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Figure 1: Improvements in the crash rate for the Pocket Code Android app

ABSTRACT
Analytics can help improve the quality of software; the improve-
ments are affected by the fidelity of the analytics. The impact of poor
fidelity may vary depending on the type of data being collected, for
example, for crashes low fidelity may be sufficient.

Themobile ecosystem includes a platformwhere apps run and an
app store that intermediates between developers and users. Google’s
Android ecosystem provides all the developers with analytics about
various qualities of their app through a service called Android Vitals
that automatically collects data on how their app is performing.

My research found ways to improve app quality through using
mobile analytics, including Android Vitals. It also found fidelity
flaws in several analytics tools provided by Google. They confirmed
and validated some flaws and chose not to discuss others.
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1 INTRODUCTION
Development teams want users to use their apps in order to achieve
various goals such as revenue growth, popularity, etc. They would
like their apps to be of high quality both for their own satisfaction
and to encourage users to use their apps more.

Inherently developers construct models of their software in or-
der to design, implement and test their apps. However, no model
survives unscathed on contact with reality (paraphrasing "no plan
survives contact with the enemy" [14]).
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As an example, the Catdroid project includes over 1,500 hand-
crafted automated tests intended to test almost every eventual-
ity [13] and is developed using clean code and amyriad of additional
approaches intended to deliver excellent code [7, 16]. Yet, in-use,
the crash rate averaged 3.91%, nearly four times the bad behaviour
threshold of 1.09% Google considers excessive [3]; and the app was
in the bottom 7% of education apps according to Android Vitals [2].
Reality trumped the model.

Software Analytics has been established for at least a decade,
for instance through the work of Buse and Zimmermann [5, 6].
The value of applying analytics to improve software’s quality and
fitness-for-purpose has also been established, e.g. by Microsoft
where usage analytics were collected for 48,000 internal users of
the Lync desktop application [17].

Mobile app ecosystems materially affect software development
practices [1] by acting as an intermediary and a conduit between
developers and end users. The relevance and importance of mining
feedback for mobile apps is well established, e.g. understanding why
users provide 1 and 2 star ratings [8]. Development teams can use
feedback to improve the fidelity of their models of their software.
Among various feedback channels, user feedback, i.e. ratings and
reviews, seems to be well studied [8, 18, 19].

Figure 2: Data Sources and Views

My research focuses on automated feedback gathered using an-
alytics by the platform, using Google’s Android Vitals analytics
service; and within an app using analytics libraries, e.g. Crashlytics
and Firebase, that developers optionally include in their mobile
app [4]. Figure 2 provides a model of these two forms of feedback:
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essentially digital data is collected either by an app or by the plat-
form, forwarded to servers for analysis, and then various analytics
reports are made available to authorised team members.

2 APPROACH
We used mixed methods during our research aiming to complement
hands-on work with interviews with developers of business critical
apps [10]. As the analytics is restricted to authorised users and as
it is only generated for actively used applications we collaborated
with various development teams who provided access to their app’s
analytics data. The research involved working with several mature
open-source projects with a combined user-base of 400,000. In
each case one Android app was selected with the highest crash
rate as measured by Android Vitals. The reports and data from
Android Vitals were used on an ongoing basis to identify crashes
and other stability issues. We raised bugs in the respective bug
tracking systems for the most common issues. These were triaged
by the development teams who fixed issues and released newer
versions of both the selected app and their other apps.

To record and make the reports and data available we developed
and opensourced Vitals Scraper 1 and to correct some flaws in the
reporting we also created Android Stability Analysis 2.

3 RESULTS
For the Kiwix application, the crash rate decreased from 4.05% to
0.39% while the sibling apps continued to have a similar crash rate
for a 4 month period. The sibling apps were then updated based on
the improved code base and the reported crash rates have reduced
by at least 50% within a month. For Pocket Code, the crash rate
reduced from 3.91% to 1.07% Note: the crash rate of the sibling app
Pocket Paint also decreased during the experiment, from 1.66% to
0.82%, as the development team chose to fix a crash that adversely
affected many users. 3). [12].

Aspects of the research were published at MobileSoft 2019 [9],
WAMA 2019 [12], and in a jointly authored book in 2015/16 [11]. Ex-
tracts of Android Vitals data and reports have been made available
to the research community. Various flaws were found in Android
Vitals and Fabric Crashlytics, two of Google’s key analytics tools.
The flaws include differences in the outputs in of over 10:1 in the
crash rates they calculate. The flaws were reported to the relevant
Google development team in 2019-2020 who accepted the bug re-
ports and requested a comprehensive report so they could address
the relevant issues. While the Google engineering team acknowl-
edge the differences, they are defensive about the reasons why.
What if they have similar flaws in their payment calculations in the
same app store, which handled an estimated gross revenue of 29.3
Billion USD in 2019 4? Similar developers work on both.

Independent development teams of a variety of Android apps
(including Moonpig[12], LocalHalo, and Moodspace [12]) confirm
they actively use analytics to monitor the quality of their apps and
fix crashes reported in these mobile analytics tools. Trello’s Android
team stress the importance of applying a similar approach [15];

1https://github.com/commercetest/vitals-scraper
2https://github.com/commercetest/android-stability-analysis
3Release https://github.com/Catrobat/Paintroid/releases/tag/v2.4.1
4https://sensortower.com/blog/app-revenue-and-downloads-2019

4 CONCLUSION AND FUTUREWORK
Our research indicates developers can use mobile analytics to im-
prove the reliability and performance of their mobile apps. The
default Android Vitals analytics service provides adequate sources
of information on crashes and ANRs and confirms the effects of fixes
in newer releases of the respective apps. In-app analytics libraries
provide finer-grained lower-latency feedback and developers tend
to prefer these data sources to using Android Vitals.

Each of the tools we evaluated has fidelity flaws, the effect varies
depending on the category of the data. Nonetheless, the developers
improved the crash rate of their apps, by between 1

3 and 1
10 , they

also independently continue to apply the techniques I proposed.
The engineering team at Google for Android Vitals follows our
work. We will evaluate whether adding in-app analytics events, e.g.
using Firebase, to apps improves their development and testing.
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