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ABSTRACT

�e recent Spectre a�acks have demonstrated the fundamental in-

security of current computer microarchitecture. �e a�acks use

features like pipelining, out-of-order and speculation to extract ar-

bitrary information about the memory contents of a process. A

comprehensive formal microarchitectural model capable of repre-

senting the forms of out-of-order and speculative behavior that can

meaningfully be implemented in a high performance pipelined ar-

chitecture has not yet emerged. Such amodelwould be very useful,

as it would allow the existence and non-existence of vulnerabilities,

and soundness of countermeasures to be formally established.

�is paper presents such a model targeting single core proces-

sors. �e model is intentionally very general and provides an in-

frastructure to define models of real CPUs. It incorporates microar-

chitectural features that underpin all known Spectre vulnerabili-

ties. We use the model to elucidate the security of existing and

new vulnerabilities, as well as to formally analyze the effective-

ness of proposed countermeasures. Specifically, we discover three

new (potential) vulnerabilities, including a new variant of Spectre

v4, a vulnerability on speculative fetching, and a vulnerability on

out-of-order execution, and analyze the effectiveness of existing

countermeasures including constant time and serializing instruc-

tions.

1 INTRODUCTION

�e wealth of vulnerabilities that have followed on from Spectre

and Meltdown [31, 35] have provided ample evidence of the fun-

damental insecurity of current computer microarchitecture. �e

extensive use of instruction level parallelism in the form of out-of-

order (OoO) and speculative execution has produced designs with

side channels that can be exploited by a�ackers to learn sensitive

information about the memory contents of a process. One witness

of the subtlety of the issues is the more than 50 years passed since

pipelining, caching, and OoO execution, cf. IBM S/360, was first

introduced.

Another witness is the fact that two years a�er the discovery

of Spectre, a comprehensive understanding of the security impli-

cations of pipeline related microarchitecture features has yet to

emerge. One result is the ongoing arms race between researchers

discovering new Spectre-related vulnerabilities [9], and CPU ven-

dors providing patches followed by informal arguments [5]. �e
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security and effectiveness of the currently proposed countermea-

sures is unknown, and there are continuously new vulnerabilities

appearing that exploit specific microarchitecture features.

It is important to note that side channels and functional correct-

ness are to a large extent orthogonal. �e la�er is usually proved

by reducing pipelined behaviour to sequential behaviour through

some form of refinement-based argument. �e past decades have

seen a significant body of work in this area, cf. [1, 8, 38, 47], ad-

dressing rich sets of features of concrete pipeline designs such as

OoO, speculation, and self-modifying code. Functional correctness,

however, focuses on programs’ input-output behaviour and fails

to adequately capture the differential aspects of speculation and

instruction reordering that are at the root of Spectre-like vulner-

abilities. For a systematic study of the la�er we argue that new

tools that are not necessarily tied to any specific pipeline architec-

ture are needed.

Along this line, several recent works [12, 14, 22, 40] have started

to propose formalmicroarchitecturalmodels using information flow

analysis to identify information leaks arising from speculative exe-

cution in a principled manner. �ese models capture specific spec-

ulation features, e.g, branch prediction, and variants of Spectre,

in particular variant 1, and design analyses that detect known at-

tacks [12, 22, 53]. While these approaches illustrate the usefulness

of formal models in analyzing microarchitecture leaks, features ly-

ing at the heart of modern CPUs such as OoO execution and many

forms of speculation remain largely unexplored, implying that new

vulnerabilities may still exist.

Contributions. �is work presents InSpectre, the first compre-

hensive model capable of capturing OoO execution and all forms

of speculation that can be meaningfully implemented in the con-

text of a high performance pipeline. �e model is intentionally

very general and provides an infrastructure to define models of

real CPUs (Section 3), which can be used to analyze effectiveness

of countermeasures for a given processor.

Our first contribution is a novel semantics supporting microar-

chitectural features such as OoO execution, non-atomicity of in-

structions, and various forms of speculation, including branch pre-

diction, jump target prediction, return address prediction, and de-

pendency prediction. Additionally, the semantics supports features

such as address aliasing, dynamic references, store forward, and

OoO memory commits, which are necessary to model all known

variants of Spectre. �e semantics implements the stages of an

abstract pipeline supporting OoO (Section 4) and speculative exe-

cution (Section 5). In line with existing work [12, 22], our security

condition formalizes the intuition that optimizations should not in-

troduce additional information leaks (conditional noninterference,
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Section 2). We use this condition to show that InSpectre can repro-

duce all four variants of Spectre.

As a second contribution, we use InSpectre to discover three

new potential vulnerabilities. �e first vulnerability shows that

CPUs supporting only OoO may leak sensitive information. We

discovered the second vulnerability while a�empting to validate

a CPU vendor’s claim that microarchitectures like Cortex A53 are

immune to Spectre vulnerabilities because they support only spec-

ulative fetching [5]. Our model reveals that this may not be the

case. �e third vulnerability is a variant of Spectre v4 showing

that speculation of a dependency, rather than speculation of a non-

dependency as in Spectre v4, between a load and a store operation

may also leak sensitive information.

Finally, as a third contribution, we leverage InSpectre to analyze

the effectiveness of some existing countermeasures. We found that

constant-time [7] analysis is unsound for processors supporting

only OoO, and propose a provably secure fix that enables constant-

time analysis to ensure security for such processors.

2 SECURITY MODEL

Our security model has the following ingredients: (i) an execution

model which is given by the execution semantics of a program;

(ii) an a�acker model specifying the observations of an a�acker;

(iii) a security policy specifying the parts of the program state that

contain sensitive/high information, and the parts that contain pub-

lic/low information; (iv) a security condition capturing a program’s

security with respect to an execution model, an a�acker model,

and a security policy.

First, we consider a general model of a�acker that observes the

interaction between the CPU and the memory subsystem. �is

model has been used (e.g., [3]) to capture information leaks via

cache-based side channels transparently without an explicit cache

model. It can capture trace-driven a�ackers that can interleave

with the victim’s execution and indirectly observe, for instance us-

ing Flush+Reload [20], the victim’s cache footprint via latency jit-

ters. �e a�acker can observe the address of a memory load dl v

(data load from memory addressv), the address of a memory store

ds v (data store to memory address v), as well as the value of the

program counter il v (instruction load from memory address v)

[42].

We assume a transition relation −→ ⊆ States × Obs × States

to model the execution semantics of a program as a state trans-

former producing observations l ∈ Obs. �e reflexive and transi-

tive closure of −→ induces a set of executions π ∈ Π. �e function

trace : Π 7→ Obs∗ extracts the sequence of observations of an exe-

cution.

�e security policy is defined by an indistinguishability relation

∼ ⊆ States×States. �e relation ∼ determines the security of infor-

mation that is initially stored in a state, modeling the set of initial

states that an a�acker is not allowed to discriminate. �ese states

represent the initial uncertainty of an a�acker about sensitive in-

formation.

�e security condition defines the security of a program on the

target execution model (e.g., the speculation model) −→t condition-

ally on the security of the same program on the reference, i.e. se-

quential, model −→r , by requiring that the target model does not

leak more information than the reference model for a policy ∼.

Definition 2.1 (Conditional Noninterference). Let ∼ be a security

policy and −→t and −→r be transition relations for the target and

reference models of a system. �e system is conditionally non-

interferent if for all σ1,σ2 ∈ States such that σ1 ∼ σ2, if for ev-

ery π1 = σ1 −→r · · · there exists π2 = σ2 −→r · · · such that

trace(π1) = trace(π2) then for every ρ1 = σ1 −→t · · · there exists

ρ2 = σ2 −→t · · · such that trace(ρ1) = trace(ρ2).

Conditional noninterference captures only the new information

leaks that may be introduced by model −→t , and ignores any leaks

already present in model −→r . �e target model is constructed

in two steps. First, we present an OoO model that extends the se-

quential model, which is deterministic, by allowing evaluation to

proceed out-of-order. �en the OoO model is further extended by

adding speculation. At each step the traces of the abstract model

are included in the extended model, and a memory consistency re-

sult demonstrates that the per location sequence of memory stores

is the same for both models. �is establishes functional correct-

ness. Conditional noninterference then establishes security of each

extension. Each such step strictly increases the set of possible

traces by adding nondeterminism. Since refinement is o�en viewed

as essentially elimination of nondeterminism, one can think of the

extensions as “inverse refinements”. Since conditional noninter-

ference considers a possibilistic se�ing, it does not account for

information leaks through the number of initial indistinguishable

states.

We now elucidate the advantages of conditional noninterfer-

ence as compared to standard notions of noninterference and de-

classification. Supposewe define the security condition directly on

the target model, in the style of standard noninterference.

Definition 2.2 (Noninterference). Let P be a program with tran-

sition relation −→ and ∼P a security policy. P satisfies noninter-

ference up to ∼P if for all σ1,σ2 ∈ States such that σ1 ∼P σ2 and

executions π1 = σ1 −→ · · · , there exists an executionπ2 = σ2 −→ · · ·

such that trace(π1) = trace(π2).

Noninterference ensures that if the observations do not enable

an a�acker to refine his knowledge of sensitive information be-

yond what is allowed by the policy ∼P , the program can be con-

sidered secure. Noninterference can accommodate partial release

of sensitive information by refining the definition of the indistin-

guishability relation ∼P . In our context, a precise definition of ∼P
can be challenging to define. However, we ultimately aim at show-

ing that the OoO/speculative model does not leak more informa-

tion than the in-order (sequential) model, thus capturing the in-

tuition that microarchitectural features like OoO and speculation

should not introduce additional leaks. �erefore, instead of defin-

ing the policy ∼P explicitly, we split it into two relations ∼ (as in

Def. 2.1) and ∼D , where the former models information of the ini-

tial state that is known by the a�acker, i.e., the public resources,

and the la�er models information that the a�acker is allowed to

learn during the execution via observations. Hence, ∼P = ∼ ∩ ∼D .
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�is characterization allows for a simpler formulation of the secu-

rity condition that is transparent on the definition of ∼D , as de-

scribed in Def. 2.1.

3 FORMAL MICROARCHITECTURAL MODEL

We introduce a Machine Independent Language (MIL) which we

use to define the semantics of microarchitectural features such as

OoO and speculative execution. We use MIL as a form of abstract

microcode language: A target language for translating ISA instruc-

tions and reasoning about features that may cause vulnerabilities

like Spectre. Microinstructions in MIL represent atomic actions

that can be executed by the CPU, emulating the pipeline phases in

an abstract manner. �is model is intentionally very general and

provides an infrastructure to define models of real microarchitec-

tures.

We consider a domain of values v ∈ V , a program counter pc ∈

PC, a finite set of register/flag identifiers r0, . . . , rn , f ,z ∈ R ⊆ V ,

and a finite set of memory addresses a0, . . . ,am ∈ M ⊆ V . �e

language can be easily extended to support other type of resources,

e.g., registers for vector operations. We assume a total order < on

a set of names t0, t1, . . . ∈ N , which we use to uniquely identify

microinstructions. We write N1 < N2 if for every pair (t1, t2) ∈

N1 × N2 it holds that t1 < t2.

Microinstructions ι ∈ I are conditional atomic single assign-

ments. A microinstruction ι = t ← c?o is uniquely identified by its

name t ∈ N and consists of a boolean guard c , which determines if

the assignment should be executed, and an operation o ∈ Op. �e

MIL language has three types of operations:

e ::= v | t | e1 + e2 | e1 > e2 | · · ·

o ::= e | ld τ ta | st τ ta tv

An internal operation e is an expression over standard finite

arithmetic and can additionally refer to names in N and values in

V . A resource load operation ld τ ta , where τ ∈ {PC,R,M}, loads

the value of resource τ addressed by ta . We support three types

of resources: �e program counter PC, registers R , and memory

locationsM . A resource store operation st τ ta tv uses the value

of tv to update the resource τ addressed by ta .

�e free names fn(ι) of an instruction ι = t ← c?o is the set of

names occurring in c or o, the bound names, bn(ι), is the singleton

{t}, and the names n(ι) is fn(ι) ∪ bn(ι).

To model the internal state of a CPU pipeline, we can trans-

late an ISA instruction as multiple microinstructions. For an ISA

instruction at address v ∈ M and a name t ∈ N , the function

translate(v, t) returns the MIL translation of the instruction at ad-

dress v , ensuring that the names of the microinstructions thus

generated are greater than t . Because we assume code to not be

self-modifying, an instruction can be statically identified by its ad-

dress in memory. We assume that the translation function satis-

fies the properties: (i) for all ι1, ι2 ∈ translate(v, t), if ι1 , ι2 then

bn(ι1) ∩ bn(ι2) = ∅; for all ι ∈ translate(v, t), (ii) fn(ι) < bn(ι), and

(iii) {t} < n(ι).

�ese properties ensure that names uniquely identify microin-

structions, the name parameters of a single instruction form a Di-

rectedAcyclic Graph, the translatedmicroinstructions are assigned

names greater than t , and the translation of two different ISA in-

structions does not have direct inter-instruction dependencies (but

may have indirect ones).

3.1 MIL Program Examples

We introduce some illustrative examples of MIL programs, using

their graph representation. For clarity, we omit conditions when-

ever they are true and visualize only the immediate dependencies

between graph elements.

Consider an ISA instruction that increments the value of regis-

ter r1 by one, i.e., r1:= r1+1. �e instruction can be translated in

MIL as follows:{
t1 ← r1, t2 ← ld R t1, t3 ← t2 + 1, t4 ← st R t1 t3,

t5 ← ld PC , t6 ← t5 + 4, t7 ← st PC t6

}

Intuitively, t1 refers to the identifier of target register r1, t2 loads

the current value of register r1, t3 executes the increment, and t4
stores the result of t3 in the register store. �e translation of an

ISA instruction also updates the program counter to enable the ex-

ecution of the next instruction. In this case, the program counter

is increased by 4, unconditionally. Notice that we omit the pro-

gram counter’s address, since there is only one such resource. We

can graphically represent this set of microinstructions using the

following graph:

⊤ r1

t1

⊤ ld R t1

t2

⊤ t2 + 1

t3

⊤ st R t1 t3

t4

⊤ ld PC

t5

⊤ t5 + 4

t6

⊤ st PC t6

t7

Example 1: r1 := r1+1

In the following we adopt syntactic sugar to use expressions, in

place of names, for the address and value of load and store oper-

ations. �is can be eliminated by introducing the proper interme-

diary internal assignments. �is permits to rewrite the previous

example as:

ld R r1

t2

st R r1 t2 + 1

t4

ld PC

t5

st R t5 + 4

t7

�e translation of multiple ISA instructions results in discon-

nected graphs. �is reflects the fact that inter-instruction depen-

dencies may not be statically identified due to dynamic references

and must be dynamically resolved by the MIL semantics. When

translating multiple instructions, we use the following convention

for generated names: the name ti j identifies the j-th microinstruc-

tion resulting from the translation of the i-th instruction. Our

convention induces a total (lexicographical) order over names (i.e.,

ti j < ti ′j′ iff (i < i ′)∨(i = i ′∧j < j ′)), which respects the properties

of the translation function.

MIL is expressive enough to support conditional instructions

like conditional arithmetic and conditionalmove. Conditional branches

can be modeled in MIL via microinstructions that are guarded by

complementary conditions. For instance, the beq a instruction,

which jumps to address a if the z flag is set, can be translated as in

Example 2.
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ld R z

t1

t1 = 1

t2

ld PC

t3

t2 st PC a

t4

¬t2 st PC t3 + 4

t5

Example 2: beq a

Decoded

v

Executed

v

Commi�ed

vFetched

Exe Cmt

Ftc

s (t )↑ ∧ t < C ∪ F

v s (t ) ∧ t < C ∪ F

v s (t ) ∧ t ∈ C ∧ t < F

v s (t ) ∧ t < C ∧ t ∈ F

Figure 1: OoO semantics: Microinstruction lifecycle

4 OUT-OF-ORDER SEMANTICS

�is section presents an OoO semantics for MIL programs, which

is extended in Section 5 to account for speculation. �e in-order

semantics in Section 6 is obtained by constraining the OoO seman-

tics to enforce program order evaluation. We prove memory con-

sistency for both the OoO and speculative semantics. �e results

show that, for each semantics, the sequences of per location mem-

ory stores are the same, thus establishing functional correctness of

the OoO and speculative semantics.

