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While location data is extremely valuable for various applications, disclosing it prompts serious threats to
individuals’ privacy. To limit such concerns, organizations often provide analysts with aggregate time-series
that indicate, e.g., howmany people are in a location at a time interval, rather than raw individual traces. In this
paper, we perform a measurement study to understand Membership Inference Attacks (MIAs) on aggregate
location time-series, where an adversary tries to infer whether a specific user contributed to the aggregates.
We find that the volume of contributed data, as well as the regularity and particularity of users’ mobility
patterns, play a crucial role in the attack’s success. We experiment with a wide range of defenses based on
generalization, hiding, and perturbation, and evaluate their ability to thwart the attack vis-à-vis the utility
loss they introduce for various mobility analytics tasks. Our results show that some defenses fail across the
board, while others work for specific tasks on aggregate location time-series. For instance, suppressing small
counts can be used for ranking hotspots, data generalization for forecasting traffic, hotspot discovery, and map
inference, while sampling is effective for location labeling and anomaly detection when the dataset is sparse.
Differentially private techniques provide reasonable accuracy only in very specific settings, e.g., discovering
hotspots and forecasting their traffic, and more so when using weaker privacy notions like crowd-blending
privacy. Overall, our measurements show that there does not exist a unique generic defense that can preserve
the utility of the analytics for arbitrary applications, and provide useful insights regarding the disclosure of
sanitized aggregate location time-series.

1 INTRODUCTION
Location time-series are useful in a wide range of applications, e.g., forecasting traffic volumes

and events [23, 29], mining points of interests [31], monitoring depressive states [8], etc. However,
mobility patterns expose users’ sensitive attributes like lifestyles or religious inclinations, and are
hard to anonymize as they inherently contain identifying attributes such as home/work location
pairs [18].
Similar to other applications, e.g., smart metering [14], financial data [10] or healthcare [26],

analysts often try to avoid these risks by building analytics on top of aggregate data. That is, rather
than raw traces, one uses reports of, e.g., how many users are in a certain location during a time
interval. For instance, Waze builds traffic models using average driving speeds [65], Uber provides
aggregate data for urban planning purposes [60], and Telefonica monetizes footfall statistics through
advertising and business analytics [57].
Even though aggregation is often considered as a privacy-friendly approach to hide sensitive

data of single individuals, inference attacks might still be possible on aggregates [6, 25, 64]. In
the case of aggregate location time-series, an adversary with some prior knowledge about the
victims can assess whether or not a specific user contributed to the aggregates; this is known as
a Membership Inference Attack (MIA) [47] and is the main focus of our study. MIAs on aggregate
location time-series have very serious privacy implications: (a) the fact that someone’s data is part
of the aggregates can be itself sensitive, and (b) these attacks are a first step to other inferences
that aim to recover additional information about users such as their mobility profiles [46] and/or
their trajectories [66] from the aggregates.
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In theory, we have a possible solution against membership inference attacks, namely, differentially
private statistics [13]. Indeed, publishing statistics under differential privacy bounds the probability
of an adversary attempting to distinguish if the data of a particular user was part of them. However,
previous work [46, 47] has shown that differentially private mechanisms applied to aggregate
location data can only thwart attacks at a cost of considerable reductions in accuracy. In other
words, they seem to significantly reduce the performance of the attacks only if they introduce a
sizeable error in the statistics.
Understanding MIAs. To the best of our knowledge, there has not been any study to identify
what makes these attacks possible and in what context(s). More specifically, which spatio-temporal
factors contribute to ease inferences and in what scenarios? Which users are most vulnerable,
and why? This lack of understanding hampers our ability to build defenses providing acceptable
privacy-utility trade-offs for mobility analytics. This motivates us to systematically analyze the
reasons behind MIA’s success, and identify what makes some users more vulnerable than others.

Our analysis shows that the variance of the location counts (i.e., how many times one has been
in that location) over time proves to be the dominant feature. This inspires us to use Principal Com-
ponent Analysis (PCA) [30] to let the adversary capture this variability. Besides easing the analysis
by reducing dimensionality, PCA also boosts significantly the attack’s performance compared to
prior work [47]. We then study the importance of various features (e.g., number of events, number
of unique locations visited, etc.) for a classifier trained to distinguish users that are most/least vul-
nerable to PCA-based MIA. Overall, we find that the amount of data contributed to the aggregation
has high influence, that movements in less popular places/times can reveal a user’s presence in the
aggregates, and that the attack’s success is linked to the uniqueness and regularity of mobility.
DefendingAgainstMIAs.Next, wemeasure the effectiveness of a wide range of defense strategies
based on generalization, hiding, and perturbation, which are commonly used in the location privacy
literature. We observe that there is no single approach, including differentially private techniques,
that works well for all tasks. In fact, our aim is to find defenses that provide reasonable utility-
privacy trade-offs for specific mobility analytics tasks. To some extent, our work follows on the
footsteps of other measurement studies like [27], which shows that the guarantees provided by
differentially private mechanisms in the context of privacy-preserving machine learning are very
pessimistic with respect to the real capabilities of existing attacks. Empirically evaluating the
effectiveness of defenses is necessary to have a realistic understanding of the risks. In our study,
we measure the privacy gain that defenses yield vis-à-vis various utility metrics in the context of a
variety of analytics, such as traffic forecasting, hotspot discovery, location labeling, and anomaly
detection, computed on aggregate statistics.

Our extensive experiments demonstrate that there is not a single generic defense that mitigates
MIA and offers good utility for arbitrary analytics. However, we find that for several specific tasks,
there are effective strategies that can retain utility. For instance, suppressing small counts can be
used for ranking hotspots, data generalization for forecasting traffic, hotspot discovery, and map
inference, while sampling is effective for location labeling and anomaly detection when the dataset
is sparse. Differentially private techniques also provide reasonable accuracy, though only in certain
settings (e.g., detecting hotspots and forecasting their traffic), and more so when the introduced
noise is tailored to achieve weaker notions like crowd-blending privacy.
Summary of Findings. Overall, our measurement study relies on two real-world datasets rep-
resentative of different users’ mobility patterns and sheds light on the mobility characteristics
determining the success of MIA; high mobility and diversity, regularity and uniqueness of moving
patterns, as well as location sparsity, are among the factors that contribute to the success of the
attack. Moreover, while we do not find a single strategy that defeats MIA in the aggregate setting



and that is useful for arbitrary analytics, we identify defenses that provide reasonable tradeoffs for
specific mobility analytics tasks.
Paper Organization. Next section introduces the datasets and the attacks on which we base our
study. We present our feature analysis and the insights it provides in Section 3. In Section 4, we
evaluate various defense strategies with respect to the protection that they provide against MIA,
and, in Section 5, we measure their privacy-utility trade-offs for various mobility analytics. Finally,
we review related work in Section 6 and conclude in Section 7.

2 PRELIMINARIES
2.1 Datasets

Throughout the paper, we perform experiments on two real-world mobility datasets (often used
in location privacy research [47, 53]), which represent both regular and irregular mobility patterns
disclosed in sporadic and continuous intervals, respectively.
Transport For London (TFL). The TFL dataset includes 60M trips made by 4M passengers on
the TFL transportation network, between Monday, March 1st and Sunday, March 28th, 2010, using
their “Oyster” travel cards. For each trip, we have the oyster id (hashed with salt), start time, tap-in
station id, end time, and tap-out station id. Trips are made over 582 tube and overground stations, or
Regions of Interests (ROIs). We sample the dataset and retain the data of the 10K oyster ids with the
largest amount of trips. We set the time granularity to 1 hour and, for each oyster id, we generate a
binary matrix whose rows indicate ROIs and columns indicate timeslots. Each element is 1 if the
user tapped-in or out at a certain station, at a certain time, and 0 otherwise. When a passenger does
not tap in or out of any station within a given timeslot, we assign it to a special ROI, denoted as
null. Overall, the sampled dataset contains a total of 7.3M events, with the 10K oysters reporting an
average of 728±16 total tap-in/tap-out events, over 20±9 unique ROIs, and it is relatively sparse as
the oysters are in the transportation system, on average, for 115±21 out of the 672 hourly slots (28
days).
San Francisco Cabs (SFC). The SFC dataset contains mobility trajectories of taxis in the San
Francisco area between May 17th and June 10th, 2008 [43]. Each record includes a cab identifier,
latitude, longitude, and a timestamp. Overall, we have 11M GPS coordinates generated by 536 taxis.
We retain 3 weeks of data (Monday, May 19th to Sunday, June 8th), keeping only traces within an
area of 30.3mi2 to cover downtown San Francisco. We split this area in a uniform grid of 10×10,
with cells (ROIs) of 0.3mi2 each, and we set the time granularity to 1 hour. Again, for each cab we
generate a binary matrix (with rows representing ROIs and columns timeslots), indicating whether
or not a cab transited through a location, at a certain time, and we assign a cab not generating any
event within a timeslot to the null ROI. Overall, the final dataset contains 2M events generated by
534 cabs, each reporting on average 3,827±1,069 events over 78±6 unique ROIs; thus, this dataset is
much less sparse than TFL, as taxis report ROIs for 340±94 out of the 504 time slots (21 days).
Aggregates. We compute the aggregate location time-series over a group of users (i.e., passengers
or cabs) by adding their binary matrices. The resulting matrix is the aggregate time-series and
indicates the number of users that transit through the TFL and SFC ROIs, over time.

