, . . . , Xki , t))) .

�

One might wonder whether the knowledge operators can be eliminated entirely
using probability, treating Kiφ as Pri(φ) = 1. This is indeed the case for formulas φ in
CTLPK. The essential reason is that because formulas of CTLPK depend at a point
(r,m) only on the run prefix r[0 . . .m], so the possibility that ¬φ holds on a non-empty
set of measure zero does not occur.

Proposition 6 For all CTLPK formulas φ and PO-DTMC’s M and x ∈ {clk, spr} we
have Ix(M) |= Kiφ⇔ Pri(φ) = 1.

Proof: We write T x
φ for {(r,m) ∈ Rx(M)×N | Ix(M), (r,m) |= φ} If Ix(M), (r,m) |= Kiφ

then K x
i (r,m) ⊆ T x

φ . Hence by definition, [Pri(φ)]Ix(M),(r,m) = µx
r,m,i(K

x
i (r,m)) = 1, so

Ix(M), (r,m) |= Pri(φ) = 1.
Now assume that Ix(M), (r,m) |= Pri(φ) = 1. This implies that µx

r,m,i(K
x
i (r,m) −

T x
φ) = 0. We have to show that then Zi = Ki(r,m) − T X

φ (r,m) is empty. Assume oth-
erwise. If (r′,m) ∈ Zi then Ix(X), (r′,m) |= ¬φ. Now in CTLPK we can show by
induction that if Ix(M), (r,m) |= ψ for any formula ψ then Ix(M), (r′,m) |= ψ for any
run r′ satisfying r′[0 . . .m] = r[0 . . .m]. (We do not actually need to consider all sub-
formulas of φ, but can take the base case to be the subformulas of φ of the forms Aψ,
Eψ, K jψ, p and f (P1, . . . , Pn) that are not themselves a subformula of a larger formula
of one of these types. The claim is straightforward from the semantics for each of these
types of formulas, and an easy induction over the boolean operators then yields the
result for ψ.) Hence the set Rr[0...m] of runs having the initial prefix r[0 . . .m] is a subset
of Zi. Thus, µx

r,m,i(Zi) ≥ µx
r,m,i(Rr[0...m]) > 0. This contradicts the assumption that Zi is a

set of measure 0. �

However, this is not the case for formulas Kiφ where φ is an LTL formula. Con-
sider the following Markov Chain. Here we have, at the initial state s, that ¬Ki(F¬q),
because the agent considers it possible that always q (this holds for all choices of obser-
vation functions). However, we have Pri(F¬q) = 1, since the only run where ¬q does
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not eventually hold is the run that always remains at s. This run has probability zero.
Hence we do not have that Pri(F¬q) = 1 ⇒ Ki(F¬q) is valid. (The converse form
Ki(φ) ⇒ Pri(φ) = 1 does hold for all formulas φ of CTL∗KP, by the same argument
as in the proof of Proposition 6.)

4 Undecidability Results
We can now state the main results of the paper concerning the problem of model check-
ing formulas of (fragments of) the logics CTL∗KP and WMLOKP in a PO-DTMC M,
with respect to an epistemic semantics x ∈ {spr, clk}. Using the results of Section 3,
we also obtain conclusions about extensions of PMLO that do not refer to agent prob-
ability and knowledge.

For a formula φ of CTL∗KP, we write M |=x φ, if Ix(M), (r, 0) |= φ for all runs
r ∈ Rx(M). In the case of WMLOKP, we consider sentences, i.e., formulas without
free variables, and write M |=x φ, if Ix(M), τ, r |= φ for all runs r ∈ Rx(M) and the
empty assignment τ. The model checking problem is to determine, given a PO-DTMC
M, a formula φ, and semantics x ∈ {clk, spr}, whether M |=x φ.

4.1 Background
For comparison with results below, it is worth stating a result from [BRS06] concerning
decidability of the fragment PMLO of WMLOKP that omits knowledge operators
Ki,t and agent probability terms Pri,t(φ), restricts probability comparisons to the form
Pr(φ) ./ c, and prohibits second order quantification to cross into probability terms.
Since the structure of agent’s local states is irrelevant in this case, we write simply
I(M) for the probabilistic interpreted system corresponding to a PO-DTMC M. To
state the result, we define the parameterized variant of a formula φ of PMLO to be
the formula φx1,...,xk , in which each subformula of the form Pr(ψ) ./ c is replaced by
a formula Pr(ψ) ./ xi, with xi a fresh variable. We call the resulting formulas the
parameterized formulas of PMLO. For some α ∈ Qk, we can then recover the original
formula φ as the instance φα obtained from the parameterized variant φx1,...,xk of φ by
substituting αi for xi for each i = 1 . . . k.

