
More than Code:
Contributions in Scrum Software Engineering Teams
Frederike Ramin

frederike.ramin@student.hpi.de
Hasso Plattner Institute

University of Potsdam, Germany

Christoph Matthies
christoph.matthies@hpi.de
Hasso Plattner Institute

University of Potsdam, Germany

Ralf Teusner
ralf.teusner@hpi.de

Hasso Plattner Institute
University of Potsdam, Germany

ABSTRACT
Motivated and competent team members are a vital part of Agile
Software development and make or break any project’s success.
Motivation is fostered by continuous progress and recognition of ef-
forts. These concepts are founding pillars of the Scrummethodology,
which focuses on self-organizing teams. The types of contributions
Scrum development team members make to a project’s progress are
not only technical. However, a comprehensive model comprising
the varied contributions in modern software engineering teams
is not yet established. We propose a model that incorporates con-
tributions of all Scrum roles, explicitly including those which are
not directly related to project artifacts. It improves the visibility of
performed tasks, acts as a starting point for team retrospection, and
serves as a foundation for discussion in the research community.

CCS CONCEPTS
• Software and its engineering → Agile software develop-
ment.

KEYWORDS
Scrum, Agile Software Development, Teamwork, Contribution
ACM Reference Format:
Frederike Ramin, Christoph Matthies, and Ralf Teusner. 2020. More than
Code: Contributions in Scrum Software Engineering Teams. In IEEE/ACM
42nd International Conference on Software EngineeringWorkshops (ICSEW’20),
May 23–29, 2020, Seoul, Republic of Korea. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3387940.3392241

1 INTRODUCTION
Modern software engineering features collaborative, iterative devel-
opment by teams following development processes and practices
customized to their project contexts. The Agile Manifesto empha-
sizes the importance of teams, stating that “the best [. . .] designs
emerge from self-organizing teams” [6]. Agile methods, based on
these principles, such as Scrum, have become the de facto standard
in professional software engineering [1, 19]. These processes high-
light the importance of human factors [13]. They focus on teams
that are cross-functional and which include team members with all
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7963-2/20/05. . . $15.00
https://doi.org/10.1145/3387940.3392241

the capacities and competencies required to accomplish the project
work [18]. Therefore, the types of contributions that software engi-
neers make to the progress and success of modern software projects
are varied. They not only include technical aspects, e.g., source code
changes, but also process improvement activities, meeting facili-
tation, and effective communication with colleagues [9]. For the
remainder of this paper we rely on the following definition:

Contribution: Any activity, demanding human resources, that
adds to the fulfillment of project goals, by adding value to the
developed product or the (future) effectiveness of the team.

Ford et al. characterized the actions of software engineers. They
list tasks such as learning, knowledge dissemination, feedback, and
networking, which are vital to team success [5]. Recent studies of
software developers found that coding-related activities only took
up one-fourth of their total work, with another fourth being used for
collaborative activities [16]. The Scrum framework acknowledges
these different task profiles, proposing specific roles, i.e. Product
Owner (PO), Scrum Master (SM) and Development Team (Dev.), with
distinct responsibilities [18].

Agile approaches rely on clear communication and visibility of
progress to enable efficient collaboration and effective teams [11].
Capturing and categorizing the contributions of team members is a
cornerstone of ensuring team awareness regarding accomplished
work. It enables the appropriate valuation and appraisal of contri-
butions to team efforts necessary for successful teamwork.

2 BACKGROUND
The characterization of contributions to software projects, and their
assessment, is an ongoing field of research. Previous work in this
domain includes research on models of software engineering tasks,
i.e. specific activities, and the personality traits of developers [7, 22].
These studies are predominantly concerned with traditional soft-
ware engineering approaches, categorizing contributions by the
different phases of software development or the roles that perform
them [17, 22]. Additional previous work focused on the technical
aspects of software engineering [9], dividing engineer’s tasks into
activities such as IT support and database administration [21] or
compilation and debugging [20]. While multiple models of team-
work have been proposed, the activities, tasks, and responsibilities
specific to modern, Agile software engineering teams have not been
the core focus of recent studies.

In 1989, Goldstein classified software project team members ac-
cording to the tasks they regularly perform [8]. He identified four
distinct groups: programmers, analysts, maintainers, and supporters,
each contributing in different ways. Similarly, Glass et al. presented
an early model of software engineering contributions, listing tasks

ar
X

iv
:2

00
7.

