
Open Research Online

Citation

Harty, Julian Mark Alistair (2020). Improving App Quality Despite Flawed Mobile Analytics. 
In: 7th IEEE/ACM International Conference on Mobile Software Engineering and Systems 
2020, 13-15 Jul 2020, Seoul, South Korea, ACM. 

URL

https://oro.open.ac.uk/71238/ 

License

(CC-BY-NC-ND 4.0) Creative Commons: Attribution-Noncommercial-No Derivative Works 
4.0

https://creativecommons.org/licenses/by-nc-nd/4.0/

Policy

This document has been downloaded from Open Research Online, The Open University's 
repository of research publications. This version is being made available in accordance 
with Open Research Online policies available from Open Research Online (ORO) Policies 

Versions

If this document is identified as the Author Accepted Manuscript it is the version after peer 
review but before type setting, copy editing or publisher branding

https://oro.open.ac.uk/71238/
https://www5.open.ac.uk/library-research-support/open-access-publishing/open-research-online-oro-policies
https://creativecommons.org/licenses/by-nc-nd/4.0/


Improving AppQuality Despite Flawed Mobile Analytics
Julian Harty

The Open University
Milton Keynes, U.K.

julian.harty@open.ac.uk

Figure 1: Improvements in the crash rate for the Pocket Code Android app

ABSTRACT
Analytics can help improve the quality of software; the improve-
ments are affected by the fidelity of the analytics. The impact of poor
fidelity may vary depending on the type of data being collected, for
example, for crashes low fidelity may be sufficient.

Themobile ecosystem includes a platformwhere apps run and an
app store that intermediates between developers and users. Google’s
Android ecosystem provides all the developers with analytics about
various qualities of their app through a service called Android Vitals
that automatically collects data on how their app is performing.

My research found ways to improve app quality through using
mobile analytics, including Android Vitals. It also found fidelity
flaws in several analytics tools provided by Google. They confirmed
and validated some flaws and chose not to discuss others.

KEYWORDS
Android-vitals, Crashlytics, Firebase, Mobile-analytics

ACM Reference Format:
Julian Harty. 2020. Improving App Quality Despite Flawed Mobile Analytics.
In IEEE/ACM 7th International Conference on Mobile Software Engineering
and Systems (MOBILESoft ’20), October 5–6, 2020, Seoul, Republic of Korea.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3387905.3388603

1 INTRODUCTION
Development teams want users to use their apps in order to achieve
various goals such as revenue growth, popularity, etc. They would
like their apps to be of high quality both for their own satisfaction
and to encourage users to use their apps more.

Inherently developers construct models of their software in or-
der to design, implement and test their apps. However, no model
survives unscathed on contact with reality (paraphrasing "no plan
survives contact with the enemy" [14]).

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7959-5/20/05.
https://doi.org/10.1145/3387905.3388603

As an example, the Catdroid project includes over 1,500 hand-
crafted automated tests intended to test almost every eventual-
ity [13] and is developed using clean code and amyriad of additional
approaches intended to deliver excellent code [7, 16]. Yet, in-use,
the crash rate averaged 3.91%, nearly four times the bad behaviour
threshold of 1.09% Google considers excessive [3]; and the app was
in the bottom 7% of education apps according to Android Vitals [2].
Reality trumped the model.

Software Analytics has been established for at least a decade,
for instance through the work of Buse and Zimmermann [5, 6].
The value of applying analytics to improve software’s quality and
fitness-for-purpose has also been established, e.g. by Microsoft
where usage analytics were collected for 48,000 internal users of
the Lync desktop application [17].

Mobile app ecosystems materially affect software development
practices [1] by acting as an intermediary and a conduit between
developers and end users. The relevance and importance of mining
feedback for mobile apps is well established, e.g. understanding why
users provide 1 and 2 star ratings [8]. Development teams can use
feedback to improve the fidelity of their models of their software.
Among various feedback channels, user feedback, i.e. ratings and
reviews, seems to be well studied [8, 18, 19].

Figure 2: Data Sources and Views

My research focuses on automated feedback gathered using an-
alytics by the platform, using Google’s Android Vitals analytics
service; and within an app using analytics libraries, e.g. Crashlytics
and Firebase, that developers optionally include in their mobile
app [4]. Figure 2 provides a model of these two forms of feedback:

https://doi.org/10.1145/3387905.3388603
https://doi.org/10.1145/3387905.3388603


MOBILESoft ’20, October 5–6, 2020, Seoul, Republic of Korea Julian Harty

essentially digital data is collected either by an app or by the plat-
form, forwarded to servers for analysis, and then various analytics
reports are made available to authorised team members.