4.1 States, Transitions, Observations

We formalize the semantics via a transition relationσ
l
−→→ σ ′, which

maps a state σ to a state σ ′, and produces a (possibly empty, rep-

resented by a dot (·)) observation l ∈ Obs, eliding the dot when

convenient. As in Section 2, Obs = {·,dl v,ds v, il v} captures the

a�acker model.

States σ are tuples (I , s,C, F) where: (i) I is a set of MIL mi-

croinstructions, (ii) s ∈ Stores = N ⇀ V is a (partial) storage

function from names to values recording microinstructions’ exe-

cution results, (iii) C ⊆ N is a set of names of store operations that

have been commi�ed to the memory subsystem, (iv) F ⊆ N is a

set of names of program counter store operations that have been

processed, causing the ISA instruction at the stored location to be

fetched and decoded.

In the following we write s[t 7→ v] for substitution of value

v for name t in store s . We use f (x)↓ to represent that the par-

tial function f is defined on x , and f (x)↑ if not f (x)↓. We write

dom(f ) for the domain of a partial function f . We also use f |D to

represent the restriction of function f to domainD. �e semantics

of expressions is [e] : Stores ⇀ V and is defined as expected. An

expression is undefined if at least one name is undefined in a stor-

age, i.e., [e](s)↑ ⇔ fn(e) * dom(s). For σ = (I , s,C, F) we use [e]σ

for [e]s , σ (t)↑ for s(t)↑, and ι ∈ σ for ι ∈ I .

4.2 Microinstruction Lifecycle

Figure 1 represents the microinstruction lifecycle in the OoO se-

mantics. For a given state (I , s,C, F), a microinstruction ι = t ←

c?o ∈ I can be in one of four different states. A microinstruction in

state Decoded (represented by a gray circle) has not been executed,

commi�ed or fetched (s(t)↑, t < C, t < F ), and its guard is either

true ([c]s) or undefined ([c](s)↑). If the guard is false, i.e, ¬[c]s ,

the instruction is considered as Discarded (not shown). A microin-

struction is able tomove to state Executed (represented by a simple

circle whose content is s(t)) if its guard evaluates to true and all de-

pendencies have been executed. Subsequently, an Executed store

microinstruction can either be commi�ed to the memory subsys-

tem (Commi�ed: t ∈ C, represented by a bold circle), or, if it is a

program counter store, assign the program counter, causing a new

ISA instruction to be fetched and decoded (Fetched: t ∈ F , repre-

sented by a double circle). Accordingly, the transition of a program

counter store to state Fetched leads to the spawn of a collection of

newly decoded microinstructions (i.e., the translation of the sub-

sequent ISA instruction) in state Decoded. �e labels of the edges

in the diagram correspond to the names of the transition rules of

Section 4.4.

4.3 Semantics of Single Microinstructions

�e semantics is defined in two steps: we first define the seman-

tics of single microinstructions, then introduce the operational se-

mantics of MIL programs. �e semantics of a microinstruction

[ι] : States→ (V ×Obs) ∪ {⊥} returns either a value and an obser-

vation, or ⊥ if the microintruction cannot be executed.

(Internaloperations)�e semantics of internal operations is straight-

forward:

[t ← c?e]σ =

{
([e]σ , ·) if [e](σ )↓

⊥ otherwise

An internal operation can be executed as soon as its dependen-

cies are available. In Example 1, the semantics of internal operation

t1 is defined for the empty storage ∅, since it does not refer to any

names. However, the semantics of t3 is undefined in ∅, since it

depends on the value of t2 that is not available in ∅.

(Store operations)�e semantics of store operations is defined as

follows:

[t ← c?st τ ta tv ]σ =

{
([tv ]σ , ·) if [tv ](σ )↓ ∧ [ta](σ )↓

⊥ otherwise

A resource update can be executed as soon as both the address

of the resource and the value are available. Observe that this rule

models the internal execution of a resource update and not its com-

mit to the memory subsystem. �ese internal updates are not ob-

servable by a programmer, therefore there is no restriction on their

execution order. As an example, the ISA program r1:= 0; r2:= r1;

r1:= 1 can be implemented by the following microinstructions:

st R r1 0

t11

ld R r1

t21

st R r2 t21

t22

st R r1 1

t31

�e semantics of t11, i.e., st R r1 0, and t31, i.e., st R r1 1, is

defined in ∅, and yields (0, ·) and (1, ·), respectively. As we will see,

the operational semantics is in charge of ordering resource updates

to preserve consistency and dependencies.

4



(Load operations)While the semantics of internal operations and

store operations only depends on the execution of their operands,

load operationsmay depend on past store operations. �is requires

identifying the previous resource update that determines the cor-

rect value to be loaded. We use the following definitions to com-

pute the set of store operations that may affect a load operation.

Definition 4.1. Consider a load operation t ← c?ld τ ta

• str-may(σ , t) = {t ′ ← c ′?st τ t ′a t ′v ∈ σ | t
′
< t ∧ ([c ′]σ ∨

[c ′](σ )↑) ∧ ([t ′a]σ = [ta]σ ∨ σ (t
′
a )↑ ∨ σ (ta )↑)} is the set of

stores that may affect the load address of t in state σ .

• str-act(σ , t) = {t ′ ← c ′?st τ t ′a t
′
v ∈ str-may(σ , t) | ¬∃t ′′ ←

c ′′?st τ t ′′a t ′′v ∈ str-may(σ , t). t ′′ > t ′ ∧ [c ′′]σ ∧ [t ′′a ]σ ∈

{[ta]σ , [t
′
a ]σ }} is the set of active stores.

�e stores that may affect the address of t are the stores that:

(i) have not been discarded, namely they can be executed ([c]σ ) or

may be executed (c(σ )↑), and (ii) the store address in t ′a may result

in the same address as the load address in ta , namely either they

both evaluate to the same address (σ (t ′a ) = σ (ta )), or the store ad-

dress is unknown (σ (t ′a )↑), or the load address is unknown (σ (ta )↑).

�e active stores of t are the stores that may affect the load ad-

dress computed by ta , and, there are no subsequent stores t ′′ on

the same address as the load address in ta , or on the same address

as the store address in t ′a . �is set determines the “minimal” set of

store operations that may affect a load operation from address ta .

�e definitions of str-act(σ , t) and str-may(σ , t) are naturally ex-

tended to stores t ← c?st τ ta tv . �ese definitions allow us to

define the semantics of loads:

[t ← c?ld τ ta]σ =



([ts ]σ , l) if bn(str-act(σ , t)) = {ts }∧

σ (ta )↓ ∧ σ (ts )↓

⊥ otherwise

where l ={
dl σ (ta ) if ts ∈ C ∧ τ =M

· otherwise

A load operation can be executed if the set of active stores con-

sists of a singleton set with bound name ts , i.e., the store causing

ta to be assigned is uniquely determined, and both the address ta
of the load and the address ts of the store can be evaluated in state

σ .

Note that the semantics allows forwarding the result of a store

to another microinstruction before it is commi�ed to memory. In

fact, if the active store is yet to be commi�ed tomemory, i.e., ts < C,

it is possible for the store to forward its data to the load, without

causing an interactionwith thememory subsystem (i.e., l = ·). Oth-

erwise, the load yields an observation of a data load from address

σ (ta ).

Example 3 illustrates the semantics of loads. �e programwrites

1 into address 1, then writes 2 in 0, overwrites address 1 with 3,

and finally loads from address 1. We use active stores to dynam-

ically compute the dependencies of load operations. Let σ0 be a

state containing microinstructions as in the example, and having

empty storage. For this state, the active store for the load t42, i.e.,

str-act(σ0, t42), consists of all stores of the example, as depicted by

the solid rectangle. Since none of microinstructions that compute

the addresses have been executed, the address t41 of the load is

1

t11

st M t11 1

t12

0

t21

st M t21 2

t22

1

t31

st M t31 3

t32

1

t41

ld M t41 t42

Example 3: *(1):=1; *(0):=2; *(1):=3; *(1);

unknown, hence, we cannot exclude any store from affecting the

address that will be used by t42. �erefore, the load cannot be ex-

ecuted in σ0. �is set of active stores will shrink during execution

as more information becomes available through the storage.

Let the storage of σ1 be {t11 7→ 1; t31 7→ 1}, i.e., the result of

executing t11 and t31. �e active stores str-act(σ1, t42) consist of

microinstructions depicted by the dashed rectangle. Observe that

the store t12 is in str-may(σ1, t42), however there exists a subse-

quent store, namely t32, that overwrites the effects of t12 on the

same memory address. �erefore, t12 is no longer an active store

and it can safely be discarded.

Let the storage of σ2 be {t11 7→ 1; t31 7→ 1, t41 7→ 1}, i.e., the

result of executing t11, t31 and t41. �e active stores str-act(σ2, t42)

now consist of the singleton set {t32} as depicted by the do�ed rec-

tangle. �is is because the address t41 of the load can be computed

in state σ2. Although t22 is still in str-may(σ2, t42), there is a sub-

sequent store, t32, that will certainly affect the address of the load.

�erefore, t22 is no longer an active store.

Finally, let the storage ofσ3 be {t11 7→ 1; t31 7→ 1, t41 7→ 1, t32 7→

3}, i.e., the result of executing t11, t31, t41, and t32. Once str-act has

been reduced to a singleton set ({t32}), and the active-store has

been executed (σ3(t32)↓), the semantics of the load is defined. �is

yields the same value as the store in t32. If the store t32 has been

commi�ed to memory, the execution of the load yields the obser-

vation dl 1.

4.4 Operational Semantics

We can now define the microinstructions’ transition relation σ
l
−→→

σ ′, implementing the lifecycle of Section 4.2.

(Execute) A microinstruction can be executed if it hasn’t already

been executed (s(t)↑), the guard holds ([c]s), and the dependencies

have been resolved ([ι](s)↓):

(Exe)
ι = t ← c?o ∈ I s(t)↑ [c]s [ι]σ = (v, l)

σ = (I , s,C, F)
l
−→→ (I , s[t 7→ v],C, F)

Observe that if ι is a load from the memory subsystem, the rule

can produce the observation of a data load.

(Commit) Once a memory store has been executed (s(t)↓), it can

be commi�ed to memory, yielding an observation. �e rule en-

sures that stores can only be commi�ed once (t < C) and that

stores on the same address are commi�ed in program order, by

checking that all past stores are in C, i.e., bn(str-may(σ , t)) ⊆ C.
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(Cmt)

t ← c?st M ta tv ∈ I s(t)↓ t < C

bn(str-may(σ , t)) ⊆ C

σ = (I , s,C, F)
ds s(ta )
−−−−−−−→→ (I , s,C ∪ {t}, F)

In summary, stores can be executed internally in any order, how-

ever, they are commi�ed in order. In Example 3, if σ has storage

s = {t11 7→ 1; t12 7→ 1; t31 7→ 1; t32 7→ 3} and commits C = ∅,

then only t12 can be commi�ed, since t22 has not been executed

and bn(str-may(σ , t32)) * C. Notice that t22 is in the may stores

since its address has not been resolved. �erefore, t32 can be com-

mi�ed only a�er t12 has been commi�ed and t21 has been executed.

However, the commit of t32 does not have to wait for the commit

or execution of t22. In fact, if σ
′ has storage s ′ = s∪{t21 7→ 0} then

bn(str-may(σ ′, t32)) = {t12}. �at is, the order of store commits is

only enforced per location, as expected.

(Fetch-Decode)A program counter store enables the fetching and

decoding (i.e., translating) of a new ISA instruction. �e rule for

fetching is similar to the rule for commit, since instructions are

fetched in order. �e set F keeps track of program counter updates

whose resulting instruction has been fetched and ensures that in-

structions are not fetched or decoded twice. Fetching the result of

a program counter update yields the observation of an instruction

load from address a.

(Ftc)

t ← c?st PC tv ∈ I s(t) = a t < F

bn(str-may(σ , t)) ⊆ F

σ = (I , s,C, F)
il a
−−−→→ (I ∪ I ′, s,C, F ∪ {t})

where I ′ = translate(a,max(I ))

Writemax(I ) for the largest name t in I and translate(a,max(I ))

for the translation of the instruction at address a, ensuring that

the names of the microinstructions thus generated are greater than

max(I ).

(Remarks on OoO semantics) �e three rules of the seman-

tics reflect the atomicity of MIL microinstructions: A transition

can affect a single microinstruction by either assigning a value to

the storage, extending the set of commits, or extending the set of

fetches. In the following, we use step-param(σ ,σ ′) = (α , t) to iden-

tify the rule α ∈ {Exe, Cmt(a,v), Ftc(I )} that enables σ −→→ σ ′ and

the name t of the affected microinstruction. In case of commits we

also extract the modified address a and the saved valuev , in case of

fetches we extract the newly decoded microinstructions I . �e se-

mantics preserves several invariants: Let (I , s,C, F) = σ if α = Exe

then σ (t)↑; if α = Cmt(a,v) then t < C and free names (i.e., address

and value) of the corresponding microinstruction are defined in s ;

if α = Ftc(I ′) then t < F ; all state components are monotonic.

(Initial state) In order to bootstrap the computation, we assume

that the set of microinstructions of the initial state contains one

store for each memory address and register, the value of these

stores is the initial value of the corresponding resource, and that

these stores are in the storage and commits of the initial state.

5 SPECULATIVE SEMANTICS

We now extend the OoO semantics to support speculation. We

add two new components to the states: a set of names P ⊆ n(I )

whose values have been predicted as result of speculation, and a

partial function δ : N ⇀ S recording, for each name t , the storage

dependencies at time of execution of the microinstruction identi-

fied by t . �erefore, a state in the speculative semantics is a tu-

ple h = (I , s,C, F , δ , P) where σ = (I , s,C, F) is the corresponding

state in the OoO semantics. Abusing notation we write (σ , δ , P)

to denote a state in the specutative semantics, and use h,h1, . . . to

range over these states. Informally, δ (t) is a snapshot of the stor-

age that affects the value of t due to speculative predictions. As we

will see, these snapshots are needed in order to match speculative

states with non-speculative states, and to restore the state of the

execution in case of misspeculation.

5.1 Managing Microinstruction Dependencies

�e execution of a microinstruction may depend on local (intra-)

instruction dependencies, the names appearing freely in a microin-

struction, as well as cross (inter-) instruction dependencies, caused

by memory or register loads.

Definition 5.1. Let t ← c?o ∈ σ . �e dependencies of t in σ are

deps(t ,σ ) = fn(t ← c?o) ∪ depsX(t ,σ )

where the cross-instruction dependencies are defined as

depsX(t ,σ ) =

{
∅, if t is not a load

asn(σ , t) ∪ srcs(σ , t), otherwise.

Cross-dependencies are nonempty only for loads and consist of the

names of active stores affecting t in stateσ , asn(σ , t) = bn(str-act(σ , t)),

plus, the names of stores potentially intervening between the ear-

liest active store and t (we call srcs(σ , t) the potential sources of t ),

which are defined as

srcs(σ , t) =

⋃
{fn(c ′), {t ′a} | min(asn(σ , t)) ≤ t ′ < t ,

t ′ ← c ′?st τ t ′a t ′v ∈ σ }

Intuitively, a load depends on the execution of active stores that

may affect the address of that load. Moreover, the fact that a name

t∗ is in the set of active stores asn depends on the addresses and

guards of all stores between t∗ and t . �is is because their values

will determine the actual store that affects the address of the load t .

�anks to our ordering relation < between names, we can use the

minimum namemin(asn) in asn to compute all stores between any

name in asn and t , thus extracting the free names of their guards

and addresses.