Theorem 7 ([BRS06]) For each parameterized sentence φx1,...,xk of PMLO, one can
compute for all ε > 0 a representation of a set Hφ ⊂ R

k of measure at most ε, such that
the problem of determining if I(M) |= φα is decidable for α ∈ Q \ Hφ.

Intuitively, the complement of Hφ contains the points that are bounded away from
limit points of the Markov chain, and comparisons can be decided using convergence
properties.
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The reason for excluding the set Hφ is that the limit point cases seem to require a
resolution of problems related to the Skolem problem concerning zeros of linear recur-
rences [Sko34]. A sequence of real numbers {un} is called a linear recurrence sequence
(LRS) of order k if there exist a1, . . . ak with ak , 0 such that for all m ≥ 1,

uk+m = a1uk+m−1 + a2uk+m−2 + · · · + akum .

We consider the following decision problems associated with a LRS {un}.

1. Skolem problem. Does there exist n such that un = 0?

2. Positivity problem. Is it the case that for all n, un ≥ 0?

3. Ultimate positivity problem. Does a positive integer N exist such that for all
n ≥ N, un ≥ 0?

We will deal with sequences with rational entries. By clearing denominators the ra-
tional version of the above problems can be shown to be polynomially equivalent to
similar problems stated using sequences with integer entries. There has been a signif-
icant amount of work on these problems [ESPW03], but they have stood unresolved
since the 1930’s. To date, only low order versions of these problems have been shown
to be decidable [HHHK05, OW14, TMS84].

The above problems have an equivalent matrix formulation. A proof of the follow-
ing can be found in [HHHK05].

Lemma 8 For a sequence u0, u1, . . . , the following are equivalent.

1. {un} is a rational LRS.

2. For n ≥ 1, un = (An)1k for a square matrix A with rational entries.

3. For n ≥ 1, un = vT Anw where A is a square matrix, and v and w are vectors with
entries from {0, 1}.

In the usual formulation of the Skolem, positivity and ultimate positivity problems,
the associated matrices A may contain negative numbers, and numbers not in [0, 1],
so are not stochastic matrices. However, [AAOW15] show that these problems can be
reduced to a decision problem stated with respect to stochastic matrices:

Lemma 9 Given an integer k×k matrix A, one can compute a k′×k′ stochastic matrix
B, a length k′ stochastic vector v, a length k′ vector w = (0, . . . , 0, 1) and a constant c
such that (An)1,k = 0 ((An)1,k > 0) iff vT Bnw = c (respectively, vT Bnw > c).

As noted in [AAOW15], it follows that the logic PMLO is able to express the Skolem
and positivity problems, using model checking questions of the form

M |= ∃t(Pr(p(t)) = c)

and
M |= ∃t(Pr(p(t)) > c)
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for c a nonzero constant and M a DTMC. (The ultimate positivity problem can also be
expressed.) It is worth noting that in the special case of the constant c = 0, these model
checking questions are decidable, as shown in [BRS06]. (Essentially, in this case the
problems reduce to graph reachability problems, and the specific probabilities in M are
irrelevant.) The transformation from arbitrary matrices A to stochastic matrices B in
Lemma 9 requires that the constant 0 of the Skolem problem be replaced by a non-zero
constant c.

The above model checking problems of the quantified logic PMLO can be seen to
be already expressible in the propositional logic CTL∗KP, as the problems

M′ |=clk AF(pri(p) = c)

M′ |=clk AF(pri(p) > c)

M′ |=clk AFAG(pri(p) > c)

where we obtain the PO-DTMC M′ from the DTMC M by defining Oi(s) = ⊥ for
all states s. That is, agent i is blind, so considers all states reachable at time n to
be possible at time n. (We remark that this implies that all the operators A can be
exchanged with E without change of meaning of the formulas.) It follows, that with
respect to clock semantics, a resolution of the decidability of model checking even
these simple formulas of CTL∗KP for all c ∈ [0, 1] would imply a resolution of the
Skolem problem. In view of the effort already invested in the Skolem problem, this is
likely to be highly nontrivial.