2 APPROACH
We used mixed methods during our research aiming to complement
hands-on work with interviews with developers of business critical
apps [10]. As the analytics is restricted to authorised users and as
it is only generated for actively used applications we collaborated
with various development teams who provided access to their app’s
analytics data. The research involved working with several mature
open-source projects with a combined user-base of 400,000. In
each case one Android app was selected with the highest crash
rate as measured by Android Vitals. The reports and data from
Android Vitals were used on an ongoing basis to identify crashes
and other stability issues. We raised bugs in the respective bug
tracking systems for the most common issues. These were triaged
by the development teams who fixed issues and released newer
versions of both the selected app and their other apps.

To record and make the reports and data available we developed
and opensourced Vitals Scraper 1 and to correct some flaws in the
reporting we also created Android Stability Analysis 2.

3 RESULTS
For the Kiwix application, the crash rate decreased from 4.05% to
0.39% while the sibling apps continued to have a similar crash rate
for a 4 month period. The sibling apps were then updated based on
the improved code base and the reported crash rates have reduced
by at least 50% within a month. For Pocket Code, the crash rate
reduced from 3.91% to 1.07% Note: the crash rate of the sibling app
Pocket Paint also decreased during the experiment, from 1.66% to
0.82%, as the development team chose to fix a crash that adversely
affected many users. 3). [12].

Aspects of the research were published at MobileSoft 2019 [9],
WAMA 2019 [12], and in a jointly authored book in 2015/16 [11]. Ex-
tracts of Android Vitals data and reports have been made available
to the research community. Various flaws were found in Android
Vitals and Fabric Crashlytics, two of Google’s key analytics tools.
The flaws include differences in the outputs in of over 10:1 in the
crash rates they calculate. The flaws were reported to the relevant
Google development team in 2019-2020 who accepted the bug re-
ports and requested a comprehensive report so they could address
the relevant issues. While the Google engineering team acknowl-
edge the differences, they are defensive about the reasons why.
What if they have similar flaws in their payment calculations in the
same app store, which handled an estimated gross revenue of 29.3
Billion USD in 2019 4? Similar developers work on both.

Independent development teams of a variety of Android apps
(including Moonpig[12], LocalHalo, and Moodspace [12]) confirm
they actively use analytics to monitor the quality of their apps and
fix crashes reported in these mobile analytics tools. Trello’s Android
team stress the importance of applying a similar approach [15];

1https://github.com/commercetest/vitals-scraper
2https://github.com/commercetest/android-stability-analysis
3Release https://github.com/Catrobat/Paintroid/releases/tag/v2.4.1
4https://sensortower.com/blog/app-revenue-and-downloads-2019

4 CONCLUSION AND FUTUREWORK
Our research indicates developers can use mobile analytics to im-
prove the reliability and performance of their mobile apps. The
default Android Vitals analytics service provides adequate sources
of information on crashes and ANRs and confirms the effects of fixes
in newer releases of the respective apps. In-app analytics libraries
provide finer-grained lower-latency feedback and developers tend
to prefer these data sources to using Android Vitals.

Each of the tools we evaluated has fidelity flaws, the effect varies
depending on the category of the data. Nonetheless, the developers
improved the crash rate of their apps, by between 1

3 and 1
10 , they

also independently continue to apply the techniques I proposed.
The engineering team at Google for Android Vitals follows our
work. We will evaluate whether adding in-app analytics events, e.g.
using Firebase, to apps improves their development and testing.

REFERENCES
[1] Afnan AlSubaihin, Federica Sarro, Sue Black, Licia Capra, and Mark Harman.

2019. App store effects on software engineering practices. IEEE Transactions on
Software Engineering 50, 8 (2019), 1–19.

[2] Android Developers. 2020. Android vitals. https://developer.android.com/topic/
performance/vitals

[3] Android Developers. 2020. Crashes - Android Developers. Google. https://
developer.android.com/topic/performance/vitals/crash

[4] AppBrain. 2020. Android analytics libraries. https://www.appbrain.com/stats/
libraries/tag/analytics/android-analytics-libraries

[5] Raymond PL Buse and Thomas Zimmermann. 2010. Analytics for software devel-
opment. In Proceedings of the FSE/SDP workshop on Future of software engineering
research. ACM, ACM, Santa Fe, New Mexico, USA, 77–80.