�e following figure illustrates dependencies of the load from

Example 3:

1

t11

st M t11 1

t12

0

t21

st M t21 2

t22

1

t31

st M t31 3

t32

1

t41
ld M t41

t42

If s = {t11 7→ 1; t21 7→ 0; t41 7→ 1} then the set of active stores

names asn for t42 is bn(str-act(σ , t42)) = {t12, t32}, as depicted

by the solid ellipses. In particular, min(asn) = t12. We consider

all stores between t12 and the load t42 (i.e., t12, t22, and t32), and

add to the set of cross-dependencies the names in their guards
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and addresses, namely t11, t21 and t31, as depicted by the dashed

rectangle. Observe that t21 is in the set of cross-dependencies,

although t22 is not an active store. �is is because membership

of t12 in the active stores’ set depends on the address t21 being

set to 0, i.e., s(t21) = 0. �erefore, the set of cross-dependencies

depsX(t42,σ ) = {t12, t32, t11, t21, t31}. Finally, the local dependen-

cies of the load t42 consist of its parameter t41 (the do�ed ellipsis),

such that deps(t42,σ ) = {t12, t32, t11, t21, t31, t42}.

We verify that the dependencies deps are computed correctly.

Definition 5.2 (t-equivalence). Let σ1 and σ2 be states with stor-

age s1 and s2, and ι1 and ι2 be the microinstructions identified by t .

�en σ1 and σ2 are t-equivalent, σ1 ∼t σ2, if ι1 = ι2, s1 |fn(ι1) =

s2 |fn(ι2), and if t ’s microinstruction is a load with dependencies

Ti = deps(t ,σi ) and active stores SAi = str-act(σi |Ti , t) for i ∈

{1, 2} then SA1 = SA2 and s1 |SA1 = s2 |SA2 .

Intuitively, t-equivalence states that, if themicroinstruction named

with t depends (in the sense of deps) in both states on the same ac-

tive stores and these stores assign the same value to t , then the

microinstruction has the same dependencies, it is enabled, and it

produces the same result in both states.

We use three possible states of the example above to illustrate

t-equivalence: σ1 is a state reachable in the OoO semantics, σ2 and

σ3 may result from misspeculating the value of t31 to be 0 and 5

respectively.

1t11 1t12

0t21 2t22

1t31 3t32

1t41 t42

σ1

/t42

1t11 1t12

0t21 2t22

0t31 3t32

1t41 t42

σ2

∼t42

1t11 1t12

0t21 2t22

5t31 3t32

1t41 t42

σ3

�e states σ1 and σ2 are not t42-equivalent. In particular, T1 =

deps(t42,σ1) = {t31, t32} (notice that t12 and t22 are not in the de-

pendencies because by we know that t31 7→ 1 and t41 7→ 1) , T2 =

deps(t42,σ2) = {t11, t21, t31, t12}. Notice that σ1 |T1 and σ2 |T2 con-

tain all the information needed to evaluate the semantics of t42 in

σ1 and σ2 respectively. In this case SA1 = str-act(σ1 |T1 , t42) = {t32},

and SA2 = str-act(σ2 |T2 , t42) = {t12} hence SA1 , SA2: the two

states lead the load t42 to take the result produced by two different

memory stores.

�e statesσ2 andσ3 are t42-equivalent. In fact,T3 = deps(t42,σ3) =

{t11, t21, t31, t12} and SA3 = str-act(σ3 |T3 , t42) = {t12}. �erefore,

SA2 = SA3 and s2 |SA2 = s3 |SA3 : �e two states lead the load t42 to

take the result produced by the same memory stores.

Lemma 5.3. If σ1 ∼t σ2 and t ’s microinstruction in σ1 is ι = t ←

c?o, then deps(t ,σ1) = deps(t ,σ2), [c]σ1 = [c]σ2, and if [ι]σ1 =

(v1, l1) and [ι]σ2 = (v2, l2) then v1 = v2.

Proof. See Appendix A.1. �

5.2 Microinstruction Lifecycle

Figure 2 depicts the microinstruction lifecycle under speculative

execution. Compared to the OoO lifecycle of Section 4.2, states

Decoded

v

Predicted

v

Speculated

v

Retired

v

Fetched

v

Speculatively fetched

v

Commi�ed

Prd

Exe

Pexe

Ret

Rbk

Ftc

Cmt

RetRbk

Ftc

v t ∈ P v δ (t )↓ ∧ t < F v δ (t )↓ ∧ t ∈ F

v δ (t )↑ ∧ t < F ∪ C v δ (t )↑ ∧ t ∈ F v δ (t )↑ ∧ t ∈ C

Figure 2: Speculative semantics: Microinstruction lifecycle

Decoded, Predicted, Speculated, and Speculatively Fetched corre-

spond to state Decoded, state Retired corresponds to Executed, oth-

erwise states Fetched and Commi�ed are the same. As depicted in

the legend, transitions between states set different properties of a

microinstruction’s lifecycle, which we will model in the semantics.

State Predicted (do�ed circle) modelsmicroinstructions that have

not yet been executed, butwhose result values have been predicted.

A Decoded microinstruction can transition to state Predicted by

predicting its result value, thus recording that the value was pre-

dicted and causing the state of the microinstruction to be defined.

A microinstruction that is ready to be executed (in Decoded), pos-

sibly relying on predicted values, can be executed and transition

to state Speculated (dashed circle), recording its dependencies in

the snapshot. Notice that state Speculated models both specula-

tive and non-speculative execution of a microinstruction.

From state Speculated, a microinstruction can: (a) roll back to

Decoded (if the predicted values were wrong); (b) speculatively

fetch the next ISA instruction to be executed, thus moving to state

Speculatively Fetched, doubleddashed circle) and generating newly

decoded microinstructions; or (c) retire in state Retired (single cir-

cle) if it no longer depends on speculated values.

Microinstructions in state Speculatively Fetched can either be

rolled back due tomisspeculation, otherwisemove to state Fetched

(double circle). Finally, in state Retired, as in the OoO case, a PC

store microinstruction can be (non-speculatively) fetched and gen-

erate newly decoded microinstructions, or, if it is a memory store,

it can be commi�ed to the memory subsystem (bold circle).

5.3 Microinstruction Semantics

We now present a speculative semantics, denoted by the transi-

tion relation (σ , δ , P) −→→→ (σ ′, δ ′, P ′), that reflects the microinstruc-

tions’ lifecycle in Figure 2. We illustrate the rules of our semantics

using the graph in Example 4 and the interpretation of states (cir-

cles) in Figure 2. Additionally, for two microinstruction identifiers

t and t ′ in speculative state h = (I , s,C, F , δ , P), we draw an edge

from t to t ′ labeled with v whenever δ (t)(t ′) = v .

(Predict)�e semantics allows to predict the value of an internal

operation choosing a value v ∈ V . �e rule updates the storage

and records the predicted name, while ensuring that the microin-

struction has not been executed already.
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(Prd)
t ← c?e ∈ I s(t)↑ δ ′ = δ ∪ {t 7→ ∅}

(I , s,C, F , δ , P) −→→→ (I , s[t 7→ v],C, F , δ ′, P ∪ {t})

We remark that the semantics can predict a value only for an

internal operation (t ← c?e) that has not been already executed

(s(t)↑). As we will see, this choice does not hinder expressiveness

while it avoids the complexity inmodeling speculative execution of

program counter updates and loads. Concretely, the rule assigns

an arbitrary value to the name of the predicted microinstruction

(s[t 7→ v]) and records that the result is speculated (δ ∪ {t 7→ ∅}).

Observe that the snapshot δ ′(t) is ∅ because the prediction does

not depend on the results of other microinstructions.

Consider state h0 in Example 4 containing all microinstructions

of our running program, which have just been decoded (gray cir-

cles). �e CPU can predict that the value of arithmetic operation

t2 is 0. Rule Prd updates the storage with t2 7→ 0 (do�ed circle), the

snapshot for t2 with an empty mapping, and adds t2 to the predic-

tion set.

(Execute) �e rules for execution, commit, and fetch reuse the

OoO semantics. First for the case when the instruction has not

been predicted already:

(Exe)
σ

l
−→→ σ ′ step-param(σ ,σ ′) = (Exe, t)

(σ , δ , P)
l
−→→→ (σ ′,δ ∪ {t 7→ s |deps(t,σ )}, P)

�e rule executes a microinstruction t using the OoO semantics

and updates the snapshot δ , recording that the execution of t was

determined by the value of its dependencies in deps(t ,σ ) in storage

s of state σ . Notice that the premise step-param(σ ,σ ′) = (Exe, t)

ensures that microinstruction t has not been predicted. In fact,

step-param(σ ,σ ′) = (Exe, t) only if σ (t)↑, while rule Prd would up-

date the storage with a value for name t , hence t < P .

Consider now the state h2 resulting from the execution of t1
and t3 in Example 4. In h2 the CPU can execute the PC update t6,

updating the storage with t6 7→ 36. �e rule additionally updates

the snapshot for t6 with the current values of its dependencies,

i.e., {t2 7→ 0, t3 7→ 32}. Since the executed microinstruction t6
is a store, its dependencies are the free names occurring in the

microinstruction. �ese snapshots are used by rules Cmt and Rbk to

identify mispredictions. Similarly, the rule enables the execution of

the memory store t4 in h3, which updates the storage with t4 7→ 1

and the snapshot for t4 with the values of its dependencies {t1 7→

1}.

�e following rule enables the execution of microinstructions

whose result has been previously predicted:

(Pexe)

σ = (I , s,C, F) t ∈ P

(I , s \ {t},C, F)
l
−→→ σ ′ step-param(σ ,σ ′) = (Exe, t)

(σ , δ , P)
l
−→→→ (σ ′, δ ∪ {t 7→ s |deps(t,σ )}, P \ {t})

�e rule removes the value predicted for t from the storage (s \

{t}) to enable the actual execution of t in the OoO semantics. It

also removes t from the set of predicted names P and updates the

snapshot with the new dependencies of t .

In our example, rule Pexe computes the actual value of t2 in state

h4, which was previously mispredicted as 0. �e rule corrects the

misprediction updating the storage with t2 7→ 1 and the snapshot

for t2 with the values of its dependencies, i.e., t1 7→ 1. Notice

that in case of a misprediction, the rule does not immediately roll

back all other speculatedmicroinstructions that are affected by the

mispredicted values, e.g., t6.

(Commit) To commit a microinstruction it is sufficient to ensure

that there are no dependencies le� (δ (t)↑), i.e., themicroinstruction

has been retired. Since memory commits have observable side ef-

fects outside the processor pipeline, only retired memory stores

can be sent to the memory subsystem.

(Cmt)
σ

l
−→→ σ ′ step-param(σ ,σ ′) = (Cmt(a,v), t) δ (t)↑

(σ , δ , P)
l
−→→→ (σ ′, δ , P)

Consider the state h4 and the memory store t4 in our example.

Since t4 has not been retired (i.e., δ (t4) = {t1 7→ 1}) it cannot be

commi�ed as δ (t4)↓. By contrast, the commit of t4 is allowed in

state h8 where δ (t4)↑.

(Fetch) Finally, for the case of (speculative or non-speculative)

fetching, the snapshot must be updated to record the dependency

of the newly added microinstructions:

(Ftc)
σ

l
−→→ σ ′ step-param(σ ,σ ′) = (F (I ), t)

(σ , δ , P)
l
−→→→ (σ ′, δ ∪ {t ′ 7→ s |{t } | t

′ ∈ I }, P)

Following the OoO semantics, if step-param(σ ,σ ′) = (F (I ), t)

then t is a PC update and s(t) is the new value of the PC. For every

newly added microinstruction in t ′ ∈ I , we extend the snapshop δ

recording that t ′ was added as result of updating the PC microin-

struction t with the value s(t) (formally, we project the storage s

on t , i.e., s |{t }). �e new snapshop may be used later to roll back

the newly added microinstructions in I if the value of the PC is

misspeculated.

For example, in state h5 the CPU can speculatively fetch the PC

update t6, which sets the program counter to 36. Suppose that the

newly added microinstructions in I (i.e., the microinstructions re-

sulting from the translation of the ISA instruction at address 36)

are t ′1 and t
′
2. Following the OoO semantics, I is added to existing

microinstructions in σ ′ . �e rule additionally updates the snap-

shot for t ′1 and t ′2 recording the PC store that generated the new

microinstructions, i.e., t6 7→ 36.

(Retire) �e following transition rule allows to retire a microin-

struction in case of correct speculation:

(Ret)

s(t)↓ dom(δ (t)) ∩ dom(δ ) = ∅

(I , s,C, F) ∼t (I , δ (t),C, F) t < P

(I , s,C, F , δ , P) −→→→ (I , s,C, F , δ \ {t},P)

�e map δ (t) contains the snapshot of t ’s dependencies at time

of t ’s execution. A microinstruction can be retired only if all its

dependencies have been retired (dom(δ (t)) ∩ dom(δ ) = ∅), the mi-

croinstruction has been executed (i.e. its value has not been just

predicted s(t)↓∧ t < P ), and the snapshot of t ’s dependencies is ∼t
equivalent with the current state, hence the semantics of t has been

correctly speculated (see Lemma 5.3). Retiring a microinstruction

results in removing the state of its dependencies from δ , as cap-

tured by δ \ {t}.

For instance, in stateh6 the PC store t6 cannot be retired for two

reasons: one of its dependencies has not been retired (i.e., δ (t6) =
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ld R z

t1

t1 = 1

t2

ld PC

t3

st M 16 t1

t4

t2 st PC a

t5

¬t2 st PC t3 + 4

t6

t1 t2 t3

t4 t5 t6

h0

Prd, t2
0

h1

∗
1 0 32

h2

Exe, t6

1 0 32

36

h3

320
Exe, t4

1 0 32

1 36

h4

3201
Pexe, t2

1 1 32

1 36

h5

1

1

320

Ftc(I ), t6

1 1 32

1 36

t ′1 t ′2

h6

1

1

320

36 36

Ret, t4

1 1 32

1 36

t ′1 t ′2

1

320

36 36

h7

Rbk, t6

1 1 32

1

1

h8

Cmt, t4

1 1 32

1

1

h9

Example 4: Execution trace of speculative semantics.

{t2 7→ 0, t3 7→ 32} and δ (t2) = {t1 7→ 1}, hence dom(δ (t6)) ∩

dom(δ ) = {t2}), and the snapshot for t6 differs with respect to the

storage (i.e., δ (t6)(t2) , s(t2)). Instead, the microinstruction t4 can

be retired because its dependencies (i.e., t1) have been retired (i.e.,

δ (t1)↑) and the snapshot for t4 (i.e., t1 7→ 1) exactly matches the

values in the storage. Notice that retiring t4 would simply remove

the mapping for t4 from δ .

Notice that in case of a load, (I , s,C, F) ∼t (I ,δ (t),C, F) may

hold even if some dependencies of t differ in s and δ (t). In fact,

a load may have been executed as a result of misspeculating the

address of a previous store. In this case, ∼t implies that the mis-

speculation has not affected the calculation of str-act of the load

(i.e., it does not cause a store bypass), hence there is no reason to

re-execute the load. �is mechanism is demonstrated in examples

later in this section.

(Rollback)Amicroinstruction t can be rolled backwhen it is found

to transitively reference a value that was wrongly speculated. �is

is determined by comparing t ’s dependencies at execution time

(δ (t)) with the current storage assignment (s). In case of a discrep-

ancy, if t is not a program counter store, the assignment to t can

simply be undone, leaving speculated microinstructions t ′ that ref-

erence t to be rolled back later, if necessary.

(Rbk)
t < P t < F (I , s,C, F) /t (I ,δ (t),C, F)

(I , s,C, F , δ , P) −→→→ (I , s \ {t},C, F , δ \ {t},P)

However, if t is a program counter store, the speculative evalu-

ation using rule Ftc will have caused a new microinstruction to be

speculatively fetched. �is fetch needs to be undone. To that end

let t ′ ≺ t (t ′ refers to t ) if t ∈ dom(δ (t ′)), let ≺+ be the transitive

closure of ≺. As expected ≺+ is antisymmetric and its the reflexive

closure is a partial order. Define then the set ∆+ as {t ′ | t ′ ≺+ t}:

i.e., ∆+ is the set of names that reference t , not including t itself.

Finally, let ∆∗ = ∆
+ ∪ {t}.