2.2 MIA on Aggregate Location Time-Series
Our measurement study is based on the attack proposed by Pyrgelis et al. [47]. In particular,

they model membership inference attacks (MIAs) on aggregate location time-series, calculated
over a set of locations S and a set of time intervals T , as a distinguishability game between an
adversary (Adv) and a challenger (Ch): Adv needs to distinguish location aggregates, provided by
Ch, that include the data of a target user from those that do not. The game has several parameters,



Symbol Description

Adv, Ch Adversary, Challenger
P Adversarial Prior Knowledge
U Set of Mobile Users
S Set of Locations (ROIs)
T Time Period Considered

TO, TI Observation and Inference Periods
m Aggregation Group Size
α Percentage of Users Whose Locations are Known (Subset of Locations Prior)
β Number of Groups Whose Aggregates are Known During TO (Participation in Past Groups Priors)

Table 1. Membership Inference Attacks Notation.

including the universe of usersU, the size of the aggregation groupsm, and the inference period
TI during which Adv is being challenged. Similarly to [47], we consider that Adv instantiates her
distinguishing function as a classifier trained on data over an observation period TO available as
part of her “prior knowledge” P. See Table 1 for a summary of our notation.
Priors. We consider different types of prior knowledge that correspond to different adversaries:
(1) Subset of Locations: Adv knows the actual locations for a subset of users, including her

target. The size of the subset is controlled by a parameter α . Adversaries with this type of prior
knowledge can be telecommunications service providers that collect location data from their
users or hackers that compromise providers that store user location data in their databases,
and which exploit this information to infer membership of a target user to aggregate datasets
published by other entities.

(2) Participation in Past Groups: Adv knows her target’s participation in aggregates observed
during TO , TI , with a parameter β indicating the number of groups whose aggregates are
known. More precisely, we have:

(2a) Same Groups As Released: Ch challenges Adv with aggregates computed on the same
groups as her prior knowledge;

(2b) Different Groups Than Released: Adv is challenged on dynamic groups, which should
make the inference harder.

Adversaries with this type of prior knowledge can be location-based services (LBS) that have
observed their users’ location data over a past period and use that information to infer their
membership on aggregate datasets related to future periods. Prior knowledge (2a) corresponds
to scenarios of aggregate location data release over stable groups of users, e.g., the user base of
a LBS, while (2b) corresponds to scenarios of aggregate release over mixed user groups, e.g.,
when user data from multiple services such as maps, check-ins, etc., is aggregated.

Privacy Loss.We measure the classifier’s Area Under the Curve (AUC) score, capturing its per-
formance for various classification thresholds, and compute the privacy loss as the adversarial
improvement over a random guess baseline (i.e., AUC score of 0.5).

3 UNDERSTANDING THE ATTACKS
In this section, we study what makes the presence of a user’s location data points in aggregates

inferable, and how this varies based on the adversary’s prior knowledge.

3.1 Experimental Setup
As done in [47], we split users into three mobility groups (highly, somewhat, and barely mobile)

and run MIA against 150 users, 50 from each group, sampled at random. To target a user, we create
a balanced dataset containing labeled samples of aggregate location time-series that include and
exclude her location data to train/test the classifier that is used as a distinguisher by the adversary.



0.0 0.2 0.4 0.6 0.8 1.0
Area Under Curve (AUC)

0.0

0.2

0.4

0.6

0.8

1.0
C

D
F

-
O

ys
te

rs

Features

PCA

(a) TFL (α=0.11,m=1,000)

0.0 0.2 0.4 0.6 0.8 1.0
Area Under Curve (AUC)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
-

C
ab

s

Features

PCA

(b) SFC (α=0.2,m=100)
Fig. 1. Performance of membership inference attack when employing the feature extraction methodology
(Features) of [47] vs. the dimensionality reduction one (PCA) on (a) TFL and (b) SFC datasets. We consider an
adversary that has the Subset of Locations Prior and |TO |=|TI |=168.

PCAOptimization. The methodology proposed in [47] uses a classifier that takes as input features
statistics (i.e., mean, median, maximum, minimum, variance, standard deviation, and sum) computed
on every location (ROI) of an aggregate location time-series sample. Initially, we followed this
methodology and we performed a standard feature analysis which showed that, in both TFL
and SFC datasets, the variance of the location counts over time is among the dominant features.
This inspired us to use Principal Components Analysis (PCA) on the target’s dataset to reduce
the dimensionality of the problem and extract valuable information. PCA converts observations
of correlated variables to linearly uncorrelated ones (principal components) via an orthogonal
transformation. The first principal component accounts for as much variability in the data as
possible, and each succeeding component has the largest variance possible while being orthogonal
to the previous components [30]. We feed the resulting components to a Logistic Regression (LR)
classifier—we choose LR as it yields the best performance—to infer membership.

The use of PCA boosts the attack’s performance while also removing the need for costly
feature extraction. To illustrate this improvement, we plot in Figure 1 the CDF of the classifier’s
AUC scores, computed over the 150 target users, for both the feature extraction approach employed
in [47] and the dimensionality reduction one with PCA when using the Subset of Locations type of
prior knowledge. The increase on the mean AUC score amounts to 65% for TFL, and 46% for SFC.
We observe the same trend, though somewhat less prominently, for the other priors: with Same
Groups As Released, the improvement is 22% for TFL and 16% for SFC; with Different Groups Than
Released, it increases by 26% and 17%, respectively.

Analysis Procedure. To gain a deeper understanding of the attack, we first examine the loadings
of the most important (in terms of the LR classifier’s weights) principal components for the victims,
i.e., their correlation coefficients with the original variables, highlighting which spatial and temporal
points contribute to the inference. To gain insights about the differences between victims that
are most and least prone to the attack (in terms of AUC score), we train a separate classifier on
their mobility characteristics and investigate its features’ importance to identify factors making the
attack more powerful. Specifically, we compute the following statistics of the users’ trajectories:
total events (i.e., location-time tuples), unique locations visited, active timeslots, mean locations per
timeslot, mean events and active timeslots during week days and weekends, spatial and temporal
entropy, and unicity. The latter captures how unique is a user’s travel pattern, and is calculated
as unicityu=

∑
t ∈T 1

t (u)/|T |, where 1t (u) indicates if the ordered sequence of locations visited
by user u at time t is unique or not. We also consider variables that intuitively can influence the
success of MIAs on aggregate locations: volume of data a user contributes, amount of movements
in less popular locations/times, and regularity of mobility patterns.



3.2 Adversaries That Know the Location Data of their Target Users

Parameters. We employ the Subset of Locations prior knowledge and set the percentage of
users for which locations are known to the adversary as α=0.11 and α=0.2 for the TFL and the SFC
experiments, respectively. We consider the maximum user group size that the adversary can attack:
m=1,000 for TFL andm=100 for SFC. In both cases, the first week of data is the observation and
inference period (i.e., |TO |=|TI |=168 hourly timeslots), and we create datasets of 2K samples to
train and test the classifier (with a 80%–20% train/test split). We extract 1K principal components
for TFL and 600 for SFC (which account for more than 99% of the variance in the victims’ datasets,
in each case).
Correlation Coefficients. For TFL, in Figure 2a, we plot a heatmap of the components’ correlation
with the original spatio-temporal points in the data, aggregated (and normalized) over the 2 most
important principal components of each victim. We observe how events in various locations and
times yield high correlation values (dark red), i.e., diverse events contribute to membership inference.
First, we observe that different stations exhibit different levels of correlation (possibly due to their
location, e.g., central vs. residential ones). Second, we see differences between the patterns of
week days (ids 1–120) and of weekends (121–168), with commuting hours having high correlation
values. Interestingly, for some ROIs, busy mid-day hours also yield high correlation. The same
happens with weekend events (right side of the heatmap): users’ presence in the aggregates might
be revealed if they travel at times when the transportation system is less crowded.
For SFC, in Figure 3a, we plot a heatmap of the aggregate (and normalized) spatio-temporal

correlation coefficients, computed over the cabs’ 5 most important components. As opposed to TFL,
a large number of locations yield high coefficients, highlighting that GPS movements offer a larger
attack surface than tap-in/out events at London stations. We see a similar effect for time, with high
correlations in mid-day hours, but also during weekends when fewer drivers are working.
Location/Timeslot Popularity. In Figure 2b, we sort the TFL aggregate correlation heatmap,
both locations and time, according to their frequency of appearance in the dataset. As expected,
the more popular locations/timeslots yield the highest correlation (upper-right corner), since most of
the events are generated in such locations/times. Nonetheless, data points in popular locations but
reported in less popular timeslots (upper-left corner) are also important, suggesting that commuters
can be distinguished in the aggregates if they visit such locations at non-busy times. Finally, a few
points in less popular locations (and various times) have high coefficients, i.e., movements in sparse
locations/times can give away a commuter’s presence in the aggregates.