08
23

7v
1

 [
cs

.S
E

]
 1

6
Ju

l 2
02

0

https://doi.org/10.1145/3387940.3392241
https://doi.org/10.1145/3387940.3392241

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Ramin, Matthies, Teusner

Technical

ManagerialContentual

Coding

Testing

Work Task
Definition

System Design

Active Meeting
Participation

Meeting
Facilitation

Work Item
Acceptance

Customer
Interaction

Coaching

Impediment
Removal

Stakeholder
Interaction

Coordination
between Teams

Development
Team

Product
Owner

Scrum Master

All

Product Backlog
Refinement

Product Backlog
Maintenance

Progress
Inspection

Setting Work
Goals

Process
Improvement

Figure 1: Visual representation of our initial contribution model regarding contributions to Scrum teamwork by participant
roles (color coded). The closer a contributions is placed at the ends of a dimension, the more it is related to this category.

such as debugging, reviews or user training [7]. The authors tag
these activities as either routine or non-routine. They conclude
that in the domain of software engineering the intellectual, i.e. non-
routine, tasks dominated routine tasks by a ratio of almost 4 to 1.
More recently, Gousios et al. have pointed out, that, even in the field
of Software Repository Mining, “no clear definition” of software
engineering contributions existed [9]. However, the authors state
that source code should not be the only contribution metric, espe-
cially in the context of Agile development. They identified technical
contributions through a hierarchical, top-down approach, based
on project assets and the actions that can be performed on them.
Nonetheless, contributions not directly resulting in asset changes,
e.g. facilitating meetings, are disregarded in this model.

3 A MODEL FOR CONTRIBUTIONS IN SCRUM
Little previous research on contributions to teamwork has focused
on the human aspects that Agile methods and the Scrum process
framework stress. We, therefore, constructed an initial model from
first principles, based on the seminal Scrum Guide [18] by Ken
Schwaber and Jeff Sutherland, the originators of the method. We
successively coded the guide’s text, particularly focusing on the
sections dealing with Scrum roles, artifacts, and meetings. For every
paragraph, we extracted the passages which mentioned work items,
project requirements and responsibilities that the process stipulates
for the different Scrumparticipants. These items, after deduplication
and clustering, represent the contributions of Scrum team members
to the development process. For each identified contribution, we
assigned a short name and noted the topic as well as which role
was designated for it. Table 1 contains examples of this process.

Table 2 presents the 17 individual Scrum teamwork contributions
we extracted, assigned to the Scrum roles:Development Team, Scrum
Master and Product Owner. We explicitly included the role of All, to
highlight contributions that involve a high level of collaboration
between all roles involved in the development process.

Table 1: Examples of annotated Scrum Guide [18] extracts

Text Name Role

“The SM serves the Development Team
[. . .], including: [. . .] Removing impedi-
ments to the Development Team”

Impediment
Removal

SM

“The Development Team consists of pro-
fessionals who do the work of delivering
a [. . .] product at the end of each Sprint.”

Coding Dev.

“Each [Product] Increment is [. . .] thor-
oughly tested, ensuring that all Incre-
ments work together.”

Testing Dev.

We relied on previous work in the area of project management
to identify the main traits and topic areas that teamwork contri-
butions are classified by. Ebert and de Man [3] grouped software
engineering knowledge into the three areas: Project (e.g. require-
ments, budget, timing, milestones), Product (e.g. product features,
relations to other products or standards) and Process (e.g. business
processes, workflows, responsibilities). Similarly, Wynekoop and
Walz [23] divided the traits of top-performing software developers
into three related categories: (i) traits of those who best “make
things work”, (ii) traits of those who best communicate with users,
and (iii) traits of those “destined for management”. We employ
a combination of these categories as dimensions to characterize
contributions, based on the language of the Scrum Guide:

• Technical: Howmuch does the contribution add to the prod-
uct increment, utilizing technical knowledge and skills?

• Contentual: To what degree does the contribution influence
the product’s prospect and direction?

• Managerial: To what degree is the contribution concerned
with adapting the work process, not the product?

More than Code: Contributions in Scrum Software Engineering Teams ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea

Table 2: Overview of the 17 Scrum project work contributions included in the model, grouped by roles. Based on [18].