[6] Raymond PL Buse and Thomas Zimmermann. 2012. Information needs for
software development analytics. In Proceedings of the 34th international conference
on software engineering. IEEE Press, IEEE, Zurich, Switzerland, 987–996.

[7] Catrobat Project Team. 2019. Developer’s website for the Catrobat project. Catrobat
Project. https://developer.catrobat.org/

[8] Bin Fu, Jialiu Lin, Lei Li, Christos Faloutsos, Jason Hong, and Norman Sadeh. 2013.
Why people hate your app: Making sense of user feedback in a mobile app store.
In Proceedings of the 19th ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM, ACM, Chicago, Illinois, USA, 1276–1284.

[9] Julian Harty. 2019. Google Play Console: Insightful Development using Android
Vitals and Pre-Launch Reports. In MOBILESoft 2019. IEEE, IEEE, Montreal, QC,
Canada, 62 – 65.

[10] Julian Harty. 2020. How Can Software Testing be Improved by Analytics to
Deliver Better Apps?. In 2020 13th IEEE Conference on Software Testing, Validation
and Verification (ICST). IEEE, Porto, Portugal.

[11] J. Harty and A. Aymer. 2015. The Mobile Analytics Playbook: A Practical Guide to
Better Testing. Hewlett Packard Enterprise. 161 pages.

[12] Julian Harty and Matthias Müller. 2019. Better Android Apps Using Android
Vitals. In WAMA 2019. ACM, ACM, Tallinn, Estonia, 26 – 32.

[13] Thomas Hirsch, Christian Schindler, Matthias Müller, Thomas Schranz, and Wolf-
gang Slany. 2019. An Approach to Test Classification in Big Android Applications.
In 2019 IEEE 19th International Conference on Software Quality, Reliability and
Security Companion (QRS-C). IEEE, 300–308.

[14] Daniel J Hughes. 1995. Moltke on the art of war: Selected writings. Random House
Digital, Inc., USA.

[15] Dan Lew. 2018. How to Release a Buggy App (And Live to Tell the Tale). https:
//tech.trello.com/how-to-release-a-buggy-app-and-live-to-tell-the-story/

[16] Kirshan Kumar Luhana, Christian Schindler, and Wolfgang Slany. 2018. Stream-
lining mobile app deployment with Jenkins and Fastlane in the case of Catrobat’s
pocket code. In 2018 IEEE International Conference on Innovative Research and
Development (ICIRD). IEEE, 1–6.

[17] Robert Musson, Jacqueline Richards, Danyel Fisher, Christian Bird, Brian Bussone,
and Sandipan Ganguly. 2013. Leveraging the crowd: How 48,000 users helped
improve lync performance. IEEE software 30, 4 (2013), 38–45.

[18] Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A Visaggio,
Gerardo Canfora, and Harald C Gall. 2015. How can I improvemy app? classifying
user reviews for software maintenance and evolution. In 2015 IEEE international
conference on software maintenance and evolution (ICSME). IEEE, 281–290.

[19] Lorenzo Villarroel, Gabriele Bavota, Barbara Russo, Rocco Oliveto, and Massim-
iliano Di Penta. 2016. Release planning of mobile apps based on user reviews.
In 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE).
IEEE, 14–24.

https://github.com/commercetest/vitals-scraper
https://github.com/commercetest/android-stability-analysis
https://github.com/Catrobat/Paintroid/releases/tag/v2.4.1
 https://sensortower.com/blog/app-revenue-and-downloads-2019
https://developer.android.com/topic/performance/vitals
https://developer.android.com/topic/performance/vitals
https://developer.android.com/topic/performance/vitals/crash
https://developer.android.com/topic/performance/vitals/crash
https://www.appbrain.com/stats/libraries/tag/analytics/android-analytics-libraries
https://www.appbrain.com/stats/libraries/tag/analytics/android-analytics-libraries
https://developer.catrobat.org/
https://tech.trello.com/how-to-release-a-buggy-app-and-live-to-tell-the-story/
https://tech.trello.com/how-to-release-a-buggy-app-and-live-to-tell-the-story/

	Abstract
	1 Introduction
	2 Approach
	3 Results
	4 Conclusion and Future Work
	References