Similarly, for the SFC dataset, we find that the most popular locations yield high coefficients; see
Figure 3b. However, contrary to TFL where only a small subset of stations and times are relevant
(recall Figure 2b), in SFC also mid-popular locations (i.e., ids 40-60), as well as certain hours in
less popular ROIs (ids 20-40), obtain significant correlation. This suggests that popularity is not as
important as in TFL, there are many regions and times that help membership inference.
Susceptibility to MIA.We then analyze the features of the most and least distinguishable victims
of MIA. For the top distinguishable victims of the TFL dataset (Figure 2c), we find very high
coefficients for relatively unpopular locations and times (middle part of the heatmap), i.e., people
visiting rare locations at rare times are easy to attack. The most popular places and times (top
right) do yield high correlation, but they do not seem to be as crucial. For the less distinguishable
commuters (Figure 2d), popular locations and times (top right part of the heatmap) are the most
important, and no other locations seem to help the attack. We believe that these are commuters that
mostly travel at popular stations/times and their data hides better along with those of the crowd.
For the SFC dataset, the top distinguishable cabs (Figure 3c) yield high coefficients overall and

slightly higher ones in the most popular locations but during the least busy times. This confirms that



(a) Original Heatmap (b) All Victims (Sorted)

(c) Top 10% Victims (Sorted) (d) Bottom 10% Victims (Sorted)
Fig. 2. Subset of Locations Prior, TFL (α=0.11,m=1, 000, |TO |=|TI |=168). Aggregate spatio-temporal correla-
tion over the 2 most important components per victim: (a) original heatmap; heatmap sorted (ascending-order)
by location and timeslot popularity computed on (b) all victims, (c) top 10%, and (d) bottom 10% of distin-
guishable victims.

movements in less popular times enhance membership inference. For these cabs, the counts of popular
locations and timeslots also yield high correlation values, i.e., they contribute a large portion of
points during the inference week. The heatmap of the least distinguishable cabs (Figure 3d) is much
sparser: most cabs contribute little data and the attack has little information to build on. Similarly
to TFL, the most popular locations and timeslots, where and when most cabs contribute to anyway,
yield the highest correlation, i.e., popular regions and times are not very revealing.

To verify the above hypotheses, for both datasets, we study the aggregate (normalized) frequency
of the timeslots in the inference week over the two groups in Figure 4. For TFL (Figure 4a), the
distinguishable commuters (blue line) have higher frequency in mid and late evening hours of
weekdays and during weekends; i.e., sporadic movements when the transportation system is less
crowded facilitate membership inference. The less distinguishable oysters (red line) mostly move
during “commuting” hours thus they are hard to pick apart from other commuters. For SFC, Figure 4b
shows that the top distinguishable cabs (blue line) have higher frequencies in the late night hours
on weekdays and during weekends, i.e., movements in low activity hours facilitate attacks. Whereas,
the less distinguishable cabs (red line) contribute some data at the beginning of the week, but less
afterwards. This confirms that the most distinguishable cabs are those which contribute larger
volume of spatio-temporal points, i.e., bigger data contribution enhances MIA performance.

Finally, for both datasets, we feed the mobility characteristics (see Section 3.1) of the top and
bottom 10% distinguishable oysters to a Random Forest classifier and examine which features can
separate the two groups (see Table 2). For TFL, the most important feature is the number of unique
locations visited by a user: visiting more (unique) locations increases the attack’s surface and thus its
success. Second in importance is the unicity, highlighting a link between MIA and the uniqueness
of mobility patterns: top victims have a unique mobility pattern for 14±5 timeslots of TI , while
the bottom ones are unique only for 4±1. For SFC (again, see Table 2), the top feature is the mean
number of locations per timeslot followed by the number of active timeslots and total number of
events, showing that unlike in TFL where most commuters report similar volumes of data, in the



(a) Original Heatmap (b) All Victims (Sorted)

(c) Top 10% Victims (Sorted) (d) Bottom 10% Victims (Sorted)
Fig. 3. Subset of Locations Prior, SFC (α=0.2,m=100, |TO |=|TI |=168). Aggregate spatio-temporal correlation
over the 5 most important components per victim: (a) original heatmap; ascending-order sorted heatmap by
location and timeslot popularity computed on (b) all victims, (c) top 10%, and (d) bottom 10% of distinguishable
victims.

(a) TFL (m=1, 000, |TI |=168). (b) SFC (m=100, |TI |=168).
Fig. 4. Normalized frequency of top/bottom 10% distinguishable victims over TI for (a) TFL and (b) SFC
datasets.

Feature TFL SFC Feature TFL SFC

Total events 0.03 0.17 Events/weekday 0.01 0.07
Unique locations 0.39 0.01 Events/weekend 0.13 0.03
Active timeslots 0.06 0.23 Spatial entropy 0.01 0.03
Locations per timeslot 0.05 0.30 Temporal entropy 0.06 0.01
Active timeslots/weekday 0.01 0.01 Unicity 0.16 0.17
Active timeslots/weekend 0.11 0.01

Table 2. Subset of Locations Prior. Feature importance for a Random Forest classifier separating top/bottom
10% distinguishable victims: TFL (α=0.11,m=1, 000, |TO |=|TI |=168) and SFC (α=0.2,m=100, |TO |=|TI |=168).

SFC dataset vehicles with more data points are overall more susceptible to MIAs. We also observe
that, similarly to TFL, MIA’s performance is strongly linked to the uniqueness of cabs’ mobility
trajectories. The top distinguishable cabs exhibit larger unicity (their patterns are unique for 124±6
out of the 168 timeslots) than the bottom ones (unique pattern for 38±30 timeslots).



(a) TFL (b) SFC
Fig. 5. Same Groups As Released Prior. Aggregate spatio-temporal correlation over the most important
components per victim for (a) TFL (β=500,m=9,500, |TO |=504, |TI |=168) and (b) SFC (β=800,m=500, |TO |=336,
|TI |=168).

3.3 Adversaries That Know the Target User’s Participation in Aggregates Related to
the Past

Next, we analyze the case where Adv knows the target victim’s participation in aggregate
locations released during an observation period TO , TI . We consider two settings for this prior:
(a) Same Groups As Released, where the Adv performs inference on the same groups as in the
observation period, and (b) Different Groups Than Released, where the inference is made on
different groups.
Parameters. For both sets of experiments, we set the size of the groups tom=9,500 for TFL and
m=500 for SFC. We consider TO to be the first weeks of each dataset (i.e., |TO |=504 for TFL and
|TO |=336 for SFC), and use them to construct the prior knowledge the adversary relies on to train
her classifier. The attack is run on the last week of the data (i.e., |TI |=168). We configure the number
of known groups as β=500 and β=800, for TFL and SFC, creating large enough training/testing
datasets—of 2K (2.4K) samples for TFL (SFC). Moreover, we keep 1K (600) principal components for
TFL (SFC), which explain more than 99% of the variance in each victim’s dataset.
Correlation Coefficients. We start with the Same Groups As Released setting, where Adv per-
forms MIA on the same groups as those on which she trained her classifier. We plot the aggregate
correlation coefficients for the most important components of the victims in TFL (top 1 compo-
nent/victim) and SFC (top 5 components/victim) in Figure 5. For TFL, the most correlated data
points now occur during the morning commuting hours of weekdays, highlighting that regularity
in mobility patterns, e.g., the daily commute to work, helps MIA. This explains the MIA’s great success
on TFL with this type of prior [47]. Interestingly, we also find that popular locations/times as well
as less popular locations on popular times (and vice versa) contribute to the inference, showing
that commuters exhibit different regular patterns that are equally useful for the attack.

For SFC, movements in some weekdays’ slots yield high correlation, i.e., there are some regular
cabs that are more susceptible to MIA than others. Looking at the location and timeslot popularity,
we find high correlations scattered in the spatio-temporal space. Nonetheless, we observe that
movements during less popular timeslots obtain slightly higher correlation values in the compo-
nents, i.e., cabs regular at such times are prone to MIA. Overall, the attack does not work very well
with this prior when victims do not exhibit the same mobility patterns over the weeks, as most cabs in
SFC.
Our above insights also hold for the Different Groups Than Released setting, for both datasets:

regular mobility patterns contribute to the success of MIA. Nevertheless, it is not clear what
locations or times are more important, i.e., various types of regular patterns make MIA successful.
Susceptibility to MIA. With the Same Groups As Released prior, all TFL commuters are harmed
equally so no analysis is needed. For SFC, the insights are similar to those for the Different Groups



Feature TFL SFC Feature TFL SFC

Total events 0.20 -0.36 Events/weekday -0.47 -0.38
Unique locations 0.78 1.29 Events/weekend 0.64 -0.17
Active timeslots -0.17 0.05 Spatial entropy 0.52 -0.18
Locations per timeslot 0.01 -0.33 Temporal entropy 0.17 -0.06
Active timeslots/weekday -0.48 0.28 Unicity -1.55 -0.68
Active timeslots/weekend 0.42 -0.46

Table 3. Different Groups Than Released Prior. Model coefficients of a Logistic Regression classifier separating
top/bottom 10% distinguishable victims: TFL (β=500,m=9, 500, |TO |=504, |TI |=168) and SFC (β=800,m=500,
|TO |=336, |TI |=168).