Name Roles Description

Coding Dev. Producing a product increment which satisfies the Sprint Goal
Testing Dev. Writing and executing software tests, ensuring that product increments work together
Work Task Definition Dev. Creating implementation tasks from Sprint Backlog items and a plan for delivering them
System Design Dev. Planning the software architecture and fundamental structure of the product
Product Backlog Refinement Dev., PO Adding details and estimates to work items and adjusting their priorities

Product Backlog Maintenance PO Modifying the Product Backlog by adding work items and their priorities
Customer Interaction PO Extracting product requirements and prioritization by communicating with the customer
Work Item Acceptance PO Checking the produced product increment for compatibility with the product vision

Meeting Facilitation SM Scheduling and leading through meetings, preparing an agenda and keeping the time-box
Impediment Removal SM Resolving identified problems that hinder project progress, improving team workflows
Stakeholder Interaction SM Collecting feedback from stakeholders and changing the interactions with the outside world
Coaching SM Leading and passing on process knowledge to team members
Coordination between Teams SM Communicate and distribute work between teams in multi-team settings

Setting Work Goals All Structuring the work of the next iteration (Sprint Planning) or the next day (Daily Scrum)
Active Meeting Participation All Being involved and contributing to the meeting goals, supporting a positive attitude
Process Improvement All Inspecting and adapting the employed process (Sprint Retrospective)
Progress Inspection All Examine the work performed in the latest product increment

These three model dimensions are non-exclusive. Project contri-
butions may involve technical, contentual and managerial aspects
simultaneously, though to different extents. For example, a Scrum
Master solving identified issues as part of Impediment Removal is
most likely dealing with adapting work processes. However, de-
pending on the specific issue, these changes may also require some
technical skills or may affect the developed product and how it is
built1. The proposed model dimensions thus create a gravity field
to locate and categorize project and teamwork contributions.

Figure 1 presents our visualized model of contributions to project
work in Scrum teams. The closer a specific contribution is to the
edges of the graph, the more it is related to only one or two dimen-
sions. For example, the contribution of Coding, i.e. producing source
code and “delivering a potentially releasable increment” [18], is at
the far end of the Technical dimension.

4 DISCUSSION
The proposed model represents a structured exploration of the
project member’s contributions described by the Scrum Guide [18].
We explicitly constricted the scope of this initial model to promote
clarity and traceability of construction. The model represents the
state of the Scrum Guide in its latest version of November 2017.
The related literature on Scrum is vast and contains many more
collections of tasks and roles of team members in the software en-
gineering domain [5, 11]. Since the Scrum process model needs to
be adapted to the context in which it is used, as well as to the team
which uses it, many different implementations exist in practice. As
such, the presented model serves as a basic structure, representative
of key contributions in unmodified, theoretical, “vanilla Scrum” [10].

1Conway’s Law: “organizations which design systems [. . .] are constrained to produce
designs which are copies of the communication structures of these organizations.” [2]

The Scrum Guide itself lists adaptation as one of the core elements
of the underlying theory and states that “specific tactics for using
the Scrum framework vary and are described elsewhere” [18].While
Scrum contains prescriptions for team organization, it contains few
specifics on how software development activities should be per-
formed. Our model, therefore, reflects this approach. In practice,
Scrum is often employed in conjunction with additional, comple-
mentary methods, most notably XP, which suggests specific tactics
on how work is to be performed, e.g. Pair Programming [11].

Future work will focus on this aspect, including contributions
from additional sources, further Agile methods, and industry prac-
tice in the model. The base model presented here can then also be
employed to show differences between the project contributions
expected in different Agile methods. Furthermore, we envision the
proposed model to be helpful in software engineering projects, e.g.
in the following use cases:

Scrum Team Status Check. The model can be used as a means
of conformance analysis, contrasting a team’s process and self-
identified teamwork contributions to those designated by the Scrum
Guide. In an initial step, after identifying their own roles, team
members can investigate whether they make all of the contribu-
tions listed for their specific role. Any mismatches in this process
represent starting points for discussion in the team. This allows ret-
rospection on the chosen process adaptations and their rationales.

Team Contribution Analysis. The list of Scrum team contribu-
tions, see Table 2, can be reviewed, discussing for every itemwhether
it is clear who currently is or should make a specific contribution.
This can identify project contributions that have previously been
overlooked in a team.

ICSEW’20, May 23–29, 2020, Seoul, Republic of Korea Ramin, Matthies, Teusner

Contribution Awareness. The proposed teamworkmodel contains
many contributions of an interpersonal and non-technical nature,
which are core to Scrum but receive less focus in more traditional
software development approaches. A visual representation of these
contributions as presented in Figure 1, can improve developers’
awareness of their own behavior [15] and their contributions be-
sides writing code.