(Rbk)
t < P t ∈ F (I , s,C, F) /t (I ,δ (t),C, F)

(I , s,C, F , δ , P) −→→→ (I \ ∆+, s \ ∆∗,C, F \ ∆∗, δ \ ∆∗, P \ ∆∗)

For example, in state h7 the program counter update t6 can be

rolled back because s(t2) = 1 , 0 = δ (t6)(t2). �e transition moves

the microinstruction t6 back to the decoded state (i.e., the storage

and snapshot h8 are undefined for t6) and removes every microin-

struction that have been decoded by t6 (i.e., t
′
1 and t

′
2).

Notice that rollbacks can be performed out of order and that

loads can be retired even in case of mispredictions if their depen-

dencies have been enforced. �is permits to model advanced re-

covery methods used by modern processors, including concurrent

and partial recovery in case of multiple mispredictions.

Speculationof load/store dependencies Since the predicted val-

ues of internal operations (cf. rule Prd) can affect conditions and

targets of program counter stores, the speculative semantics sup-

ports speculation of control flow, as well as speculative execution

of cross-dependencies resulting from prediction of load/store’s ad-

dresses. We illustrate these features with an example (Figure 3),

which depicts one possible execution of the program in Example 3.

Consider the state h0 a�er the CPU has executed and retired

microinstructions t11, t12, t21, t22, and t41, thus resolving the first

two stores and the load’s address. In state h0 the CPU can predict

the address (i.e., the value of t31) of the third store as 0 and modify

the state as in h1 (rule Prd).

�is prediction enables speculative execution of the load t42 in

state h1: the active store’s bounded names bn(str-act(σ1, t42)) con-

sist of the singleton set {t12}, since s1(t21) = s1(t31) = 0, while

s1(t41) = 1. Hence, we can apply rule Exe to execute t42, thus

updating the storage with t42 7→ 1, and recording the snapshot

{t11 7→ 1, t21 7→ 0, t31 7→ 0, t41 7→ 1, t12 7→ 1} for t42. Concretely,

t42’s dependencies in state h1 consists of the local dependencies

(i.e., the load’s address t41), and the cross dependencies containing

t12 (i.e., active store it loads the value from), as well as the potential

sources of t42, that is, the addresses of all stores between the active

store t12 and the load t42, namely t11, t21 and t31.

At this point, load t42 cannot be retired by rule Ret in state h2
since its dependencies, e.g., t31, are yet to be retired. However, we

can execute t31 by applying rule Pexe. �e execution updates the

state by removing t31 from the prediction set and storing its correct

value, as well as extending the snapshot with t31 7→ ∅, as depicted

in state h3.

�e execution of t31 enables the premises of rule Rbk to capture

that the dependency misprediction led to misspeculation of the ad-

dress of the load t42. Specifically, the set asn at the time of t42’s

execution bn(str-act((I3,δ3(t42),C3, F3), t41)) = {t12} differs from

the active store set bn(str-act(σ3, t41))) = {t32} in the current state.

9



1t11 1t12

0t21 2t22

t31 t32

1t41 t42

h0

Prd, t31

1 1

0 2

0

1

h1

Exe, t42

1 1

0 2

0

1 1

1

0

0

1

1

h2
Pexe, t31

1 1

0 2

1

1 1

1

0

0

1

1

h3

Rbk, t42

1 1

0 2

1

1

h4

1 1

0 2

5

1 1

1

0

0

1

1

h′3

Ret, t42

1 1

0 2

1

1 1

h′4

Figure 3: Speculation of load/store dependencies

�erefore, we roll back the execution removing the mappings for

t42 from the storage and the snapshot as in h4.

Finally, we remark that the speculative execution of loads is

rolled back only if a misprediction causes a violation of load/store

dependencies. For instance, if the value of t31 was 5 instead of 1, as

depicted in h′3, the misprediction of t31’s value as 0 in h1 does not

enable a rollback of the load. �is is because the actual value of t31
does not change the set of active stores. In fact, the set of active

stores at the time of t42’s executionbn(str-act((I
′
3, δ
′
3(t42),C

′
3, F
′
3), t41)) =

{t12} is the same as the active store’s set bn(str-act(σ ′3, t41))) =

{t12} in the current state.

6 IN-ORDER SEMANTICS

We define the in-order (i.e., sequential) semantics by restricting the

scheduling of the OoO semantics and enforcing the execution of

microinstructions in program order.

A microinstruction ι = t ← c?o is completed in state σ (wri�en

C(σ , ι)) if one of the following conditions hold:

• �e instruction’s guard evaluates to false in σ , i.e. ¬[c](σ ).

• �e instruction has been executed and is not a memory

or a program counter store, i.e., o , st M ta tv ∧ o ,

st PC tv ∧ σ (t)↓.

• �e instruction is a commi�ed memory store or a fetched

and decoded program counter store, i.e., t ∈ C ∪ F

�e in-order transition rule allows an evaluation step to proceed

only if program-order preceding microinstructions have been com-

pleted.

σ
l
−→→ σ ′ step-param(σ ,σ ′) = (α , t)

∀ι ∈ σ if bn(ι) < t then C(σ , ι)

σ
l
−→ σ ′

It is easy to show that the sequential model is deterministic. In

fact, the OoO model allows each transition to modify one single

name t , while the precondition of the in-order rule forces all previ-

ous instructions to be completed, therefore only one transition at

a time is enabled.

Definition 6.1. Let σ1 :: · · · :: σn be the sequence of states of

execution π , then commits(π , a) is the list of memory commits at

address a in π , and is empty if n < 2; v :: commits(σ2 :: · · · :: σn ,a)

if step-param(σ1,σ2) = (Cmt(a,v), t); and commits(σ2 :: · · · :: σn ,a)

otherwise.

We say that two models are memory consistent if writes to the

same memory location are seen in the same order.

Definition 6.2. �e transition systems→1 and→2 are memory

consistent if for any program and initial state σ0, for all executions

π = σ0 →
∗
1 σ , there exists π

′
= σ0 →

∗
2 σ
′ such that for all a ∈ M

commits(π , a) is a prefix of commits(π ′,a).

Intuitively, two models that are memory consistent yield the

same sequence of memory updates for each memory address. �is

ensures that the final result of a program is the same in both mod-

els. Notice that since we do not assume any fairness property for

the transition systems then an execution π of→1 may indefinitely

postpone the commits for a given address. For this reason we only

require to find an execution such that commits(π , a) is a prefix of

commits(π ′,a). We obtain memory consistency of both the OoO

and the speculative semantics against the in-order semantics.

Theorem 6.3. −→→ and −→ are memory consistent. ✷

Proof. See Appendix A.2. �

Theorem 6.4. −→→→ and −→ are memory consistent. ✷

Proof. See Appendix A.3. �

7 ATTACKS AND COUNTERMEASURES

InSpectre can be used to model and analyze (combinations of) mi-

croarchitectural features underpinning Spectre a�acks [9, 31, 37],

and, importantly, to discover new vulnerabilities and to reason

about the security of proposed countermeasures. Observe that

these results hold for our generic microarchitectural model, while

specific CPUs would require instantiating InSpectre to model their

microarchitectural features. We remark that real-world feasibility

of our new vulnerabilities falls outside the scope of this work.

Specifically, we use the following recipe: We model a specific

prediction strategy in InSpectre and try to prove conditional non-

interference for arbitrary programs. Failure to complete the secu-

rity proof results in new classes of counterexamples as we report

below.

Concretely, prediction strategies and countermeasures are mod-

eled by constraining the nondeterminism in the microinstruction

scheduler and in the prediction semantics (see rule Prd). �e pre-

diction function predp : Σ → N ⇀ 2V captures a prediction

strategy p by computing the set of predicted values for a name

t ∈ N and a state σ ∈ Σ. We assume the transition relation sat-

isfies the following property: If (σ , δ , P)
l
−→→→ (σ ′,δ ′, P ∪ {t}) then

t ∈ dom(predp (σ )) and σ
′(t) ∈ predp (σ )(t). �is property ensures
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that the transition relation chooses predicted values from function

predp .

Following the security model in Section 2, we check conditional

noninterference by: (a) using the in-order transition relation −→ as

reference model and speculative (OoO) transition relation −→→→ (−→→)

as target model; (b) providing the security policy ∼ for memory

and registers. To invalidate conditional noninterference it is suf-

ficient to find two ∼-indistinguishable states that yield the same

observations in the reference model and different observations in

the target model. We use the classification by Canella et al. [9] to

refer to existing a�acks.

7.1 Spectre-PHT

Spectre-PHT [31] exploits the prediction mechanism for the out-

come of conditional branches. Modern CPUs use Pa�ern History

Tables (PHT) to record pa�erns of past executions of conditional

branches, i.e., whether the true or the false branch was executed,

and then use it to predict the outcome of that branch. By poisoning

the PHT to execute one direction (say the true branch), an a�acker

can fool the predictionmechanism to execute the true branch, even

when the actual outcome of the branch is ultimately false. �e fol-

lowing program (and the corresponding MIL) illustrates informa-

tion leaks via Spectre-PHT:

a1 : r1 = A1.size ;
ld M A1 .size

t11

st R r1 t11

t12

st PC a2

t13

a2 : if (r0 < r1)
ld R r0

t21

t21 < t22

t23

ld R r1

t22

t23 st PC a3

t24

¬t23 st PC a4

t25

a3 : y = A2[A1[r0]];
ld R r0

t31

ld M (A1 + t31)

t32

ld M (A2 + t32)

t33

st R r0 t33

t34

st PC a4

t35

Suppose the security policy labels as public the data in arrays A1

and A2, and in register r0, and that the a�acker controls the value

of r0. �is program is secure at the ISA level as it ensures that r0
always lies within the bounds ofA1. However, an a�acker can fool

the prediction mechanism by first supplying values of r0 that exe-

cute the true branch, and then a value that exceeds the size of A1.

�is causes the CPU to perform an out-of-bounds memory access

of sensitive data, which is later used as index for a second memory

access of A2, thus leaving a trace into the cache.

Branch prediction predicts values forMIL instructions that block

the evaluation of the guard of a PC store whose target address has

been already resolved. For σ = (I , s,C, F , δ , P), we model it as:

predbr (σ ) =
{
t ′ 7→ v | t ← c?st PC ta ∈ I ∧ t

′ ∈ fn(c) ∧ s(ta)↓
}

Let σ0 be the state where only the instruction in a1 has been trans-

lated. �en predbr (σ0) is empty, since σ0 contains a single uncon-

ditional PC update (the guard of t13 has no free names). �e CPU

may apply rules Exe, Ret, and Ftc on t13 without waiting the result

of t11. �is leads to a new state σ1 which is obtained by updat-

ing the storage with s1 = {t13 7→ a2}, extending the microin-

structions’ list with the translation of a2, and the snapshot with

δ1 = {t2i 7→ t13 7→ a2 for 1 ≤ i ≤ 5}, while producing the obser-

vation il a2. In this state predbr (σ1) = {t23 7→ 0, t23 7→ 1} since

the conditions of the two PC stores (i.e., t24 and t25) depend on

t23 which is yet to be resolved. �e CPU can now apply rule Prd

using the prediction t23 7→ 1, thus guessing that the condition is

true. �e new state σ2 contains s2 = s1 ∪ {t23 7→ 1}, δ2 = δ1, and

P2 = {t23}.

�e CPU can follow the speculated branch by applying rules Exe

and Ftc on t24, which results in state σ3 with s3 = s2 ∪ {t24 7→ a3},

δ3 = δ2 ∪ {t24 7→ {t23 7→ 1}, t3i 7→ {t24 7→ a3} for 1 ≤ i ≤ 5}, and

F3 = {t13, t24}. Additionally, it produces the observation il a3.

Applying rule Exe on t31 and t32 results in a buffer overread and

produces state σ4 with s4 = s3 ∪ {t31 7→ r0, t32 7→ A1[r0]}, and ob-

servation dl r0. Similarly, rule Exe on t33 produces the observation

dl A2 +A1[r0].

Clearly, if r0 ≥ A1.size , the observation reveals memory content

outside A1, allowing an a�acker to learn sensitive data. Observe

that this is rejected by the security condition, since such observa-

tion is not possible in the sequential semantics.

7.1.1 Countermeasure: Serializing Instructions. Serializing instruc-

tions can be modeled by constraining the scheduling of microin-

structions. For example, we can model the Intel’s lfence instruction

via a function lfence(I ) that extracts all microinstructions resulting

from the translation of lfence.

Concretely, for σ = (I , s,C, F , δ , P), t ∈ lfence(I ) and σ −→→→ σ ′, it

holds that: (i) if σ (t)↑ and σ ′(t)↓ then for each t ′ ← c?ldM ta ∈ σ

such that t ′ < t f n(c) ⊆ dom(s)\dom(δ ) and c ⇒ (σ (t ′)↓∧δ (t ′)↑);

(ii) if σ (t ′)↑, σ ′(t ′)↓, t ′ > t , and t ′ ← c?ld M ta ∈ σ , or t ′ ←

c?st M ta tv ∈ σ , or t
′ ← c?st R ta tv ∈ σ , then σ (t)↓ ∧ δ (t)↑.

Intuitively, the conditions restrict the scheduling ofmicroinstruc-

tions to ensure that: (i) whenever a fence is executed, all previous

loads have been retired, and (ii) subsequent memory operations or

register stores can be executed only if the fence has been retired.

In order to reduce the performance overhead, several works (e.g.

[46]) use static analysis to identify necessary serialization points in

a program. In the previous example, it is sufficient to place lfence

a�er t32 and before t33. �is does not prevent the initial buffer

overread of t32, however, it suspends t33 until t32 is retired. In case

of misprediction, t32 and t33 will be rolled back, preventing the

observation dl A2 + A1[r0] which causes the information leak.

7.1.2 Countermeasure: Implicit Serialization. An alternative coun-

termeasure to prevent Spectre-PHT is to use instructions that intro-

duce implicit serialization [18, 41]. For instance, adding the follow-

ing gadget between instructions a2 and a3 in the previous example

prevents Spectre-PHT on existing Intel CPUs:

/ / cmp

a′3 : f = (r0 ≥ r1)
ld R r0

t ′31

t ′31 ≥ t
′
32

t ′33

ld R r1

t ′32

st R f t ′33

t ′34

st PC a′′3

t ′35

a′′3 : cmov f , r0, 0

ld R f

t ′′31

t ′′31 = 1 st R r0 0

t ′′32

st PC a′′′3

t ′′34

Intuitively, this gadget forcesmispredictions to always accessA1[0],
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Consider the extension of the previous example with the gadget

and suppose predbr mispredicts t23 7→ 1. �e instruction in a′′3 in-

troduces a data dependency between t11 and t32 since str-act of t31
includes t ′′32 until t

′′
31 has been executed; str-act of t ′′31 includes t

′
34;

and str-act of t ′32 includes t12. �ese names (and intermediate intra-

instruction dependencies) are in the free names of some condition

of a PC store, hence they cannot be predicted by predbr and their

dependencies are enforced by the semantics. In particular, when

t23 is mispredicted as 1, t ′′32 is executed a�er that t11 has obtained

the value from the memory. �is ensures that t ′′32 sets r0 to 0 every

time a buffer overread occurs. �erefore misspeculations generate

the observations dl A1 + 0 and dl A2 +A1[0], which do not violate

the security condition (since A1 is labeled as public).

7.1.3 New Vulnerability: Spectre-PHT ICache. When the first

Spectre a�ack was published, some microarchitectures (e.g., Cor-

tex A53) were claimed immune to the a�ack because of “allowing

speculative fetching but not speculative execution” [5]. �e infor-

mal argument was that mispredictions cannot cause buffer over-

reads or leave any footprint on the cache in absence of specula-

tive loads. To check this claim, we constrain the semantics to only

allow speculation of PC values. Specifically, we require for any

transition (σ , δ , P) −→→→ (σ ′, δ ′, P ′) that executes a microinstruction

(step-param(σ ,σ ′) = (Exe, t)) which is either a load (t ← c?ld τ ta ∈

σ ) or a store (t ← c?st τ ta tv ∈ σ ) of a resource other than the

program counter (τ , PC) to have an empty snapshot on past

microinstructions (dom(δ ) ∩ {t ′ | t ′ < t} = ∅).

�e analysis of conditional noninterference for this model led

to the identification of a class of counterexamples, which we call

Spectre-PHT ICache, where branch prediction causes leakage of

sensitive data via an ICache disclosure gadget.