Than Released prior, discussed next. In particular, for the Different Groups Than Released setting,
we compare the mobility characteristics of the top and bottom 10% distinguishable victims using a
Logistic Regression classifier. Table 3 reports the model’s coefficients for each feature (negative
and positive coefficients indicate the more and less distinguishable victims, respectively).
For both TFL and SFC, the strongest feature for the top victims is the uniqueness of mobility

patterns, i.e., the more unique movements are, the easier it is to infer membership on dynamic groups.
With TFL, we find that the top victims have unique pattern for 47±13 out of the 672 hourly timeslots,
while the bottom ones exhibit unicity for 32±7 timeslots. With SFC, top victims exhibit unique
mobility for 357±45 out of the 504 timeslots, and the bottom ones are unique for 287±85 timeslots.
Features related to time patterns also play an important role in separating the two groups for TFL;
e.g., the top distinguishable users are mostly contributing events during weekdays, the bottom ones
in the weekends. The results also suggest that top users are mostly regular weekday commuters
in less popular ROIs (and thus more unique), while bottom ones travel to locations outside their
“regular” pattern during weekends. This is confirmed by other features with high coefficients, e.g.,
the number of unique locations and spatial entropy. For SFC, the amount of data contributed yields
stronger features for the more distinguishable cabs, i.e., ‘regular’ cabs reporting larger volumes
of data are more identifiable. For the least distinguishable cabs, the number of unique locations is
stronger. Overall, this confirms that when the adversary trains on past groups, showing up in many
locations, but without repeating patterns, can reduce her power.

3.4 Take Aways
Our analysis provides several interesting insights. First, it shows that the performance of the

attacks can be significantly boosted using dimensionality reduction techniques such as PCA. More
specifically, we get up to 65% increase in the mean AUC for TFL and 46% for SFC compared
to previous work [47]. This is because aggregate location data retains strong spatio-temporal
correlations with the data provided by individual users.
Second, we also find the spatio-temporal correlations within the principal components to be

aligned with the mobility patterns in the data. For instance, commuting patterns emerge quite
clearly in the components of the TFL dataset, while dense GPS trajectories create a large attack
surface to be exploited in SFC. In both cases, there is a variety of spatio-temporal points and trends
that contribute towards to the inference’s success. This makes challenging to design generic and
robust defenses that protect every user.

Third, we identify the factors that affect the success of the inference. We show that: 1) Users who
contribute more data points to the aggregation are more susceptible to MIA; 2) Movements in sparse
locations/timeslots can give away one’s presence in the aggregates; 3) Unique mobility patterns
are identifiable in the aggregates when the adversary knows about them; and 4) Regular mobility
patterns can reveal the users’ contribution to the aggregates, even if the adversary observes these
patterns in the past.



Finally, we discover factors that negatively affect the attack’s performance; e.g., presence in
popular locations and times generally limits inferences, and so do irregular movements that do
not repeat over time, in particular, when the adversarial prior knowledge is built on information
related to the users’ past.

4 DEFENSES
In this section, we measure the effectiveness of various defense strategies against MIA. We

explore a wide range of strategies commonly used in the location privacy literature – namely,
generalization, hiding, and perturbation – adapted to the aggregate setting with the goal of hiding
the features that give membership away according to the analysis in the previous section.

4.1 Preliminaries

Experimental Setup. We focus on the cases where MIA works best, to evaluate a worst case
scenario for the defenses. For TFL, we consider the Same Groups As Released prior knowledge, with
β=500, groups ofm=9,500 users, and TO being the first 3 weeks of the dataset and TI the last one
(i.e., |TO |=504 and |TI |=168). For SFC, we choose the Subset of Locations prior, with α=0.5,m=250,
and both TO and TI being the first week (i.e., |TO |=|TI |=168). We create large enough datasets of
2K samples for TFL and 2.4K for SFC, and we extract 1K and 600 principal components, respectively.
We also consider a strategic adversary that knows the mechanism employed by the defender and
can use this to optimize her training—i.e., the adversary trains the classifier on aggregates perturbed
using that defense strategy.
Privacy Gain (PG) Metric. Following [47], we measure the effectiveness of the defenses as the
normalized decrease in the adversarial performance:

PG =

{
AUCA−AUCA′
AUCA−0.5 if AUCA > AUCA′ ≥ 0.5

0 otherwise
(1)

where AUCA is the attack’s performance on raw aggregates, and AUCA′ is its performance after a
defense has been applied. PG is a value between 0 and 1, capturing how much the inference power
drops towards the random guess baseline (AUC score of 0.5) where users have perfect privacy.

4.2 Experimental Evaluation
To ease presentation, we use boxplots reporting the privacy gain of the users that we attack for

the most interesting defenses configurations; see Figures 6a for TFL and 6b for SFC. In the rest of
this section, we dive deeper into the discussion of the results.

4.2.1 Generalization
Generalization reduces the precision with which spatio-temporal events are reported [19, 33],

and thus their uniqueness [11]. Reporting data in ranges rather than releasing exact statistics, e.g.,
using bucketing techniques, is also a generalization technique. It has been used to protect privacy
in domains such as website fingerprinting, by obfuscating the length of network packets [7]; or
social network privacy, by providing inexact statistics to advertisers [61].
Spatial Generalization (SPG).We first experiment varying the spatial granularity, while keeping
the original temporal resolution (1 hour). This technique has been used to decrease the uniqueness
of mobility traces [11], which our analysis showed to be correlated with the success of MIA. For
TFL, we group nearby stations – with the group size being a parameter which we configure in
the set {5, 10, 20} – and compute their combined aggregates. We find that only when 20 stations
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Fig. 6. Privacy Gain for Various Defenses & Parameters.

are grouped together, there is a small increase in PG (0.30 on average), with few outliers reaching
higher protection.
For SFC, we use grids of different spatial resolution to divide up the 30mi2 area of downtown

San Francisco, ranging from a baseline 10×10 grid resulting in ROIs of 0.3mi2, to one single ROI of
30.3mi2 (with the intermediate grid sizes being 5×5 and 2×2). Only when we consider a single ROI
(1×1 grid) the PG increases slightly (0.25 on average), nonetheless, PG≤0.23 for 75% of the cabs.
This means that the temporal dimension of the location contains enough information for the attack
to succeed, when the adversary has the ‘Subset of Locations’ prior. In other words, such an attacker
can perform MIA on the SFC dataset even without any spatial information.
TemporalGeneralization (TG).We then vary the length of the timeslots from 1 hour (the baseline)
to 1 week, keeping the original spatial resolution. For TFL, MIA’s performance only decreases
significantly when the slots aggregate information for one week. Still, PG increases only to 0.31 on
average with few outliers. This means that regular commuting patterns remain distinguishable in the
aggregates even for relatively long periods of time. In SFC, the attack’s performance starts degrading
earlier (i.e., PG=0.15 for 1 day resolution), and while PG reaches 0.35 with a 1-week timeslot, it
remains less than 0.27 for 25% of the cabs. This means that just 1 time point may be sufficient
for the attack to succeed. Overall, even without the temporal dimension, the spatial domain still
contains enough information to perform inference.
In theory, if one simultaneously generalized both space and time, MIA would be successfully

mitigated; e.g., for 1×1 grid with 1-week temporal resolution, PG reaches 0.96 for SFC. However, in
such a setting, the aggregates are not useful at all (see Section 5).
Data Generalization (DG). Finally, we experiment with releasing ranges: for instance, we report
the range ‘120–130’ when 124 users are in a given ROI during a 1-hour timeslot.



Data Generalization with Fixed Ranges (DGFR). We first experiment with a fixed range size
(denoted by x) for all ROIs, configuring it from x=2 up to the maximum possible value of the
aggregates (as indicated bym). To generalize the location counts we assign them to the median of
the corresponding range. For TFL, we consider x in the set {2, 5, 10, 50, 150, 9,500}. We observe a
significant gain for x∈ {5, 10}, with 50% of the commuters obtaining 0.45≤PG≤0.6 and 0.7≤PG≤0.8,
respectively. When x=9, 500, i.e., the maximum possible count a location could have, there is no
variance in the data and MIA becomes impossible, yielding PG=1. For SFC (x ∈ {2, 5, 10, 50, 100,
250}), DGFR requires larger range sizes to have an effect on PG. For instance, when x=50 the PG
highly varies (0.35≤PG≤0.8 for 50% of the cabs) and grows slowly and more consistently as x
increases (mean PG 0.68 when x=100) until reaching PG=1 for all users when using the maximum
possible range size (x=250).
Data Generalization with Adaptive Ranges (DGAR). Second, aiming to increase utility, we
evaluate an approach in which the range size is tailored to each location. Concretely, for each
location time-series we consider the range between its minimum and maximum value over time and
divide it in x ′ ∈ {1, 2, 4, 8, 16} equal sub-ranges. For TFL, publishing 1 or 2 sub-ranges results in a
mean privacy gain of 0.91 and 0.71, respectively. When increasing x ′, PG decreases: with x ′=4 a few
outliers are no longer protected from MIA. Similarly, for SFC, publishing 1 sub-range per location
yields a PG between 0.55 and 0.85 for 50% of the cabs, while with x ′=2, the mean PG already drops
to 0.25. This means that, as soon as information about the evolution of the location aggregates over
time is revealed, cabs begin to be exposed to the attack.