4.2 Perfect Recall Semantics
Model checking with respect to the perfect recall semantics is undecidable, even with
respect to a very simple fixed formula of the logic CTL∗KP, as shown by the following
result.

Theorem 10 The problem of determining, given a PO-DTMC M, if M |=spr EF(Pri(p) >
c), for p an atomic proposition, is undecidable.

Proof: By reduction from the emptiness problem for probabilistic finite automata
[Paz71]. Intuitively, the proof sets up an association between words in the matrix
semigroup and sequences of observations of the agent.

A probabilistic finite automaton is a tuple A = (Q,Σ, v0, A, F, λ), where Q is a
finite set of states, Σ is a finite alphabet, v0 : Q → [0, 1] is a probability distribution
over states, representing the initial distribution, A : Σ → (Q × Q → [0, 1]) associates
a transition probability matrix A(a) with each letter a ∈ Σ, component F ⊆ Q is a
set of final states, and λ ∈ (0, 1) is a rational number. Each matrix A(a) satisfies∑

t∈S A(a)(s, t) = 1 for all s ∈ Q. Let vF be the column vector indexed by Q with
vF(s) = 0 if s < F and vF(s) = 1 if s ∈ F. Treating v0 as a row vector, for each
word w = a1 . . . an ∈ Σ+, define f (w) = v0A(a1) . . . A(an)vF . The language accepted by
the automaton is defined to be L(A) = {w ∈ Σ+ | f (w) > λ}. The emptiness problem
for probabilistic finite automata is then, given a probabilistic finite automaton A, to
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determine if the language L(A) is empty. This problem is known to be undecidable
[Paz71, CL89].

Given a probabilistic finite automaton A, we construct an interpreted finite PO-
DTCM MA for a single agent (called i rather than 1 to avoid confusion with other
numbers) such that MA |=spr EF(Pri(p) > λ) iff A is nonempty. This system is
defined as follows. We let N = |Σ|,

1. S = Q × Σ,

2. PI(q, a) = µ0(q)/N,

3. PT ((q, a), (q′, b)) = A(b)(q, q′)/N

4. Oi((q, a)) = a

5. p ∈ π((q, a)) iff q ∈ F.

Note that
∑

(q,a)∈S PI((q, a)) =
∑

a∈Σ
∑

q∈Q µ0(q)/N =
∑

a∈Σ 1/N = 1, so PI is in fact
a distribution. Similarly, for each (q, a) ∈ S , we have

∑
(q′,b)∈S PT ((q, a), (q′, b)) =∑

b∈Σ
∑

q′∈Q A(b)(q, q′)/N =
∑

b∈Σ 1/N = 1, so PT is in fact a stochastic matrix.
Note that for each w = a1 . . . an ∈ Σ∗ and a ∈ Σ, we get a row vector µaw =

µ0A(a1) . . . A(an) with
∑

q∈Q µaw(q) = 1, which can be understood as a distribution on
Q. For each run r ∈ Rspr(MA) and m ≥ 0, we have that that agent i’s local state
ri[0 . . .m] at (r,m) is a word in Σ+. Let B(q,m) be the set of runs r ∈ Rspr(MA) in
which re(m) = (q, a) for some a ∈ Σ. We claim the following about the probability
measures µr,m,i in the probabilistic interpreted system Ispr(MA), for each point (r,m)
and q ∈ Q:

µr,m,i(Ki(r,m)(B(q,m))) = (v0A(ri(1)) . . . A(ri(m)))(q) .

It is immediate from this that Is pr(MA), (r,m) |= Pri(p) = c where c = f (r[1 . . .m]),
and the desired result follows.

For the proof of the claim, let µ be the measure on Rspr(MA) in Pr(MA). Note first
that µ(Rspr(Ki(r,m))) = 1/Nm+1 for all runs r. The proof of this is by induction on m.
Let ri(m) = a0 . . . am. For m = 0, we have µ(Rspr(Ki(r,m))) =

∑
q∈Q v0(q)/N = 1/N.