Consider a program that jumps to the address pointed to by sec

if a user has admin privileges, otherwise it continues to address a3.

a1 : r1 = ∗sec
ld M sec

t11

st R r1 t11

t12

st PC a2

t13

a2 : i f (∗admin)

(∗r1)() ld M admin

t21

t21 , 1

t23

ld R r1

t22

t23 st PC (a2 + 4)

t24

¬t23 st PC t22

t25

In the sequential model, an a�acker that only observes the in-

struction cache can see the sequence of observations il a1 :: il a2 ::

il a2 if ∗admin , 1, otherwise the sequence il a1 :: il a2 :: il sec .

A CPU that supports only speculative fetching may first com-

plete all microinstructions in a1, and then predict the result of t23
to enable the execution of t25. As a result the PC speculatively

fetches the instruction at location sec although ∗admin , 1. �e

transition yields the observation sequence il a1 :: il a2 :: il sec

which was not possible in the sequential model, thus violating the

security condition and leaking the value of sec via the instruction

cache.

Intel’s lfence does not stop all microarchitectural operations,

like instruction fetching. For this reason lfence may be ineffective

against leakage via ICache. In fact, InSpectre reveals that placing a

lfence between t21 and t23 does not prevent the leakage: t22, t23, t25

are neither memory operations nor register stores, hence they can

be speculated before the execution of the lfence.

7.2 Spectre-BTB and Spectre-RSB

Two variants of Spectre a�acks [9] exploit a CPU’s predictionmech-

anism for jump targets to leak sensitive data. In particular, Spectre-

BTB [31] (Branch Target Buffer) poisons the prediction of indirect

jump targets. To model this prediction strategy we assume a func-

tion ijmps(I ) that extracts all PC stores resulting from the trans-

lation of indirect jumps. �is can be accomplished by making the

translation of these instructions syntactically distinguishable from

other control flow updates. As a result, prediction is possible for

all indirect jumps whose address is yet to be resolved: Namely,

predBT B (I , s,C, F , δ , P) =

{ta 7→ v | t ← c?st PC ta ∈ ijmps(I ) ∧ s(ta)↑}

We do not restrict the possible predicted valuesv , since an accurate

model of jump prediction requires knowing the strategy used by

the CPU to update the BTB buffer.

Spectre-RSB [33, 37] poisons theReturn StackBuffer (RSB), which

is used to temporally store the N most recent return addresses:

call instructions push the return address on the RSB, while ret

instructions pop from the RSB to predict the return target. A mis-

prediction can happen if: (i) a return address on the stack has been

explicitly overwri�en, e.g., when a program handles a so�ware ex-

ception using longjmp instructions, or, (ii) returning from a call

stack deeper than N , the RSB is empty and the CPU uses the same

prediction as for the other indirect jumps. We model call and ret

instructions via program counter stores. A call to address b1 from

address a1 can be modeled as

a1 ld R sp

t11

t11 − 4

t12

st R sp t12

t13

a1 + 4

t14

st M t11 t14

t15

st PC b1

t16

�e call instruction saves (e.g. t15) the return address (e.g. a1 + 4)

into the stack, decreases the stack pointer (e.g. t13), and jumps to

address b1 (e.g. t16).

A ret instruction from address a2 can be modeled as

a2 ld R sp

t21

t21 + 4

t22

st R sp t22

t23

ld M t22

t24

t24

t25

st PC t25

t26

�e instruction loads the return address from the stack ( t24), in-

creases the stack pointer (t23), and returns (t26).

We assume functions calls(I ) and rets(I ) to extract the PC stores

that belong to a call and ret respectively. Moreover, if t ∈ bn(calls(I )),

we use ret-ra(I , t) to retrieve name of the microinstruction that

saves the return address (e.g t15) of the corresponding call. We

model return address prediction as

predRSB (I , s,C, F ,δ , P) =

{ta 7→ v | t ← c?st PC ta ∈ rets(I ) ∧ s(ta)↑ ∧

∃t ′ ∈ bn(calls(I )). t ′ < t ∧ s(ret-ra(I , t ′)) = v ∧

RSB-depth(I , t ′, t) ⊆ {1 . . .N }}

Prediction is possible only for ret microinstructions t that have

a prior matching call t ′, provided that the size of intermediary
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stack depth is between 1 and N . We define the la�er as the set

RSB-depth(I , t ′, t) = {#(bn(calls(I ))∩ {t ′ . . . t ′′}) − #(bn(rets(I )) ∩

{t ′ . . . t ′′}) | t ′ ≤ t ′′ < t}, where {t ′ . . . t ′′} is an arbitrary contin-

uous sequence of names starting from t ′ and ending before t ′′, and

#(bn(calls(I ))∩{t ′ . . . t ′′}) and #(bn(rets(I ))∩{t ′ . . . t ′′}) count the

number of calls and rets in the sequence respectively. �e pre-

diction consists in assuming the target address (e.g. ta ) of the ret

to be equal to the return address (e.g. v) that has been pushed into

the stack by the matching call.

In some microarchitectures (e.g., [? ]), RSB prediction falls back

to the BTB in case of underflow, i.e., when returing from a function

with nested stack deeper than N . �is case can be modeled by

considering the prediction strategy predRSB/BT B defined as

predRSB
⋃
{ta 7→ v | t ← c?st PC ta ∈ rets(I ) ∧ s(ta)↑ ∧

∃t ′ ∈ bn(calls(I )). t ′ < t ∧ RSB-depth(I , t ′, t) = {1 . . .N ′} ∧ N ′ > N }

�e following example shows how jump target prediction may

violate the security condition. Consider the program *p:=&f; (*p)()

that saves the address of a function (i.e., &f ) in a function pointer

at constant address p and immediately invokes the function. As-

suming that these instructions are stored at addresses a1 and a2,

their MIL translation is:

a1 st M p &f

t11

st PC a2

t12

a2 ld M p

t21

t21

t22

st PC t22

t23

Example 5: *p:=&f; (*p)()

Because our semantics can predict only internal operations (see

rule Prd), the translation function introduces an additional internal

operation, i.e., t22 which allows predicting the value of the load t21.

Suppose that the function f simply returns and the security pol-

icy labels all data, except the program counter, as sensitive. �e

program is secure (at the ISA level) as it always transfers control

to f , producing the sequence of observations il a1 :: ds p :: il a2 ::

dl p :: il &f independently of the initial state.

Jump target prediction produces a different behavior. Let σ0 be

the state containing only the translation of the instruction in a1.

Initially, predBT B (σ0) is empty since the state contains no PC up-

dates (e.g. t12) that result from translating indirect jumps. �e

CPU may execute and fetch t12, thus adding t21, t22, and t23 to

the set of microinstructions I . In the resulting state predBT B is

{t22 7→ v | v ∈ V }, since t23 models an indirect jump and t22 has

not been executed. �e CPU can therefore predict the value of t22
without waiting for the result of the load t21. If the predicted value

is the address д of the instruction r1:=*(r2) the misprediction can

use д as gadget to leak sensitive information.

д ld R r2

t31

ld M r1

t32

st R r1 t32

t33

In fact, the speculative semantics can produce the sequence of ob-

servations il a1 :: ds p :: il a2 :: dl p :: il д :: dl v , where v is

the initial value of register r2. �e last observation of the sequence

allows an a�acker to learn sensitive data. Observe that this leak is

readily captured by the security condition, since such observation

sequence is not possible in the sequential semantics.

7.2.1 Countermeasure: Retpoline. A known countermeasure to

Spectre-BTB is the Retpoline technique developed by Google [51].

In a nutshell, retpolines are instruction snippets that isolate indi-

rect jumps from speculative execution via call and return instruc-

tions. Retpoline has the effect of transforming indirect jumps at

address a2 of Example 5 as:

a2 ld R sp

t21

t21 − 4

t22

st R sp t22

t23

a3

t24

st M t21 t24

t25

st pc b1

t26

a3 st PC a3

t31

b1 ld R sp

t41

t41 + 4

t42

ld M p

t43

t43

t44

st M t42 t44

t45

st PC b2

t46

b2 ld R sp

t51

t51 + 4

t52

st R sp t52

t53

ld M t52

t54

t54

t55

st PC t55

t56

Instruction at a2 calls a trampoline starting at address b1 and in-

struction at a3 loops indefinitely. �e first instruction of the tram-

poline overwrites the return address on the stack with the value at

address p and its second instruction at b2 returns.

We leverage our model to analyze the effectiveness of Retpo-

line for indirect jumps. Since address b1 is known at compile time,

t26 does not trigger a jump target prediction. While executing

the trampoline, the value of t55 may be mispredicted, especially

if the load from p has not been executed and the store t45 is post-

poned. However, b2 is a ret, hence the value of t55 is predicted via

predRSB . Since there is no call between a1 and b2, then prediction

can only assign the address a3 to t55 (i.e., predRSB |t55 ⊆ {t55 →

a3}). �erefore, the RSB entry generated by a2 is used and mispre-

dictions are captured with the infinite loop in a3. Ultimately, when

the value of t55 is resolved, the correct return address is used and

the control flow is redirected to the value of ∗p, as expected.

7.3 Spectre-STL

Spectre-STL [26] (Store-To-Load) exploits the CPUs mechanism to

predict load-to-store data dependencies. A load cannot be executed

before executing all the past (in program order) stores that affect

the same memory address. However, if the address of a past store

has not been resolved, theCPUmay execute the load in speculation

without waiting for the store, predicting that the target address of

the store is different from the load’s address. Mispredictions cause

store bypasses leading to information leaks and access to stale data.

�is behavior can be modeled as predST L(σ , δ , P) =



ta 7→ a |

t ′ ← c ′?ldM t ′a ∈ σ ∧ σ (t
′
a ) , a

t ← c?st M ta tv ∈ str-act(σ , t
′)∧

σ (ta )↑



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A prediction occurs whenever a memory store (t ) is waiting an un-

resolved address (σ (ta )↑), while the address (s(t
′
a)) of a subsequent

load (t ′) has been resolved, and the load may depend on the store

(t ∈ bn(str-act(σ , t ′))). Prediction guesses that the store’s address

(ta ) differs with the load’s address.

7.3.1 Hardware countermeasures to Store Bypass. �e specifi-

cation of proposed hardware countermeasures o�entimes comes

with no precise semantics and is ambiguous. ARM introduced

the Speculative Store Bypass Safe (SSBS) configuration to prevent

store bypass vulnerabilities. �e specification of SSBS [4] is: Hard-

ware is not permi�ed to load . . . speculatively, in a manner that could

. . . give rise to a . . . side channel, using an address derived from a regis-

ter value that has been loaded from memory . . . (L) that speculatively

reads an entry from earlier in the coherence order from that location

being loaded from than the entry generated by the latest store (S) to

that location using the same virtual address as L.

InSpectre provides a ground to formalize the behavior of these

hardware mechanisms. We formalize SSBS as follows. Let σ =

(I , s,C, F , δ , P) and t ← c?ld τ ta ∈ σ . If σ
l
−→→→ σ ′, σ (t)↑, and

σ ′(t)↓, then for every t ′ ∈ srcs(t ,σ ), if σ (t ′) , σ (ta ) then t ′ < P .

�e reason why SSBS prevents Spectre-STL is simple. �e rule

forbids the execution of a load t if any address used to identify the

last store affecting ta has been predicted to differ from ta .

7.3.2 NewVulnerability: Spectre-STL-D. Ourmodel reveals that

if a microarchitecture mispredicts the existence of a Store-To-Load

Dependency (hence Spectre-STL-D), e.g., in order to forward tem-

porary store results, a similar vulnerability may be possible. To

model this behavior it is enough to substituteσ (t ′a ) , awithσ (t ′a ) =

a in predST L . We consider this a new form of Spectre because the

implementation of this microarchitectural feature can be substan-

tially different from the one required for Spectre-STL (e.g., Feiste

et al. [17] patented a mechanism to implement this feature) and

because the vulnerable programs are different.

�is feature may cause Spectre-STL-D if a misspeculated depen-

dency is used to perform subsequent memory accesses. Consider

the following program:

a1 : ∗ ( ∗ b1 ) : = sec
ld M b1

t11

t11

t12

st M t12 tsec

t13

st PC a2

t14

a2 : r1 : = ∗ ( ∗ b2 )
ld M b2

t21

ld M t21

t22

st R r1 t22

t23

If the CPU executes and fetches t14, predicts that t12 = b2 (i.e., it

mispredicts the alias *b1==*b2), executes t13, forwards the result of

t13 to t21, and executes t22 before the load t11 is retired, then the ad-

dress accessed by t22 depends on tsec . �is can produce the secret-

dependent sequence of observations il a1 :: il a2 :: dl sec , while the

sequential semantics always produces the secret-independent se-

quence of observations il a1 :: dl b1 :: ds ∗b1 :: il a2 :: dl b2 :: dl ∗b2.

Notice that SSBS may not be effective against Spectre-STL-D.

7.4 New Vulnerability: Spectre-OoO

A popular countermeasure to prevent sensitive data from affect-

ing the execution time and caches is “constant time programming”,

also known as “data oblivious algorithms”. �is mechanism en-

sures that branch conditions and memory addresses are indepen-

dent of sensitive data. �e following definition formalizes “ISA

constant time” while abstracting from the specific ISA:

Definition 7.1. A program is “ISA constant time” if for every pair

of states σ1 ∼ σ2 and every pair of in-order executions of length

n, σ1 −→
n σ ′1 and σ2 −→

n σ ′2 , it is the case that σ
′
1 ≈I SA σ ′2, where

(I , s,C, F) ≈I SA (I
′
, s ′,C′, F ′) iff

(1) I = I ′, C = C′, F = F ′: the sets of microinstructions,

commits and decodes are equal.

(2) If t ← c?ldM ta ∈ I or t ← c?st M ta tv ∈ I then [c]σ =

[c]σ ′, s(t)↓ = s ′(t)↓, (whenever defined, guards evaluate

the same, andmemory operations execute in lockstep) and

[c]σ ⇒ (σ (ta ) = σ ′(ta)) (the same values are used to ad-

dress memory)

(3) If t ← c?st PC tv ∈ I then [c]σ = [c]σ ′, s(t)↓ = s ′(t)↓,

and [c]σ ⇒ (σ (tv ) = σ ′(tv )) (the same values are used to

update the PC)

�e following program (and its MIL translation) exemplifies this

policy. It loads register r1 from address b1, copies the value of r1
in r2 if the flag z is set, and saves the result into b2.

a1 : r1 = ∗b1;
ld M b1

t11

st R r1 t11

t12

st PC a2

t13

a2 : cmov z, r2, r1;
ld R z

t21

t21 = 1 ld R r1

t22

st PC a3

t24

t21 = 1 st R r2 t22

t23

a3 : ∗b2 = r2;
ld R r2

t31

st M b2 t31

t32

Suppose that flag z contains sensitive information and the a�acker

observes only the data cache. �e “conditional move” instruction

ina2 executes in constant time [27] and is used to re-write branches

that may leak information via the execution time or the instruction

cache. �is allows the program to always access address b1 and b2
unconditionally and execute always the same ISA instructions: In

the sequential model the program always produces the sequence

of observations dl b1 :: ds b2.

Programs that are ISA constant time could be insecure in pres-

ence of speculation, as demonstrated by Spectre-PHT [31]. Per-

haps surprisingly, it turns out that ISA constant time is not se-

cure even for the OoO model, in absence of speculation. In fact,

our analysis of conditional noninterference for ISA constant time

programs in the OoO model led to the identification of a class

of vulnerable programs, where secrets influence the existence of

data dependency between registers. �e above program exempli-

fies this problem: the data dependency between t11 and t32 exists

only if z is set. Concretely, consider two states σ0 and σ1 in which

z = 0 and z = 1, respectively. �en, str-act(σ1, t31) = {t23} and

str-act(σ1, t23) = {t12}, while str-act(σ0, t31) is the microinstruc-

tion representing the initial value of r2. �erefore, state σ0 may

produce the observation sequence ds b2 :: dl b1 only if the flag

z = 0, thus leaking its value through the data cache.
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7.4.1 MIL Constant Time. Spectre-OoO motivates the need for

a new microarchitecture-aware definition of constant time.