4.2.2 Hiding
Another common approach used in location privacy literature is to hide (i.e., exclude) some

spatio-temporal data points, by either suppressing or sampling them [24, 54]. Typically, sensitive
points are removed and the released locations are not perturbed with any kind of noise.
Suppressing Small Counts (SSC).Wefirst try suppressing points with small counts, i.e., assigning
zeros to those location time-series points whose aggregate is under a certain threshold k . This
approach satisfies the notion of (k, 0)-crowd-blending privacy, introduced by Gehrke et al. in [16].1
For TFL (k ∈ {2, 5, 10, 20, 40, 80}), suppressing counts with values smaller than 10 does not yield
any privacy protection. As k increases, we do observe some gain in privacy; e.g., PG=0.38 for k=20,
reaching 0.75 (resp., 0.93) when k is set to 40 (resp., 80).
The SFC dataset is much denser, thus, it requires higher k to provide protection (we configure

k ∈ {2, 5, 10, 20, 40, 80, 160}). Surprisingly, only when k=80 the PG increases to 0.4 on average,
remaining smaller than 0.2 for 25% of the cabs. For k=160, mean PG increases to 0.78 while it is
greater than 0.5 for most cabs.
Suppressing Less Popular Locations/Timeslots (SLP). Inspired by the feature analysis (cf. Sec-
tion 3), which shows that some commuters/cabs are more “distinguishable” in the aggregates
because they contribute events in less popular locations or times, we also experiment with sup-
pressing those data points. We consider suppressing a fraction z ∈ {0.2, 0.4, 0.6, 0.8} of the least
popular locations and timeslots. However, this does not provide significant gains. For instance, in
TFL, suppressing 80% of the least popular locations/timeslots still yields a PG between 0.2 and 0.3
for 50% of the oysters. Similarly, in SFC, only some outliers are protected when we retain 20% of
the most popular locations/timeslots (z=0.8). This reinforces the conclusion that the counts of the
busiest locations/times have most of the information helping MIA.

1k-crowd-blending sanitization ensures that the data of each individual u in a database blends with that of k − 1 other
individuals, i.e., the output of a sanitization mechanism is indistinguishable if u ’s data is replaced by that of any of the
other individuals.



Sampling (SMP). Another factor playing a part in the success of MIA is the amount of data users
contribute to the aggregation. Therefore, we consider sampling as a means to reduce the amount
of users’ data. We remove a percentagew ∈ {0.2, 0.4, 0.6, 0.8} of users’ data points at random, and
release the aggregate location time-series computed on the sampled trajectories. For TFL, this
defense offers some privacy protection: the mean PG is 0.6 whenw=0.4 (with only a few outliers
not so well protected), and increases up to 0.9 when removing 80% of the users’ points. Thus,
sampling might be a promising defense strategy against MIA on sparse datasets. Unsurprisingly,
this approach does not work nearly as well on the denser SFC dataset. Here, PG is negligible even
when 60% of the events are randomly removed, and is between 0.2 and 0.3 for 50% of the cabs when
20% of their points are retained.

4.2.3 Perturbation
Next, we study the effect of perturbing the values of the aggregate location time-series, with

carefully crafted noise. The state-of-the-art method for releasing aggregate statistics free from
inferences is to satisfy differential privacy (DP) [12]. In this setting, Acs and Castelluccia [2] present
an algorithm tuned to the density of Paris for releasing aggregate statistics from a telecommunication
service provider’s dataset, while Quercia et al. [48] use randomized response to let an untrusted
aggregator privately learn the number of people in geographic locations. However, previous
work [46, 47, 58] has shown that DP techniques ultimately yield poor utility on high-dimensional
settings. To mitigate this problem, the noise addition can be configured to achieve weaker privacy
guarantees, such as crowd-blending privacy [16], while retaining better utility levels. For instance,
To et al. [58] apply this notion to release privacy-preserving location entropy statistics.
Perturbing Small Counts (PSC). We first add noise sampled from the Laplace distribution with
scale O(1/ϵ ′) only to small counts, i.e., counts of the aggregate location time-series that are smaller
than a threshold k . This achieves (k, ϵ ′)-crowd-blending privacy [16]. We range k as for SSC and
configure ϵ ′ to 1.0 for TFL and to 0.1 for SFC, since we expect that the denser SFC dataset requires
larger scale noise addition to obtain some privacy protection. For TFL, this approach results in
reasonable privacy gain. For instance, with k=5 the mean PG is 0.55 (with some outliers having
less protection), while with k=40 the PG is higher than 0.6 for all commuters. On the contrary, for
SFC, this mechanism does not offer much protection unless k=160, where 0.6≤PG≤0.7 for 50% of
the cabs.
Fourier Perturbation Algorithm (FPA). We then experiment with FPA [49], a differentially
private mechanism tailored to time-series settings. FPA operates as follows: a time-series is first
transformed to the frequency domain using the Discrete Fourier Transform (DFT), and l Fourier
coefficients Fl are retained (l is an algorithm parameter). Then, Fl is perturbed with noise sampled
from the Laplace distribution, with scale O(

√
l · ∆f2/ϵ) and padded with zeros to the size of the

original time-series (note that ∆f2 depicts the ℓ2 norm of the users’ sensitivity). Finally, the inverse
DFT is performed on Fl to obtain the perturbed time-series. As discussed in [49], FPA provides
ϵ-DP guarantees.

We set ϵ in {0.01, 0.1, 1.0, 10.0}. As expected, PG is higher for smaller values of ϵ (i.e., stronger DP
privacy guarantees). For TFL, with ϵ≤0.1 PG reaches 1.0, while with ϵ=1.0 it is above 0.85 for all
the users. For larger values of ϵ , (i.e., 10.0), PG drops between 0.4 and 0.5 for 50% of the commuters.
Similarly, for SFC, the mean PG is very high for ϵ values up to 1.0 (e.g., PG≥0.75 for all the cabs
when ϵ=1.0) but only a few cabs are well protected when ϵ=10.0.

4.2.4 Combining Hiding and Perturbation
Finally, we investigate whether combining defense strategies can improve the privacy gain. In

particular, we focus on the combination of sampling with perturbation which has been suggested in



previouswork [16, 34]. For instance, Gehrke et al. [16] show that introducing a random sampling step
before the application of a crowd-blending privacy mechanism (e.g., PSC) increases the adversary’s
uncertainty and achieves a stronger privacy notion, namely, zero-knowledge privacy [17]. Similarly,
Li et al. [34] suggest that a random sampling step can amplify the privacy offered by a differentially
private mechanism, thus, we also combine sampling with FPA. The rationale is that random
sampling decreases the amount of data contributed by users, thus, it reduces the sensitivity of the
aggregation function and less noise is required to obtain the differential privacy guarantees.

Sampling & Perturbing Small Counts (SPSC). For TFL, we set k to 5 and ϵ ′ to 1.0, while for
SFC, we set k to 20 and ϵ ′ to 0.1. For both datasets, we range the sampling parameterw in {0.2, 0.4,
0.6, 0.8}. We find that the introduction of a random sampling step boosts the PG of the perturbation
mechanism. For TFL, when we retain 80% of the data (i.e.,w=0.2), the PG is higher than 0.68 for
all the users and 0.85 on average. This is a 4× and 2× increase compared to SMP or PSC alone.
Furthermore, withw=0.6 or 0.8, PG almost reaches 1. On the SFC dataset, we observe once again
that more data needs to be removed to obtain some PG for the cabs. In particular, sampling boosts
mean privacy gain to 0.21 whenw=0.6, a 4- and 21-fold increase compared to SMP and PSC alone.
Whenw=0.8, PG is between 0.45 and 0.6 for 50% of the cabs.

Sampling & Fourier Perturbation Algorithm (SFPA). For both datasets, we configure FPA’s
privacy budget ϵ to the least conservative setting, i.e., ϵ=10.0, while varying w , to observe its
amplifying effect on PG. For TFL, when we retain 80% of the data (i.e., w=0.2) the mean PG is
0.68, which is approx. 2.5 times or 1.5 times higher than SMP or FPA, respectively, alone. As we
increase w , the PG is increasing further, e.g., with w=0.8, PG ≥ 0.8 for all commuters. For SFC,
higher sampling rates are needed to get similar privacy levels. Whenw=0.4, a few outliers are not
protected from MIA while whenw=0.8, 0.7≤PG≤0.8 for 50% of the cabs.

4.3 Unsuitable Defenses
In theory, one could also attempt to add dummy locations to obfuscate users’ trajectories [39].

However, it is well-known that generating plausible dummy locations is extremely hard, as those
can be easily filtered by the adversary by exploiting statistical correlations with real locations, and
thus ultimately provide no protection [9].

Another approach would be to generate privacy-preserving synthetic traces [4, 20, 22, 37, 40] and
compute the aggregate statistics on them rather than on the actual locations of the users. However,
when attempting to implement and evaluate these methods, we found that the synthetic trajectories
generated using techniques presented in [20, 22] do not preserve the time dimension, while those
proposed in [37, 40] only work for computing origin-destination commute distances.
Bindschaedler and Shokri [4] also support plausible deniability with respect to whether a real

trace (a “seed”) was part of the training set used by a privacy-preserving generative model to
produce synthetic traces. Given a set of synthetic traces, an adversary cannot learn which locations
the seed contributors have visited or whether a user with certain semantic habits is in the seed
dataset. This is a different goal than the one we consider, i.e., given aggregate location statistics,
preventing an adversary from inferring whether a user contributed to them. Moreover, when the
goal is to release traces [4], one can afford to aggressively sample points from the trajectories
in order to make the system scale. In the cases considered in this paper, where the goal is to
obtain fine-grained aggregate statistics we cannot remove as many intermediate points. Not using
aggressive sampling remarkably increases the computational cost of the generation process and
ultimately makes it impossible to properly evaluate this strategy.