For m = k + 1,

µ(Rspr(Ki(r,m)))
= µ({r′| r′i [0 . . . k] = a0 . . . ak, re(k) = (q, ak), re(k + 1) = (q′, ak+1)})

=
∑
q∈Q

∑
q′∈Q

µ({r′| r′i [0 . . . k] = a0 . . . ak, re(k) = (q, ak)}) · PT ((q, ak), (q′, ak+1)

=
∑
q∈Q

µ({r′| r′i [0 . . . k] = a0 . . . ak, re(k) = (q, ak)}) ·
∑
q′∈Q

PT ((q, ak), (q′, ak+1)

=
∑
q∈Q

µ({r′| r′i [0 . . . k] = a0 . . . ak, re(k) = (q, ak)}) ·
∑
q′∈Q

A(ak+1)(q, q′)/N

=
∑
q∈Q

µ({r′| r′i [0 . . . k] = a0 . . . ak, re(k) = (q, ak)}) · 1/N

= µ({r′| r′i [0 . . . k] = a0 . . . ak}) · 1/N

= 1/Nm+1
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with the last step by induction.
For the main claim, we again proceed by induction on m. For the case m = 0, let

re(0) = (q, a) we have (r,m) ∼i (r′m′) iff r′e(0) = (q′, a) for some q′, so Ki(r,m) =

{r′ | r′e(0) = (q′, ri(0)) for some q′ ∈ Q}. Hence

µr,m,i(Ki(r,m)(B(q,m)))
= µ(Rspr(Ki(r,m)(B(q,m))))/µ(Rspr(Ki(r,m)))
= µ({r′ | r′e(0) = (q, ri(0))})/µ({r′ | r′e(0) = (q′, ri(0)) for some q′ ∈ Q})
= PI(q, ri(0))/PI({(q′, ri(0)) | q′ ∈ Q})
= (v0(q)/N)/(1/N)
= v0(q)

as required.
For m = k + 1, note

µr,k+1,i(Ki(r, k + 1)(B(q, k + 1)))
= µ(Rspr(Ki(r, k + 1)(B(q, k + 1))))/µ(Rspr(Ki(r, k + 1)))

= Nk+2 · µ(Rspr(Ki(r, k + 1)(B(q, k + 1)))

by the above fact. Now, with ri[0 . . . k + 1] = a0 . . . ak+1, we have

µ(Rspr(Ki(r, k + 1)(B(q, k + 1)))
= µ({r′ |r′i [0 . . . k + 1] = a0 . . . ak, r′e(k + 1) = (q, ak+1)})

=
∑
q′∈Q

µ({r′ |r′i [0 . . . k] = a0 . . . ak, r′e(k) = (q′, ak), r′e(k + 1) = (q, ak+1)})

=
∑
q′∈Q

µ({r′ |r′i [0 . . . k] = a0 . . . ak, r′e(k) = (q′, ak)}) · PT ((q′, ak), (q, ak+1))

=
∑
q′∈Q

µ({r′ |r′i [0 . . . k] = a0 . . . ak, r′e(k) = (q′, ak)}) · A(ak+1)(q′, q)/N

=
∑
q′∈Q

µ({r′ |r′i [0 . . . k] = a0 . . . ak, r′e(k) = (q′, ak)}) · A(ak+1)(q′, q)/N

=
∑
q′∈Q

(v0A(a1) . . . A(am))(q′) · A(ak+1)(q′, q)/Nk+1N (by induction)

= v0A(a1) . . . A(am)A(ak+1)(q)/Nk+2

Combining this with the previous equation, we have µr,k+1,i(Ki(r, k + 1)(B(q, k + 1))) =

v0A(a1) . . . A(am)A(ak+1)(q) as required. �

We remark that this result stands in contrast to the situation for model checking the
logic of knowledge and time. Write CLTL∗K for the logic obtained from CTL∗KP
by omitting the probability comparison atoms f (P1, . . . , Pk) ./ c. Model checking the
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logic CLTL∗K with respect to perfect recall, i.e., deciding M |=spr φ for M a PO-
DTMC and φ a formula is decidable [MS99]. (Here, for the semantic structures M, it
suffices to replace the initial distribution PI in M by the set I = {s ∈ S | PI(s) > 0},
and replace the transition distribution function PT in M by the relation R of possibility
of transitions between states defined by sRt if PT (s, t) > 0. The results in [MS99]
use linear time temporal logic as a basis, but, as noted in [MW03], the modality A of
the branching time logic CT L∗ can be understood as a special case of a knowledge
modality: see Proposition 3.)

For probabilistic automata the minimum size of the state space giving undecidabil-
ity directly stated in the literature appears to be 25 [Hir06]. We remark that the proof of
Theorem 10 can also be done by reduction of the following matrix semigroup problem:
given a finite set of matrices of order n, generating a matrix semigroup S , determine
whether there is M ∈ S such that (M)1n = 0 [Hal97]. The case of k generators of size
n × n can be reduced to probabilistic automata with 2kn + 1 states. Recent results on
the matrix semigroup problem are given in [CHHN14].