Definition 7.2. Aprogram is “MIL constant time” if for every pair

of states σ1 ∼ σ2 and every pair of in-order executions of length

n, σ1 −→
n σ ′1 and σ2 −→

n σ ′2 , it is the case that σ
′
1 ≈MIL σ ′2, where

(I , s,C, F) ≈MIL (I
′
, s ′,C′, F ′) iff

(1) (I , s,C, F) ≈I SA (I
′
, s ′,C′, F ′)

(2) If t ← c?ld R ta ∈ I or t ← c?st R ta tv ∈ I then [c]σ =

[c]σ ′, s(t)↓ = s ′(t)↓, and [c]σ ⇒ (σ (ta ) = σ ′(ta))

Notice that in addition to standard requirements of constant

time, MIL constant time requires that starting from two∼-indistinguishable

states the program makes the same accesses to registers. MIL con-

stant time is sufficient to ensure security in the OoO model:

Theorem 7.3. If a program P is MIL constant time then P is con-

ditionally noninterferent in the OoO model.

�e theorem enables the enforcement of conditional noninter-

ference for theOoOmodel by verifying MIL constant time in the se-

quential model. �is strategy has the advantage of performing the

verification in the sequential model, which is deterministic, thus

making it easier to reuse existing tools for binary code analyses [6].

Finally, we remark that MIL constant time is microarchitecture

aware. �is means that the same ISA program may or may not

satisfy MIL constant time when translated to a given microarchi-

tecture. In fact, the MIL translation of conditional move above is

not MIL constant time because of the dependency between the

sensitive value in t21 and conditional store in t23. However, if a

microarchitecture translates the same conditional move as below,

the translation is clearly MIL constant time.

ld R z

t1

ld R r2

t2

ld R r1

t3

st R r2 ((¬t1 ∗ t2) + (t1 ∗ t3))

t4

8 RELATED WORK

Speculative semantics and foundations Several works have re-

cently addressed the formal foundations of specific forms of spec-

ulation to capture Spectre-like vulnerabilities. Cheang et al. [12],

Guarnieri et al. [22], and Mcilroy et al. [40] propose semantics that

support branch prediction, thus modeling only Spectre v1. Nei-

ther work supports speculation of target address, speculation of

dependencies, or OoO execution. Disselkoen at al. [14] propose a

pomset-based semantics that supports OoO execution and branch

prediction. �eir model targets a higher abstraction level model-

ing memory references using logical program variables. Hence,

the model cannot support dynamic dependency resolution, depen-

dency prediction, and speculation of target addresses.

Like us, Cauligi et al. [11] propose amodel that captures existing

variants of Spectre and independently discover a vulnerability sim-

ilar to our Spectre-STL-D. Remarkably, they demonstrate the fea-

sibility of the a�ack on Intel Broadwell and Skylake processors. A

key difference between the twomodels is that Cauligi et al. impose

sequential order to instruction retire and memory stores. While

simplifying the proof of memory consistency and verification, it

does not reflect the inner workings of modern CPUs, which re-

order memory stores and implement a relaxed consistency model.

�ese features are required to capture Spectre-OoO in Section 7.4.

Moreover, our model provides a clean separation between the gen-

eral speculative semantics and microarchitecture-specific features,

where the la�er is obtained by reducing the nondeterminism of

the former. �is enables a modular analysis of (combinations of)

predictive strategies, as in Spectre-PHT ICache in Section 7.1.3.

Cache side channels In line with prior works [11, 12, 22], our

a�acker model abstracts away the mechanism used by an a�acker

to profile the sequence of a victim’s memory accesses, providing

a general account of trace-driven a�acks [45]. Complementary

works [15, 20, 36, 58] show that cache profiling is becoming in-

creasingly steady and precise. Performance ji�ers caused by cache

usage have been widely exploited to leak sensitive data [2, 21, 32,

39, 43, 44, 59], e.g., in cryptography so�ware. Miller [41], and Fogh

and Ertl [18] propose a taxonomy for mitigating speculative exe-

cution vulnerabilities. We refer to a recent survey by Canella et

al. [19] on cache-based countermeasures.

Spectre vs Meltdown Recent a�acks that use microarchitec-

tural effects of speculative execution have been generally distin-

guished as Spectre and Meltdown a�acks [9]. We focus on the

former [13, 16, 23, 24, 30, 31, 34, 37, 57], which exploits specu-

lation to cause a victim program to transiently access sensitive

memory locations that the a�acker is not authorized to read. Melt-

down a�acks [35] transiently bypass the hardware security mech-

anisms that enforce memory isolation. Importantly, Meltdown at-

tacks can be easily countered in hardware, while Spectre a�acks

require hardware-so�ware co-design, which motivates our model.

We remark that the vulnerability in Section 7.3 is different from

the recent Microarchitectural Data Sampling a�acks [10, 48, 52],

since it only requires the CPU to predict memory aliases with no

need of violating memory protection mechanisms. Microarchitec-

tures supporting this feature have been proposed, e.g., in Feiste et

al. [17].

Tool support Several prototypes have been developed to repro-

duce and detect known Spectre-PHT a�acks [12, 22, 53, 54]. Check-

mate [50] synthesizes proof-of-concept a�acks by using models of

speculative and OoO pipelines. Tool support for vulnerabilities be-

yond Spectre-PHT requires dealing with a large number of possi-

ble predictions and instruction interleavings. In fact, current tools

mainly focus on Spectre-PHT ignoring OoO execution.

Functional Pipeline Correctness A number of authors, cf.

[1, 8, 28, 38, 47], have studied the orthogonal problem of functional

correctness in the context of concrete pipeline architectures involv-

ing features such as OoO and speculation, usually using a com-

plex refinement argument based on Burch-Dill style flushing [8] in

order to align OoO executions with their sequential counterparts.

Our correlate is the serialization proofs for OoO and speculation

sketched in appendices 6.3 and A.3. It is of interest to mechanize

these proofs and to examine if a generic account of serialization

using, e.g., InSpectre can help also in the functional verification of

concrete pipelines.

Hardware countermeasuresWhile CPUvendors and researchers

propose countermeasures, it is hard to validate their effectiveness

without amodel. InSpectre can helpmodeling and reasoning about

their security guarantees, as in Section 7.1.1. Similarly, InSpectre
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can model the hardware configurations and fences designed by In-

tel [25] to stall (part of) an instruction stream in case of speculation.

Several works [29, 49, 55, 56, 60] propose security-aware hardware

that prevent Spectre-like a�acks. InSpectre can help formalizing

these hardware features and analyzing their security.

9 CONCLUDING REMARKS

�is paper presented InSpectre, the first comprehensive model ca-

pable of capturing out-of-order execution along with the different

forms of speculation that could be implemented in a high-performance

pipeline. We used InSpectre to model existing vulnerabilities, to

discover three new potential vulnerabilities, and to reason about

the security of existing countermeasures proposed in the literature.

�ere are a number of interesting directions le� open in this work.

Foundations of microarchitecture security We argue that

InSpectre pushes the boundary on foundations of microarchitec-

ture security with respect to the current state-of-the-art substan-

tially. Existingmodels [11, 12, 14, 22, 40]miss features like dynamic

inter-instruction dependency (except [11]]), instruction non-atomicity,

OoOmemory commits, and partialmisprediction of rollbacks. �ese

features were essential to discover the vulnerabilities, as well as

to reason about countermeasures like retpoline or memory fences

for data dependency. For instance, InSpectre would not have cap-

tured our Spectre-OoO vulnerability if the memory stores and in-

struction retire are performed in the sequential order. Similarly,

static computation of active stores would not have exposed Store-

To-Load variants of Spectre. Moreover, forcing the rollback of all

subsequent microinstructions as soon as a value is mispredicted

prevents modeling advanced recovery methods used by modern

processors, including concurrent and partial recovery in case of

multiple mispredictions.

A novel feature of our approach is to decompose instructions

into smaller microinstruction-like units. We argue that the model-

ing of pipelines using ISA level instructions as atomic units is in

the long run the wrong approach, not reflecting well the behaviour

at the hardware level, and unable to provide the foundation for real

pipeline information flow. Non-atomicity is needed to handle, for

instance, intra-instruction dependencies and interactions between

I/D-caches. �erefore, decomposing instructions into smaller mi-

croinstructions, as we do, appears essential.

InSpectre lacks explicit support of Meltdown-like vulnerabili-

ties, multicore and hyperthreading, fences, TLBs, cache eviction

policies, and mechanisms used to update branch predictor tables.

Our model can already capture many of these features. In the pa-

per we give Intel’s lfence as an example. We focus here on core

aspects of out-of-order and speculation, but there is nothing inher-

ent in the framework that prevents modeling the above additional

features. Also, by providing a general model we cannot currently

argue if a concrete architecture is secure. For that we need to spe-

cialize the model to a given architecture, by adding detail and elim-

inating nondeterminism.

Tooling Tooling is needed to explore more systematically the

utility of the model for exploit search and countermeasure proof,

and the framework needs to be instantiated to different concrete

pipeline architectures and be experimentally validated.

One can envisage MIL-based analysis tools like Spectector [22],

Pitchfork [11], and oo7 [54]. However, the large nondetermin-

ism introduced by out-of-order and speculation will make such

an approach inefficient. We are currently taking a different route

by modeling concrete microarchitectures within a theorem prover.

�is allows verifying conditional noninterference if the microar-

chitecture is inherently secure. A failing security proof gives a

basis for proving countermeasure soundness as in Section 7.4, and

the identification of sufficient conditions that can be verified in the

(more tractable) sequential model.
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A PROOFS

A.1 Correctness of t-equivalence: Lemma 5.3

If σ1 ∼t σ2 and the t ’s microinstruction in σ1 is ι = t ← c?o, then

deps(t ,σ1) = deps(t ,σ2), [c]σ1 = [c]σ2, and if [ι]σ1 = (v1, l1) and

[ι]σ2 = (v2, l2) then v1 = v2.

Proof. For non-load operations and guards the proof is triv-

ial, since their semantics only depends on the value of the bound

names of the operation and guard. �ese names are statically iden-

tified from c and o and their value is the same in σ1 and σ2 by

definition of ∼t . For loads, the proof relies on showing that for

every state σ , str-act(σ |T , t) = str-act(σ |T , t), where T = deps(t ,σ ).

Let t ′ ∈ str-act(σ , t). By definition, t ′ and its bound names are in

T , therefore their values are equal in σ and σ |T and hence t ′ ∈

str-may(σ |T , t). Also, by definition of deps, all names referred to

by conditions and addresses of subsequent stores of t ′ are in T .

�erefore if there is no subsequent store that overwrites t ′ (i.e.,

t ′′ ← c ′′?st τ t ′′a t ′′v such that [c ′′]σ and (σ (t ′′a ) = σ (t) ∨ σ (t ′′a ) =

σ (ta ))) then there is no store overwriting t ′ in σ |T and hence t ′ ∈

str-act(σ |T , t). �
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A.2 OoO Memory Consistency: �eorem 6.3

To prove that −→→ and −→ are memory consistent we demonstrate

a reordering lemma, which allows to commute transitions if the

(n + 1)-th transition modified name t2, n-th transition modified

name t1, and t2 < t1.

σ1 σ2 σn σn+1

σ ′
n+1

σn+2
(α1, t1) (α2, t2)

(α2, t2) (α1, t1)

We use the following notation. Let σ0 :: · · · :: σn a sequence

of states, we define (Ii , si ,Ci , Fi ) = σi for i ∈ {0 . . .n}, (αi , ti ) =

step-param(σi−1,σi ) and (Ii−1∪ Îi , si−1 ∪ ŝi ,Ci−1 ∪ Ĉi , Fi−1 ∪ F̂i ) =

(Ii , si ,Ci , Fi ) for i ∈ {1 . . .n}.

We first demonstrate that str-may and str-act of a microinstruc-

tion t do not depend on names bigger that t and that they aremono-

tonic.

LemmaA.1. Letσ0 andσ1 be two states, ifbn(Î1) ≥ t and dom(ŝi ) ≥

t then str-may(σ1, t) = str-may(σ0, t) and str-act(σ1, t) = str-act(σ0, t)

Proof. Let t be a load or store accessing address ta (the other

cases are trivial, since str-act is undefined), hence ta < t .

(1) �e set of instructions that precedes t is the same in σ0 and σ1.

In fact, since bn(Î1) ≥ t then {t ′ ← c ′?o ∈ I0 ∪ Î1 | t
′
< t} = {t ′ ←

c ′?o ∈ I0 | t
′
< t}.

(2) For every store that precedes t , the evaluation of condition and

address is the same in σ0 and σ1. In fact, let ι′ = t ′ ← c ′?st τ t ′a t ′v
and t ′ < t then n(c ′) ∪ {t ′a} < t . �erefore, [c ′]s0 ∪ ŝ1 = [c

′]s0 and

(s0 ∪ ŝ1)(t
′
a) = s0(t

′
a).

(3) Similarly, since ta < t then (s0 ∪ ŝ1)(ta ) = s0(ta ).

Properties (1, 2, 3) guarantee that str-may(σ1, t) = str-may(σ0, t).

Similarly, since str-act depends on the addresses and conditions of

stores in str-may(σ1, t) and these have names smaller than t then

str-act(σ1, t) = str-act(σ0, t). �

Lemma A.2. if σ0
l
−→→ σ1 and t ← c?o ∈ σ then str-may(σ1, t) ⊆

str-may(σ0, t) and str-act(σ1, t) ⊆ str-act(σ0, t)

Proof. �e proof is done by case analysis on α1. For commits

the proof is trivial, since Î1 = ∅ and ŝ1 = ∅. For fetches, ŝ1 = ∅

and the transition may decode new stores in Î1. However, these

new stores have names greater than max(I0), hence their names

are greater than t . �erefore the additional stores do not affect

str-may and str-act.

For executions, Î1 = ∅, ŝ1 = {t1 7→ v}, and s0(t1)↑ for some v .

�is store update can make defined the evaluation of the condition

or expression of a store. In this case, if a store is in str-may(σ1, t) it

must also be in str-may(σ0, t). Stores that are in str-may(σ0, t) but

are not in str-may(σ1, t) have undefined conditions or addresses in

σ0 and false condition or non matching address in σ1.

To show that str-act does not increase we proceed as follows. Let

t ′ be a store in str-may(σ0, t) \ str-act(σ0, t). �ere must be a subse-

quent overwriting store t ′′ in str-may(σ0, t)whose condition holds

in σ0 and address is defined in σ0. Such store cannot have t1 in its

free names, hence it is also in str-may(σ1, t). �erefore the store

t ′′ overwrites t ′ in σ1 too. �

Proof of�eorem 6.3 is done by induction on the length of traces

and relies on LemmaA.3 to demonstrate that (α2, t2) can be applied

in σn and Lemma A.4 to show that (α1, t1) can be applied in the

resulting state σ ′n+1 to obtain σn+2.

Lemma A.3. If σ0
l1
−→→ σ1

l2
−→→ σ2 and t2 < t1 then exists l ′2 such

thatσ0
l ′2
−→→ (I0∪Î2, s0∪ŝ2,C0∪Ĉ2, F0∪F̂2) = σ ′, step-param(σ0,σ

′) =

(α2, t2), and if α2 = Cmt(a,v) then α1 , Cmt(a,v ′).

Proof. We fist bound the effects of the transitions that modi-

fied t1.

(1) If σ1
l2
−→→ σ2 and step-param(σ1,σ2) = (α2, t2), then exists ι2 =

t2 ← c?o ∈ I1. Since step-param(σ0,σ1) = (α1, t1) then bn(Î1) >

t1 > t2. �erefore t2 ← c?o ∈ I0.

(2) Similarly, dom(ŝ1) ⊆ {t1}, Ĉ1 ⊆ {t1}, and F̂1 ⊆ {t1}.

�e proof continues by case analysis over the transition rule α2.

(Case Exe)�e hypothesis of the rule ensure that s1(t2)↑, [c]s1, and

[ι2]σ1 = (v, l2). �e conclusion of the rule ensures that ŝ2 = {t2 7→

v}, Ĉ2 = ∅, F̂2 = ∅, and Î2 = ∅.