4.4 Take Aways
Our analysis of the defenses shows that spatio-temporal generalization, a technique commonly

used to protect privacy for mobility trajectories [11, 19, 33], does not yield meaningful protection
against MIA on aggregate location time-series: both space and time dimensions contain information
that is useful for the attack. On the contrary, data generalization approaches like discretizing the
counts of the time-series do provide acceptable privacy levels.
Second, we find that hiding techniques (e.g., suppression or sampling) yield reasonably high

privacy levels when the input signal is sparse (as for TFL), although they do not work as well on
dense datasets (SFC). Regardless, suppressing locations/timeslots based on popularity does not
improve privacy, as busy ROIs/times are significantly informative for the attack.

Finally, perturbation techniques configured to guarantee differential privacy achieve, as expected,
very high gains in privacy. However, similar levels of protection can actually be reached with
less noise using techniques like crowd-blending sanitization. Also, combining both sampling and
perturbation can significantly amplify the privacy gain since the former increases the adversary’s
uncertainty while reducing the sensitivity of the aggregation function.

5 PRIVACY–UTILITY TRADE-OFFS
Our last set of measurements studies the impact of the evaluated defense strategies on utility.

While privacy is quantified via the ability of mitigating MIA (i.e., the Privacy Gain), we measure
utility vis-à-vis analytics tasks run on aggregate location time-series:
(1) Forecasting traffic volumes in Regions of Interest [29],
(2) Mining interesting locations/discovering hotspots [31],
(3) Inferring maps or labeling locations [35], and
(4) Detecting mobility anomalies [44].
Specifically, we consider utility metrics that capture the key characteristics of the aggregate data

enabling that application.
To ease presentation, in Figures 7–10, we plot the privacy gain vs. the utility loss (i.e., the decrease

in utility compared to performing the same task on raw aggregate location time-series).2 Ideally,
we would like to obtain data points on the upper left corner of the plots, i.e., where the privacy
gain is high and the utility loss is low. In the rest of the section, for each analytics task considered,
we describe the task and we discuss the suitability of the defenses.

5.1 Traffic Forecasting: Aggregates Error
Aggregate location time-series are often used for forecasting traffic in ROIs [23, 29]. We measure

the utility loss by quantifying the effect of a defense on the precision of the data release, i.e., the
error the defense introduces, as that would inevitably effect the forecast as well. We use the Mean
Relative Error (MRE) over the whole time-series or a percentage thereof (e.g., the MRE over the
10% busiest ROIs). Given two time-series Y and Y ′, of length |T |, denoting the aggregates before
and after a defense has been applied, we calculate:

MRE(Y ,Y ′) = 1
|T |

∑
t ∈T

|Y ′
t − Yt |

max(γ ,Yt )
(2)

(γ is a sanity bound mitigating the effect of very small counts).
Figure 7 plots the results for this task. For TFL, defenses like data generalization with adaptive

ranges (DGAR), sampling alone (SMP) or combined with FPA perturbation (SFPA), and small count
suppression (SSC), yield reasonable privacy–utility trade-offs (Figure 7a). If one is interested in
2In Appendix A, we include several tables indicating how the configuration of each defense affects the utility metrics under
consideration.
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Fig. 7. Privacy–Utility Trade-off: Traffic Forecasting (Aggregates Error).

performing predictive analytics only on the busiest stations (e.g., MRE 10% – Figure 7b), defenses
such as perturbing small counts (PSC) or data generalization with fixed ranges (DGFR) yield better
trade-offs, with the former performing better than the latter in terms of utility (but worse for
privacy). In this setting, if slightly higher utility loss can be tolerated, sampling and perturbation of
small counts (SPSC) as well as FPA can provide better privacy (i.e., PG between 0.8 and 1.0).

For SFC, DGAR or SSC yield small MRE overall (Figure 7c) and could be used well for predictive
analytics. Nonetheless, to forecast traffic in the top 10% of SFC regions (Figure 7d), FPA or PSC
yield an efficient privacy–utility trade-off balance (0.9 PG and 10−2 utility loss for the former and
0.64 PG and 9 · 10−3 utility loss for the latter).

5.2 Hotspot Discovery: Prediction Accuracy & Rank Correlation
Analysts are often interested in predicting location hotspots over time [70]; this is particularly

useful for journey planning and/or resource allocation. For instance, authorities need to learn
which stations are the busiest in certain hours of a day to allocate staff accordingly, or to suggest
alternative routes to commuters. Hotspot discovery is also crucial to identify the optimal location
and time to place advertisements, open new shops, etc. [31, 57]. For this task, we measure utility
as follows: we use the aggregates after applying a defense to predict the busiest 10% ROIs at each
timeslot of the inference week, and calculate the F1 score of the predictions:

F1 = 2 · PPV · TPR
PPV + TPR

(3)

where PPV = TP
TP+FP is the precision and TPR = TP

TP+FN is the recall of the predictions, with TP, FP
and FN indicating the true/false positives and false negatives, respectively.

F1 score quantifies how successful hotspot prediction is in each timeslot, but does not capture if
the ordering of the hotspots is preserved. This might be important for resource planning, e.g., a
taxi company assigning vehicles to locations sorted by client demand. Thus, we also calculate the
Kendall rank correlation coefficient, a measure of correspondence between two rankings, whereby
values closer to 1 indicate strong agreement and those closer to −1 strong disagreement. More
precisely, given two rankings, X and X ′, the Kendall rank correlation τ (X ,X ′) is computed as:

τ (X ,X ′) = P −Q√
(P +Q +T ) · (P +Q +U )

(4)
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Fig. 8. Privacy–Utility Trade-off: Hotspot Discovery (Prediction Accuracy & Rank Correlation).

where P is the number of concordant pairs, Q that of discordant pairs, T the number of ties only in
X , and U the number of ties only in X ′. If a tie occurs for the same pair in both X and X ′, it is not
added to either T orU [32].
In the case of TFL, Figure 8a shows that DGFR and SMP have small utility loss (0.1–0.15) and

relatively high privacy gain (0.5–0.8), indicating that they are indeed suitable for hotspot discovery
tasks. However, if the ranking of the top stations is crucial, then, defense strategies such as SSC or
PSC outperform the others (Figure 8b). In SFC, for hotspot prediction, FPA and SFPA perform best
as they yield higher PG for similar levels of utility. The same observation holds for ranking the top
locations (Figure 8d), even though SSC could be used if one is willing to sacrifice some privacy for
slightly better utility (0.4 PG and 0.75 utility loss).

5.3 Map Inference: Distribution Similarity
Tasks like map inference – i.e., inferring road maps from GPS traces [35] or labeling locations [67]

– rely on the fact that certain locations are more frequently visited than others [4]. Thus, to evaluate
utility in this setting, we use the Jensen-Shannon (JS) divergence, which estimates the similarity
between two probability distributions. This captures whether the distribution of location visits is
preserved (for each timeslot) after applying a defense. JS is a smoothed version of the Kullback-
Leibler (KL) divergence that is symmetric and always defined. Given two probability distributions,
V andW , the JS-divergence is calculated as:

JS(V | |W ) = 1
2
· KL(V | |Z ) + 1

2
· KL(W | |Z ) (5)

where Z = 1
2 · (V +W ). JS is a value between 0 and 1 with larger values indicating bigger distance

between the distributions (i.e., worse utility for map inference).
Figure 9 visualizes the privacy–utility trade-off of the various defenses for map inference tasks,

for both datasets. For TFL, Figure 9a shows that a few defenses, including sampling without or
with FPA (SMP or SFPA), DGAR, PSC, and SPSC do achieve good trade-offs. For instance, sampling
yields a 0.06 utility loss for a mean privacy gain of 0.8, while, when combined with small count
perturbation, PG reaches 0.96 for a utility loss of 0.11. For SFC, DGAR as well as SFPA yield privacy
gains between 0.25 and 0.75 with approx. 0.1 utility loss (Figure 9b). Higher privacy levels achieved
by FPA or DGFR only come with increase in utility loss, while other defenses such as sampling
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Fig. 9. Privacy–Utility Trade-off: Map Inference (Distribution Similarity).
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Fig. 10. Privacy–Utility Trade-off: Anomaly Detection (Correlation).

with small count perturbation or small count suppression (SPSC or SSC) yield worse utility without
actually improving privacy.

5.4 Anomaly Detection: Correlation
Finally, analytics aiming to detect mobility anomalies [42] and/or improve traffic forecasting

in the presence of an anomaly, require that a linear relationship between two time-series—before
and after applying a defense—is preserved [44]. Thus, here we calculate the Pearson correlation
coefficient between the perturbed and raw aggregate time-series to measure utility. The Pearson
correlation varies between −1 and +1, with values closer to 1 indicating positive linear correlation,
and to −1 total negative correlation (values close to 0 imply no linear correlation). Given two signals
Y and Y ′, the Pearson correlation is computed as:

r (Y ,Y ′) =
∑(Y − µY ) · (Y ′ − µY ′)√
(Y − µY )2 · (Y ′ − µY ′)2

(6)

where µX is the mean of a signal X .
In the TFL setting, data generalization with adaptive ranges (DGAR) and sampling (SMP) offer

a reasonable balance in the trade-off (Figure 10a), while other defenses, such as FPA, data gener-
alization with fixed ranges (DGFR), and small count suppression (SSC), increase privacy only if
breaking the correlations. For SFC (Figure 10b), FPA with or without sampling yields, resp., 0.75 PG
with 0.6 utility loss and 0.92 PG with 0.7 utility loss. In this case, DGAR achieves smaller utility
loss (0.18) with some decrease in privacy gain (0.25).