Agile Process Coaching. The Scrum contributions to project work
represent the daily activities and responsibilities of Scrum team
members. They define what a developer, Scrum Master, or Product
Owner will likely spend a significant portion of their work time
on. While the proposed model focuses solely on the Scrum process
framework, it can be used to highlight the differences in work
activity between different Agile methods. By highlighting which
contributions would be impacted by changes in the development
process flow, shifts in daily work can be anticipated. This approach
thus allows an easier transition from one method to another by
focusing on the changes in daily contributions that need to happen.

Our model makes the often implicit contributions of Scrum team
members to project progress explicit. It allows comparisons of one’s
own team state to the “by the book” Scrum process. These types
of analyses are suitable to foster self-reflection and retrospection
regarding teamwork processes and contributions in teams. They
may, therefore, prove particularly useful in Retrospectives, Scrum’s
implementation of software process improvement [12]. In Retro-
spective Meetings, the team reflects on what aspects of the last
development iteration were beneficial and should be kept, and what
aspects should be improved in the future [18]. To structure these
meetings, encourage active participation and to break the usual rou-
tine, interactive Retrospective Games have been introduced by Agile
practitioners [4]. These games often make use of brainstorming,
visualizations or metaphors to generate process improvement ideas.
The proposed model of Scrum project contributions can provide
a default view of Scrum for teams to compare themselves against.
It complements the array of existing tools to facilitate productive
team reflection and retrospection.

5 CONCLUSION
Software development project teams are often characterized as
homogeneous groups, without taking the varied tasks and roles
of team members into account [5]. However, contributions to a
software development project are not constricted to coding, with
developers routinely spending only about half of their workday
working on their computers [16]. This fact is especially relevant
for teams employing the Scrum process framework, which highly
depends on effective self-organization, communication, and collab-
oration [14]. This reality of modern software engineering teams
is reflected only inadequately in previous models of teamwork
contributions. We, therefore, present a model based on project con-
tributions defined in the Scrum Guide [18] to address this research
gap. This model, categorizing the teamwork contributions of Scrum
roles using the dimensions Technical, Contentual and Managerial,
is an initial proposal. It is open to refinement, discussion, and en-
richment using additional sources and Agile method descriptions.
Our model fosters retrospection and represents a first step towards

a more complete view and understanding of the types of contribu-
tions Scrum team members make to successful projects.

REFERENCES
[1] CollabNet Inc. 2019. 13th Annual State of Agile Report. Technical Report. https:

//www.stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report
[2] M E Conway. 1968. How do committees invent. Datamation 14, 4 (1968), 28–31.
[3] Christof Ebert and Jozef De Man. 2008. Effectively utilizing project, product

and process knowledge. Information and Software Technology 50, 6 (may 2008),
579–594. https://doi.org/10.1016/j.infsof.2007.06.007

[4] Derby Esther and Diana Larsen. 2006. Agile retrospectives: Making Good Teams
Great. Pragmatic Bookshelf. 200 pages.

[5] Denae Ford, Tom Zimmermann, Christian Bird, and Nachiappan Nagappan. 2017.
Characterizing Software Engineering Work with Personas Based on Knowledge
Worker Actions. In ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. 394–403. https://doi.org/10.1109/ESEM.2017.54

[6] Martin Fowler and Jim Highsmith. 2001. The Agile Manifesto. Software Develop-
ment 9, 8 (2001), 28–35.

[7] Robert L. Glass, Iris Vessey, and Sue A. Conger. 1992. Software tasks: Intellectual
or clerical? Information & Management 23, 4 (1992), 183–191. https://doi.org/10.
1016/0378-7206(92)90043-F

[8] David K. Goldstein. 1989. The Effects of Task Differences on theWork Satisfaction,
Job Characteristics, and Role Perceptions of Programmer/Analysts. Journal of
Management Information Systems 6, 1 (1989), 41–58. https://doi.org/10.1080/
07421222.1989.11517848

[9] Georgios Gousios, Eirini Kalliamvakou, and Diomidis Spinellis. 2008. Measuring
developer contribution from software repository data. In Proceedings of the 2008
international working conference on Mining software repositories. ACM, 129. https:
//doi.org/10.1145/1370750.1370781

[10] Lucas Gren, Richard Torkar, and Robert Feldt. 2017. Group development and
group maturity when building agile teams: A qualitative and quantitative inves-
tigation at eight large companies. Journal of Systems and Software 124 (2017),
104–119. https://doi.org/10.1016/j.jss.2016.11.024

[11] Henrik Kniberg. 2015. Scrum and XP From the Trenches (2nd ed.). C4Media.
[12] Christoph Matthies. 2019. Feedback in Scrum: Data-informed Retrospectives. In