�e proof that t2 can be executed in σ0 relies on the fact that all

free names of the instruction t2 must be smaller than t2. Property

(2), f n(ι2) < t2, and t2 < t1 ensure that s(t2)↑ and [c]s .

�e same properties guarantee that [ι2]σ0 = (v, l2). For internal

operations and stores the proof is trivial, since f n(ι2) < t2, and

t2 < t1. �e proof for loads uses Lemma A.1 to guarantee that

str-act(σ0, t2) = str-act(σ1, t2).

Hence we can apply rule (exec) to show that exists l ′2 such that

σ0
l2
−→→ (I0, s0∪{t2 7→ v},C0, F0) = σ ′. Notice that l ′2 , l2. In fact, if

t2 is a load, t1 is the corresponding active store, and α1 = Cmt(a,v)

then the execution of t2 needs to access the memory subsystem in

σ1 while it can simply forward the value of t1 in σ0: i.e., an observ-

able load becomes silent.

(Case Cmt(a,v)) In this case o = st M ta tv . �e hypothesis of

the rule ensure that s1(t2) = v , t2 < C1, bn(str-may(σ1, t2)) ⊆ C1,

and s1(ta) = a. �e conclusion of the rule ensures that ŝ2 = ∅,

Ĉ2 = {t2}, F̂2 = ∅, Î2 = ∅, and l2 = ds a.

Property (2) and ta < t2 < t1 ensure that s0(t2) = v , t2 < C0, and

s0(ta ) = a. Similarly to the case Exe-load, Lemma A.1 guarantees

that bn(str-may(σ1, t2)) = bn(str-may(σ , t2)). Since the str-may are

smaller than t2 then bn(str-may(σ0, t2)) ⊆ C0.

Hence we can apply rule (commit) to show that σ0
l2
−→→ (I0, s0,C0 ∪

{t2}, F0) = σ ′. Finally, to show that α1 , Cmt(a,v ′) we proceed

by contradiction. If α1 = Cmt(a,v ′), then bn(str-may(σ0, t1)) ⊆ C0.

However, t2 ∈ bn(str-may(σ0, t1)), because they write the same ad-

dress a and t2 < t1. �is contradict that t2 < C0.

(Case Ftc) In this case o = st PC tv . �e hypothesis of the rule

ensure that s1(t2) = v , t2 < F1, and bn(str-may(σ1, t2)) ⊆ F1. �e

conclusion of the rule ensures that ŝ2 = ∅, Ĉ2 = ∅, F̂2 = {t2},

Î2 = translate(v,max(I1)), and l2 = il a.

Property (2) and f n(c) ∪ {ta} < t2 < t1 ensure that s0(t2) = v

and t2 < F0. Similarly to the case commit, Lemma A.1 guarantee

that bn(str-may(σ1, t2)) = bn(str-may(σ , t2)). Since the str-may are

smaller than t2 then bn(str-may(σ0, t2)) ⊆ F0.

To complete the proof we must show that Î1 = ∅. We proceed by

contradiction: if Î1 , ∅ then α1 = Ftc(Î1), hence this transition
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fetched t1 and bn(str-may(σ0, t1)) ⊆ F0. However, t2 < t1 and both

update the program counter, therefore t2 ∈ bn(str-may(σ0, t1)).

�is contradicts t2 < F0.

Finally, we can apply rule Ftc to show that σ0
l2
−→→

(I0 ∪ translate(v,max(I0), s0,C0, F0 ∪ {t2}) =

(I0 ∪ translate(v,max(I1), s0,C0, F0 ∪ {t2}) = σ ′. �

Lemma A.4. If σ0
l1
−→→ σ1

l2
−→→ σ2 and t2 < t1 then there exists

σ ′, l ′1, and l ′2 such that σ0
l ′2
−→→ σ ′

l ′1
−→→ σ2, step-param(σ0,σ

′) =

(α2, t2), step-param(σ
′
,σ2) = (α1, t1), and if α2 = Cmt(a,v) then

l1 , Cmt(a,v ′).

Proof. �e existence of σ ′ and l ′2 is given by Lemma A.3. For

transition σ ′
l ′1
−→→ σ2 we first bound the effects of σ0

l1
−→→ σ1.

(1) If σ0
l1
−→→ σ1 and step-param(σ0,σ1) = (α1, t1), then there exists

ι1 = t1 ← c?o ∈ I0. �erefore t1 ← c?o ∈ I0 ∪ Î2 = I ′.

(2) dom(ŝ2) ⊆ {t2}, Ĉ2 ⊆ {t2}, and F̂2 ⊆ {t2}.

We continue the proof by case analysis on α2.

(Case Exe)�e hypothesis of the rule ensure that s0(t1)↑, [c]s0, and

[ι1]σ0 = (v, l1). �e conclusion of the rule ensures that ŝ1 = {t1 7→

v}, Ĉ1 = ∅, F̂1 = ∅, and Î1 = ∅.

(3) Property (2) and t2 < t1 ensure that s
′(t1)↑. Moreover, if ŝ2 = ∅

then [c]s ′ = [c]s0. Otherwise, ŝ2 = {t2 7→ v2} for some v2. In

this case, α2 = Exe and s0(t2)↑. Since [c](s0)↓ then t2 < n(c), hence

[c]s ′ = [c]s0.

�e same argument is used to guarantee that [ι1]σ
′
= (v, l ′1). For

internal operations and stores the proof follows the same approach

of (3). �e proof for loads uses Lemma A.2. Notice that for internal

operations and stores l ′1 = l1 = ·. For loads, either l
′
1 = l1 = dl a or

l ′1 = dl a and l ′1 = ·. �e la�er happens when step-param(σ0,σ
′) =

(Cmt(a,v), t2). In this case, we have reordered a memory commit

before a load thus making it not possible to forward the value of

the store to the load and requiring a new memory interaction. �is

shows that the observations of the OoO model are a subset of the

observations of in-order model, since the OoO model can execute

loads before the corresponding stores are commi�ed.

Finally, we can apply rule Exe to show that σ ′
l ′1
−→→ (I ′, s ′ ∪ {t1 7→

v},C′, F ′) = σ2.

(Case Cmt(a,v)) In this case o = st M ta tv . �e hypothesis of

the rule ensure that s0(t1) = v , t1 < C0, bn(str-may(σ0, t1)) ⊆ C0,

and s0(ta) = a. �e conclusion of the rule ensures that ŝ1 = ∅,

Ĉ1 = {t1}, F̂1 = ∅, It1 = ∅, and l1 = ds a.

Property (2) and t2 < t1 ensure that s
′(t1) = v and s ′(ta) = a. To

show that bn(str-may(σ ′, t1)) ⊆ C′ we use Lemma A.2. Finally,

t1 < C′, since t1 > t2. To prove that α2 , Cmt(a,v ′) we proceed

by contradiction. If α2 = Cmt(a,v ′) then t2 < C0. However, t2 ∈

bn(str-may(σ0, t1)), because they write the same address a and t2 <

t1. �is contradict that bn(str-may(σ0, t1)) ⊆ C0.

�erefore we can apply rule Cmt to show that σ ′
l1
−→→ (I ′, s ′,C′ ∪

{t1}, F
′) = σ2.

(Case Ftc) In this case o = st PC tv . �e hypothesis of the rule

ensure that s0(t1) = v , t1 < F0, and bn(str-may(σ0, t1)) ⊆ F0. �e

conclusion of the rule ensures that ŝ1 = ∅, Ĉ1 = ∅, F̂1 = {t1},

It1 = translate(v,max(I1), and l1 = il a.

Property (2) and t2 < t1 ensure that s ′(t1) = v . To show that

bn(str-may(σ ′, t1)) ⊆ F ′ we use Lemma A.2.

Finally, t1 < F
′, since t1 > t2.

To complete the proof we must show that Î2 = ∅. We proceed by

contradiction: if Î2 , ∅ then α2 = Ftc, hence this transition fetched

t2 and t2 < F0. However, t2 < t1 and both update the program

counter, therefore t2 ∈ bn(str-may(σ0, t1)). �is contradicts the

hypothesis that bn(str-may(σ0, t1)) ⊆ F0.

Finally, we can apply rule Ftc to show that σ ′
l1
−→

(I ′ ∪ translate(v,max(I ′), s ′,C′, F ′ ∪ {t1}) =

(I ′ ∪ translate(v,max(I0), s
′
,C′, F ′ ∪ {t1}) = σ ′.

�

A.3 Memory Consistency of Speculative
Semantics: �eorem 6.4

We reduce memory consistency for the speculation model to the

OoO case using �eorem 6.3. Since the OoO semantics already

takes care of reordering, to prove �eorem 6.4 a bisimulation ar-

gument suffices. Intuitively, referring to Figure 2, the states “de-

coded”, “predicted”, “speculated” and “speculatively fetched” in the

speculative semantics all correspond in some sense to the state “de-

coded” in the OoO semantics, in that any progress can still be un-

done to return to the “decoded” state. In a similar vein, the state

“retired” corresponds to “executed” in theOoO semantics, “fetched”

to “fetched” and “commi�ed” to “commi�ed”. �e only exception

is states that are speculatively fetched. In this case there is an op-

tion to directly retire the fetched state, without passing through

“retired” first. �e proof reflects this intuition.

�e main challenges in defining the bisimulation are i) to pin

down the non-speculated instructions in the speculative semantics

and relate them correctly to instructions in theOoO semantics, and

ii) account for speculatively fetched instructions. �e la�er issue

arises when retiring an instruction in the speculative semantics

that has earlier been speculatively fetched. In that case, the corre-

sponding decodedmicroinstructions are already in flight, although

the bisimilar OoO state will have no trace of this. �en the OoO

microinstruction will have to be first executed and then fetched.

�e following definitions make this intuition precise.

First say that a name t ′ is produced by the PC store microin-

struction t ← c?st PC tv ∈ I , if t ′ ≺ t , i.e. t ∈ dom(δ (t ′)).

We would like to conclude that t is uniquely determined, as we

need this to properly relate the speculative and OoO states. How-

ever, this does not hold in general. For a counterexample consider

the PC store microinstruction t ← c?st PC tv . Suppose that

the fetch from t causes a new instruction I ′ to be allocated with

another PC store instruction t ′ ← c ′?st PC t ′v followed by a

PC load t ′′ ← c ′′?ld PC , i.e. such that t ′ < t ′′. At this point,

δ (t ′) = [t 7→ v] and δ (t ′′) = [t 7→ v]. A�er executing the fetched

PC store t ′ and then the PC load, s(t ′) = v ′ and s(t ′′) = v ′. At this

point, δ (t ′′)will map t tov and t ′ tov ′. But then t ′′ is produced by

both t and t ′. �e same property holds if t ′ is used as an argument

to operations other than a PC load. �is causes us to impose the

following wellformedness condition on instruction translations:

Definition A.5 (Wellformed instruction translation). �e transla-

tion function translate is wellformed if translate(v, t) = I implies:
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(1) t ← c?st PC tv , t
′ ← c ′?ld PC ∈ I implies t ′ < t .

(2) t ← c?st PC tv , ι ∈ I implies t < fn(ι).

(3) For all s there is a unique t ← c?st PC tv such that [c]s .

Condition A.5.1 and 2 can be imposed without loss of general-

ity since any occurrence of t bound to the microinstruction t ←

c?st PC v can be replaced by v itself, and condition A.5.3 is natu-

ral to ensure that any linear control flow gives rise to a correspond-

ingly linear flow of instructions. We obtain:

Proposition A.6. If t ′ is produced by t1 and t
′ is produced by t2

then t1 = t2. ✷

Consider now microinstructions (images of translate) I1 and I2
such thatbn(I1)∩bn(I2) = ∅. Say that I1 produces I2, I1 < I2, if there

is t ← c?st PC tv ∈ I1 such that for each t ′ ∈ I2, t
′ is produced

by t . Clearly, if I ′ is added to the set of microinstructions due to a

fetch from I then I < I ′. Say then that I (and by extension states

containing I ) is wellformed by the partitioning Iretir ed , I1, . . . , In ,

if I =
⋃
{Iretir ed , I1, . . . , In}, Iretir ed is retired, and for each Ii ,

1 ≤ i ≤ n there is I ∈ {Iretir ed , I1, . . . , In } such that I < Ii . More-

over we require that <∗ on the partitions {Iretir ed , I1, . . . , In} is

well-founded and that the partitions are maximal. Note that if I is

wellformed by Iretir ed , I1, . . . , In then the partitioning is unique.

We note also that all reachable states in the speculative semantics

are wellformed and each partition corresponds to the translation

of one single ISA instruction. We say that an ISA instruction Ii in

the partitioning I1, . . . , In is unconditionally fetched, if Iretir ed < Ii
and let Iuf be the union of Iretir ed and the instructions that have

been unconditionally fetched.

We can now proceed to define the bisimulation R. We restrict

a�ention to reachable states in both the OoO and speculative se-

mantics in order to keep the definition of R manageable and be

able to implicitly make use of simple invariant properties such as

dom(δ ) ∩ dom(δ (t)) ⇒ t < C (no instruction with a speculated de-

pendency is commi�ed). Let (I1, s1,C1, F1) R (I2, s2,C2, F2,δ2, P2)

if

(1) I2 is wellformed by the partitioning I2,retir ed , I2,1, . . . , I2,n .

(2) �ere is a bijection ·̃ from I2,uf to I1.

(3) C2 = C̃1,

(4) s2 \ dom(δ2) = s̃1,

(5) F2 \ dom(δ2) = F̃1,

In 3.-5. the bijection ·̃ is pointwise extended to sets and expres-

sions.

Note that, from 2. and 4. we get that a microinstruction t̃ in I1
has been executed iff t < dom(δ2).

We prove that R is a weak bisimulation in two steps. We first

show that all speculative transitions up until retire or non-speculative

fetch are reversible. To prove this it is sufficient to show that each

of the conditions 1.–4. is invariant under Prd, Exe, Pexe, Rbk, and Ftc,

the la�er under the condition that the fetched instruction is in δ2.

�ese transitions are identified by T1 in the following picture:

(σ2, δ2, P2) (σ ′2, δ
′
2, P
′
2) (σ ′′2 , δ

′′
2 , P

′′
2 ) (σ ′′′2 , δ ′′′2 , P ′′′2 )

σ1 σ ′1 σ ′′1 σ ′′′1

T1 T2 T3

T2 Exe Ftc

R R R R

Lemma A.7. If σ1 R (σ2,δ2, P2) and (σ2, δ2, P2) −→→→ (σ
′
2,δ
′
2, P
′
2) is

an instance of Prd, Exe, Pexe,Rbk, or speculative Ftc thenσ1 R (σ
′
2,δ
′
2, P
′
2).

Proof. Letσ2 = (I2, s2,C2, F2) and (σ
′
2, δ
′
2, P
′
2) = (I

′
2, s
′
2,C
′
2, F
′
2,δ
′
2, P
′
2).

(Case Prd)We get σ ′2 = (I2, s2[t 7→ v],C2, F2, δ2, P2 ∪ {t}) and note

that conditions 1.–5. are trivially satisfied by the assumptions.

(Case Exe) We get σ2 −→→ σ ′2 with step-param(σ2,σ
′
2) = (Exe, t),

t < P2, δ
′
2 = δ2 ∪ {t 7→ s2 |deps(t,σ2)} and P

′
2 = P2. Cond. 1 and 2 are

straightforward since I2,uf and I1 are not affected by the transition.

For cond. 3 and 5 we get C′2 = C2 and

F ′2 ∩ dom(δ ′2) = F2 ∩ dom(δ2) ,

since dom(δ ′2) \ dom(δ2) = {t} and t < dom(F2). For cond. 4,

s ′2 \ dom(δ
′
2) = s2[t 7→ v] \ dom(δ2 ∪ {t 7→ s2 |deps(t,σ2))

= s2[t 7→ v] \ dom(δ2) ∪ {t}

= s2 \ dom(δ2) .

(Case Pexe) In this case σ2 |{t } −→→ σ ′2 with step-param(σ2,σ
′
2) =

(Exe, t), t ∈ P2, δ
′
2 = δ2 ∪ {t 7→ s2 |deps(t,σ2)} and P ′2 = P2 \ {t}.