5.5 Take Aways
Our measurements highlight the high variance in trade-offs between utility and privacy for the

different defenses and analytics tasks. Thus, it seems that there does not exist a unique generic
defense that can preserve the utility of the analytics for arbitrary applications.
Spatio-temporal generalization yields poor utility overall, and, as discussed in Section 4, it

anyway does not protect privacy. Other defenses, e.g., suppressing locations/timeslots based on their
popularity, generally yield good utility for the analytics under consideration, but they provide poor
levels of privacy. Defense strategies like data generalization, small counts suppression, sampling,



perturbation, or combinations of the last two, can be configured to obtain reasonable privacy levels
while still providing reasonable utility for specific applications. In particular, data generalization
techniques enable analysts to perform forecasting traffic tasks, hotspot discovery, andmap inference,
while small count suppression can be useful towards ranking hotspots. Sampling can retain utility
for tasks such as location labeling and anomaly detection, although, from a privacy perspective, it
works better when the dataset is sparse.

Perturbation techniques configured to achieve strong differential privacy achieve reasonable
accuracy for applications such as discovering hotspots and forecasting their traffic, while additional
tasks, e.g., forecasting the traffic of less busy ROIs or detecting anomalies, are more efficient when
the injected noise is tailored to achieve weaker privacy notions (e.g., crowd-blending privacy).
Interestingly, our results show that combining defenses, e.g., sampling and perturbation, not only
helps privacy, but also retains utility for tasks such as ranking hotspots, map inference, and anomaly
detection.

6 RELATEDWORK

Location Privacy. Golle and Partridge [18] demonstrate the feasibility of re-identifying users by
leveraging the uniqueness of their home/work places. Shokri et al. [55] show that k-anonymity in
the context of location traces is mostly ineffective, while Zang and Bolot [69] that anonymization
of location data is, in general, extremely difficult. Furthermore, other works show that location
data can be de-anonymized using data originating from network providers [45, 63], social-network
graphs [28, 56], or check-in/review services [62].
De Montjoye et al. [11] measure the uniqueness of human mobility in a Call Detail Records

(CDR) dataset, finding that four spatio-temporal points are enough to uniquely identify 95% of the
individuals, while Rossi et al. [50] study how mobility features like speed, direction, and distance
can be used to link trajectories to specific users. Although some of these efforts also focus on
understanding which characteristics of location data threaten user privacy, they do so for single
users’ location traces—a different setting than aggregate location time-series. Furthermore, our
study investigates how defense strategies based on generalization [7, 19, 61], hiding [24, 54], and
perturbation [58] that are commonly used in location privacy literature, protect aggregate location
data.

Aggregate Location Privacy. Aggregation is often not an effective way to preserve the privacy
of location data, as aggregates leak information about individual users. Xu et al. [66] reconstruct
victims’ location trajectories from aggregate mobility data, without any prior knowledge, while [46]
shows that aggregate location time-series can be used by an adversary to build accurate profiles
of users’ movements. Finally, Boukoros et al. [5] study the effect of defenses on finding points of
interest while computing aggregate statistics of geo-located measurements; in this work, we focus
on a different privacy violation, i.e., membership inference.

Membership Inference on Aggregate Locations. As discussed in Section 2.2, Pyrgelis et al. [47]
model the problem of MIAs against aggregate locations using a distinguishability game, and train a
classifier to differentiate aggregates including the data of a target from those that do not. While our
analysis is based on their attacks, our research objective is substantially different. Pyrgelis et al.’s
main goal is to investigate the feasibility of inference attacks; whereas, we aim to gain a deeper
understanding about the reasons behind the attacks’ success, providing insights about locations
and times that ease inference and the characteristics of the users that are affected more than others.
Moreover, [47] only studies the utility-privacy trade-off provided by differential privacy [12, 49],
while we use the insights obtained in our analysis to select potential mitigation approaches, which



we evaluate, both in terms of privacy and utility, in the context of various spatio-temporal analytics
tasks.

MIAs in Other Settings. In [25], Homer et al. show that aggregate genomic statistics leak infor-
mation about the inclusion of a target’s genome in the dataset. Then, Wang et al. [64] improve
on that by taking into account correlations within the human genome, while Backes et al. [3]
generalize the attack to other types of data like microRNA expression datasets. The data targeted by
these studies does not have spatio-temporal dimensions, and thus they are orthogonal to our work.
Buscher et al. [6] study MIAs in the context of smart-metering, showing how aggregating a small
number of household readings does not protect the privacy of individual (house) profiles. While
smart metering data is also a time-series, it does not have spatial components, and the correlations
are different.

Finally, previous work studies membership inference on machine learning models, i.e., learning
whether a data point was used to train a model, using the intuition that the model ends up overfitting
on data used for training [52, 68]. The attack is also effective under less restrictive adversarial
assumptions [51] and feasible in broader scenarios. For instance, Hayes et al. [21] show that MIAs
are also possible against generative models, while Melis et al. [38] do so for collaborative and
federated learning. Jayaraman and Evans [27] study the impact of different variants of differential
privacy, variable choices of the ϵ parameter, and several learning tasks on both utility and privacy
(including in the context of MIAs) for privacy-preserving machine learning. Overall, protection
mechanisms againstMIA onmachine learning, such as dropout ormodel stacking [51], or adversarial
training [41], cannot be applied in our scenario since the publication of aggregate location statistics
does not involve learning. Thus, studies that aim at understanding why membership inference
against machine learning works [36, 59] cannot inform defenses for aggregate location time-series.

7 CONCLUSION
In this paper, we conducted an in-depth measurement study of why and in what settings mem-

bership inference attacks on aggregate location time-series are successful. We found that both
regular and uncommon mobility patterns are the easiest to recognize. Also, size matters: users
contributing a lot of data to the aggregates are easier to attack. However, there is no characteristic
that can be singled out and eliminated to thwart the attack on all fronts.
Then, our extensive measurements of the performance of defense strategies with respect to a

range of applications confirmed that there does not exist a unique generic defense that protects
against MIA and preserves the utility of the analytics for arbitrary applications. Nonetheless, we
identified some strategies that provide reasonable utility for specific tasks with good average
privacy protection. For instance, suppressing small counts can be used for ranking hotspots, data
generalization for forecasting traffic, hotspot discovery, and map inference, while sampling is
effective for location labeling and anomaly detection when the dataset is sparse. Our experiments
also revealed that differentially private mechanisms only “work” (i.e., maintain utility at reasonably
high levels of privacy) for some applications and more so when using weaker privacy notions like
crowd-blending privacy. This is somewhat different from other settings where DP techniques can
be fine-tuned for the safe release of aggregate statistics (e.g., the US Census data [1] or telemetry
data [15]), as the very nature of location data as well as the high dimensionality of location
time-series make it hard to protect everyone.
Overall, our measurement study, while comprehensive, is inevitably limited to the employed

datasets, the considered attacks and defenses as well as their parameters. Thus, it remains an open
question whether our results generalize to other location traces or different settings. To this end,
as part of future work, we plan to investigate analytical methods that can be employed to study



privacy–utility tradeoffs on aggregate location time-series and extend our experiments to other
datasets, consider additional attacks on location aggregates other than MIA, and propose novel
defense strategies that can be employed to thwart them while preserving the utility of the statistics
for mobility analytics. In particular, a promising option is the use of differentially private noise
highly tuned for specific tasks, while an additional avenue to explore is the generation of synthetic
data tailored to mobility analytics that rely on aggregates instead of trajectories, i.e., schemes that
preserve space and time and granularity while still providing privacy.
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A UTILITY METRICS FOR DEFENSES
We report tables that demonstrate how each defense affects the various utility metrics that we

consider. For ease of comparisons, Table 4 shows, for each of the considered metrics, the utility
corresponding to a random guess.

Dataset MRE MRE 10% F1 τ JS r

TFL 4285.809 13.267 0.099 0.002 0.733 -0.002
SFC 85.122 0.08 0.094 -0.001 0.472 0.001

Table 4. Utility metrics corresponding to a random guess.

Group Size MRE MRE 10% F1 τ JS r

5 26.326 0.113 0.485 0.098 0.596 0.581
10 61.457 0.234 0.383 0.102 0.662 0.525
20 145.056 0.449 0.259 0.043 0.702 0.489

Table 5. TFL, Utility for Spatial Generalization (SPG).

Grid Size MRE MRE 10% F1 τ JS r

5x5 0.840 0.019 0.534 0.036 0.215 0.684
2x2 71.270 0.055 0.344 0.016 0.402 0.507
1x1 114.199 0.086 0.049 0.017 0.434 0.367

Table 6. SFC, Utility for Spatial Generalization (SPG).