Proceedings of the 41st International Conference on Software Engineering: Compan-
ion Proceedings. 198–201. https://doi.org/10.1109/ICSE-Companion.2019.00081

[13] Christoph Matthies, Johannes Huegle, Tobias Dürschmid, and Ralf Teusner.
2019. Attitudes, Beliefs, and Development Data Concerning Agile Software
Development Practices. In IEEE/ACM 41st International Conference on Soft-
ware Engineering: Software Engineering Education and Training. IEEE, 158–169.
https://doi.org/10.1109/ICSE-SEET.2019.00025

[14] Christoph Matthies, Thomas Kowark, and Matthias Uflacker. 2016. Teaching
Agile the Agile Way âĂŤ Employing Self-Organizing Teams in a University
Software Engineering Course. In American Society for Engineering Education
(ASEE) International Forum. ASEE. https://peer.asee.org/27259

[15] André N Meyer. 2018. Fostering software developers’ productivity at work
through self-monitoring and goal-setting. In Proceedings of the 40th International
Conference on Software Engineering Companion Proceedings. ACM Press, 480–483.
https://doi.org/10.1145/3183440.3183446

[16] André N Meyer, Gail C Murphy, Thomas Fritz, and Thomas Zimmermann. 2019.
Developers’ Diverging Perceptions of Productivity. Apress, 137–146. https://doi.
org/10.1007/978-1-4842-4221-6_12

[17] Adesina S. Sodiya, Olumide Babatope Longe, S. Adebukola Onashoga, Oludele
Awodele, and L. O. Omotosho. 2007. An Improved Assessment of Personality
Traits in Software Engineering. Interdisciplinary Journal of Information, Knowl-
edge, and Management 2 (2007), 163–177. https://doi.org/10.28945/107

[18] Ken Schwaber and Jeff Sutherland. 2017. The Scrum Guide - The Definitive Guide
to Scrum: The Rules of the Game. Technical Report. scrumguides.org. 19 pages.
http://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf

[19] Scrum Alliance. 2018. State of Scrum 2017-2018: Scaling and Agile Transformation.
Technical Report. http://info.scrumalliance.org/State-of-Scrum-2017-18

[20] Janice Singer, Timothy Lethbridge, Norman Vinson, and Nicolas Anquetil. 2010.
An examination of software engineering work practices. In CASCON First Decade
High Impact Papers. ACM, 174–188. https://doi.org/10.1145/1925805.1925815

[21] Lori Anderson Snyder, Deborah E. Rupp, andGeorge C. Thornton. 2006. Personnel
Selection of Information Technology Workers: The People, the Jobs, and Issues
for Human Resource Management. In Research in personnel and human resources
management. Research in Personnel and Human Resources Management, Vol. 25.
Elsevier JAI, 305–376. https://doi.org/10.1016/S0742-7301(06)25008-4

[22] Manuel Wiesche and Helmut Krcmar. 2014. The relationship of personality
models and development tasks in software engineering. In SIGMIS-CPR’14. ACM,
149–161. https://doi.org/10.1145/2599990.2600012

[23] Judy L. Wynekoop and Diane B. Walz. 2000. Investigating traits of top performing
software developers. Information Technology & People 13, 3 (2000), 186–195.
https://doi.org/10.1108/09593840010377626

https://www.stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report
https://www.stateofagile.com/#ufh-i-521251909-13th-annual-state-of-agile-report
https://doi.org/10.1016/j.infsof.2007.06.007
https://doi.org/10.1109/ESEM.2017.54
https://doi.org/10.1016/0378-7206(92)90043-F
https://doi.org/10.1016/0378-7206(92)90043-F
https://doi.org/10.1080/07421222.1989.11517848
https://doi.org/10.1080/07421222.1989.11517848
https://doi.org/10.1145/1370750.1370781
https://doi.org/10.1145/1370750.1370781
https://doi.org/10.1016/j.jss.2016.11.024
https://doi.org/10.1109/ICSE-Companion.2019.00081
https://doi.org/10.1109/ICSE-SEET.2019.00025
https://peer.asee.org/27259
https://doi.org/10.1145/3183440.3183446
https://doi.org/10.1007/978-1-4842-4221-6_12
https://doi.org/10.1007/978-1-4842-4221-6_12
https://doi.org/10.28945/107
http://scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
http://info.scrumalliance.org/State-of-Scrum-2017-18
https://doi.org/10.1145/1925805.1925815
https://doi.org/10.1016/S0742-7301(06)25008-4
https://doi.org/10.1145/2599990.2600012
https://doi.org/10.1108/09593840010377626