Huang et al [HSZ12] have previously used a reduction from probabilistic automata
to show undecidability of an probabilistic epistemic logic with respect to perfect recall.
Compared to our simple CTL temporal operators, their logic uses more expressive
setting of alternating temporal logic operators.

4.3 Clock Semantics
The undecidability of the perfect recall semantics for such simple formulas suggests
that we weaken the epistemic semantics to the clock case. The combination of the
translation from CTL∗KP to WMLOKP (Proposition 3) and Theorem 7 then enables
some cases of CTL∗KP to be decided. We do not obtain a full decidability result, how-
ever, since we face the problem that, with respect to the clock semantics, the formula
AF(Pri(p) = c) can express the Skolem problem, so resolving its decidability is a very
difficult problem. Rather than attempt to resolve this question, we consider here just
how much extra expressiveness is required over the logic of Theorem 7 for us to obtain
a definitive undecidability result, instead of a decidability result with some excluded
and unresolved cases.

Note that one of the restrictions on PMLO used in Theorem 7 is that second order
quantification should not cross into probability terms. It turns out that this restriction
is essential, as shown by the following result.

Theorem 11 It is is undecidable, given a PO-DTMC M and a formula φ of WMLOKP
with linear combinations of probability terms Pr(φ) and quantifying-in of second-order
quantifiers, whether M |= φ.

Proof: This follows from the fact that, using second order quantifying-in, we can ex-
press perfect recall (Proposition 5), and the undecidability of model checking perfect
recall (Theorem 10). �

Note that the result refers to |= rather than |=clk, since epistemic operators are
not required. This is really a result about a generalization of PMLO. One of the
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other restrictions in Theorem 7 is that only simple probability comparisons of the form
Pr(φ) ./ c are permitted. More general comparisons of probability terms are needed in
applications (see discussion in Section 2.5), so it is of interest to study their impact on
decidability. Unfortunately, it turns out to be quite negative. Even the simple case of
mixed time polynomial atomic probability formulas is enough for undecidability.

Theorem 12 There exists a fixed PO-DTMC M with 4 states such that it is undecid-
able, given a mixed-time polynomial atomic probability formula ψ, whether M |= ψ.

Proof: By reduction from Hilbert’s tenth problem, i.e., the problem of determining
whether a polynomial with integer coefficients has solutions in the natural numbers.
This was shown to be undecidable by Matiyasevich [Mat93].

We show that we can find a stochastic matrix M and a stochastic vector f such that
for each function f (t) = t · λt and f (t) = λt with λ = 1/2, there is a rational vector g
such that f (t) = fT Mtg. Given a polynomial p(n1, . . . , nk), we can construct a variant
polynomial q′ over a larger set of variables, such that an appropriate substitution of
such functions ti ·λti and λti , for the ni and the additional variables yields an expression
λd1t1+...+dk tk · p(t1, . . . , tk), where the di are constants. This has a zero in the t1 . . . tn
iff p(x1, . . . , xn) has a zero. It follows that mixed-time polynomial atomic probability
formulas can express Hilbert’s tenth problem.

Consider the following matrix

A =


1
2 0 0 1

2
1
4

1
2 0 1

4
1
3

1
3

1
3 0

0 0 0 1

 (4)

It is easily checked that A is stochastic matrix. Expanding by the last row, the charac-
teristic (and minimal) polynomial of A is given by

f (x) = (x − 1)(x −
1
2

)2(x −
1
3

)

Using Perron’s equation [Rom70], which provides a way to express the powers of a
matrix using a polynomial, we have

An = 6(A −
1
2

I)2(A −
1
3

I) − 12(
1
2

)n(A − I)(A −
1
3

I) −

12[(
1
2

)n−1n − 4(
1
2

)n](A − I)(A −
1
2

I)(A −
1
3

I) − 54(
1
3

)n(A − I)(A −
1
2

I)2
(5)

(The reader may verify the correctness of this equation using the fact (see e.g., [Gan59],
Ch. V) that if, for a polynomial p(x) and a matrix B, we have, for each eigenvalue λ
of B, of multiplicity k, we have p( j)(λ) = 0 for all j = 0 . . . k − 1 (where p( j) is the j-th
derivative), then p(B) = 0.)