Timeslot MRE MRE 10% F1 τ JS r

4 Hours 0.146 0.152 0.776 0.076 0.272 0.596
8 Hours 0.308 0.308 0.753 0.049 0.426 0.474
1 Day 0.777 0.741 0.738 0.020 0.605 0.225
1 Week 2.945 2.221 0.651 0.003 0.658 0.000
Table 7. TFL, Utility for Temporal Generalization (TG).

Timeslot MRE MRE 10% F1 τ JS r

4 Hours 0.134 0.066 0.823 0.056 0.139 0.632
8 Hours 0.280 0.104 0.781 0.074 0.186 0.413
1 Day 0.703 0.135 0.709 0.040 0.246 0.086
1 Week 2.493 0.149 0.455 -0.057 0.324 0.000
Table 8. SFC, Utility for Temporal Generalization (TG).

https://www.waze.com


x MRE MRE 10% F1 τ JS r

2 0.884 0.002 0.955 0.353 0.108 0.640
5 1.779 0.004 0.916 0.224 0.153 0.393
10 4.472 0.008 0.853 0.182 0.238 0.278
50 22.516 0.037 0.431 0.150 0.453 0.040
150 67.673 0.153 0.399 0.151 0.578 0.003
9500 4281.495 13.261 0.400 0.151 0.724 0.000

Table 9. TFL, Utility for Data Generalization with Fixed Ranges of size x (DGFR).

x MRE MRE 10% F1 τ JS r

2 0.659 0.000 0.983 0.802 0.070 0.809
5 1.358 0.001 0.953 0.525 0.103 0.700
10 3.385 0.002 0.911 0.316 0.164 0.594
50 17.012 0.011 0.658 0.084 0.354 0.239
100 34.214 0.020 0.218 0.031 0.416 0.059
250 84.667 0.054 0.103 0.017 0.432 0.000

Table 10. SFC, Utility for Data Generalization with Fixed Ranges of size x (DGFR).

x ′ MRE MRE 10% F1 τ JS r

1 0.136 0.041 0.711 0.043 0.175 0.439
2 0.022 0.025 0.715 0.045 0.117 0.810
4 0.005 0.012 0.785 0.060 0.068 0.889
8 0.002 0.006 0.820 0.095 0.039 0.901
16 0.000 0.002 0.850 0.159 0.020 0.903

Table 11. TFL, Utility for Data Generalization with x ′ Adaptive Ranges (DGAR).

x ′ MRE MRE 10% F1 τ JS r

1 0.045 0.021 0.745 0.083 0.153 0.412
2 0.015 0.013 0.783 0.106 0.113 0.842
4 0.006 0.006 0.873 0.167 0.063 0.943
8 0.002 0.003 0.928 0.327 0.030 0.971
16 0.001 0.001 0.961 0.529 0.014 0.978

Table 12. SFC, Utility for Data Generalization with x ′ Adaptive Ranges (DGAR).

k MRE MRE 10% F1 τ JS r

2 0.016 0.000 0.978 0.905 0.039 0.646
5 0.028 0.000 0.962 0.818 0.078 0.399
10 0.035 0.002 0.915 0.618 0.119 0.285
20 0.041 0.010 0.767 0.402 0.171 0.162
40 0.045 0.038 0.485 0.259 0.224 0.061
80 0.047 0.056 0.398 0.161 0.256 0.012

Table 13. TFL, Utility for Suppressing Small Counts (SSC).

k MRE MRE 10% F1 τ JS r

2 0.007 0.000 1.000 0.998 0.034 0.815
5 0.015 0.000 0.999 0.992 0.087 0.710
10 0.021 0.000 0.995 0.964 0.150 0.610
20 0.029 0.001 0.978 0.885 0.269 0.503
40 0.041 0.005 0.869 0.769 0.468 0.324
80 0.050 0.032 0.381 0.214 0.532 0.104
160 0.053 0.059 0.103 0.015 0.595 0.005

Table 14. SFC, Utility for Suppressing Small Counts (SSC).



z MRE MRE 10% F1 τ JS r

0.2 0.000 0.0 1.000 1.000 0.000 0.904
0.4 0.001 0.0 0.999 0.973 0.002 0.892
0.6 0.006 0.0 0.991 0.896 0.018 0.818
0.8 0.021 0.0 0.968 0.576 0.076 0.639

Table 15. TFL, Utility for Suppressing Less Popular Locations/Timeslots (SLP).

z MRE MRE 10% F1 τ JS r

0.2 0.001 0.0 1.000 1.000 0.002 0.968
0.4 0.006 0.0 0.999 0.987 0.039 0.891
0.6 0.016 0.0 0.989 0.905 0.149 0.717
0.8 0.031 0.0 0.951 0.797 0.336 0.523

Table 16. SFC, Utility for Suppressing Less Popular Locations/Timeslots (SLP).

w MRE MRE 10% F1 τ JS r

0.2 0.010 0.012 0.939 0.222 0.029 0.838
0.4 0.019 0.024 0.905 0.190 0.047 0.759
0.6 0.029 0.036 0.863 0.173 0.068 0.656
0.8 0.038 0.048 0.792 0.160 0.105 0.503

Table 17. TFL, Utility for Sampling (SMP).

w MRE MRE 10% F1 τ JS r

0.2 0.011 0.012 0.931 0.329 0.040 0.922
0.4 0.021 0.024 0.894 0.208 0.066 0.849
0.6 0.032 0.036 0.846 0.145 0.099 0.751
0.8 0.042 0.048 0.761 0.099 0.160 0.594

Table 18. SFC, Utility for Sampling (SMP).

k MRE MRE 10% F1 τ JS r

2 0.434 0.000 0.829 0.646 0.080 0.570
5 0.439 0.000 0.824 0.584 0.084 0.553
10 0.440 0.001 0.815 0.449 0.085 0.548
20 0.440 0.001 0.801 0.309 0.086 0.546
40 0.439 0.002 0.795 0.201 0.086 0.546
80 0.439 0.002 0.795 0.159 0.086 0.546

Table 19. TFL, Utility for Perturbing Small Counts with ϵ ′=1.0 (PSC).

k MRE MRE 10% F1 τ JS r

2 3.397 0.000 0.961 0.810 0.163 0.610
5 3.411 0.000 0.949 0.780 0.185 0.567
10 3.427 0.000 0.930 0.749 0.204 0.534
20 3.478 0.000 0.897 0.696 0.228 0.474
40 3.448 0.002 0.840 0.546 0.249 0.417
80 3.417 0.006 0.754 0.217 0.255 0.395
160 3.429 0.009 0.746 0.116 0.255 0.393

Table 20. SFC, Utility for Perturbing Small Counts with ϵ ′=0.1 (PSC).



ϵ MRE MRE 10% F1 τ JS r

0.01 112.526 0.381 0.124 0.034 0.666 0.005
0.1 11.310 0.058 0.251 0.032 0.412 0.043
1.0 1.149 0.022 0.721 0.043 0.175 0.236
10.0 0.087 0.020 0.758 0.053 0.116 0.447

Table 21. TFL, Utility for Fourier Perturbation Algorithm (FPA).

ϵ MRE MRE 10% F1 τ JS r

0.01 74.957 0.106 0.136 0.047 0.577 0.001
0.1 22.855 0.052 0.220 0.008 0.523 0.034
1.0 2.387 0.013 0.784 0.093 0.218 0.263
10.0 0.234 0.011 0.841 0.137 0.107 0.540

Table 22. SFC, Utility for Fourier Perturbation Algorithm (FPA).

w MRE MRE 10% F1 τ JS r

0.2 0.444 0.012 0.777 0.091 0.099 0.505
0.4 0.449 0.024 0.741 0.066 0.119 0.448
0.6 0.454 0.036 0.688 0.054 0.150 0.374
0.8 0.460 0.048 0.570 0.042 0.214 0.261

Table 23. TFL, Utility for Sampling & Perturbing Small Counts with k=5 and ϵ ′=1.0 (SPSC).

w MRE MRE 10% F1 τ JS r

0.2 3.348 0.012 0.812 0.248 0.263 0.410
0.4 3.394 0.024 0.698 0.122 0.311 0.333
0.6 3.388 0.036 0.504 0.037 0.379 0.237
0.8 3.459 0.047 0.279 -0.011 0.481 0.115

Table 24. SFC, Utility for Sampling & Perturbing Small Counts with k=20 and ϵ ′=0.1 (SPSC).

w MRE MRE 10% F1 τ JS r

0.2 0.033 0.025 0.757 0.052 0.113 0.452
0.4 0.036 0.033 0.754 0.051 0.115 0.419
0.6 0.040 0.041 0.750 0.051 0.118 0.372
0.8 0.044 0.050 0.736 0.046 0.129 0.290

Table 25. TFL, Utility for Sampling & Fourier Perturbation Algorithm with ϵ=10.0 (SFPA).

w MRE MRE 10% F1 τ JS r

0.2 0.214 0.016 0.839 0.137 0.109 0.526
0.4 0.192 0.025 0.838 0.135 0.112 0.506
0.6 0.159 0.036 0.834 0.129 0.119 0.477
0.8 0.109 0.048 0.824 0.111 0.134 0.413

Table 26. SFC, Utility for Sampling & Fourier Perturbation Algorithm with ϵ=10.0 (SFPA).
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