Cond. 1 and 2 again are immediate. For cond. 3, C′2 = C2 and for

cond. 5,

F ′2 ∩ dom(δ ′2) = F2 ∩ dom(δ2)

since, again, dom(δ ′2) \ dom(δ2) = {t} and t < dom(F2). Finally for

cond. 2,

s ′2 \ dom(δ
′
2) = s2[t 7→ v] \ dom(δ2) ∪ {t}

= s2[t 7→ v] \ dom(δ2) ∪ {t}

= s2 \ dom(δ2)

(Case Rbk) We get that (I2, s2,C2, F2) /t (I2,δ2(t),C2, F2) and t <

P2. We get I ′2 = I2\∆
+, s ′2 = s2 |∆∗ ,C

′
2 = C2, F

′
2 = F2\∆

∗, δ ′2 = δ2\∆
∗,

and P ′2 = P2 \ ∆
∗. For cond. 1 and 2 first note that t ∈ dom(δ2). If t

is not a PC store the effect of Rbk is to remove t from s2, F2, δ2, P2.

�is does not affect the bijection ·̃, so 1 and 2 remain valid also for

(σ ′2,δ
′
2, P
′
2). If t is a PC store then we need to observe the following:

Since t is speculated, t is a member of some ”macro”-instruction (=

partition) I2,i . �e set ∆+ contains all instructions/partitions I2, j
such that I2,i <

+ I2, j . In particular, no such I2, j is in I2, f u , since

otherwise I2, j would have been added by a retired PC store mi-

croinstruction. It follows that the bijection ·̃ is not affected by the

removal of ∆+, and 1 and 2 are reestablished for the new specula-

tive state.

For cond. 3, C′2 = C2. For cond. 4, we calculate:

s ′2 |dom(δ ′2)
= (s2 |∆∗ )|dom(δ ′2)

= s2 |dom(δ ′2)∪P
′
2∪∆

∗

= s2 |dom(δ2\∆∗)∪∆∗

= s2 |dom(δ2)∪∆∗

= s2 |dom(δ2)
.
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Note that the final step uses prop. A.8.

Proposition A.8. �e relation ≺∗ is a partial order.

Proof. By induction in the length of derivation. �

Finally for cond. 5:

F ′2 \ dom(δ
′
2) = (F2 \ ∆

∗) \ (dom(δ2) \ ∆
∗)

= F2 \ (dom(δ2)) .

(Case speculative Ftc)We get that σ2 −→→ σ ′2 , step-param(σ2,σ
′
2) =

(Ftc(I ′′2 ), t), P
′
2 = P2, δ

′
2 = δ2 ∪ {t

′ 7→ s |{t } | t
′ ∈ I ′′2 }, and, since

t is speculated, t ∈ dom(δ2). Also, we find t ← c?st PC tv ∈ I2,

s2(t) = v , t < F2, bn(str-may(σ2, t)) ⊆ F2, I
′
2 = I2 ∪ I ′′2 , s ′2 = s ,

C′2 = C2, and F ′2 = F ∪ {t}. For cond. 1 and 2 observe that no

instruction I ′ added by the fetch can belong to I ′
2, f u

, since all such

instructions are produced by a retired PC store instruction.

For cond. 3, C′2 = C2 is immediate.

For cond. 4 we calculate:

s ′2 |dom(δ ′2)
= s2 |dom(δ2)∪{t ′ |t ′ ∈I ′′2 }

= s2 |dom(δ2)

Finally for cond. 5:

F ′2 \ dom(δ
′
2) = (F2 ∪ {t}) \ (dom(δ2) ∪ {t

′ | t ′ ∈ I ′′2 })

= F2 \ dom(δ2)

�

�e following Lemma handle cases for Ret when t < F2, Cmt, Ftc

when t < dom(δ2) (which are identified by T2 in Figure), and the

cases for Ret when t ∈ F2 (which are identified by T3 in Figure).

Lemma A.9. Assume that σ1 R (σ2,δ2, P2).

(1) If (σ2,δ2, P2) −→→→ (σ
′
2,δ
′
2, P
′
2) is an instance of Cmt, Ftc, or

Ret then σ1 −→→
∗ σ ′1 such that σ ′1 R (σ

′
2,δ
′
2, P
′
2).

(2) Ifσ1 −→→ σ ′1 then (σ2,δ2, P2) −→→→ (σ
′
2,δ
′
2, P
′
2) such thatσ

′
1 R (σ

′
2,δ
′
2, P
′
2).

Proof. Assume first that (σ2, δ2, P2) −→→→ (σ
′
2,δ
′
2, P
′
2). Let σi =

(Ii , si ,Ci , Fi ) and σ
′
i = (I

′
i , s
′
i ,C
′
i , F
′
i ). We prove that σ ′1 R (σ

′
2,δ
′
2, P
′
2)

and proceed by cases, first from the speculative to the OoO seman-

tics.

(Case Cmt)We get σ2 −→→ σ ′2, and t < dom(δ2), t ← c?stM ta tv ∈

I2, s2(t) = v , t < C2 and bn(str-may(σ2, t)) ⊆ C2. Since t is not

speculatedwe get t ∈ I2,retir ed . Since t < dom(δ2)we get s1 (̃t ) = ṽ

by cond. 4, t̃ < C̃1 by cond. 3, t̃ ∈ Ĩ2 by cond. 2, and, since all

members of bn(str-may(σ2, t)) are non-speculated, by cond. 2, 3,

4, bn(str-may(σ1, t̃)) ⊆ C1. It follows that σ
′
1 = (I1, s1,C1 ∪ {̃t, F1),

and the conditions 1.-5. for σ ′1 and σ
′
2 are easily verified.

(Case non-speculative Ftc) For a non-speculative fetch we get

t < dom(δ2). Also, σ2 −→→ σ ′2 , step-param(σ2,σ
′
2) = (Ftc(I

′
2), t),

t ← c?st PC tv ∈ I2, s2(t) = v , t < F , bn(str-may(σ2, t)) ⊆ C2,

I ′2 = I2 ∪ I ′′2 , s ′2 = s2, C
′
2 = C2, and F ′2 = F2 ∪ {t}. Since t ←

c?st PC tv ∈ I2 and t < dom(δ2)we obtain that t ← c?st PC tv ∈

I2,retir ed and hence that t̃ ← c̃?st PC t̃v ∈ I1. Also, s1 (̃t) = ṽ by

cond. 4, t < F1 by cond. 5, and bn(str-may(σ1, t̃ )) ⊆ F1. But then

σ1 −→→ σ ′1 where I
′
1 = I1 ∪ Ĩ

′
2 (by wellformedness), s ′1 = s1, C

′
1 = C1,

and F ′1 = F1 ∪ {̃t}.

(CaseRet and t < F2)Assume thatσ2 −→→ σ ′2, t ∈ dom(s2), dom(δ2(t))∩

dom(δ2) = ∅, t < P2, and (I2, s2,C2, F2) ∼t (I2,δ2(t),C2, F2) such

that I ′2 = I2, s
′
2 = s2, C

′
2 = C2, F

′
2 = F2, δ

′
2 = δ2 |{t } , and P ′2 = P2.

By Lemma 5.3 [ι](I2, s2,C2, F2) = s2(t). By cond. 4, whenever

t ′ < dom(δ2), s1(t̃ ′) = s2(t
′). We know that s1(t̃i ) = �s2(ti ) by 4.

Let t ← c?o ∈ I2 be the microinstruction bound to t in I2. Since

dom(δ2) ∩ dom(δ2(t)) = ∅ we know that t ∈ I2,uf and hence

t̃ ∈ dom(I1) by 2. It follows that t̃ can be executed resulting in

I ′1 = I1, s
′
1 = s1 [̃t 7→ s ′2(t)] such that s ′1 (̃t) = s̃ ′2(t), C

′
1 = C1, and

F ′1 = F1. �is is sufficient to reestablish R.

(Case Ret and t ∈ F2) In this case wemust additionally account for

the microinstructions produced by t : i.e. the partition Î2 of I2 such

that {t ← c?o} < Î2. �e microsintructions are not in I2,uf , since

t ∈ dom(δ2), hence are not covered by the bijection ·̃. However,

microinstructions in Î2 are in I ′
2,uf

. For this reason, in order to

restablish the bisimulation, the OoO must perform a further step

from σ ′1 and apply Ftc to t . �is allows to extend the bijection ·̃ to

relate the newly decoded microinstructions to Î2.

(Converse direction) For the converse direction, from the OoO

semantics to the speculative semantics the steps for commits and

non-speculative retires follow the commit case above closely. �e

only delicate case is for Exe. So assume σ1 −→OoO σ ′1 such that

ι̃ = t̃ ← c̃?õ ∈ I1, t̃ < dom(s1), [̃c]s1 is true, [̃ι]σ1 = (ṽ, l̃), I
′
1 = I1,

s ′1 = s1 [̃t 7→ ṽ], C′1 = C1, and F ′1 = F1. We get that ι = t ←

c?o ∈ I2,uf . �ere are two cases. Either t < dom(s2) (t has not yet

been executed), or t ∈ dom(s2) ∩ dom(δ2). In the former case, the

execution step can be mirrored in the speculative semantics and

then retired. In the la�er case, the execution step can be retired

directly. �is completes the proof of lemma A.9. �

We now obtain theorem 6.4 as a corollary of lemma A.7 and A.9.

✷

A.4 MIL Constant Time Security: �eorem 7.3

�e proof is done by showing that the relation R is a bisimulation

for the OoO transition relation, where σRσ ′ iff σ ≈ σ ′ and there

exist σ0 ∼L σ ′0 and n such that σ0 −→→
n σ and σ ′0 −→→

n σ ′.

Let (I , s,C.F) = σ , (I ′, s ′,C′.F ′) = σ ′, σ −→→ σ1 = (I ∪ It , s ∪

st ,C ∪ Ct , F ∪ Ft ), and step-param(σ ,σ1) = (α , t). �e proof is

done by case analysis on α .

(Case Exe)�e hypothesis of the rule ensure that ι = t ← c?o ∈

I , s(t)↑, [c]s , and [ι]σ = (v, l). �e conclusion ensures that ŝ =

{t 7→ v}, Ĉ = ∅, F̂ = ∅, and Î = ∅. Relation ≈ ensures that ι ∈ I ′,

s ′(t)↑, and [c]s ′.

We must show that exists v ′ such that [ι]σ ′ = (v ′, l). For o = e

and o = st τ ta tv the proof is trivial. In fact, since [ι]σ then

all free names of o are defined in σ and ≈ ensures that the same

names are defined in σ ′. For o = ld τ ta , [ι]σ = (v, l) ensures

that bn(str-act(σ , t)) = {ts }, σ (ta )↓, and σ (ts )↓. Relation ≈ ensures

that σ ′(ta ) = σ (ta ), σ
′(ts )↓, I = I ′ (hence there are the same

store instructions), and that for every store t ′ ← c ′?st τ t ′a t ′v ,

[c ′]σ = [c ′]σ ′, and σ (t ′a ) = σ ′(t ′a ). �erefore bn(str-act(σ ′, t)) =

bn(str-act(σ , t)) and [ι]σ ′ = (σ ′(ts ), l
′). Finally, since relation ≈

guarantee that (ts ∈ C) ⇔ (ts ∈ C
′) then l ′ = l .

�ese properties enable applying rule (Exe) to show that σ ′
l
−→→
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(I ′, s ′ ∪ {t 7→ s ′(ts )},C
′
, F ′) = σ ′1 .

To prove that ≈ is preserved we use�eorem 6.3. Let t ′ ← c ′?o′ ∈

I . Let N ′ be f n(c ′) if o′ is neither a load or a store; f n(c ′) ∪ {t ′a}

if o′ is a memory or register access and t ′a is the corresponding

address; f n(c ′) ∪ {t ′v } if o
′ is a program counter update and t ′v is

the corresponding value. If t < N ′ then the proof is trivial, since

[c]s ∪ {t 7→ v} = [c]s = [c]s ′ = [c]s ′ ∪ {t 7→ s ′(ts )} (the same

holds for the address in case of a resource accesses or program

counter update).

σ0 σ σ1 σS

σ ′0 σ ′ σ ′1 σ ′
S

n (α, t ) m

n + 1 +m

n m

n + 1 +m

∼L R ≈R

For t ∈ f n(c ′)we reason as follows. States σ1 and σ
′
1 are the (n+1)-

th states of two OoO traces ρ = σ0 −→→
n+1 σ1 and ρ

′
= σ ′0 −→→

n+1 σ ′1
such that σ0 ∼L σ ′0 . �ere is a trace ρ1 = σ0 −→→

n+1 σ1 −→→
m σs

that has prefix ρ, such that C(σs , t
′′) for every t ′′ ≤ max(bn(I ′)).

Notice that this state is “sequential”. Since in the OoO semantics

the storage is monotonic then σ1(t) = σs (t). �eorem 6.3 permits

to connect this trace to a sequential trace, which enables to use

the MIL constant-time hypothesis. In fact, there exists an ordered

execution π of ρ1 that ends in σs : π = σ0 −→
n+1+m σs . For the

same reason, ρ′ is a prefix of a trace ρ′1 that ends in a sequential

state σ ′s , σ
′
s (t) = σ ′1(t), and there exists a sequential trace π ′ of

n + 1 +m steps that ends in σ ′s . Since C(σs , t
′′) and C(σ ′s , t

′′) then

[c ′](σs )↓ and [c
′](σ ′s )↓. �erefore, we can use the assumption on

MIL constant-time to show that σs ≈ σ ′s , hence [c
′]σs = [c

′]σ ′s .

Since t ∈ f n(c), either [c ′](σs )↑ and [c
′](σ ′s )↑ or [c

′]σ1 = [c
′]σ ′1.

�e same reasoning is used if t ′ is a resource accesses and t = t ′a ,

or if t ′ is program counter update and t = t ′v .

(Case Cmt) �e hypothesis ensure that t ← c?st M ta tv ∈ I ,

s(t) = v , t < C, bn(str-may(σ , t)) ⊆ C, and s(ta) = a. �e conclu-

sion ensures that st = ∅, Ct = {t}, Ft = ∅, It = ∅, and l = ds a.

Also, the invariant guarantees that [c]s .

�e relation ≈ ensures that t ← c?st M ta tv ∈ I
′, ∃v ′.s ′(t) = v ′,

t < C′, s ′(ta) = a, and [s]′[c].

To show that bn(str-may(σ ′, t)) = bn(str-may(σ , t)) we use the

same reasoning used to prove that bn(str-act(σ ′, t)) = {ts } of case

Exe when o = ld ta .

Relation ≈ ensures that bn(str-may(σ ′, t)) ⊆ C′. �erefore we can

apply rule (Cmt) to show that σ ′
l
−→→ (I ′, s ′,C′∪ {t}, F ′) = σ ′1 hence

σ1 ≈ σ ′1 .

(Case Ftc)�ehypothesis of the rule ensure that t ← c?st PC tv ∈

I , s(t) = v , t < F , bn(str-may(σ , t)) ⊆ F . �e conclusion ensures

that st = ∅, Ct = ∅, Ft = {t}, It = translate(v,max(I )), and l = il v .

Also, the invariant guarantees that [c]s .

�e relation ≈ ensures that t ← c?st PC tv ∈ I ′, ∃v ′.s ′(t) = v ′,

t < F ′, and [c]s ′.

To show that bn(str-may(σ ′, t)) = bn(str-may(σ , t)) we use the

same reasoning used to prove that bn(str-act(σ ′, t)) = {ts } of case

Exe when o = ld ta .

Relation ≈ ensures that bn(str-may(σ ′, t)) ⊆ F ′. We can apply rule

(Ftc) to show that σ ′
il v ′
−−−−→→ (I ′ ∪ translate(v ′,max(I ))), s ′,C′, F ′ ∪

{t}) = σ ′1.

To show that v ′ = v and ≈ is reestablished for translate(v,max(I ))

we use a similar reasoning to case Exe. We find two sequential

traces that end with the fetch of t and use MIL constant time to

show that the value used for the PC update must be the same and

that the parameter and conditions of the newly decoded microin-

structions are equivalent in the two states.
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