Define the vectors

f =


1/4
1/4
1/4
1/4

 g =


8/3
8/3
−8
0

 g′ = 2(A −
1
2

I)g =


0

4/3
8/3
0

 g′′ = 2g′ + g =


8/3
0
−8/3

0


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Then g′ is an eigenvector of A with eigenvalue 1/2, and (A − 1
2 )2g = 0. Setting k(x) =

(x − 1)(x − 1
3 ), we also have fT k(A)g = 0 and fT k(A)g′ = − 1

12 . Using equation 5, we
obtain

fT Ang = (
1
2

)n[n − 2] fT Ang′ = (
1
2

)n fT Ang′′ = (
1
2

)n · n (6)

for all n ≥ 0.
We construct a PO-DTMC M for a single agent (called 1), from f and A, by taking

states S = {s1, s2, s3, s4} corresponding to the four dimensions, the initial distribution
PI to be given by f, the transition probabilities PT to be given by A, and the observation
function defined by obs1(s) = ⊥ for all s ∈ S . (That is, the agent is blind.) We define π
to interpret the propositions p1, . . . , p4 by pi ∈ π(s j) iff i = j. That is, each pi holds at
state si only. Let I = I(M).

Corresponding to the vector g′, we define the probability term

x(t) =
4
3
Pr1,t(p2) +

8
3
Pr1,t(p3)

and corresponding to the vector g′′, we define the probability term

w(t) =
8
3
Pr1,t(p1) −

8
3
Pr1,t(p3) .

Then for all runs r of I and temporal assignments τ such that τ(ti) = ni, we have

[x(ti)]I,τ,r = (
1
2

)ni and [w(ti)]I,τ,r = (
1
2

)ni · ni .

Now, any diophantine equation

p(n1, n2, . . . , nk) =
∑

i1,...,ik

ai1,...,ik n
i1
1 ni2

2 . . . n
ik
k = 0

can be expressed as follows. First let di be the degree of P in the variable ni. Corre-
sponding to the monomial mi1,...,ik = ni1

1 ni2
2 . . . n

ik
k , define the probability term

zi1,...,ik = w(t1)i1 . . .w(tk)ik x(t1)d1−i1 . . . x(tk)dk−ik .

Using these terms, we obtain the probability term

Z(t1, . . . , tk) =
∑

i1,...,ik

ai1,...,ik zi1,...,ik .

Now, for the temporal assignment τ with τ(ti) = ni for i = 1 . . . k, we have

[Z(t1, . . . , tk)]I,τ,r =

(
1
2

)n1d1+···+nkdk

·
∑

i1,...,ik

ai1,...,ik n
i1
1 ni2

2 . . . n
ik
k

Hence, we have [Z(t1, . . . , tk)]I,τ,r = 0 iff P(n1, n2, . . . , nk) = 0. It follows that I |=
∃t1 . . . tk(Z(t1, . . . , tk) = 0) iff P has a solution in the natural numbers. �
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We remark that the possibility of encoding Hilbert’s tenth problem is not imme-
diate from the fact that we are dealing with polynomials, since our polynomials are
over rational values generated in a very specific way from Markov chains, rather than
arbitrary integers. Indeed, there are decidable logics containing polynomials, such as
the theory of real closed fields [Tar51].

As noted in Section 2.5, formulas (allowed by Theorem 7) of the form Pr(φ(t1, . . . , tn)) ./
c can be written as a polynomial of probability expressions, so it is natural to ask
whether such formulas also suffice to make the logic undecidable. This does not seem
to be the case: the polynomials involved have only positive coefficients. Since Hilbert’s
tenth problem is trivially decidable for polynomials with only positive coefficients, our
proof does not apply to this case.

5 Conclusion
Our results have by no means resolved Skolem’s problem, which remains an appar-
ent barrier to resolving the gap between the decidability results of [BRS06] and the
undecidability results of the present paper.

However, in work to be presented elsewhere, we show that the results of [BRS06]
can be extended both by reducing the set Hφ of cases that needs to be excluded to obtain
decidability, as well as enhancing the expressiveness to cover epistemic probabilistic
terms of the form Pri(φ), interpreted with respect to the clock semantics.

Acknowledgment: The authors thank Igor Shparlinski and Min Sah for illuminating
discussions on Skolem’s problem, and Xiaowei Huang for helpful comments on a draft
of the paper.
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